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ABSTRACT

This paper studies privacy in the context of decision-support queries
that classify objects as either true or false based on whether they
satisfy the query. Mechanisms to ensure privacy may result in
false positives and false negatives. In decision-support applications,
often, false negatives have to remain bounded. Existing accuracy-
aware privacy preserving techniques cannot directly be used to
support such an accuracy requirement and their naive adaptations
to support bounded accuracy of false negatives results in signifi-
cant privacy loss depending upon distribution of data. This paper
explores the concept of minimally-invasive data exploration for
decision support that attempts to minimize privacy loss while sup-
porting bounded guarantee on false negatives by adaptively adjust-
ing privacy based on data distribution. Our experimental results
show that the MIDE algorithms perform well and are robust over
variations in data distributions.
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1 INTRODUCTION

Decision-support (DS) applications [3, 11, 26] allow timely and in-
formed decision-making and planning based on analyzing data, but
such applications could face severe privacy challenges if the data
analyzed contains personally identifiable information about indi-
viduals. For instance, a building management system may maintain
the occupancy statistics (like in Figure 1) to detect violation of fire
code, adherence to the CDC (Center For Disease Control) guideline
in the context of COVID-19 or better space utilization. If the loca-
tion of interest has an aggregated occupancy that is higher than a
threshold, an alarm is raised, but this aggregated statistics can leak
sensitive information about users [10]. For example, prior work
[17] has shown, with enough background knowledge, occupancy
data can lead to inferences about the location of individuals, which,
in turn, can leak sensitive information (e.g., in an office building
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Figure 1: Occupancy Heatmap of a Building in UCI.

staff consistently leaving work early, smoking habits of individu-
als). As another example, consider assisted living situations where
one of the primary challenges is fall prevention [28] of the elderly
and the goal is to balance safety with privacy. We could monitor
someone invasively using a camera, but such invasiveness is not
necessary if the person is not a high fall risk. To make a decision
about using invasive means of monitoring, wearables can be used
to collect aggregated statistics e.g., number of sudden accelerations
in a week. Sudden accelerations exceeding a threshold could be
interpreted to mean high fall risk and we can make a decision to
monitor such an individual more invasively. The commonality in
such DS applications is that the aggregated statistics are collected
and compared to a preset threshold that classifies objects as either
satisfying the predicate (i.e., true), or as not satisfying the predicate
(i.e., false). Simply releasing the aggregated statistics, however, can
lead to privacy violation of individuals , i.e., reconstruction attack
as shown in [4, 5, 7, 17].

Much of the prior work on privacy has been motivated by the
need for data sharing while ensuring the privacy of sensitive data.
Examples include privacy-preserving sharing of demographic data
(e.g., US Census), medical data to support research (e.g., cancer
registries), or collecting click-stream data for vulnerability analysis
(e.g., from browsers). Over the past decade, differential privacy [6]
has emerged as one of the most popular privacy notions. It provides
a formal mathematical guarantee that individual records are hidden
even with the release of aggregate statistics and it is possible to
bound the information leakage by a total privacy budget across
multiple data releases. This has led to a wide range of adoption
of differential privacy in a number of products at the US Census
Bureau [8], Google [21], and Uber [12].

While differential privacy is suited for privacy-preserving shar-
ing, its usefulness in the context of decision support (DS) applica-
tions is limited. DS tasks require guarantees on the output quality,
especially, for false negatives that may result due to the addition
of noise to aggregated statistics. Such false negatives may result
in events of interest/anomalies not being detected. For instance,
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in the elderly fall prevention example, a false negative may cause
increased fall risk (from aggregated statistics of the number of
accelerations) to go unnoticed preventing timely escalation and in-
tervention. False positives are also not desirable, e.g., in the elderly
fall prevention scenario, it may result in unnecessary escalation by
using more invasive camera technology and wasted resources of
video processing. Likewise, in the example of a fire code violation in
a building, false positives on highly occupied spaces in the building
may result in a heightened investigation of the region. While one
would desire effective bounds on both false negatives and positives,
in DS applications, increased false negatives are far more debili-
tating (compared to false positives) since they effectively defeat
the very purpose of decision support. Thus, in DS applications,
we desire to have bounded guarantees on false negatives without
significantly increasing the number of false positives 1.

Traditionally, DP-based approaches focus on providing formal
privacy guarantees (in the form of a privacy parameter) while try-
ing to maximize utility. These techniques do not offer guarantees
on the quality of data outputted. Recent studies have addressed this
challenge by designing accuracy aware DP techniques where the
goal is to provide provable bounds on utility, e.g., [9, 20, 24]. Such
approaches, however, are unsuitable for DS for several reasons: first,
such approaches do not differentiate between false positives and
false negatives, and offer a symmetric guarantee on both which
makes them suboptimal in the DS context. Furthermore, the guar-
antee such approaches offer have a region of uncertainty around the
threshold such that bounded guarantees (on either false positives
or negatives) do not apply to data that falls in that region. This
makes the techniques unsuitable for DS applications that require a
tight guarantee on (at least) the false negatives.

In this work, we explore a utility-aware technique that provides
(probabilistically) bounded guarantee on utility (in terms of asym-
metric bounds on false negatives that are guaranteed to remain
lower than a limited number) while minimizing privacy loss using
differential privacy. The key intuition is to modify the DS query
appropriately (before adding noise) so as to control the trade-off
between false positives and false negatives and supports guaranteed
utility in terms of false negatives. In particular, we generalize the
query condition (e.g., replacing a query condition 𝑋 > 𝜏 by 𝑋 > 𝜏 ′,
where 𝜏 ′ < 𝜏 ) to admit a larger number of false positives but reduce
the probability of data being wrongly classified as a false negative.

While a scheme that offers a bounded guarantee on false nega-
tives can be designed by weakening the query condition, a proper
design leads to subtle complexities. As will become evident, the
(probabilistic) guarantee on false negatives, the weakening of the
query condition, and the amount of privacy loss (𝜖 in differential
privacy terms) are interrelated. In particular, the weaker we make
the query condition (i.e., over-generalization), the lower the privacy
loss (smaller 𝜖), while maintaining a bound on the false negatives.
However, the weaker the query condition, the more the number of
false positives. Ideally, we would like to weaken the condition as
much as possible, as long as it does not cause false positives to arbi-
trarily increase. This depends upon the data distribution. Imagine,

1If we ignored false positives and only considered false negatives, a trivial algorithm
would be to simply ignore the query condition and return all the objects. This will
meet the bounded requirement of false negatives and will have zero false negatives.
But that also defeats the purpose of decision support applications.

for instance, that there is almost no data (or very little data) around
the threshold specified in the query — such would be the case, for
instance, for outlier queries. In such a case, weakening the query
condition significantly would be desirable since that would allow
us to reduce privacy loss without increasing false positives, while
still ensuring the required bounds on false negatives.

In this paper, we explore the design space of solutions alluded
to in the discussion above. We first explore a single-step approach
that minimally weakens/generalizes the query condition to achieve
the bounded guarantee. We then explore a multi-step approach,
wherein we aggressively make a decision to significantly weaken
the query condition, and then, based on the outcome (i.e., possibility
of too many false positives) progressively refine the condition at
the cost of loss of privacy (i.e., larger 𝜖), while maintaining false
negative bounds. Like prior multi-step approaches of Apex [9], our
multi-step approach also offers Ex-Post Differential Privacy [19]
where the final privacy budget spent is determined after the com-
pletion of algorithm. Finally, we explore a data dependent version2

of the multi-step algorithm that exploits the knowledge of data
distribution learnt in previous steps to minimize the privacy loss.

In our algorithms, different objects/entities can be processed (i.e.,
tested for threshold satisfaction) at different levels of privacy (𝜖). In
the initial steps, the objects are processed at smaller 𝜖 (i.e., higher
privacy), and as the algorithm proceeds, some of the objects may
be processed more invasively at higher values of 𝜖 with the goal of
reduce the overall privacy loss. We, thus, refer to our approach as
Minimally Invasive Data Exploration (MIDE).

The idea of different entities having different privacy levels has
been studied in several pieces of prior work e.g. Personalized Differ-
ential Privacy [13], One-sided Privacy [15]. However, these works
do not explore or provide a metric for overall privacy loss.

In summary, our contributions in this paper are as follows:

• We introduce and formally define the problem of accuracy aware
privacy-preserving decision support that has wide applicability
in privacy preserving applications.

• We introduce Predicate-wise Differential Privacy (referred to
as PWDP) which is suited for a data dependent approach to
accuracy aware privacy-preserving analysis. We formally define
the associated privacy metric for PWDP.

• We develop multiple efficient algorithms for the problem of ac-
curacy aware privacy preserving decision support, including a
multi-step algorithm and its data dependent variant.

• We show the applicability of our approach in a detailed study of
several real-world scenarios.

The organization of this paper is as follows: Section 2 defines
basic concepts of differential privacy relevant to this work. Sec-
tion 3 defines the decision support queries, accuracy requirements
of such queries, and our problem statement. This section also pro-
vides a new privacy definition of Predicate-wise Differential Privacy
(PWDP) and defines a new privacy metric to measure the privacy
loss.We use this to minimize privacy loss for our accuracy aware dif-
ferentially private decision support algorithms in Section 4. Section
5 provides an algorithm to compute the new privacy loss metric. In
section 6, we evaluate our algorithms using multiple real datasets.

2Data dependent algorithms have been studied in the context of differential privacy
setting where privacy is fixed and we need to optimize utility [18, 29]
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Lastly, we discuss future directions in Section 8. The paper contains
several theorems and lemmas, the proofs of which are available in
the longer version of the paper [2].

2 BACKGROUND

Differential privacy [6] has emerged as a widely used privacy defi-
nition with provable privacy guarantees. An algorithm is said to
follow differential privacy given an input dataset 𝐷 ∈ D, if output
of the algorithm does not change significantly, when a single tuple
is added or removed from 𝐷 . It is formally defined as follows:

Definition 1 (Differential Privacy (DP)). A randomizedmech-

anism M : D → O satisfies 𝜖-differential privacy, if

𝑃 [𝑀 (𝐷) ∈ 𝑂] ≤ 𝑒𝜖𝑃 [𝑀 (𝐷 ′) ∈ 𝑂] (1)

for any set of outputs 𝑂 ⊆ O, and any pair of neighboring databases

𝐷, 𝐷 ′ where D and D’ differ by only one tuple, i.e., | 𝐷\𝐷 ′∩𝐷 ′\𝐷 |= 1.

In this definition, 𝜖 is the privacy budget that controls the amount
of privacy losswhere 𝜖 ≥ 0. A higher 𝜖 value implies weaker privacy,
whereas a lower 𝜖 value implies stronger privacy.

A Bayesian interpretation DP [14] is to bound the posterior odds
of an adversary with respect to prior odds on whether a tuple 𝑥 is
in 𝐷 and takes value 𝑡 ∈ T , where T is the domain of the tuples.

The adversary’s prior odds for the tuple 𝑥 is defined as 𝑃 [𝑥=𝑡∧𝑥 ∈𝐷 ]
𝑃 [𝑥∉𝐷 ]

,

where the numerator refers to the prior belief that 𝑥 is in the data-
base and takes value 𝑡 and the denominator denotes the prior belief
that 𝑥 is not in the database. The posterior odds after observing an

output 𝑜 of the DP mechanism𝑀 , is expressed as 𝑃 [𝑥=𝑡∧𝑥 ∈𝐷 |𝑜 ]
𝑃 [𝑥∉𝐷 |𝑜 ]

. As

𝑀 satisfies 𝜖-DP, we have the following guarantees, given non-zero
prior beliefs for 𝑥 and 𝑡 ,

| ln(
𝑃 [𝑥 = 𝑡 ∧ 𝑥 ∈ 𝐷 |𝑜]

𝑃 [𝑥 ∉ 𝐷 |𝑜]
/
𝑃 [𝑥 = 𝑡 ∧ 𝑥 ∈ 𝐷]

𝑃 [𝑥 ∉ 𝐷]
) | ≤ 𝜖 (2)

The Laplace mechanism is one of the commonly used DP mech-
anisms and it achieves 𝜖-DP by adding noise drawn from a Laplace
distribution that is proportional to the sensitivity.

Definition 2 (Sensitivity). Given a function 𝑔 : D → R𝑑 ,

the sensitivity of 𝑔 is defined as the maximum 𝐿1 distance between

function outputs of any two neighboring databases 𝐷 and 𝐷 ′ that

differ by only one tuple.

Δ𝑔 = 𝑚𝑎𝑥
∀𝐷,𝐷′

∥𝑔(𝐷) − 𝑔(𝐷 ′)∥1 (3)

For instance, a counting query has a sensitivity of 1.

Theorem 1 (Laplace Mechanism (LM)). Given a function 𝑔 :

D → R𝑑 , the Laplace Mechanism outputs g(D) + 𝜂, where 𝜂 is a

𝑑-dimensional vector of independent random variables drawn from a

Laplace distribution with the probability density function 𝑝 (𝑥 |𝜆) =
1
2𝜆
𝑒−|𝑥 |/𝜆 , where 𝜆 = Δ𝑔/𝜖 , and it satisfies 𝜖-DP.

Differential privacy has important properties [6, 18] to allow the
composition of multiple DP mechanisms.

Theorem 2 (Seqential Composition). Consider k algorithms

𝑀1, ..., 𝑀𝑘 each satisfying 𝜖𝑖 -DP. The sequential execution of𝑀1, ..., 𝑀𝑘

satisfies
∑𝑘
𝑖=1 𝜖𝑖 -DP.

Theorem 3 (Parallel Composition). Consider 𝑘 algorithms

𝑀1, ..., 𝑀𝑘 , each satisfying 𝜖𝑖 -DP. The dataset 𝐷 is partitioned into k

disjoint parts and each𝑀𝑖 is executed on the 𝑖𝑡ℎ partition. Then the

parallel execution of𝑀1, ..., 𝑀𝑘 satisfies𝑚𝑎𝑥 (𝜖𝑖 )-DP.

3 PRIVACY IN DECISION SUPPORT

Decision support applications such as violation detection of the fire
code based on the occupancy statistics or fall prevention based on
weeklymovement statistics, can be supported by a class of aggregate
threshold queries. Such a query checks whether the aggregated
values of some tuples pass the thresholds or not.

Formally, an aggregate threshold query, denoted by 𝑄Λ

g(.)>𝐶
,

consists of (i) an aggregate function g(.); (ii) a set of predicates
Λ = {𝜆1, 𝜆2, ..., 𝜆𝑘 }; and (iii) a set of corresponding thresholds 𝐶 =

{𝑐1, 𝑐2, ..., 𝑐𝑘 }. Each predicate 𝜆𝑖 takes in a tuple and outputs True
or False based on the value of the tuple. We let 𝐷𝜆𝑖 be the set
of tuples in 𝐷 that evaluate 𝜆𝑖 to be True. This query returns all
the predicates that have an aggregate 𝑔(𝐷𝜆𝑖 ) greater than their
respective threshold 𝑐𝑖 , i.e.,

𝑄Λ

g(.)>𝐶
(𝐷) = {𝜆𝑖 ∈ Λ | g(𝐷𝜆𝑖 ) > 𝑐𝑖 } (4)

For example, consider a location dataset inside a building with
schema𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝐷𝑎𝑡𝑎(person, location, timestamp), a decision sup-
port application would like to learn which locations have more
people than their maximum capacity. In this example, the predi-
cate is conditioned on the location of a tuple, the aggregate is the
number of people for a given location, and the threshold is the
maximum capacity of that location. Another way to look at the
problem is that the whole database could be viewed as points in a
multi-dimensional space, and each predicate defines a subspace or
a region. Given a set of such non-overlapping regions, the goal is to
find the regions that contain points more than a certain threshold.

Answering such an aggregate threshold query with differential
privacy guarantees has been considered in prior work [9, 20, 22],
but these solutions may fail the accuracy requirements of a decision
support application or demand an unnecessarily large privacy bud-
get. Next, we will describe and formalize the accuracy requirement
and privacy requirement for decision support queries.

Accuracy Requirement. Two types of errors can be made by
a randomized mechanism that answers a decision support query
defined in Eqn. (4): (i) false positives, predicates that have smaller
aggregate values than the thresholds but appear in the output; (ii)
false negatives, predicates that have bigger aggregate values than
the thresholds but are not outputted. While both false negatives
and positives impact the effectiveness of the decision support ap-
plication, preventing false negatives is far more crucial than false
positives. A false negative may prevent timely intervention (e.g., in
the context of fall detection, or room code violation) which might
be the very purpose of the decision support application. False pos-
itives, on the other hand, may result in false alarms that might
have negative consequences in terms of wasted resources and/or
violation of privacy (e.g., as in more invasive monitoring in the
fall detection example mentioned earlier). While one would like
to minimize both, bounding false negative is far more crucial in
decision support compare to false positives.

We formalize this accuracy requirement as follows.
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Definition 3 (Accuracy Reqirement (𝛽-False Negative

Rate)). We say a mechanism𝑀 : D → 𝑂 satisfies 𝛽-false negative

rate for an aggregate threshold query 𝑄Λ

g(.)>𝐶
if for any database

𝐷 ∈ D, we have

∀𝜆𝑖 ∈ Λ, 𝑃 [𝜆𝑖 ∉ 𝑀 (𝐷) |𝜆𝑖 ∈ 𝑄
Λ

g(.)>𝐶
(𝐷)] ≤ 𝛽 (5)

Prior DP mechanisms such as the Laplace mechanism (Theo-
rem 1) add noise from zero-mean distribution to the aggregate and
compare it with the threshold, which place equal weights on false
positives and false negatives. This approach can fail to bound both
errors together by setting the privacy budget too small (large noise);
or have guarantees on both false positives and false negatives, but
with a high privacy cost. This symmetrical guarantee will be il-
lustrated in Section 4.1. To bound the false negative rate without
incurring additional privacy cost, we design a class of mechanisms
that generalizes the thresholds in the query. For example, for an
aggregate threshold query where we are checking 𝑋 > 𝑐 for an
aggregate 𝑋 , we generalize the query threshold to 𝑋 > 𝑐 − 𝛼 . This
type of generalization allows us to achieve trade-off between false
negatives and false positives that helps us achieve 𝛽-false negative
rate with a minimal privacy cost. This generalization parameter 𝛼
and the accuracy parameter 𝛽 are translated to privacy cost 𝜖 . We
will present these algorithms in Section 4.

Privacy Requirement. The privacy budget (𝜖) of a DP mechanism
depends on the accuracy specification (e.g. 𝛽 in Def. 3). Further-
more, if the DP mechanism is data-dependent, then the minimum
privacy budget to achieve the accuracy requirement also varies
among the data and depends on the output. This privacy loss is
known as ex-post DP [19]. If running the DP mechanism on the
disjoint part of the data (based on the predicates) in parallel, each
part of the data may end up with different ex-post privacy loss.
For example, to achieve the same 𝛽-false negative rate, a predicate
with an aggregate value that is far from the threshold can tolerate a
large generalization parameter 𝛼 and result in a small privacy loss;
while another predicate that is close to the threshold requires a big
privacy budget. To capture this predicate-wise privacy loss for DP
applications, we propose a new framework Predicate-wise Differ-
ential Privacy to generalize DP and ex-post DP. This framework
allows the decision support application to attain the required level
of utility while using higher privacy levels for some predicates and
lower privacy levels for other predicates.

3.1 Predicate-wise Differential Privacy

Consider a set of mutually exclusive predicates {𝜆1, 𝜆2, ..., 𝜆𝑘 } that
they can partition a dataset 𝐷 into disjoint parts {𝐷𝜆1 , 𝐷𝜆2 , ..., 𝐷𝜆𝑘 }.
We define the new privacy as follows. In this new framework, there
is a privacy parameter 𝜖𝑖 associated with each predicate 𝜆𝑖 .

Definition 4 (Predicate-wise Differential Privacy (PWDP)).

Given Θ = {(𝜆1, 𝜖1), (𝜆2, 𝜖2), ..., (𝜆𝑘 , 𝜖𝑘 )}, a set of mutually exclusive

predicates that partition the full domain of the database and their

corresponding privacy budgets, we say a randomized mechanism 𝑀

satisfiesΘ-Predicate-wise DP if for all i, for any neighboring databases

𝐷 and 𝐷 ′ differing in a record that satisfies 𝜆𝑖 , denoted by 𝐷 ∼𝑖 𝐷
′

i.e., | (𝐷𝜆𝑖 \𝐷
′
𝜆𝑖
) ∩ (𝐷 ′

𝜆𝑖
\𝐷𝜆𝑖 ) |= 1 and 𝐷𝜆 𝑗

= 𝐷 ′
𝜆 𝑗

for all 𝑗 ≠ 𝑖 , the

following condition holds:

𝑃𝑟 [M(𝐷) ∈ 𝑂] ≤ 𝑒𝜖𝑖 × 𝑃𝑟 [M(𝐷 ′) ∈ 𝑂] (6)

In this new definition, the neighboring databases still differ by a
single record (adding/removing a record), but the output distribu-
tion ratio depends on the value of the record. For example, for a loca-
tion dataset inside a building with schema 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝐷𝑎𝑡𝑎(person,
location), if it consists of only two predicates 𝜆1 = (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =

𝑟𝑜𝑜𝑚1) and 𝜆2 = (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑜𝑚2). Adding or removing a tuple
(𝑝𝑒𝑟𝑠𝑜𝑛1, 𝑟𝑜𝑜𝑚1) will only affect the aggregate for only one of the
above predicates ( i.e. 𝜆1) as predicates are mutually exclusive. If
this record takes a value 𝑡 that satisfies one of the predicates 𝜆𝑖
and hence fails other predicates, then output distribution ratio is
bounded by 𝑒𝜖𝑖 . A simple approach to achieve a predicate-wise DP
is to run an 𝜖𝑖 -DP mechanism on a data partition 𝐷𝜆𝑖 .

Theorem 4. Given Θ = {(𝜆1, 𝜖1), (𝜆2, 𝜖2), ..., (𝜆𝑘 , 𝜖𝑘 )}, a set of

mutually exclusive predicates and their corresponding privacy budgets,

running 𝜖𝑖 -DP mechanism 𝑀𝑖 over 𝐷𝜆𝑖 in parallel for 𝑖 = 1, . . . , 𝑘 ,

achieves Θ-predicate-wise DP.

It is also easy to see that a Θ-predicate-wise DP mechanism
satisfies 𝜖-DP, where 𝜖 = max𝜖𝑖 ∈Θ 𝜖𝑖 by parallel composition of DP.

Predicate-wise DP also has the following composition properties.
If two mechanisms consider different sets of mutually exclusive
predicates, then the composed guarantee will create a new set of
mutually exclusive predicates to partition the dataset further. If a
new partition has participated in only one mechanism, it takes the
privacy budget of that mechanism, and if it has participated in both
mechanisms, it takes the sum of the two privacy budgets.

Theorem 5. Let 𝑀1 and 𝑀2 be predicate-wise DP mechanisms

withΘ1 = {(𝜆1, 𝜖1), ..., (𝜆𝑘1 , 𝜖𝑘1 )}, andΘ2 = {(𝜆
′
1, 𝜖
′
1), ..., (𝜆

′
𝑘2
, 𝜖 ′
𝑘2
)},

respectively. Let𝑀 = 𝑓 (𝑀1 (𝐷), 𝑀2 (𝐷)), then𝑀 is Θ-predicate-wise

DP with the following predicates and their respective privacy budgets:

Θ = {(𝜆𝑖 ∧ 𝜆
′
𝑗 , 𝜖𝑖 + 𝜖

′
𝑗 ) | ∀(𝜆𝑖 , 𝜖𝑖 ) ∈ Θ1, (𝜆

′
𝑗 , 𝜖
′
𝑗 ) ∈ Θ2, 𝜆𝑖 ∧ 𝜆

′
𝑗 ≠ ∅}

(7)
where 𝜆𝑖 ∧𝜆

′
𝑗 ≠ ∅ denotes that the two predicates overlap. We exclude

the conjunctions of non-overlapping predicate pairs. The resulted

predicate set is mutually exclusive and partitions the full domain.

Last, we provide the ex-post version of predicate-wise DP, that
generalizes the ex-post DP [19]. We will use it for our data depen-
dent algorithms.

Definition 5 (Ex-Post Predicate-wise DP). Let E : O → R |Θ |

be a function on the output space of aΘ-predicate-wise DP mechanism

𝑀 : D → O. We say 𝑀 satisfies E(𝑜)-Ex-post predicate-wise DP if

for all 𝑜 ∈ O, and any neighboring database 𝐷 and 𝐷 ′ differing in a

record that satisfy 𝜆𝑖 ,

max
𝐷,𝐷′:𝐷∼𝑖𝐷′

ln
𝑃 [𝑀 (𝐷) = 𝑜]

𝑃 [𝑀 (𝐷 ′) = 𝑜]
≤ E𝑖 (𝑜), (8)

where E𝑖 (𝑜) denotes the 𝑖th entry of E(𝑜), the ex-post privacy cost

for predicate 𝜆𝑖 .

Theorem 6. APWDPmechanismM withΘ = {(𝜆1, 𝜖1), ..., (𝜆𝑘 , 𝜖𝑘 )}

satisfies 𝜖-DP with 𝜖 = max𝑖 𝜖𝑖 . A mechanismM with an ex-post

PWDP loss E(𝑜) has an 𝜖 (𝑜)-ex-post DP with 𝜖 (𝑜) = max𝑖 E𝑖 (𝑜).
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PWDP can be used to track privacy loss in a more fine-grained
manner (even without knowing the exact mechanisms) and result in
a lower privacy loss even in terms of DP loss . Consider a database
that only consists of two predicates 𝜆1, 𝜆2 to partition the domain.
Consider two mechanisms𝑀1 and𝑀2, where the PWDP cost for
𝑀1 is 𝜖𝑀1,𝜆1 = 0.1 , 𝜖𝑀1,𝜆2 = 0.5 and the cost for𝑀2 is 𝜖𝑀2,𝜆1 = 0.5,
𝜖𝑀2,𝜆2 = 0.1. Keeping track of the fine grained epsilon loss per
predicate using PWDP results in ex-post DP loss of 0.6. However, if
we used DP,𝑀1 has a privacy loss of 0.5, and𝑀2 has a privacy loss
of 0.5, and hence, the overall 𝜖 DP loss would be 1 by sequential/-
parallel composition. Hence, a fine-graiend tracking of privacy loss
allows a tigheter privacy analysis, and more queries to be answered
with the same DP loss.

PWDP and its ex-post privacy can also be interpreted as provid-
ing bounds on adversarial posterior odds ratio just like DP. After ob-
serving an output𝑜 of a PWDPmechanism𝑀 , the adversary can not
successfully distinguish whether a tuple 𝑥 is in 𝐷 and takes a value
𝑡 that satisfies 𝜆𝑖 , denoted by 𝑡𝜆𝑖 or the tuple 𝑥 is not in 𝐷 . Given
adversary’s prior odds ratio i.e., 𝑃 [𝑥 ∈ 𝐷 ∧ 𝑥 = 𝑡𝜆𝑖 ]/𝑃 [𝑥 ∉ 𝐷], the
bounds on adversary’s posterior odds ratio i.e., 𝑃 [𝑥 ∈ 𝐷 ∧ 𝑥 =

𝑡𝜆𝑖 |𝑜]/𝑃 [𝑥 ∉ 𝐷 |𝑜] is as follows:

| ln(
𝑃 [𝑥 ∈ 𝐷 ∧ 𝑥 = 𝑡𝜆𝑖 |𝑜]

𝑃 [𝑥 ∉ 𝐷 |𝑜]
/
𝑃 [𝑥 ∈ 𝐷 ∧ 𝑥 = 𝑡𝜆𝑖 ]

𝑃 [𝑥 ∉ 𝐷]
) | ≤ 𝜖𝑖 (9)

Similarly, the ratio is bounded by E𝑖 (𝑜) for ex-post privacy.

3.2 Min-Entropy based Privacy Metric

Traditionally, DP mechanisms quantify privacy loss using 𝜖 . How-
ever, in predicate-wise DP, entities have different 𝜖 values. Com-
paring scenarios of different sets of epsilon values is non-trivial.
For example, consider (𝜖1 = 0.1, 𝜖2 = 0.5, 𝜖3 = 1) v.s. (𝜖1 = 0.2, 𝜖2 =

0.4, 𝜖3 = 1) for three predicates, it is not obvious which scenario
has a lower overall privacy loss as both have the same maximum
epsilon value (1.0) and the same averaged epsilon value (0.53).

This section introduces our privacy metric for predicate-wise
DP using entropy. In information theory, entropy is a well known
metric for measuring uncertainty of a random variable. Given a
discrete random variable 𝑋 with possible outcomes of 𝑥1, ..., 𝑥𝑘 ,
with occurrence probabilities of 𝑃 (𝑥1), ..., 𝑃 (𝑥𝑘 ), the entropy of 𝑋
is defined as: −

∑𝑘
𝑖=1 𝑃 (𝑥𝑖 ) log 𝑃 (𝑥𝑖 ). In the context of predicate-

wise DP, the adversary is guessing which predicate from the given
set {𝜆1, .., 𝜆𝑘 } a record 𝑥 ∈ 𝐷 can satisfy based on the output of a
predicate-wise DP mechanism 𝑜 . We use 𝑝𝑖 to denote the posterior
belief that 𝑥 takes 𝑡𝜆𝑖 , a value satisfies 𝜆𝑖 . This posterior is pro-

portional to 𝑝𝑖 =
∑
𝑡𝜆𝑖
(
𝑃 [𝑥 ∈𝐷∧𝑥=𝑡𝜆𝑖 |𝑜 ]

𝑃 [𝑥 ∈𝐷 |𝑜 ]
) and hence 𝑝𝑖 = 𝑝𝑖/

∑
𝑖 𝑝𝑖 .

Then, the entropy over {𝑝1, . . . , 𝑝𝑘 } can measure how uncertain
the adversary’ belief about the value of 𝑥 .

There is no direct information for the posterior beliefs, but based
on the predicate-wise DP guarantee (Eqn. (9)), we can derive a
lower and upper bound for each posterior belief 𝑝𝑖 .

Lemma 7. Given a Θ-Predicate-wise DP mechanism𝑀 with out-

put 𝑜 , where Θ = {(𝜆1, 𝜖1), (𝜆2, 𝜖2), ..., (𝜆𝑘 , 𝜖𝑘 )}, each adversarial

posterior guess 𝑝𝑖 ∝
∑
𝑡𝜆𝑖

𝑃 [𝑥 ∈𝐷∧𝑥=𝑡𝜆𝑖 |𝑜 ]

𝑃 [𝑥 ∈𝐷 |𝑜 ]
is bounded:

𝑒−𝜖𝑖∑
𝑖 𝑒

𝜖𝑖
≤ 𝑝𝑖 ≤

𝑒𝜖𝑖∑
𝑖 𝑒
−𝜖𝑖

, (10)

when priors 𝑝𝑖 ∝
∑
𝑡𝜆𝑖

𝑃 [𝑥 ∈𝐷∧𝑥=𝑡𝜆 ]
𝑃 [𝑥 ∈𝐷 ]

are the same for 𝑖 ∈ [1, 𝑘].

This lemma assumes that the priors are the same for all pred-
icates, which is possible when the adversary does not know the
person. We also present the extended lemma for general priors in
the appendix of our full paper [2]. Under these bounds, the largest
entropy can always be attained when setting 𝑝𝑖 the same for all the
predicates. Hence, we consider the least uncertainty (min-entropy)
as the privacy metric for predicate-wise DP.

Definition 6. [Min-Entropy of PWDP] The privacy metric (Min-

Entropy) of a Θ-Predicate-wise DP with Θ = {(𝜆1, 𝜖1), ..., (𝜆𝑘 , 𝜖𝑘 )} is

defined as follows:

𝛾 (Θ) = min
∑𝑘
𝑖=1 −𝑝𝑖 log𝑝𝑖 (11)

𝑠 .𝑡 . 𝑒−𝜖𝑖∑
𝑖 𝑒

𝜖𝑖
≤ 𝑝𝑖 ≤

𝑒𝜖𝑖∑
𝑖 𝑒
−𝜖𝑖
∀𝑖 ∈ [1, 𝑘], and

∑
𝑖 𝑝𝑖 = 1

Our privacy metric measures the lower bound on entropy, i.e.,
the least uncertainty in the adversarial guess as 𝛾 (Θ). A high value
of 𝛾 (Θ) means lower privacy loss, as the least uncertainty in adver-
sarial guess is higher. Whereas, a low 𝛾 (Θ) means a higher privacy
loss. We use this metric to compare the privacy loss of different Θs
with the same set of predicates Λ. More details about an algorithm
to compute this min-entropy metric are provided in §5.

3.3 Problem Definition

Consider the accuracy and privacy requirements defined above for
decision support applications, we formalize our Accuracy Aware
Minimally InvasiveData Exploration problem (or MIDE in short) as
follows. Given an aggregate threshold query 𝑄Λ

g(.)>𝐶
on a dataset

𝐷 , we want to develop a set of differentially private mechanisms
that answer the query with 𝛽-false negative rate guarantee (Def. 3)
and minimal privacy loss in terms of ex-post privacy loss (Def. 5)
and min-entropy (Def. 6). Among these mechanisms, we want to
choose the DP mechanism with the minimal privacy loss.

4 ALGORITHMS FOR MIDE

In the section, we propose three algorithms that solve the MIDE
problem. Recall that a decision support query 𝑄Λ

g(.)>𝑐
(𝐷) consists

of a set of predicates Λ = {𝜆1, ..., 𝜆𝑘 }, an aggregate function 𝑔(.)

and a set of thresholds𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑘 }. In this paper, we consider
that the predicates in Λ are mutually exclusive and the aggregate
function 𝑔(.) is a counting function with sensitivity of 1. Extensions
to other predicates and aggregates are discussed in the end.

All algorithms aims to satisfy the accuracy requirement of deci-
sion support query i.e., the bound on 𝛽 false negative rate (Definition
3). Our first algorithm is based on the modification of a previous
work in the literature: APEx [9]. The second algorithm uses the
concept of Predicate-wise DP (as introduced in §3.1) by iteratively
increasing the privacy budget 𝜖 for each predicate till it reaches its
accuracy bound. The third algorithm is a data dependent method
that increases the privacy budget adaptively for different predicates
in each iteration based on the outcome of the previous iterations.

4.1 Threshold-shift Laplace Mechanism

The Laplace Mechanism (Definition 1) can be used directly to an-
swer the decision support query of𝑄Λ

g(.)>𝐶
in a privacy preserving
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Algorithm 1 Threshold Shift Laplace Mechanism.

1: procedure ThresholdShiftLM(𝑄Λ

g(.)>𝐶
, 𝐷, 𝛼, 𝛽, 𝜖𝑚𝑎𝑥 )

2: 𝜖 ←
ln(1/(2𝛽))

𝛼
3: if 𝜖 ≤ 𝜖𝑚𝑎𝑥 then

4: 𝑂 ← {𝜆𝑖 ∈ Λ | g(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 − 𝛼, 𝜂𝑖 ∼ 𝐿𝑎𝑝 (0, 1/𝜖)}

5: return 𝑂, 𝜖

6: end if

7: return ‘Query Denied’
8: end procedure

manner. However, a naive application of this mechanism for this
query can result in a large number of false positives and false
negatives. We will first illustrate this limitation below, and then in-
troduce an improved application, named as Threshold-shift Laplace
mechanism, that achieves the required 𝛽-false negative rate.

Naive Laplace Mechanism. This mechanism adds a noise 𝜂𝑖 to
the aggregated count for each predicate 𝜆𝑖 , i.e., 𝑔(𝐷𝜆𝑖 ), where 𝜂𝑖 ∼
Laplace(0, 1/𝜖). All predicates with noisy aggregate counts that
are greater than the query thresholds i.e., 𝑔(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 are
returned as the query result. This randomized mechanism makes
two types of errors in the output: (i) false positives which are the
predicates with true aggregate 𝑔(𝐷𝜆𝑖 ) ≤ 𝑐𝑖 but noisy aggregate
𝑔(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 , ; (ii) false negatives which have true aggregate
𝑔(𝐷𝜆𝑖 ) > 𝑐𝑖 but noisy aggregate 𝑔(𝐷𝜆𝑖 ) + 𝜂𝑖 ≤ 𝑐𝑖 .

If setting the privacy budget for Laplace Mechanism like prior

work APEx [9] by 𝜖 =
ln(1/(2𝛽))

𝛼 , we can achieve the following
accuracy guarantees: with a small probability 𝛽 , a predicate 𝜆𝑖
with a true aggregate 𝑔(𝐷𝜆𝑖 ) > 𝑐𝑖 + 𝛼 will have a noisy aggregate
smaller than 𝑐𝑖 (false negative); a predicate 𝜆𝑖 with a true aggregate
𝑔(𝐷𝜆𝑖 ) < 𝑐𝑖 − 𝛼 will have a noisy aggregate bigger than 𝑐𝑖 (false
positive). These guarantees are illustrated in Figure 2(i). However,
no accuracy are guaranteed (bounded false positive/negative rates)
for the predicates with true aggregates falling into the region of
[𝑐𝑖 − 𝛼, 𝑐𝑖 + 𝛼]. If most of the predicates have aggregates falling
in to this uncertain region, the naive Laplace mechanism would
output many predicates falsely and fail the accuracy requirement
of decision support queries. One approach is to increase the pri-
vacy budget to shrink this uncertain region and hence reduce both
false positives and false negatives. However, the decision support
applications place more importance on the false negatives. We pro-
pose the following mechanism to bound the false negatives without
increasing the privacy cost.

Threshold Shift Laplace Mechanism. This mechanism aims to
achieve a bounded false negative rate for all the predicates (Defini-
tion 3) unlike the previous naive mechanism. Instead of compar-
ing the noisy aggregates with the initial threshold 𝐶 in the query
𝑄Λ

g(.)>𝐶
, this mechanism compares each noisy aggregate𝑔(𝐷𝜆𝑖 )+𝜂𝑖

with a shifted threshold 𝑐𝑖 − 𝛼 , where 𝛼 is a generalized parameter

and noise 𝜂𝑖 is based on a privacy budget 𝜖 =
ln(1/(2𝛽))

𝛼 . This mech-
anism then returns all the predicates that have noisy aggregates
greater than the shifted thresholds, i.e. 𝑔(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 − 𝛼 .

Figure 2(ii) illustrates the guarantees of the newmechanism. Due
to the generalization of the threshold from 𝑐 to 𝑐 − 𝛼 , the uncertain
region with no accuracy guarantees shifts from [𝑐 − 𝛼, 𝑐 + 𝛼] to

False Negatives bounded by False Positives bounded by 

False Negatives bounded by False Positives bounded by 

(i)

(ii)

Figure 2: The figure shows accuracy guarantees of (i) Naive

Laplace Mechanism: noisy aggregates are compared with

threshold 𝑐 (ii) Threshold Shift Laplace Mechanism: noisy

aggregates are compared with shifted threshold 𝑐 − 𝛼 . The

dots represent aggregates on the predicates. By shifting the

threshold to 𝑐 − 𝛼 , (ii) achieves 𝛽-False Negative Rate (Defi-

nition 3) as compared to (i) where there is no guarantee on

false negatives in the region [𝑐, 𝑐 + 𝛼]

[𝑐 − 2𝛼, 𝑐]. This ensures that all the predicates with true aggregates
greater than the original thresholds are in a guaranteed region,
where they would have noisy aggregates smaller than the shifted
thresholds and become false negatives with a small probability 𝛽 .

This mechanism achieves 𝛽-false negative rate without increas-
ing the privacy budget compared to the naive Laplace mechanism.
Note that in this strategy, the false negative guarantee is indepen-
dent of the choice of 𝛼 , but such a guarantee comes at the cost of a
potential increase of the false positives, which are the predicates
with aggregates falling in the new uncertain region [𝑐−2𝛼, 𝑐]. These
predicates should not appear in the output as their true aggregate
is smaller than the original thresholds, but their noisy aggregates
are very likely greater than the shifted thresholds to output them.
We name this region [𝑐 − 2𝛼, 𝑐] as 𝛼-uncertain region of false pos-

itives for all mechanisms that use a threshold-shift approach. A
larger generalization parameter 𝛼 leads to a larger uncertain region,
and can result in more false positives. We will use this generalized
parameter 𝛼 to limit the false positives.

Definition 7. (Uncertainty Region) For each predicate 𝜆𝑖 ∈ Λ,

the Uncertainty Region is based on the threshold 𝑐𝑖 ∈ 𝐶 and the query

generalization parameter 𝛼 . It is defined the interval [𝑐𝑖 − 2𝛼, 𝑐𝑖 ]. If

the predicate 𝜆𝑖 ’s aggregate value lies in this interval, the algorithm

does not provide any bound on probability of 𝜆𝑖 to be in the output to

the query as false positive.

The Threshold-shift Laplace Mechanism is summarized in Al-
gorithm 1. Given the 𝛽-false negative rate and 𝛼-uncertain region
of false post as input, this algorithm first computes the minimal
privacy budget to achieve these accuracy requirements, denoted
by 𝜖 (line 2). It also takes the maximum privacy budget allowed for
the query 𝜖𝑚𝑎𝑥 as input. If the budget is sufficient, then the algo-
rithm proceeds with perturbing the aggregate for each predicate
𝑔(𝐷𝜆𝑖 ) +𝜂𝑖 and returns the ones with noisy aggregates greater than
the shifted thresholds 𝑐𝑖 − 𝛼 (line 4); otherwise, the query is denied
(line 7). The guarantees of this algorithm are stated as follows.
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Theorem 8. Algorithm 1 satisfies 𝜖𝑚𝑎𝑥 -DP and 𝛽-false negative

rate. If the query is not denied, its ex-post DP cost is 𝜖 =
ln(1/(2𝛽))

𝛼 .

4.2 Progressive Predicate-wise Laplace
Mechanism

If we know that the aggregate value for a predicate 𝜆𝑖 is significantly
smaller than its threshold, i.e., 𝑔(𝐷𝜆𝑖 ) << 𝑐𝑖 , then having a larger
generalization 𝛼 (which results in a smaller privacy loss) will still
allow this predicate to stay out of the uncertain region of false
positive, i.e., 𝑔(𝐷𝜆𝑖 ) < 𝑐𝑖 − 2𝛼 .

Example 1. Consider two predicates 𝜆1, 𝜆2 with aggregates𝑔(𝐷𝜆1 ) =

10 and 𝑔(𝐷𝜆2 ) = 150, which are smaller than their thresholds 𝑐1 =
𝑐2 = 200. To achieve 𝛽 = 0.01-false negative rate using the Thresh-
old Shift Laplace Mechanism, if generalizing the threshold from 200

to 120 by 𝛼 = 80 (which results in 𝜖 = ln(1/2(0.01))/(80) = 0.049),
the first predicate with aggregate value 10 is still out of the uncer-
tain region of false positives [200 − 2 · 80, 200] and it should be
reported correctly with a high probability.However, the aggregate
value of the second predicate falls into this 𝛼 = 80-uncertain re-
gion, and hence it requires a tighter generalization parameter, e.g.
𝛼 ′ = 40 to be in a region with guarantees, which leads to a larger
privacy cost 𝜖 = ln(1/2(0.01))/(40) = 0.098. □

This observation motivates us to design an algorithm that pro-
vides different generalizations for the given predicates based on
their aggregate values. Since the aggregate values 𝑔(𝐷𝜆𝑖 ) are un-
known at first, we start each predicate with a large generalization
parameter (and a small privacy budget), and incrementally tightens
the generalization parameter (increases the privacy budget) till the
predicate can be outputted or pruned with a high certainty. We
name this algorithm Progressive Predicate-wise Laplace Mechanism,
summarized in Algorithm 2.

Besides the same input as the Threshold Shift Laplace mecha-
nism, Algorithm 2 takes in an initial privacy budget of 𝜖1 for the
initial generalization and the number of iterations𝑚. As each pred-
icate can be tested at most𝑚 times, we aim 𝛽/𝑚-false negative rate
for each iteration to ensure that the overall false negative rate is
bounded by 𝛽 (Theorem 9). First, we estimate the total 𝜖𝑚 needed
to satisfy the accuracy guarantee over𝑚 iterations. If the privacy
budget is sufficient, 𝜖𝑚 < 𝜖𝑚𝑎𝑥 (Line 2), we proceed the algorithm;
otherwise, the query is denied.

The algorithm starts with 𝜖1 and its corresponding generalization
𝛼1 in the first iteration (Lines 5-7). The algorithm increments 𝜖 𝑗 in

each iteration geometrically by a factor of 𝜔 = (
𝜖𝑚
𝜖1
)

1
𝑚−1 (Line 3),

and the corresponding generalization parameter in the 𝑗-th iteration
decreases by the same ratio. We consider geometric increments
instead of arithmetic increments as smaller increments in the earlier
iterations (i.e., using smaller epsilon values) have a higher chance
of achieving lower privacy loss. At the 𝑗-th iteration, the algorithm
adds Laplace noise to the aggregate per predicate based on 𝜖 𝑗 using
Laplace mechanism or using PrivRelax [16]. PrivRelax generates
noises for the next iteration 𝑗 (noises based on 𝜖 𝑗 ) by drawing
correlated noises based on the noise drawn in the previous iteration
(noises generated using 𝜖 𝑗−1). This correlated noise ensures that
the total privacy loss over the𝑚 iterations is bounded by 𝜖𝑚 .

Algorithm 2 Progressive Predicate-wise Laplace Mechanism

1: procedure ProgressivePWLM(𝑄Λ

g(.)>𝐶
, 𝐷, 𝛼, 𝛽, 𝜖𝑚𝑎𝑥 , 𝜖1,𝑚)

2: set final privacy cost 𝜖𝑚 ←
ln(1/(2𝛽/𝑚))

𝛼

3: set 𝜖 𝑗 ← 𝜖1 · 𝜔
𝑗−1 and 𝛼 𝑗 ←

ln(1/(2𝛽/𝑚))
𝜖 𝑗

for 𝑗 = 1, . . . ,𝑚,

where 𝜔 = (
𝜖𝑚
𝜖1
)1/(𝑚−1)

4: if 𝜖𝑚 ≤ 𝜖𝑚𝑎𝑥 then

5: [𝜂1, . . . , 𝜂 |Λ |] ← 𝐿𝑎𝑝 (1/𝜖1)
|Λ |

6: 𝑂𝑑 ← {𝜆𝑖 ∈ Λ | g(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 + 𝛼1}

7: 𝑂𝑢 ← {𝜆𝑖 ∈ Λ | g(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 − 𝛼1 ∧ 𝜆𝑖 ∉ 𝑂𝑑 }

8: for 𝑗 = 2, . . . ,𝑚 do

9: if 𝑂𝑢 = ∅ then return 𝑂𝑑 , 𝜖 𝑗−1
10: end if

11: [𝜂1, . . . , 𝜂 |Λ |] = PrivRelax(𝜖 𝑗−1, 𝜖 𝑗 , [𝜂1, . . . , 𝜂 |Λ |])

12: 𝑂𝑑 ← 𝑂𝑑 ∪ {𝜆𝑖 ∈ 𝑂𝑢 | g(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 + 𝛼 𝑗 }

13: 𝑂𝑢 ← {𝜆𝑖 ∈ 𝑂𝑢 | g(𝐷𝜆𝑖 ) + 𝜂𝑖 > 𝑐𝑖 − 𝛼 𝑗 ∧ 𝜆𝑖 ∉ 𝑂𝑑 }

14: end for

15: return 𝑂𝑢 ∪𝑂𝑑 , 𝜖𝑚
16: end if

17: return ’Query Denied’
18: end procedure
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Figure 3: PPWLM with 2 iterations. (a) shows the original

aggregated counts and the threshold 𝑐. (b) and (c) show the

noisy aggregated values for each predicate for iteration 1 and

iteration 2. In iteration 1, predicates with noisy aggregates

< 𝑐 − 𝛼1 are outputted as negatives, those with noisy aggre-

gates > 𝑐 − 𝛼1 are outputted as positives, the remaining are

undecided and continue in iteration 2. Iteration 2 outputs all

predicates with noisy aggregates > 𝑐 − 𝛼2 as positives.

We categorize the predicates into three categories: (i) decided, de-
noted by𝑂𝑑 , which include predicateswith noisy aggregates greater
than the generalized thresholds and they are always outputted by
the mechanism; (ii) undecided, denoted by 𝑂𝑢 , which include the
predicates with noisy aggregates in the range of [𝑐𝑖 − 𝛼 𝑗 , 𝑐𝑖 + 𝛼 𝑗 ],
and they are passed to the next iteration; and (iii) eliminated, which
are the predicates with noisy aggregates lower than 𝑐𝑖 − 𝛼 𝑗 , and
they are not considered in the next step or the output of the query.
The union of 𝑂𝑑 and 𝑂𝑢 for each iteration is always a solution
that achieves 𝛽-false negative rate like the Threshold Shift Laplace
Mechanism, but by an iterative tightening of the generalization
factor, the number of false positives are improved with a minimal
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privacy loss. The algorithm terminates when the set 𝑂𝑢 is empty
i.e., the algorithm has made decisions for all the predicates (Line 9).
Otherwise, the algorithm terminates when it has spent the privacy
budget of 𝜖𝑚 which satisfies the accuracy guarantees of 𝛼 and 𝛽

(Line 15). In this situation, the algorithm returns 𝑂𝑢 as the answer
of the query. The privacy loss in terms of ex-post DP or ex-post
PWDP is dependent on the input data and releasing it breaks 𝜖𝑚𝑎𝑥 -
DP. It is crucial that the ex-post (PW)DP loss is not released to the
data analyst (adversary), as it will violate the 𝜖𝑚𝑎𝑥 -DP guarantees.

Theorem 9. Algorithm 2 satisfies 𝜖𝑚𝑎𝑥 -DP and 𝛽-false negative

rate. If the query is not denied, its ex-post DP cost is less than 𝜖𝑚 =

ln(1/(2𝛽/𝑚)
𝛼 .

Figure 3 demonstrates the benefits of using this multiple step
approach using𝑚 = 2. Figure 3(a) shows the true aggregated values
of all predicates and the threshold 𝑐 In the first iteration, the noisy
aggregates (indicated by the position of the dots in Figure 3(b)) by
spending 𝜖1 are compared against the corresponding generalized
threshold 𝑐 − 𝛼1. Four predicates marked negative have smaller
noisy aggregates than 𝑐 −𝛼1 and are eliminated from the next itera-
tion. Among the four predicates with noisy aggregates greater than
𝑐 − 𝛼1, one of them has a noisy aggregate greater than 𝑐 + 𝛼1 and
hence it is directly outputted as a positive, while the other three con-
tinue to the next iteration. This iteration guarantees that there is a
low probability 𝛽/2 for a predicate with true aggregate greater than
𝑐 to be eliminated. In the second iteration, the newly perturbed ag-
gregates with a larger privacy budget 𝜖2 (Figure 3(c)) are compared
with a less generalized threshold 𝑐 − 𝛼2. One additional predicate
gets eliminated as its noisy aggregate is smaller than 𝑐 − 𝛼2. The
final output include 3 predicates. In this example, the final result
does not contain any false negatives. Also, five predicates end up
using 𝜖1 and three undecided predicates after iteration 1, end up
using 𝜖2 privacy budgets. In some cases, the overall privacy loss
can be smaller than the previous Threshold Shift Laplace mecha-
nism, if we measure the privacy loss using ex-post Predicate-wise
Differential Privacy and min-entropy 𝛾 (Θ) as described in §3.2.

4.3 Data Dependent Mechanism

The algorithm of previous section, (i.e., Algorithm 2) used a fixed
number of iterations and updated the privacy parameter and gen-
eralization parameter in a geometric manner. This section makes
the case that this choice may not be optimal all the time. If the
algorithm has knowledge about the data distribution, it can per-
form better in terms of privacy loss. Since we are using a multi-step
algorithm, we can make use of the noisy aggregated values from
the previous iteration to determine the number of iterations and
the privacy/generalization parameters for the subsequent steps. We
call this algorithm Data Dependent Progressive Laplace Mechanism,
summarized in Algorithm 3. The privacy loss in terms of ex-post
DP or ex-post PWDP is data dependent just like PPWLM so the
ex-post (PW)DP loss is not released to the data analyst (adversary)
in order to achieve 𝜖𝑚𝑎𝑥 DP guarantee.

Algorithm 3 first plans the privacy budgets (Lines 2 - 3), denoted
by a vector 𝐵 of𝑚 entries, in a way similar to Algorithm 2. In the
first iteration, it still starts with 𝜖1 and stores the noisy aggregates
𝐺 . Based on the noisy aggregates, the predicates are classified into
three categories, decided positives 𝑂𝑑 , undecided ones 𝑂𝑢 , and

1

2
.
.

k

Option 1 Option 2 Option 3

Figure 4: Possible options at 𝑘-th step of MinEnt algorithm.

Option 1 distributes as much slack as possible to 𝑝𝑘 (solid

green line) and the rest to 𝑝1, . . . , 𝑝𝑘−1 (dotted green line).

Option 2 distributes as much slack as possible to 𝑝1, ..., 𝑝𝑘−1
and the rest to 𝑝𝑘 . Option 3 distributes slack to 𝑝1, . . . , 𝑝𝑘−1
and 𝑝𝑘 instead of distributing as much as possible to either.

decided negatives (Λ − 𝑂𝑑 − 𝑂𝑢 ). For all the predicates with a
confident decision (i.e., decided positives and decided negatives),
their ex-post privacy cost stop at 𝜖1 and are saved in a vector 𝐸 while
the others in 𝑂𝑢 are temporarily set to be the final cost 𝜖𝑚 (Line 9).
In the next iteration, rather than using the planned privacy budget
stored in 𝐵, we use the noisy aggregates 𝐺 and the temporary ex-
post privacy cost 𝐸 to estimate the best privacy level that maximizes
the min-entropy 𝛾 (Θ).

The estimation of the best privacy level for the next iteration
is presented in Algorithm 4. It searches the privacy level 𝜖𝑛𝑒𝑥𝑡
for the next iteration in the remaining privacy levels in 𝐵 and for
each privacy level in 𝐵, it also further divides the intervals into𝑚𝑓

number of fine-grained steps (Line 4). The algorithm aims to find
an 𝜖𝑛𝑒𝑥𝑡 that can lead to a predicate-wise privacy loss 𝐸 ′ with a
largest min-entropy; hence, the algorithm will be able to skip all
the privacy levels before 𝜖𝑛𝑒𝑥𝑡 (Lines 5- 10). The algorithm removes
the unused privacy levels from the budget plan 𝐵 and updates the
corresponding 𝛽 for the next iteration (Line 12).

We cannot compute the exact predicate-wise privacy loss with-
out running the algorithm. To estimate this privacy loss, the algo-
rithm first uses the noisy aggregates𝐺 to compute howmany of the
undecided predicates from previous iteration 𝑂𝑢 will still remain
undecided if a privacy level of 𝜖𝑛𝑒𝑥𝑡 is used in the current iteration.
For each predicate 𝜆𝑖 ∈ 𝑂𝑢 , the algorithm estimates its probability
of remaining undecided (i.e., its new noisy aggregate 𝑔(𝐷𝜆𝑖 ) + 𝜂

′
𝑖

falls into the range of [𝑐𝑖 −𝛼 𝑗 , 𝑐𝑖 +𝛼 𝑗 ]) by using its noisy aggregate
𝐺 [𝑖] which was perturbed by 𝜂𝑖 at a privacy level 𝜖 𝑗−1 from the
previous iteration; and then sum them up as an expected number
for the undecided predicates:

𝑛𝑢 =

∑︁
𝜆𝑖 ∈𝑂𝑢

𝑃 (𝑔(𝐷𝜆𝑖 ) + 𝜂
′
𝑖 ∈ [𝑐𝑖 − 𝛼 𝑗 , 𝑐𝑖 + 𝛼 𝑗 ]) (12)

≈
∑︁

𝜆𝑖 ∈𝑂𝑢

∫ 𝑐𝑖+𝛼 𝑗

𝑐𝑖−𝛼 𝑗

∫ ∞

−∞

𝜖 𝑗−1

2
𝑒−|𝑥−𝐺 [𝑖 ] |𝜖 𝑗−1 ×

𝜖 𝑗

2
𝑒−|𝑧−𝑥 |𝜖 𝑗𝑑𝑥𝑑𝑧

Theorem 10. Algorithm 3 satisfies 𝜖𝑚𝑎𝑥 -DP and 𝛽-false negative

rate. If the query is not denied, its ex-post DP cost is𝑚𝑎𝑥 (𝐸).

This data dependent algorithm comes at computation cost as we
choose 𝜖 in each iteration based on min-entropy. In the worst case
scenario, the cost of computing min-entropy can be exponential in
terms of number of predicates; hence it may incur high computation
overhead the when number of predicates are very high. We present
an efficient algorithm to compute this cost next.
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Algorithm 3 Data Dependent Progressive PWLP

1: procedure DPPWLM(𝑄Λ

g(.)>𝐶
, 𝐷, 𝛼, 𝛽, 𝜖𝑚𝑎𝑥 , 𝜖1,𝑚,𝑚𝑓 )

2: set final privacy cost 𝜖𝑚 ←
ln(1/(2𝛽/𝑚))

𝛼

3: set 𝐵 [ 𝑗] = 𝜖1𝜔
𝑗−1 for 𝑗 ∈ [1,𝑚], where 𝜔 = (

𝜖𝑚
𝜖1
)1/(𝑚−1)

4: if 𝜖𝑚 ≤ 𝜖𝑚𝑎𝑥 then

5: [𝜂1, . . . , 𝜂 |Λ |] ← 𝐿𝑎𝑝 (1/𝜖1)
|Λ |

6: set𝐺 [𝑖] = 𝑔(𝐷𝜆𝑖 ) +𝜂𝑖 for 𝜆𝑖 ∈ Λ and 𝛼1 =
ln(1/(2𝛽/𝑚))

𝜖1
7: 𝑂𝑑 ← {𝜆𝑖 ∈ Λ | 𝐺 [𝑖] > 𝑐𝑖 + 𝛼1}

8: 𝑂𝑢 ← {𝜆𝑖 ∈ (Λ −𝑂𝑑 ) | 𝐺 [𝑖] > 𝑐𝑖 − 𝛼1}

9: Initialize predicate epsilon 𝐸 [𝑖] = 𝜖1 if 𝜆𝑖 ∈ (Λ −𝑂𝑢 );
for the other predicates, it with final cost 𝐸 [𝑖] = 𝜖𝑚

10: initalize 𝑗 ← 1

11: while 𝜖 𝑗 ≤ 𝜖𝑚 and 𝑂𝑢 ≠ ∅ do

12: 𝑗 ← 𝑗 + 1

13: 𝜖 𝑗 , 𝛽 𝑗 , 𝐵 = NextStepParams(𝐸,𝐺, 𝐵,𝑂𝑢 , 𝛽,𝑚,𝑚𝑓 )

14: [𝜂1, . . . , 𝜂 |Λ |] = PrivRelax(𝜖 𝑗−1, 𝜖 𝑗 , [𝜂1, . . . , 𝜂 |Λ |])

15: set𝐺 [𝑖] = 𝑔(𝐷𝜆𝑖 ) + 𝜂𝑖 for 𝜆𝑖 ∈ 𝑂𝑢 , 𝛼 𝑗 =
ln(1/(2𝛽 𝑗 ))

𝜖 𝑗
16: 𝑂𝑑 ← 𝑂𝑑 ∪ {𝜆𝑖 ∈ 𝑂𝑢 | 𝐺 [𝑖] > 𝑐𝑖 + 𝛼 𝑗 }

17: 𝑂 ′𝑢 ← 𝑂𝑢 ,𝑂𝑢 ← {𝜆𝑖 ∈ (𝑂𝑢 −𝑂𝑑 ) | 𝐺 [𝑖] > 𝑐𝑖 −𝛼 𝑗 }

18: set predicate epsilon 𝐸 [𝑖] = 𝜖 𝑗 if 𝜆𝑖 ∈ (𝑂 ′𝑢 −𝑂𝑢 )

19: end while

20: return 𝑂𝑢 ∪𝑂𝑑 , 𝜖 𝑗
21: end if

22: return ‘Query Denied’
23: end procedure

Algorithm 4 Estimated Epsilon for next step in DPPWLM

1: procedure NextStepParams(𝐸,𝐺, 𝐵,𝑂𝑢 , 𝛽,𝑚,𝑚𝑓 )
2: initalize 𝑒𝑛𝑡𝑚𝑎𝑥 = 0, 𝜖𝑛𝑒𝑥𝑡 = 𝐵 [0],
3: 𝑟𝑜𝑝𝑡 = 1, 𝜖𝑜𝑝𝑡 = 𝜖𝑛𝑒𝑥𝑡
4: for 𝑟 ∈ [1, . . . , |𝐵 | − 1] and 𝑠 ∈ [1, . . . ,𝑚𝑓 ] do

5: 𝜖𝑛𝑒𝑥𝑡 ← 𝜖𝑛𝑒𝑥𝑡 +
(𝐵 [𝑟+1]−𝐵 [𝑟 ])

𝑚𝑓

6: 𝐸 ′ ← 𝐸 and choose ( |𝑂𝑢 | − 𝑛𝑢 ) number of predicates
from 𝑂𝑢 and set their 𝐸 ′[𝜆𝑖 ] = 𝜖𝑛𝑒𝑥𝑡

7: 𝑒𝑛𝑡𝑛𝑒𝑥𝑡= MinEnt(𝑏𝐸′ ) ⊲ 𝑏𝐸′ are bounds on 𝑝𝑖 (Eq 10)
based on 𝐸 ′.

8: if 𝑒𝑛𝑡𝑚𝑎𝑥 ≤ 𝑒𝑛𝑡𝑛𝑒𝑥𝑡 then

9: 𝑒𝑛𝑡𝑚𝑎𝑥 ← 𝑒𝑛𝑡𝑛𝑒𝑥𝑡 , 𝑟𝑜𝑝𝑡 ← 𝑟 , 𝜖𝑜𝑝𝑡 ← 𝜖𝑛𝑒𝑥𝑡
10: end if

11: end for

12: return (𝜖𝑜𝑝𝑡 ,
𝛽 ·𝑟𝑜𝑝𝑡
𝑚 , 𝐵 [𝑟𝑜𝑝𝑡 + 1 :])

13: end procedure

5 COMPUTING PRIVACY LOSS

We use an entropy based privacy metric for PWDP to compute
the privacy loss of our multi-step algorithms (i.e., PPWLM and
DPPWLM). Furthermore, we use this metric to estimate the optimal
𝜖 values in each iteration to minimize the privacy loss in DPPWLM.

Our privacy metric for PWDP measures the lower bound on
entropy, i.e., the least uncertainty in the adversarial guess as follows:
𝛾 (Θ) =𝑚𝑖𝑛(

∑𝑘
𝑖=1 −𝑝𝑖 log 𝑝𝑖 ), subject to

𝑒−𝜖𝑖∑
𝑖 𝑒

𝜖𝑖
≤ 𝑝𝑖 ≤

𝑒𝜖𝑖∑
𝑖 𝑒
−𝜖𝑖

and∑
𝑖 𝑝𝑖 = 1. This is a concave optimization problem with constraints.

Finding the global minima with constraints for a concave function
is computationally difficult since the function may have several
local minimas [25]. However, finding the minima of the sum of
entropy functions is a tractable problem, since the shape of entropy
function is known and simple (i.e., with only one maxima instead of
multiple local maxima). We leverage this idea to develop a dynamic
programming based algorithm that finds the global minima of the
sum of entropy functions, i.e., to compute 𝛾 (Θ).

Given Θ, i.e., a set of 𝑘 predicates with their epsilons, the algo-
rithm first computes their corresponding lower bounds (𝑙𝑖 =

𝑒−𝜖𝑖∑
𝑖 𝑒

𝜖𝑖
)

and upper bounds (𝑢𝑖 =
𝑒𝜖𝑖∑
𝑖 𝑒
−𝜖𝑖

) and then sort them based on their

upper bounds in ascending order as an input to Algorithm 5. For
simplicity, we assume that 𝑢1 ≤ 𝑢2 · · · ≤ 𝑢𝑘 without introducing
new indices.

If we start by allocating each 𝑝𝑖 with its lower bound 𝑙𝑖 , there is
a remaining amount 𝑠 = (1 −

∑𝑘
𝑖=1 𝑙𝑖 ) which has to be distributed

to among 𝑝𝑖s to ensure
∑
𝑖 𝑝𝑖 = 1 and 𝑝𝑖 ≤ 𝑢𝑖 while minimizing

the entropy function. We call this remaining amount slack. The
maximum slack that can be distributed to 𝑝𝑖 is bounded by Δ𝑖 =

𝑢𝑖−𝑙𝑖 . We consider three options that cover all possible distributions
of the slack 𝑠 among the 𝑘 predicates:

• Option 1. Distribute as much slack as possible to the 𝑝𝑘 (the one
with the largest upper bound).

• Option 2. Distribute as little slack as possible to the 𝑝𝑘 , and
hence distribute as much slack as possible to 𝑝1, . . . , 𝑝𝑘−1.

• Option 3. Unlike the previous two options, here the slack is di-
vided between 𝑝𝑘 and the sub-problem of size𝑘−1 i.e., 𝑝𝑘−1, ..., 𝑝1
without fully allocating to either of them.

These three options are illustrated in Figure 4. The figure rep-
resents the interval of [𝑙𝑖 , 𝑢𝑖 ] from 𝑖 = 1, . . . , 𝑘 . Note that a lower
𝜖𝑖 value will have a higher 𝑙𝑖 and a lower 𝑢𝑖 value. For option 1,
if the slack 𝑠 > Δ𝑘 , there is still remaining slack to be distributed
among the 𝑘 − 1 predicates. This gives a sub-problem of size 𝑘 − 1,
i.e. distributing the new slack 𝑠 ′ = (𝑠 − Δ𝑘 ) among the first (𝑘 − 1)
predicates. For option 2, if the slack 𝑠 <

∑𝑘
𝑖=1 Δ𝑖 , then the remaining

slack will be added to 𝑝𝑘 ; otherwise, we need to solve a sub-problem
of size 𝑘 − 1, i.e., distributing the full slack 𝑠 among the first (𝑘 − 1)
predicates. We don’t need to solve additional sub-problem. For op-
tion 3, we can show that it always results in a poorer solution than
the solution coming from option 1 or option 2.

Theorem 11. Given a set of intervals of posterior probabilities

{(𝑙𝑖 , 𝑢𝑖 ) | 𝑖 = 1, 2, ...𝑘} and a slack 𝑠 to be distributed among the

intervals, the option 3 always performs worse than either the strategies

of option 1 or option 2 in terms of minimizing entropy.

Hence, Algorithm 5 considers only option 1 and option 2 and
only option 1 requires solving a sub-problem with a smaller number
of predicates. At the base case when 𝑘 = 1, all the slack is allocated
to this predicate (Line 2). When 𝑘 > 1, we consider option 1 and
option 2 described above. For option 1, the solution is stored in 𝑝1

(Lines 5-6) which requires solving a sub-problem for the first (𝑘−1)
predicates with the remaining slack 𝑠 −𝑚𝑖𝑛(Δ𝑘 , 𝑠). For option 2,
the solution is stored in 𝑝2 (Lines 7-8) which requires solving a
sub-problem for the first (𝑘 − 1) predicates with the full slack 𝑠 .
The solution with higher entropy is returned.
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Algorithm 5 Minimize Entropy

1: procedure MinEnt({(𝑙𝑖 ,𝑢𝑖 )∀𝑖 ∈ {1, 2, ..., 𝑘 }}, 𝑠) ⊲ sorted by 𝑢𝑖 in
ascending order. Initially, 𝑠 = (1 −

∑𝑘
𝑖=1 𝑙𝑖 ) is a slack variable.

2: if 𝑘 = 1 then return [𝑙1 + 𝑠 ]

3: end if

4: Δ𝑖 = 𝑢𝑖 − 𝑙𝑖 , ∀𝑖 ∈ {1, 2, ..., 𝑘 }

5: 𝑝1[𝑘 ] = 𝑙𝑘 +𝑚𝑖𝑛 (Δ𝑘 , 𝑠)

6: 𝑝1[1 : 𝑘 − 1] =MinEnt([𝑙𝑖 ,𝑢𝑖 ]∀𝑖 ∈ {1, ..., 𝑘 − 1}, 𝑠 −𝑚𝑖𝑛 (Δ𝑘 , 𝑠))
7: 𝑝2[1 : 𝑘−1] =MinEnt([𝑙𝑖 ,𝑢𝑖 ]∀𝑖 ∈ {1, ..., 𝑘−1},𝑚𝑖𝑛 (

∑𝑘−1
𝑖=1 Δ𝑖 , 𝑠))

8: 𝑝2[𝑘 ] = 𝑙𝑘 + 𝑠 −𝑚𝑖𝑛 (
∑𝑘−1

𝑖=1 Δ𝑖 , 𝑠)

9: if CalEntropy(𝑝1) < CalEntropy(𝑝2) then return 𝑝1

10: else return 𝑝2

11: end if

12: end procedure

13: procedure CalEntropy( 𝑝)

14: return −
∑|𝑝 |

𝑖=1 𝑝 [𝑖 ] log(𝑝 [𝑖 ])

15: end procedure

Theorem 12. Algorithm 5 outputs the optimal solution to the

min-entropy problem 𝛾 (Θ).

6 EXPERIMENTS

This section evaluates our algorithms (Algorithms 1,2, and 3) for
MIDE using various queries taken from real life scenarios and over
real datasets. This is to show that all the algorithms effectively
achieve their accuracy guarantees in terms of bounded false nega-
tive rate; among them, the data dependent mechanism (Algorithm 3)
obtains the lowest minimal privacy cost over most of the queries.

6.1 Setup

Datasets &Queries. We used two real-world datasets and designed
queries for the evaluation as described below.
UCI Dataset. This dataset contains the occupancy data of 24 different
buildings of University of California, Irvine campus collected in
2018 October [23]. The data consists of 3 million records where
attributes are userID, location, time. The DS queries find out the
anomalous incidents (e.g., violation of fire safety norm setup by the
California fire department), i.e., buildings with occupancy (number
of individuals) that was higher than their capacity. We run 2 queries:
𝑄1 on a weekday (Oct 09) and 𝑄2 on a weekend (Oct 13) that has
different data distributions. Both queries check every hour between
7 a.m. to 10 p.m. if a building’s occupancy is exceeding the threshold.
Total number of predicates for both 𝑄1 and 𝑄2 are 15(number of
hours)×24(number of buildings)= 420. 𝑄1 and 𝑄2 are also coupled
with three levels of thresholds (high, medium, low), set as 1, 0.8,
and 0.6 times of the building capacities.
NYTaxi Dataset. This dataset records taxi trips in New York City in
2020 [1], consisting of 15.7 million records with 18 attributes, e.g.,
pick-up and drop-off locations and their timestamps. We group the
pickup locations into 34 different regions and run queries to find out
the regions and timestamps that had anomalous pickup counts. We
run two queries: 𝑄3 is run on March (1-14) (before the lockdown);
and 𝑄2 is run on March (15-30) (after the lockdown). Both queries
check for each day in the corresponding time range if a regions’s
pickup count was higher than the threshold for all 34 regions. Total
number of predicates for 𝑄3 are 34 (regions)×14(days)= 476 and

for 𝑄4 are 34 (regions)×16(days)= 544. For each predicate, we use
the maximum number of pickups from Jan and Feb times a multi-
plicative factors of 1, 0.8, 0.6 as the high, medium, low thresholds.

We display the distributions of the absolute distance of the aggre-
gates in each query from their corresponding thresholds in Figure 5.
We use uniform priors for these datasets to compute min-entropy.

Algorithms & Parameters. We consider three MIDE algorithms:
Threshold Shifted LaplaceMechanism (TSLM), Progressive Predicate-
wise Laplace Mechanism (PPWLM), and Data Dependent PPWLM
(DPPWL). The naive Laplace Mechanism (NLM) is evaluated at the
same privacy cost as TSLM as a baseline for accuracy.

Our accuracy requirements is defined in terms of two param-
eters: 𝛽-false negative rate and 𝛼-uncertain region of false pos-
itives. We consider values for 𝛽 ∈ {0.01, 0.02, . . . , 0.1} and 𝛼 ∈

{1, 10, 20, . . . , 200}. The default values are 𝛽 = 0.05 and 𝛼 = 1. For
algorithms with multiple iterations including PPWLM and DPP-
WLM, we set the starting epsilon 𝜖1 be 0.00001, the total number
of iterations to be𝑚 = 4, the maximum value without exceeding
𝜖𝑚𝑎𝑥 = 4 at the default choice for 𝛼 and 𝛽 . For DPPWLM, we set
the fine grained steps𝑚𝑓 = 3. We run each algorithm 100 times
and report their averaged privacy or utility metrics.

6.2 Experimental Results

Privacy Results.We compare the algorithms based on two privacy
metrics: ex-post DP, denoted by 𝜖∗, and min-entropy for predicate-
wise DP, 𝛾 (Θ). For TSLM, all predicates end with the same epsilon
values, and hence the same lower and upper bounds for the poste-
riors to compute the min-entropy (Definition 6) using Algorithm 5.
The privacy results for 4 queries (𝑄1-𝑄4) with their corresponding
threshold levels (denoted by H,M,L) are presented in Figure 6 when
setting the accuracy parameters 𝛽 = 0.05 and 𝛼 = 1.

DPPWLM achieves a privacy cost that is near to the lowest or
the lowest for all the queries. As it uses a multi-step approach,
it allows earlier stop and hence a smaller ex-post DP cost than a
single-step method TSLM for Q1H,Q2H/M, Q3H/M/L,Q4H/M/L,
as shown in Figures 6a and 6c. DPPWLM does not always have
an earlier stop, which depends on data distribution. For Q1M/L
and Q2L, the distances of the counts from the thresholds shown in
Figures 5a and 5b are relative small for most of the predicates, i.e.,
the counts are closer to thresholds. For such a case, all predicates
need to consume a high privacy budget to be accurately decided
and incur a slightly higher ex-post privacy than TSLM due to the
division of the 𝛽 among multiple steps. However, it is better than
the other multi-step approach PPWLM, because DPPWLM uses
learned data distribution to determines the number of iterations
and hence budget allocation adaptively. Furthermore, as DPPWLM
optimizes min-entropy, we observe that it achieves the highest
min-entropy for all the queries as shown in Figures 6b and 6d.

Accuracy Results. For each run of the algorithm, we measured the
number of false negatives𝑛𝑓 𝑛 and the number of false positives𝑛𝑓 𝑝 .
Then we report the averaged false negative rate (FNR) as 𝑛𝑓 𝑛/𝑛𝑝
and the averaged false positive rate (FPR) as 𝑛𝑓 𝑝/𝑛𝑛 over multiple
runs, where 𝑛𝑝 and 𝑛𝑛 are the number of positives and the number
of negatives respectively. The results are presented in Figure 7 when
𝛽 = 0.05 and 𝛼 = 1.
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(a) Q1H/M/L (b) Q2H/M/L (c) Q3H/M/L (d) Q4H/M/L

Figure 5: This figure shows the distribution of the distances from the thresholds for all aggregates for 𝑄1, 𝑄2, 𝑄3, 𝑄4 with

thresholds = High (H), Medium (M) and Low (L).

(a) UCI data (𝑄1,𝑄2) Epsilon (b) UCI data (𝑄1,𝑄2) Entropy (c) NYTaxi data (𝑄3,𝑄4) Epsilon (d) NYTaxi data (𝑄3,𝑄4) Entropy

Figure 6: Privacy loss in terms of 𝜖∗(Ex-Post DP) and Min-Entropy 𝛾 (Θ) for Q1, Q2, Q3, Q4 with threshold = High (H),Medium

(M), Low (L) at 𝛽 = 0.05, 𝛼 = 1

.

(a) UCI data (𝑄1,𝑄2) FNR (b) UCI data (𝑄1,𝑄2) FPR (c) NYTaxi data (𝑄3,𝑄4) FNR (d) NYTaxi data (𝑄3,𝑄4) FPR

Figure 7: Accuracy in terms of False Negative Rate (FNR) and False Positive Rate (FPR) for Q1, Q2, Q3, Q4 with threshold = High

(H), Medium (M), Low (L) at 𝛽 = 0.05, 𝛼 = 1.

(a) FNR (b) FPR (c) Min-Entropy 𝛾 (Θ) (d) Ex-Post Privacy Loss 𝜖∗

Figure 8: Accuracy (FNR,FPR) and Privacy (𝜖∗,𝛾 (Θ)) for 𝑄3 (NYTaxi data) with threshold = Low over varying 𝛼 .
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Figures 7a and 7c show that all the MIDE algorithms achieve
a bounded FNR lower than 𝛽 = 0.05, which is the key accuracy
requirement of DS. Note that the multi-step approach DPPWLM can
make different decisions in each step (e.g., epsilon values) depending
on the randomness of the algorithm and the data distribution, so
there is no guarantee that DPPWLM will always win PPWLM in
terms of utility (e.g., DPPWLM has a lower FNR than PPWLM for
all queries except Q1M), but both of them have a bounded FNR. The
trade-off of FNR in terms of FPR is relatively low, less than 0.04, for
all MIDE algorithms and queries shown in Figures 7b and 7d.

Accuracy-Privacy Tradeoffs. TSLM achieves a better utility (FPR
and FNR, and FPR/FNR tradeoff) than multi-step algorithms, but at
a privacy cost. Since DPPWLM performs better than PPWLM (in
both privacy cost and utility), we focus on the tradeoff comparisons
between DPPWLM and TSLM. The privacy goal of DPPWLM is
to optimize min-entropy (a higher min-entropy is preferred). The
utility goal is to achieve a bounded FNR and optimize FPR (a smaller
FPR is preferred). We compare its min-entropy (Figures 6b/6d) and
its FPR (Figures 7b/7d) with TSLM. On average, DPPWLM improves
the min-entropy of TSLM from 0.25 to a value above 0.8 in Figures
6b/6d, while it sacrifices the FPR of TSLM from ~0 to a value at
most 0.034 in Figures 7b/7d for all the queries.

Comparison with Naive Laplace Mechanism. We use 𝑄3 with
threshold = ‘low’ for the comparison between the naive laplace
mechanism (NLM) and our algorithms in Figure 8 by changing
the accuracy parameter 𝛼 . As there is no guideline for setting the
parameter of NLM to achieve 𝛽-FNR, we use the same privacy
budget for NLM as TSLM. When 𝛼 increases, the privacy budget
becomes smaller. Figure 8a shows that NLM does not satisfy 𝛽-false
negative guarantee as 𝛼 increases while the other algorithms still
have a bounded FNR. Figure 8b shows that the trade off in terms
of false positives for false negatives is data dependent. If many
true negatives lie close to thresholds (most of our datasets), then
the trade-off cost is high. The NLM has the same ex-post privacy
loss and min-entropy as our TSLM as both algorithm use the same
privacy budget. The results for our privacy metric (Figure 8c, 8d)
show that our DPPWLM has the lowest privacy loss across different
values of 𝛼 . Similar results are observed when changing 𝛽 .

Varying Parameters for Multi-step Algorithms. We evaluated
our multi-step algorithms with varying starting epsilon values
𝜖1 ∈ {10

−5, 10−4, . . . , 10−1} and varying number of steps 𝑚 ∈

{2, 4, . . . , 12}. Due to space constraints, we leave the plots in the
appendix of our full paper [2] and summarize the results here.

As 𝜖1 increases, PPWLM and DPPWLMhave a larger privacy loss
(both ex-post DP and min-entropy). If 𝜖1 is too small, all predicates
may be undecided in the first step in both approaches. However,
DPPWLM chooses appropriate epsilons in the subsequent steps to
effectively classify the predicates. When changing 𝜖1, there are no
significant differences in utility and fulfilling the required accuracy
bounds. The utility improves slightly if DPPWLM ends with a
relatively higher privacy loss due to the data distribution and choice
of 𝜖 and 𝛽 in the intermediate steps.

Our experiments show that increasing the number of steps by
more than 4 can result in a higher ex-post DP loss for both PPWLM
and DPPWLM as 𝜖𝑚 for the last step will exceed 𝜖𝑚𝑎𝑥 = 4. On the
other hand, choosing a smaller number of steps may not result in

an optimal solution as a data dependent algorithm becomes limited
in the optimal choice of epsilon. The DPPWLM does better in
min-entropy than PPWLM with a larger𝑚 as DPPWLM optimizes
the choice of 𝜖 and 𝛽 to maximize the min-entropy. The utility
satisfies the required bound and varies slightly depending on the
data distribution and the choice of 𝜖 and 𝛽 across multiple steps.

7 RELATEDWORK

Accuracy-aware differentially private (DP) systems [9, 19, 20, 24]
have been studied in the literature. These systems allow data ana-
lysts to specify their accuracy requirements for their queries/ ap-
plications while achieving bounded privacy loss. However, queries
supported by these systems or their accuracy specifications do not
directly match the need for decision support applications.

Fine-grained privacy specifications similar to PWDP have been
considered previously at tuple level, like personalized DP[13] where
each tuple has its own pre-set privacy budget; or at group level, like
one-sided DP [15] that specifies a set of tuples are non-sensitive
based on their values. PWDP generalizes one-sided DP (a case
with only two groups) by tracking the privacy budget at group
level partitioned by the predicates. Both personalized DP and one-
sided DP do not have any accuracy-aware designed algorithms.
Predicate-wise DP can also be treated as a development over the
parallel composition property [22] of DP.

In the context of privacy-preserving for decision support using
DP, Cuong et al. [27] considered similar aggregate threshold queries,
but they focus on optimizing a fairness goal for resource allocation
for all the groups. Hence, the algorithms do not apply to our queries,
and they did not take the accuracy-first approach. Extended related
work can be found in the appendix of our full paper [2].

8 CONCLUSION AND FUTURE WORK

In this paper, we presented minimally invasive data exploration for
decision support applications. We formally defined the accuracy
requirement and presented three different privacy preserving algo-
rithms that aim to minimize privacy loss while providing accuracy
guarantees. Our results show that our data-dependent algorithm is
robust and minimizes privacy loss for different data distributions.
We limit the scope of this paper to binary classifiers using aggregate
threshold queries. In future work, we would like to consider more
general classifiers for decision support as generalizing a classifier
to trade-off between false positive/ false negative applies to other
types of classifiers. Another future direction is to generalize mini-
mally invasive architecture for a broader class of SQL queries (e.g.,
queries with overlapping predicates and aggregate functions like
median with higher sensitivity). Advanced DP mechanisms such as
hierarchical mechanism [18] and exponential mechanism [6] can be
applied, but accounting for their privacy loss in the predicate-wise
DP framework will be an interesting problem. Last, we would like
to explore fairness in the context of Predicate-wise DP as entities
end with different privacy loss depending on the data distribution.
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