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ABSTRACT
This paper studies the hypothesis that not all modalities are always
needed to predict affective states. We explore this hypothesis in
the context of recognizing three affective states that have shown a
relation to a future onset of depression: positive, aggressive, and
dysphoric. In particular, we investigate three important modali-
ties for face-to-face conversations: vision, language, and acoustic
modality. We first perform a human study to better understand
which subset of modalities people find informative, when recog-
nizing three affective states. As a second contribution, we explore
how these human annotations can guide automatic affect recog-
nition systems to be more interpretable while not degrading their
predictive performance. Our studies show that humans can reliably
annotate modality informativeness. Further, we observe that guided
models significantly improve interpretability, i.e., they attend to
modalities similarly to how humans rate the modality informative-
ness, while at the same time showing a slight increase in predictive
performance.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Applied computing → Psychology.
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1 INTRODUCTION
Depression is a prevalent mood disorder that affects globally more
than 264 million people [16]. Detecting depression early is crucial,
as depression can affect the development of adolescents [4]. There-
fore, we are interested in depression-related affective states during
mother-adolescent interactions. To this end, we focus in this work
on three affective states, i.e., positive, aggressive, and dysphoric,
that have shown a relation to a future onset of depression [33] and
study how these states are expressed through different modalities.

Combining information from multiple modalities to predict af-
fective states is challenging and does not always improve predictive
performance of machine learning models [40]. However, humans
express themselves through multiple modalities, making it essential
to study how humans integrate information from multiple modal-
ities when recognizing affective states. Additionally, we are also
interested in leveraging this knowledge to effectively combine in-
formation frommultiple modalities in machine learning models. We
focus our study on how humans use three important modalities for
face-to-face conversations [22], i.e., vision, language, and acoustic
modalities. While all three modalities may always be available, we
hypothesize that a subset of modalities will be sufficient to predict
expressions of affective states. In particular, we expect that these
subsets are not the same for each instance of affect expression.

In this paper, we study the hypothesis of using a subset of modal-
ities to predict affective states from two angels: (1) a human study to
better understand which modalities people are paying attention to
when recognizing affective states; and (2) the impact of integrating
these human ratings to guide machine learning models to attend
to a subset of modalities. An interesting aspect of this paper is
that we are holistically studying the relation between modalities
and affective states by showing annotators all available modalities
at the same time and asking them to judge the informativeness
of each modality. For these judgements, we discretize modality
informativeness in three levels: (a) sufficient, when a modality is,
by itself, enough to recognize the expressed affective state; (b)
relevant, when a modality includes useful information about the
expressed affective state but is not sufficient to recognize the af-
fective state; and (c) none, when the modality does not seem to
be used to express the affective state. We study whether human
annotators can reliably accomplish this task and analyze the dis-
tribution of these modality informativeness annotations. Finally,
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we explore the impact of integrating these annotations in predic-
tive models. Our study and experiments are performed on a recent
dataset of mother-adolescence interactions recorded in the context
of studying affective states related to the onset of depression [24].

2 RELATED WORK
We group the related work in four topics. First, we cover computa-
tional approaches for predicting multimodal affective states. Then,
we focus on how multimodal machine learning models estimate
modality informativeness. Third, we mention multimodal percep-
tion experiments that highlight that affective states are differently
perceived across modalities. Finally, we highlight some unimodal
attempts at integrating human guidance to improve predictions
of machine learning models, such as using eye gaze to attend to
salient words in NLP tasks.

Multimodal affective recognition: A modality-centric view
of affective states is to divide them into how they are expressed,
i.e., non-verbally and verbally. Non-verbal affective states include,
for example, the basic six emotions, while verbal affective states
include more language-driven aspects of affect such as sentiment,
complaining or (dis-)agreeing. Challenges such as AVEC [29], Com-
ParE [32], and FERA [39] have focused extensively on predicting
non-verbal expressions of affect. Similarly, language-driven aspects
of affective states haven been predicted as part of sentiment anal-
ysis [34, 43] and to some degree as part of dialogue acts [5]. In
this work, we focus on three multimodal affective states, i.e., they
are expressed non-verbally and verbally, that have shown to be
statistically related to a future onset of depression [33].

Modality informativeness: Many models that focus on multi-
modal fusion implicitly or explicitly estimate the informativeness
of modalities [25, 37, 38]. Two motivations for modeling modality
informativeness are often a better predictive performance [25, 37]
and making the model more interpretable as the impact of each
modality is estimated [38]. One way to model modality informative-
ness is to use modality attention with decision-fusion models [25].
As attention is not guaranteed to reflect how important a modality
is [27], we guide the modality attention to be similar to human
perceived modality informativeness and also evaluate how simi-
lar the predicted modality attention is to the perceived modality
informativeness.

Modality perception:Multimodal perception studies have been
conducted to rate how affective states are perceived in different
modality combinations [3, 20, 23, 26]. As an example, some re-
searches studied whether emotions are perceived differently across
modalities [3]. Focusing on individual modalities has the advantages
that other modalities cannot hinder the perception of the current
modality, but being exposed to only a subset of modalities, i.e., not
having all the available information, can lead to different judgments
about affective states as demonstrated by these studies. To avoid
this limitation and to focus instead on modality informativeness,
we ask human annotators to judge modality informativeness while
being exposed to all available modalities.

Human-guidance: Human attention, operationalized as eye
gaze fixations, has helped in uni-modal tasks to learn more robust
attention mechanisms in NLP as a way to attend to words [2]. In
computer vision, eye gaze information was also used to attend to

salient objects [36, 42]. While eye gaze is an effective way to derive
visual attention, it is not well-suited to infer informativeness of
other modalities such as for the acoustic modality. As an alternative,
we ask human annotators to rate how informative each modality
is.

3 DATASET
Our study takes advantages of the recent Transitions in Parent-
ing of Teens (TPOT) [24] dataset which consists of 134 audio- and
video-recorded mother-adolescent interactions (a total of 268 partic-
ipants). These natural interactions are 20 minutes long and focus on
problem-solving tasks. Conversations typically focus on discussing
the amount of screen time, the participation in household chores,
and the behavior towards other family members. All participating
families are considered to have low social economic status in the
US. The adolescents are between 11 and 14 years old, and half of
the mothers have a history of a unipolar disorder.

Each interaction is annotated for four multimodal affective states:
positive, aggressive, dysphoric, and other (mostly neutral). These
affective states are closely related to the Living in Familial Environ-
ments (LIFE) codes [14] and can directly be derived from them [33].
The Krippendorff α of the annotated states is 0.66. The four affec-
tive states are expressed non-verbally and verbally. For example,
being sad is coded as dysphoric but self-focused complaints are also
coded as dysphoric.

The affective state coding focuses on the onsets of events, i.e.,
when enough evidence is available to determine an affective state.
We assume that an annotated state is valid until the next onset.
Through preliminary machine learning experiments, we deter-
mined that the annotations are most likely delayed by one sec-
ond. We therefore shift all annotations by one second. The dataset
has a total of 4,117 positive segments, 1,683 aggressive segments,
5,313 dysphoric segments, and 6,221 other segments. The average
segment duration is 6.1 seconds.

4 HUMAN JUDGEMENT OF MODALITY
INFORMATIVENESS

We are interested in how much information each modality con-
tributes when recognizing affective states. Additionally, we want
to explore whether interactions between modalities are crucial
when predicting affective states or whether modalities can be used
independently.

For our study, we recruited and trained two annotators from our
local institution1. As the TPOT dataset contains sensitive data, all
annotators were part of our IRB protocol. The annotation software
ELAN [41] is used to display side-by-side videos of the mother
and the adolescent. For each family member, we randomly select a
balanced subset of twelve segments. We exclude segments of the
"other" state from this annotation, as they are primarily character-
ized by neutral or no expressions. Appendix A provides more details
on the annotation interface. Each video of a family member is ran-
domly assigned to one of the two annotators. 10% of the videos (26
1The two female annotators were already familiar with the annotation software. We
followed the established approach for annotator training where annotators are trained
on a separate subset of the data (not used in our main study) until reaching a high
enough agreement. In our case, we used the threshold of 0.7 Krippendorff α on the
training subset.
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videos) are annotated by both annotators to calculate the inter-rater
agreement (see section 4.1 for details about the Krippendorff α ).

Modality informativeness is defined as the amount of informa-
tion a modality contains to recognizing an affective state. For each
modality (vision, language, and acoustics), the annotators are asked
"How much information does the modality contribute to the affec-
tive state?" and given the following response options: "sufficient
information", "relevant information", "no information", and "not
clear / I do not know". A modality is sufficient when the annota-
tors can recognize the affective state using only this modality. In
contrast, a modality is relevant, if by itself, this modality is not suf-
ficient to recognize the affective state but it provides information
towards the affective state. An example of relevant information is
speaking loudly: it can signal a high arousal state, but typically we
cannot differentiate between positive and aggressive states with
just this cue. We should note that multiple modalities can be suffi-
cient for the same segment. Furthermore, it is possible that none of
the modalities is sufficient by itself, meaning that the interaction
between modalities is crucial.

As a sanity check, we ask the annotators "Do you agree with
the affective state?". This allows us to flag segments where the
affective state might be too ambiguous. The annotators have the
following response options: "agree", "somewhat agree (it could be
interpreted as <affective state>)", "disagree", and again "not clear
/ I do not know". Our two annotators "agree" in 86% of the cases
with the originally coded affective states. For our study, we exclude
annotations where the annotators do not "agree" with the affective
state.

4.1 Annotation Analysis
Annotator agreement: We report the agreement of our modality
informativeness annotations using Krippendorff α : 0.50 for the
visual modality, 0.66 for the language modality, and 0.65 for the
acoustic modality. These Krippendorff α are computed using the
ordinal weighting scheme [18] since our annotation label scheme
is ordinal. If one or both annotators choose "not clear / I do not
know" for a modality, we treat the annotation as missing. Only 6%
of the modality annotations are flagged as missing, leaving 2,724
segments for vision, 2,694 for language, and 2,703 segments for
acoustics (15.6% of all TPOT segments). While we sampled the
affective states in a balanced manner, not all videos have three
aggressive segments, leading to an imbalance between the affective
states. Out of the segments that have at least onemodality annotated
(a rating different from "not clear / I do not know"), 35.55% are
positive, 24.02% are aggressive, and 40.38% are dysphoric.

Modality Informativeness: We analyze the informativeness
of each modality. As can be seen in Table 1, the vision modality
provides most frequently sufficient information followed by the
language modality. Interestingly, the acoustic modality does not
seem to provide as much information for this dataset. A potential
explanation might be that it is cognitively difficult to focus on
acoustic characteristics when listening to speech [19]. It is further
surprising to observe, that the annotators did not choose "relevant
information" as often. This suggests that in most cases, individual
modalities could be sufficient to predict an affective state.

Table 1: Distribution of the modality informativeness.

Modality Information

No Relevant Sufficient

Vision 16% 11% 67%
Language 49% 3% 41%
Acoustic 78% 3% 13%

Table 2: Common behaviors related to the three affective
states as reported by the annotators.

State Behaviors

Positive head node, yes / agree statements, smile, eye-
brows raised, laughter

Aggressive head shake, no / disagreement statements, scowl
/ glare, eyebrows raised, sigh

Dysphoric gaze aversion, head facing downwards / away
from partner, self-touches (face and head), fid-
dling, shoulder shrugs, lip suck/bite, sigh

While we did not annotate which exact behaviors are causing
relevant/sufficient information, we asked our annotators for the
most common behaviors for each of the three affective states and
tabulate them in Table 2. Behaviors shared among affective states
seem to be related to arousal (raised eyebrows) and valence (sigh).
This is somewhat expected, since positive and aggressive states
both tend to be high arousal states, while aggressive and dysphoric
states both tend to be low valence states.

Informativeness and Missingness: The language and acous-
tic modality are not always available, since a person does not speak
all the time. To validate if this has a big impact on the informative-
ness annotations, we look at how often words are spoken during
segments that are annotated as containing "no information". If
words are spoken during an uninformative ("no information") seg-
ment, we know that language and acoustics are available2 and are
not caused because speech is missing. During 51.15% of the unin-
formative language segments, words were spoken. Similarly for
acoustics, 66.18% of the uninformative acoustic segments contain
spoken words.

Modalities per affective state: Table 3 shows the distribution
of informativeness for each affective state. Similar to Table 1, vision
provides a lot of information across all affective states, but lan-
guage provides more often information than vision for aggressive.
In addition, language is more often informative for positive and
aggressive than for dysphoric. A potential reason for this obser-
vation is that agreement and disagreement are coded as positive
and aggressive, respectively. Another observation is that when the
acoustic modality is informative, it tends to be informative for the
positive state.

Cross-modal interactions: It is also interesting to study which
modalities co-occur. Table 4 shows that more than half of the times

2This is a simplification for acoustics as people can also express themselves non-
verbally, e.g., laughing, crying, and sighing.
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Table 3: Percentage of available information for each affec-
tive state. 100% means all segments of the affective state.

Modality Positive Aggressive Dysphoric

No Rel Suf No Rel Suf No Rel Suf

Vision 19% 6% 74% 24% 16% 55% 9% 12% 69%
Language 47% 2% 49% 25% 6% 63% 64% 3% 22%
Acoustic 70% 2% 26% 79% 9% 6% 83% 2% 4%

Table 4: Co-occurrence of available information (relevant or
sufficient). Co-occurrence probabilities are relative to how
often the row modality is informative, e.g., in 38% of the
cases when vision is informative, language is also informa-
tive.

Modality Co-occurs with

(base rate) Vision Language Acoustic

Vision (83%) 100% 38% 18%
Language (48%) 67% 100% 9%
Acoustic (17%) 89% 26% 100%

when language is informative, vision also provides information.
When the acoustic modality is informative, it is often accompanied
by visual information. While a single modality is frequently suffi-
cient, affective states are often still expressed in multiple modalities.
A predictive model could benefit from this extra information in
terms of robustness by integrating uni-modal predictions dynami-
cally based on a predicted modality informativeness.

5 MODALITY ATTENTION
To guide how much attention a model pays to each modality, we
decide to explore two decision-fusion architectures that differ only
in how modalities are aggregated. The first architecture averages
unnormalized predictions (logits) while the second architecture av-
erages normalized predictions (probabilities). While unnormalized
logits contains more information than the normalized probabilities,
the weighting of the unimodal predictions (attention) might be
misleading as the unimodal models can learn to encode modality in-
formativeness through the magnitude of their unnormalized logits
instead of relying on the attention mechanism [27].

We use superscript in the following equations to denote a modal-
itym ∈ M withM = {v, l ,a}. The prediction ŷi of the unnormalized
model for segment i is expressed as

pi = softmax

([ ∑
m∈M

lmi,Posa
m
i , . . . ,

∑
m∈M

lmi,Otha
m
i

])
(1)

ŷi = arg maxs ∈{Pos, Agg, Neg, Oth}pi,s (2)

where [·] is the concatenation operator. The unnormalized logits
lmi ∈ R4 for each modalitym are defined as

lmi =W
m fm (Xm

i ) + bm (3)

and the attention vector ai ∈ R |M | is

ai = softmax (д([ f v (Xv
i ), f

l (X l
i ), f

a (Xa
i ) ])) . (4)

W is the projection matrix to the four affective states and b is the
bias term. f and д are operationalized using Multi-Layer Percep-
trons (MLP). This first model is part of the family of cooperative
gating models [15] and is a special case of the multimodal gating
unit [25] when used on the predicted output.

The secondmodel averages normalized probabilities. The changes
to the first model are

lmi = softmax(Wm fm (Xm
i ) + bm ) (5)

pi =

[ ∑
m∈M

lmi,Posa
m
i , . . . ,

∑
m∈M

lmi,Otha
m
i

]
. (6)

5.1 Human-Guided Attention
Our goal is to study how models can be guided to prioritize modal-
ities similarly to how humans judge the modality informativeness.
Maximizing this similarity has the potential advantage of better
interpretability and could also help the model during training to
focus on the subset of informative modalities as it might prevent
the model from learning some spurious correlations.

To improve the similarity between model attention and human
judgments, we propose a new auxiliar loss. To formalize this loss,
we define two matrices A,H ∈ Rn×|M | where n is the number of
segments. These matrices correspond to the predicted attentions
(A) and the human informativeness judgements (H ). Row i in these
matrices corresponds to the importance of the three modalities for
segment i . To define a similarity between the human judgements
and the algorithmic attentions, we convert the ordinal human judg-
ments to numeric values: no information (0.0), relevant information
(0.5), and sufficient information (1.0).

Am ,Hm ∈ Rn are the columns of A and H respectively. They
correspond to attention values of modalitym across all n segments.
We minimize the following auxiliar loss

−λ
1
|M |

∑
m∈M

pearson (Am ,Hm ) . (7)

This loss maximizes the modality-averaged correlation between A
and H . λ ∈ {0.1, 0.5, 1.0} is a hyper-parameter to find a good scale
for the auxiliar loss.

6 EXPERIMENTAL METHODOLOGY
To evaluate our human-guided prediction approach3, i.e., the un-
normalized model with the auxiliar loss from Equation 7 (referred
to as guided), we define two baseline models: the normalized and
unnormalized model each without the auxiliar loss (referred to as
normalized and unnormalized respectively).

We define an interaction-independent five-fold split for testing
with a nested holdout split for validation (60% for training, 20% for
validation, and 20% for testing). Reported metrics are averaged over
the five test sets. The following hyper-parameters are validated
for all models: learning rate for Adam [17], number of layers of
the individual MLPs, strength of the L2-norm for the learnable
parameters, and λ to balance the auxiliar loss. The primary loss
3The code is available at github.com/twoertwein/HumanGuidedAttention.
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function is the categorical cross-entropy, rectified linear units are
used as non-linear activation functions, and early stopping is used.
All parameters are jointly optimized. Features are z-normalized
using the respective training sets and feature selection is performed
with a linear support vector classifier [11] on the training sets. The
best model is determined by the weighted accuracy averaged over
the validation sets.

We report the affective state prediction performance using accu-
racy (Acc) and Krippendorff α4. Krippendorff α is chosen since we
can easily compare the model’s performance with the inter-rater
agreement.

Further, we use two metrics to evaluate how interpretable the
learned attention is. For each modalitym, we report

ρm = spearman(Am ,Hm ) . (8)

Compared to section 5.1, we replace the differentiable Pearson’s cor-
relation with the non-differentiable Spearman’s correlation since
the human informativeness scale is ordinal. Additionally, the hu-
man informativeness and the predicted attention should for each
segment have a similar/the same ordering. We report the segment-
averaged Spearman’s rank correlation coefficient

ρ̄local =
1
n

n∑
i=1

spearman(Ai ,Hi ) (9)

to evaluate whether segments have on average a similar attention
ordering as the human informativeness. Ai ,Hi ∈ R

3 are the rows
of A and H .

Significance tests are conducted with paired person-clustered
bootstrapping [28] using p = 0.05 and 10,000 resamplings at the
person-level.

6.1 Extracted Features
Vision:We use OpenFace [1] and AFAR [7] to extract facial action
unit intensities and occurrences, head rotation, and eye gaze angles.
When aggregating frame-level features to the labeled segments, we
ignore features of video frames that according to OpenFace/AFAR
were not correctly tracked. All features are aggregated to the labeled
segments using the mean and standard deviation. Additionally, the
maximum is used when aggregating facial action unit intensities.
As an additional proxy for gaze aversion, we calculate the angular
distance from looking straight into the camera [13] as the camera
is located approximately on face-level behind the conversation
partner.

Language: All interactions are manually transcribed. Words
are automatically aligned to the audio using the Montreal Forced
Aligner [21]. We use the dimensions from LIWC 2015 [35] to repre-
sent all words that occur during a labeled segment.

Acoustic: The audio files are first processed with StereoTool’s
declipper5 in an attempt to recover clipped amplitudes caused by a
too high microphone gain and then volume-normalized with FFm-
peg according to the EBU R128 standard. Next to features from CO-
VAREP [6], we extract the feature sets corresponding to the follow-
ing openSMILE [10] configurations: eGeMAPS v01a [8], prosodyAcf
(pitch and voicing probability), and vad_opensource [9] (speech
4Krippendorff α is typically computed between the ratings of annotators. Here, we
treat the model and the ground truth as two raters.
5www.stereotool.com

Table 5: Performance on the entire test set and the gating
metrics on the annotated test subset.

Model α Acc ρ̄local ρv ρl ρa

Chance 0.000 0.307
Normalized 0.336 0.528 0.284 0.273 0.356 -0.148
Unnormalized 0.350 0.537 0.372 0.140 0.288 -0.090
Guided 0.351 0.541 0.636 0.288 0.423 0.283

Table 6: Performance on the annotated test subset. Oracle
refers to using the annotated modality informativeness in-
stead of the learned attention.

Model Krippendorff α Accuracy

Unnormalized 0.318 0.518
- Oracle 0.324 0.535

Guided 0.328 0.525
- Oracle 0.379 0.561

Table 7: Average of the predicted attention for the three an-
notated affective states on the entire test sets.

Modality Positive Aggressive Dysphoric

Vision 0.607 0.542 0.689
Language 0.329 0.422 0.276
Acoustic 0.064 0.036 0.035

activation detection). Most acoustic features are meaningful only
while a person is speaking. When aggregating the audio features
to the labeled segments, we consider audio features that happen
only while speaking according to the aligned transcripts and when
COVAREP/openSMILE detect speech. All low-level features are
aggregated to the labeled segments using the mean and standard
deviation. The high-level features from eGeMAPS are aggregated
using only their mean.

7 RESULTS AND DISCUSSION
Human-guided attention: Results are summarized in Table 5.
Our human-guided model shows small improvements over the
baseline models but most importantly the learned attention weights
are much closer to human judgement. The correlation between the
attention and the human judgement significantly increased from
ρ̄local = 0.372 to ρ̄local = 0.636 meaning that our guided model
prioritizes modalities similar to how humans prioritize them. The
modality-specific correlations (ρv , ρl , and ρa ) increased as well,
making it easier to interpret the attention across segments.

Oracle experiment: Table 6 shows the hypothetical case when
our guided model predicts perfectly the human informativeness.
Its performance would significantly improve from α = 0.328 to
α = 0.379. The other models do not improve significantly when
using the human informativeness.

Attention per modality and affective state: Finally, Table 7
shows the averaged attention of our guided model for the three
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annotated affective states on the test sets. It is very intriguing to
compare Table 7 and Table 3. This comparison shows similar trends
between the human judgement and the model’s attention: vision is
essential and language is more important for positive and aggressive
than for dysphoric. The only obvious difference is that the model
amplifies the existing bias [44] of acoustics not being too predictive.

8 CONCLUSION AND FUTURE WORK
This paper studied the hypothesis that a subset of modalities is
sufficient to recognize affective states from two perspectives. First,
we demonstrated that humans can reliably judge the informative-
ness of modalities and observe that in most cases a single modality
is sufficient to recognize affective states while at the same time
the affective states are still expressed through multiple modalities.
Second, we proposed a human-guided auxiliary loss to improve
the learned attention to be significantly more similar to human
informativeness judgements while not degrading the predictive
performance. Finally, the predictions can further be improved by di-
rectly using the human informativeness judgments during test time
demonstrating empirically that the human ratings are reliable. This
paves the way for more intuitive and easier to interpret multimodal
models.

Achieving a significant improvement when overwriting the
learned attention with the human judgement indicates that our
model can be corrected by a trained human which makes our
model more controllable and potentially also more acceptable by
users [30]. This significant improvement also highlights the need
for more research on how to learn better and more robust attention
mechanisms.

Affective states encompass a variety of phenomena [31]. Af-
fective states that are defined differently than the three studied
affective states will most likely have a different modality informa-
tiveness. Further, some behaviors are more prominent in interac-
tions between unfamiliar people than between familiar people, for
example smiles [12], which might also shift the modality informa-
tiveness depending on the conversational setting.

In our annotation study, annotators were simultaneously ex-
posed to three modalities. This makes it challenging to entirely
ignore the influence of other modalities when judging how informa-
tive a single modality is. We encourage future work that contrasts
modality informativeness when judging modalities independently
and judging them jointly.
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Figure 1: The annotation interface. On the left an annotated
onset and on the right a nearby onset for context. The length
of the segments has nomeaning. The onset is the start of the
segment.

A ANNOTATION INTERFACE
Figure 1 shows a screenshot of the annotation interface. The side-by-
side videos are located above the tiers (not shown in the screenshot).
Knowing that another onset happens immediately before or after an
onset that is going to be annotated, was pointed out to be important
by our two annotators during pilot studies. To contextualize the
sampled onsets, nearby onsets are included in the ELAN files if they
occur within five seconds.
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