IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

1233

QuEsT: Privacy-Preserving Monitoring of Network
Data: A System for Organizational Response
to Pandemics

Shantanu Sharma

, Sharad Mehrotra, Nisha Panwar, Nalini Venkatasubramanian, Peeyush Gupta™,

Shanshan Han, and Guoxi Wang

Abstract—Most modern organizations today support network infrastructure to provide ubiquitous network coverage at their premises.
Such a network infrastructure consisting of a set of access points deployed at different locations in buildings can be used to support
coarse-level localization of individuals, who connect to the infrastructure using their mobile devices. This paper describes a system,
entitled QuesT that supports a variety of applications (e.g., identifying hotspot regions, finding people who are potentially exposed to a
condition such as COVID-19, occupancy count of a region/floor/building) based on network data to empower organizations to maintain
safety at their workplace/premises. QuesT builds the above functionalities while fully protecting the privacy of individuals. QuesT
incorporates computationally- and information-theoretically-secure protocols that prevent adversaries from gaining knowledge of an
individual’s location history (based on WiFi data). We describe the architecture, design choices, and implementation of the proposed
security/privacy techniques in QuesT. We, also, validate the practicality of Quest and evaluate it thoroughly via an actual campus-scale
deployment at our organization over a very large dataset of over 50M rows.

Index Terms—WiFi connectivity data, computation and data privacy, exposure tracing, decentralized solution

1 INTRODUCTION

HE ongoing COVID-19 pandemic with rapid and wide-
Tspread global impact, has caused havoc over the past
year — at the time of writing this paper, over 231 million
individuals have been infected. The pandemic has caused
over 4.7 million global casualties, and the world economy to
come to a screeching halt. Several (non-pharmacologic)
steps are being taken by governments and organizations to
restrict the spread of the virus, including social distancing
measures, quarantining of those with confirmed cases, lock-
down of non-essential businesses, and contact-tracing meth-
ods to identify and warn potentially exposed individuals.
These tracking and tracing measures utilize a range of
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technological solutions. Countries, e.g., Israel, Singapore,
China, and Australia, were among the first to utilize cellular
data records or data from Bluetooth-enabled apps to per-
form contact tracing. In addition, several commercial and
academic solutions (e.g., GAEN by Google-Apple collabora-
tion [1], European PEPP-PT [2], and [23], [28], [39], [62]) aim
to provide secure contact tracing using Bluetooth-based
proximity-detection. Using this approach, users can check if
they have been exposed to a potential carrier of the virus by
performing a private set intersection of their data with the
secured public registry of infected people. However, such
techniques suffer from limited adoption and significant pri-
vacy issues, as we will discuss in detail in §2. For example,
Google-Apple’s GAEN protocol [1] is still not in use, by all
the states in the US, due to privacy concerns [3], [38].

In this paper, instead of developing a tool/system using
Bluetooth or cellular data, we take a radically different path
by focusing on a specific type of sensor data — the WiFi
connectivity data. In an organizational WiFi network, when-
ever a person’s device connects to a WiFi access point, a net-
work event is generated that essentially contains the MAC
address of the connecting device, the MAC address of the
access point, and the time of connection. Such a connectivity
event can provide a coarse location of an individual, since it
can locate a person to the region covered by the WiFi access
point. Our focus on WiFi (connectivity) events/datasets is
motivated by the following reasons:

1) Ubiquitous Nature of WiFi. WiFi connectivity is essen-
tially ubiquitous and available in numerous organi-
zations, such as office buildings and campuses,

universities, and shopping complexes.
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2)  No Additional Infrastructure Cost. Developing applica-
tions based on WiFi data does not require deploying
new sensors, and hence, can be used in the existing
places with WiFi connectivity.

3)  Network-Centric and Passive Nature of WiFi Connectiv-
ity Data. The application development using WiFi
data does not require users to download and install
an application on their mobile devices, as well as,
does not require storing any information on mobile
devices. WiFi data is collected and processed at the
network side, and hence, users do not need to partic-
ipate in any data storage or processing.

4) A Turnkey Approach. Unlike other WiFi-based techni-
ques (e.g., signal strength, time of flight, angle of
arrival approaches) that require extensive calibration,
training, or fingerprinting to work well across differ-
ent settings, WiFi connectivity-based approach is
robust and can be deployed with little or no training.

5)  Accuracy. WiFi data — coupled with semantic knowl-
edge of buildings and their users (as is often the case
with organizations) — can be used to achieve high
accuracy not just at the level of the region covered,
but even finer-grained at the room level location, as
shown recently in [48].

1.1 Our Contribution: QuesTt

Given that WiFi (connectivity) data associates people with
spaces dynamically and continuously, WiFi data can pro-
vide valuable insight into the organization, its functioning,
and its culture. Motivated by the value of WiFi data, we
design secure and privacy-preserving cloud-based services
(related to COVID-19), where organizational WiFi data can
be outsourced and analyzed. We describe our proposed
solution, entitled Quest that exploits existing WiFi infra-
structure (prevalent in almost every modern organiza-
tion) to support different applications that empower
organizations to evaluate and tune directives for safe
operations, while protecting the privacy of the individu-
als in their premises. Particularly, Quest leverages WiFi
data (the data generated when a device connects to wire-
less access points, see &4 for details) to support the fol-
lowing applications:

A1: Exposure Map Application. inputs a period of time (e.
g., the past 14 days — the possible incubation time of corona-
virus) and an (encrypted) identity of a device (say £(d;)) of
an infected individual (who anonymously volunteers such
information) and outputs a list of pairs of the time period
and exposed regions within organizations where £(d;) was
present. (Note that the connectivity events contain informa-
tion that can be used to identify the device (and hence the
owner), and thus, can be used to establish coarse-level locali-
zation based on the access point’s location, (as has been
studied in [61], [65], [67], [68]).

A2: Exposure Tracing Application. inputs the output of
exposure map application Al (i.e., a list of pairs of the time
period and exposed locations) and outputs a list of the time
period and (encrypted) device ids/addresses, where
device-ids correspond to device-ids that were present at the
exposed locations specified in the input. Note that by this
application, Quest does not support contact tracing, but it
provides an approximation and makes contact tracing
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easier, by identifying people who potentially should be con-
tact traced (by first identifying locations visited by the
infected person, using application Al).

A3: Occupancy Count Application. inputs a period of time
and outputs a list of the count of devices connected to access
points. Moreover, depending on the information of access
points covering a region of a building, it provides the num-
ber of devices (i.e., the count of people) in each region. This
application helps in finding potential overcrowded regions
(both inside/outside buildings).

The key to QuEsT is privacy-preserving mechanisms that
implement the above functionalities at a public cloud, while
preventing the cloud from gaining the ability to learn the iden-
tity of individuals, either those who may have been infected or
those who could have been exposed, by observing the dataset
collected by QuEsT. QUEsT is designed as an end-to-end system
that (i) collects WiFi (connections) events/data, (ii) transforms
the device identifier/address (typically MAC address of the
device) using a secure hash function such that an adversary
(which may the cloud) cannot confirm the transformed repre-
sentation to a specific identity (e.g., MAC address), (iii)
encrypts the WiFi connectivity data with the transformed
device representation in order to store ciphertext data at the
cloud, and (iv) generates encrypted queries (called trapdoors)
for query execution on the encrypted data and answering the
above-mentioned applications.

Note that while we list only three applications above,
QuesT is designed to be general enough to support other
applications over WiFi data, such as tracking a person on a
particular day, tracking when two persons met in the last
five months, etc.
cQuest and 1QUEST. QUEST supports two different crypto-
graphic alternatives for secure data processing to support
different security levels.

The first is a computationally secure encryption-based mecha-
nism, entitled cQuest that encrypts data using a variant of
searchable encryption methods. Note that computationally
secure techniques can be broken by a computationally effi-
cient adversary. The second approach is an information-theoret-
ical secure technique, entitled 1Quesr that is based on a string-
matching technique [29] over secret-shares generated using
Shamir’s secret-sharing algorithm [58]. Note that information-
theoretical secure techniques are secure regardless of the
computational capabilities of an adversary. Note that infor-
mation-theoretical secure techniques provide a higher level of
security than computationally secure techniques. Both cQUEsT
and 1QuEsT support the above-mentioned applications. We
have deployed cQuest at University of California Irvine
(UCD) [4], as well as, tested the system on large WiFi datasets.
Note that in this paper, we will also present experimental
results of IQUEST on large WiFi datasets. These datasets were
collected as a part of the TIPPERS smartspace testbed at
UCI [50] and are also used for scalability studies. (Please see
interfaces of the three applications in Appendix B, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2022.3166802.)

1.2 Advantages of Quest

QuEest comes with the following advantages over other
approaches based on Bluetooth or GPS data:
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Privacy-by-Design. QUEsT is an end-to-end privacy-preserv-
ing exposure tracing and occupancy count system based on
WiFi technology. Compared to other WiFi-based pro-
posals [61], [65], [67], [68], QuEsT only deals with encrypted
data and hence prevents leakages of user location to the
cloud or to other users. For maintaining data privacy, QUEst
exploits both types of cryptographic techniques computa-
tionally secure and information-theoretically secure techni-
ques in such a way that an adversary cannot learn past
behavior or predict the future behavior of any user. Further-
more, QUEST prevents the privacy of the users who visit mul-
tiple organizations, by producing ciphertext such that even
from jointly observing data of multiple organizations an
adversary does not learn any information of any users.
Passive Solution. Since WiFi is ubiquitous in modern
organizations, QUEST is passive in terms of not requiring
users to download apps/update OS/organizations to
deploy sensors, and collects no additional user data (other
than what is already being captured to support WiFi
access). Thus, QUEsT can be deployed and used by simply
notifying individuals about the existence of QUEsT at the
organization’s premises, instead of seeking explicit user
consent. Note that in contrast, Bluetooth-based solutions
(e.g., GAEN by Google/Apple) require OS upgrades and
installation of apps, which limit their adoption, while GPS-
based solutions only work in outdoors.
Organization-Based. QUEsT is a decentralized solution, i. e.,
Quest allows each organization (e. g., universities and offi-
ces) to take steps autonomously and independently to main-
tain the safety of their premises by warning people about
possible exposure on their premises and finding occupancy
count at coarse level; (unlike Bluetooth-based solutions [1],
[2], [5], [6], [23], [28], [39], [62] requiring centralizationof the
data by a single organization such as Google or Apple about
all people who use their app). Though QUEsT uses the public
cloud to store the data of multiple organizations, each orga-
nization can use the same or different cloud vendors. In
other words, the public cloud plays the role of data storage
and encrypted search and does not perform any contact
tracing. Moreover,QUEsT encrypts data in a way that the
public cloud cannot learn anything from jointly looking at
ciphertext data that belongs to multiple organizations.

No Calibration. Compared to WiFi connectivity data,
approaches based on signal strength, time of flight, and
angle of arrival may be more accurate. However, they
require extensive calibration/training/fingerprinting to
work well across different settings. WiFi connectivity data,
in contrast, provides a turnkey solution (no calibration/
training). Equally importantly, it can be implemented in the
encrypted domain; the alternate solutions require signal
processing on an encrypted domain that adds complexity.

1.3 Discussion

In the present time (at the time of writing of the paper Feb-
ruary 2022), organizations such as schools and universities
are notifying students and faculties about possible exposure
through co-occupancy due to an infected person in class-
rooms or confined areas. QUEsT is designed to empower
organizations to determine such co-occupancy in a privacy-
preserving manner. Note that QUEsr is not a tool to replace
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contact tracing based on distance, time, and immunity. Fur-
thermore, our intention by occupancy count is to count the
total number of connected devices to an access point, and
depending on the background information about the loca-
tion that the access point covers, we find an approximate
occupancy count of the location. In situations such as dupli-
cate devices, the presence of spurious devices (such as print-
ers/machines) in buildings that may artificially affect the
occupancy counts, missing sensor values (due to disconnec-
tions), and location ambiguity due to the coarse nature of
the region covered by an access point, QUEsT cannot find
occupancy count close to the correct value. There are tools
such as Locater [48] that exploit semantic information (lifted
directly from data) about the affinity of people to each other
and to locations to clean WiFi data. Such tools (Locater)
reach accuracy as high as 92-93% establishing WiFi signal as
a viable technology for indoor localization and for occu-
pancy determination. Locater is not the only tool out there
that is using WiFi connectivity for awareness about indoor
occupancy. There are at least two recent startup ventures
exploring such a technology [7], [8]. The focus of QUEsT is
not building a new tool for cleaning WiFi data to accurately
perform localization using WiFi. To keep the paper focused
on privacy techniques, Quest considers the simplistic
assumption that WiFi device connectivity event between
WiFi access-points and the device locates an individual to
the precision required to determine exposure, as well as, to
accurately compute occupancy. QUEST can be used over the
cleaned WiFi data using tools (such as [7], [8], [48]) to
achieve more accurate occupancy counts.

1.4 Outline of the Paper

§2 provides detailed related work and compares QUEST
against other approaches designed specifically for COVID-19.
63 provides the model and security requirments. §4 provides
the architecture of QUEsT. §5 provides cQUEsT protocol. §6 pro-
vides IQUEsT protocol. We evaluate QuEsr in §7 and compare it
with other state-of-the-art approaches, e.g., Opaque [66] and
multi-party computation (MPC)-based Jana [17]; we discuss
tradeoffs between security and performance.

2 RELATED WORK AND COMPARISON

This section discusses new approaches designed for
COVID-19 contact tracing, several prior proximity-based
solutions to monitor the spread of infections, and compares
them against QUEST.

Comparison With COVID-19 Proximity Finding
Approaches. Several approaches for preventing the spread
of coronavirus are based on Bluetooth data-based secure
proximity detection. Among them, the most famous is
GAEN by Google/Apple [1]. Also, Switzerland’s SwissCo-
vid [9], South Korea’s 100m [6], Singapore’s TraceTogether
application [5], DP-3T (decentralized privacy-preserving
proximity tracing) [62], Stanford University app [10],
and [23], [28], [39] are based on Bluetooth-based tracking.
Enigma MPC, Inc. [11] developed SafeTrace that requires
users to send their encrypted Google Map timeline to a
server equipped with Intel Software Guard Extensions
(SGX) [26] (secure hardware) that executes contact tracing
and finds whether the person got in contact with an
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impacted person or not. A survey of recent contact tracing
applications for COVID-19 may be found in [60].

However, all such methods suffer from several limita-
tions: (i) Limited adoption: GAEN by Google/Apple require
OS upgrades as well as installation of the application. Such
a thing is also common in other Bluetooth-based applica-
tions. This limits adoption due to inertia. Several studies
show GAEN adoption needs to be above 60% for effective
contact tracing that is difficult to achieve with non-passive
technologies. (i) Significant privacy concerns: [24], [38] have
shown that data collection process in Bluetooth-based appli-
cations jeopardizes the user privacy by either broadcasting,
sharing, and/or collecting the data using Bluetooth. More-
over, past experiences have indicated that creating path-
ways for large organizations (such as Google and Apple) to
capture personal data can lead to data theft, e.g., Facebook’s
Cambridge Analytica situation. The privacy concerns fur-
ther restrict the adoption of such technologies in parts of the
world where privacy is considered to be a paramount con-
cern [21], [39] (iii) Data storage and computation at the device:
all Bluetooth-based applications require to store some
data [5], [11], [23], [28], [62] and execute computation [11],
[23], [28] at the device.

In contrast, QuEesT does not require any effort by users,
since QUEsT relies on WiFi data that is generated when a
device connects with a WiFi network. QuEsT is implemented
in a decentralized way with each organization that manages
data about exposure at their premise instead of centralizing
the data as in GAEN or others. Furthermore, Quest only
deals with encrypted data, preventing leakage of user loca-
tion to an adversary. The key contribution of QUEST is a new
protocol with appropriate security mechanisms to ensure
both data security and high performance needed to sustain
organizational-level installations.

Comparison With Other Proximity Finding Approaches.
Epic [14] and Enact [54] are based on WiFi signal strength,
where a user scans the surrounding’s wireless signals, access
points, and records in their phones. The infected user sends
this information to a server that notifies other users and
requests them to find their chances of contact. However,
Epic [14] and Enact [54] consider trust in reporting by the
infected users and requires storing some information at the
smartphone, like Bluetooth-based solutions [5], [11], [23], [28],
[62]. Another problem with such signal strength-based meth-
ods is in developing models to compare WiFi signals and
have issues related to spatial, temporal, and infrastructural
sensing [41]. NearMe [43], ProbeTag [49], [56], [51], and
[44] proposed similar approaches for proximity detection. [33]
provided a solution for proximity testing among the users
while hiding their locations by encryption and considered
user-to-user-based and server-based proximity testing. Note
that all such methods require active participation from the users.

In contrast, QUEsT does not require active participation
from users, since QUEsST relies on WiFi connectivity data,
which is, obviously, generated when a device connects with
a WiFi network.

Comparison With Approaches Based on WiFi Data. We also
note that recently, several startups have begun exploring the
utility of WiFi data. For instance, Blyncsy Inc. [7] and Occu-
space.lO [8] provide a cloud-based service to collect WiFi data
in order to determine dynamic occupancy counts of different
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spaces based on which they support applications, such as
dashboards of space utilization, the density of people, pro-
grammable triggers to alerts (e.g., overcrowding). COVID-19
has spurred WiFi-based monitoring even further with several
academic efforts including [61], [65], [67], [68] that have
explored several applications related to monitoring/mitigat-
ing COVID-19 through people to people contact at their work-
spaces. To date, efforts so far have focused on algorithms for
locating people based on WiFi connectivity [48], [65], [67] or
on building applications using WiFi data [8], [65], [68], but
have not considered the security and privacy challenges that arise
when WiFi data is collected and applications are built on WiFi
data.

In contrast, Quest provides an end-to-end WiFi data

security by implementing the two types of cryptographic
techniques and prevents the misuse of the WiFi data by any
user or the cloud.
Background on Cryptographic Techniques. We may broadly
classify existing cryptographic techniques into two categories:
() Computationally secure solutions that includes encryption-
based techniques such as symmetric-searchable encryption
(SSE) [27], [46], [47], [59], deterministic encryption [20], and
order-preserving encryption (OPE) [13], (i) information-theoreti-
cally secure solutions that include secret-sharing-based techni-
ques [29], [58] and multi-party computation (MPC)
techniques [17]. Computationally secure solutions, such as SSE
— PB-tree [46] and IB-tree [47], are efficient in terms of compu-
tational time. However, they (i) reveal access patterns (i.e., the
identity of the row satisfying the query), (i) do not scale to a
large-dataset due to dependence of a specific index structure,
(iif) are not efficient for frequent data insertion, since it requires
rebuilding the entire index at the trusted side, and (iv) cannot
protect data from a computationally efficient adversary or the
government legislation/subpoena that may force to give them
the data in cleartext. In contrast, information-theoretically
secure solutions hide access patterns, as well as, secure against
a computationally efficient adversary or the government legis-
lation/subpoena, (if the shares of the data are placed at the pub-
lic servers under a different jurisdiction). Instead of using any
cryptographic solution, one may also use secure hardware-based
solutions that include Intel Software Guard eXtension (SGX) [26]
based systems, eg., Opaque [66], HardIDX [31], and
EncDBDB [32]. However, such solutions suffer from similar
issues as computationally secure solutions and suffer from
additional side-channel (cache-line [37] and branching)
attacks [64] that reveal access patterns.

In contrast, QuesT comes with both computationally
secure and information-theoretically secure mechanisms,
thereby depending on the need the organization can select
one or both mechanisms.

3 PRELIMINARY

This section explains the entities involved in deploying Quesr,
their trust assumptions, and the desired security requirements.

3.1 Entities
We have the following four major entities in QUEsr, see Fig. 1.

e Users (U): are individuals, who carry their mobile
devices that connect to the WiFi network on the
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Fig. 1. Entities in QuEsT.

organization’s premise and generate connection
events. The device id or the device address (i.e.,
MAC address) serves as the identity of the user, and
the corresponding WiFi access point they connect to
identify the location. Users are allowed to execute
exposure tracing applications via QUEST over the
(encrypted) WiFi connectivity data. Also, users are
allowed to know the output of the exposure map
application, i.e., a list of pairs of the time periods and
exposed regions.

A user is not trusted with the cleartext data of
other users. In other words, a user may also wish to
learn the behavior of other users by executing expo-
sure tracing applications on behalf of other users.
Each user U, has their own public and private keys,
denoted by PuK,; and Prk,;, respectively. The pub-
lic/private key distribution is done by a trusted
authority, and improving/modifying the genera-
tion/distribution of the public/private keys is out-
side the scope of this paper.

Note that we assume that before accessing the WiFi
services at the organization, users register their device
MAC addresses along with their identifiable informa-
tion (such as a public key) at the organization. Such
information is maintained in a file, called registry at the
organization. Note that such type of registry informa-
tion is presently maintained by several organizations,
such as universities and office campuses.

An organization (0): owns WiFi infrastructure (e.g.,
WiFi access points/routers). We assume that the
organizations are not malicious in terms of data col-
lection and usage. WiFi infrastructure at the organi-
zation generates connection events of the form
(d;,l;,t;), where d; is the i'" device-id and ¢; is the
time when d; connects with a WiFi access point [;.
Such connection events are sent to QUEsT hosted at
the public cloud in a secure manner (by encrypting
with the public key of the secure hardware hosted at
the cloud. Note that the encrypted data sent by an
organization is never stored at the cloud, the secure
hardware just reads the encrypted data from the net-
work via accessing sockets, executes the proposed
methods via QUEsT to appropriately encrypt the data,
and this data is stored at the cloud). Also, the organi-
zation sends the encrypted registry to the cloud. The
organization is allowed to execute the occupancy
count application via Quest over the (encrypted)
WiFi data. We assume that O is trusted, but does not
want to participate in executing applications. An O;
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has their own public and private keys, denoted by
PuK,; and PrK ,, respectively.

e The public cloud (C): hosts Quest. We assume that a
public cloud is not trusted with the cleartext data
and code of Quesr. Particularly, we assume that pub-
lic cloud servers are honest-but-curious (HBC). Such
an adversarial model is considered widely in data
outsourcing techniques [22], [27], [29]. An HBC
adversary may wish to learn information about the
data, but never tamper with the data/query/results.

Due to the untrusted environment at the cloud,
Quest is executed inside a secure tamper-proof hard-
ware enclave (E), such as Intel Software Guard
eXtensions (SGX) [26]." We assume that the secure
enclave E has its own public and private keys,
denoted by PuKp and PrKg, respectively. Also, we
assume that SGX is not prone to side-channel (cache-
line, branch shadow, page-fault [45], [63], [64])
attacks, as other work [31], [32], [66] on SGX also
assumed the same.

As mentioned before, QUEsT reads the encrypted
data from the network via accessing sockets. Then,
Quest decrypts the received WiFi data and then,
appropriately encrypts the data (using the proposed
algorithm) on which encrypted queries can be exe-
cuted based on trapdoors (i.e., encrypted queries)
generated by QUEsT. QUEsT’s goal is to ensure that the
ciphertext it produces cannot be used to reveal the
user behavior. Also, QUEsT maintains the encrypted
registry based on which before executing exposure
map and/or tracing applications, QUEsT verifies the
identity of the user. Also, Quest authenticates the
organization before executing the occupancy count
application.

e A publisher P: publishes the secure hash digests
(using a hash function H with key «) of device-ids of
confirmed infected people, iff infected people wish
to reveal their device-ids to P. The publisher is
assumed to be trusted, and the role of a publisher
can be played by hospitals or CDC. Note that by this
way infected individuals empower organizations to
identify infected locations by them over time in the
organization’s premises. The key « is only known to
Quest and P. (The key « can, also, be distributed by
the trusted authority (which distributes the public/
private keys to all entities) to Quest and P).

3.2 Security Requirements and Quest

Now, we discuss the security requirements and briefly pro-
vide an overview of how does Quest address them (note
that the formal security requirements will be discussed in
Section 3.2):

R1: Preventing the Cloud to Track Users. WiFi (connectivity)
data contains the MAC address of a device that could be used
to track people at the granularity of the neighborhood of
access points they connect to. Thus, a system must prevent
the cloud to track individuals from using WiFi data without

1. The assumption of secure hardware at untrusted third-party
machines is consistent with emerging system architectures; e.g., Intel
machines are equipped with SGX [12].
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their consent. Moreover, since Quest might be deployed in
multiple organizations simultaneously, the system needs to
prevent the cloud to track users across organizations. These
requirements need the design of an efficient cryptographic
mechanism that will produce secure ciphertext (called ciphertext
indistinguishability property) to prevent the cloud from tracking
an individual over the ciphertext data belonging to either one
or multiple organizations.

Our Approach. To securely encrypt the data, QUEsT exe-

cutes two layers of encryption, the first converts the device
address into a secure hash-digest (by using a hash function
‘H and key «, which is unknown to all entities except QUEsT
and the publisher; see §3.1), and the second encrypts the
data using the concatenated secure key of QUEsT s, and the
public key of the organization for which Quest is working
(see details in §5.2). Thus, to know the device address to
ciphertext mapping, an adversary needs to know «, s,, and
‘H, which are hidden from the adversary.
R2. Restricting Users From Accessing Other Users’ Data.
A user may wish to learn about other users, information
such as who is suffering from COVID to harass them. Thus,
it is required that the system must not reveal the device
address and information of the real COVID-19 patient in
cleartext to any other users. Moreover, a user may wish to
learn the past behavior of other users based on WiFi data.
Hence, it is also required that the system provides informa-
tion to the user that is based on their device address only.

Our Approach. In QuEsT, only the publisher publishes a
secure list of the real infected people, iff they wish to reveal
their device address to QuEsr (securely), by using H and «.
Based on the secure list of the real infected people, QuEst
only produces the potentially exposed locations via expo-
sure map application and potentially exposed device
addresses via exposure tracing application, after user
authentication. Furthermore, to restrict more, QUEST can
produce a binary answer when executing the exposure trac-
ing application, i.e., QUEST can maintain the list of potentially
exposed devices securely and can return an answer 0 or 1 to
the user if their device address intersects with the list (see
§5.2 for details).

R3: Light-Weight Cryptographic Solution. While QUEst
could be built using existing secure data processing techni-
ques/systems (e.g., searchable-symmetric encryption
(SSE) [46], [47], CryptDB [53], and Arx [52]) or secure hard-
ware-based systems (e.g., Opaque [66], EnclaveDB [55], and
Cypherbase [16]), such solutions exhibit significant limita-
tions, when serving as a building block for our purpose.
First, the underlying encryption technology has to sustain
data rates in the order of several thousands of connectivity
events per minute.” Second, the system must be capable of
supporting near real-time answers to queries over millions
of records. Such workloads are simply impractical to sup-
port using existing cryptographic approaches. Many SSEs
solutions [59], not supporting indexes, require linear scans
to process queries. While indexable techniques have been
explored [46], [47], such techniques do not support efficient
frequent data insertion due to building entire indexes at the

2. A medium-size college campus may have several thousand access
points that can produce data at the average rate of ~100 connectivity
event per second [67].
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trusted side for each insert operation. While recent
approaches exploiting secure hardware (e.g., [32], [55], [66])
have explored scalable batch-based data insertion, they suf-
fer from significant computational overheads (see the exper-
imental study in §7.2).

Our Approach. Given the above limitations of existing
cryptographic approaches, we build Quest using determin-
istic encryption (DET). There are several advantages of
using DET — first, DET-based approaches can support
dynamic insertion and index-based retrieval, especially for
point queries (and also for range queries with a discretiza-
tion of the domain). Also, industrial systems, such as Micro-
soft Always Encrypted [15], support DET. While DET-based
solutions scale to the need of Quesrt, naively using DET will
reveal data distribution by observing data-at-rest. Such an
approach will offer very little security, especially when con-
nectivity patterns of a device could lead to the disclosure of
the user identity. Instead, the encryption mechanism in
Quest exploits the limited nature of queries (that need to be
supported to store data using DET) in such a way it does
not reveal the distribution and provides strong security
guarantees similar to SSEs. This is achieved by devising a
special encryption and encrypted query (called trapdoor)
generation techniques, which we refer to as cCQUEST (§5).

3.3 Scope the Problem

There are other aspects in developing a secure system for
sensor data outsourcing as listed below. QUEsT is not
designed to deal with these aspects, and we assume that
one can use existing protocols to deal with these aspects. (i)
Authentication protocols and a secure network. We assume the
existence of a public/private key-based authentication pro-
tocol [42] among different entities of QUEST. Also, we assume
the existence of secure communication protocols that can
detect/mitigate network-level attacks, e.g., man-in-the-mid-
dle attacks. (i7) Trusted sensors. We assume that sensors (i.e.,
WiFi access points) are not malicious and cannot be repli-
cated/spoofed. (iii) Inference from aggregate queries. An
adversary may infer sensitive information from answers to
occupancy count application; but, Quest does not deal with
this issue. We can minimize such inferences by limiting the
preciseness of answers (e.g., binary results).” (iv) Inference
from the number of sensor readings. There could be an infer-
ence from the number of sensor readings being outsourced
by an organization. E.g., on weekdays and weekends, WiFi
access points produce a different number of rows. QUEsT
does not deal with such an issue, but we can handle it by
outsourcing fake rows. (v) Inference due to background knowl-
edge about a userforganization. There could be an inference
based on the background knowledge about a user and/or
an organization. For example, if it is well-known that person
X is the only person who visits an organization O every day
in the morning (e.g., Sunday morning), then encrypting the
data cannot hide this fact from an adversary, and based on
the encrypted data, the adversary will know that all rows
correspond to person X at location O. QuEsT is not designed
to deal with such an issue.

3. Such inferences cannot be eliminated by existing cryptographic
techniques. One could potentially use differential privacy [19], while
receiving only probabilistic answers.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 05,2022 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.



SHARMA ET AL.: Quest: PRIVACY-PRESERVING MONITORING OF NETWORK DATA: A SYSTEM FOR ORGANIZATIONAL... 1239

Organization A

e e e e e ee-m 4

Wi-Fi Infrastructure |

QUEST in SGX ®

Access Points

[ R [

Registry %

Cloud Storage

|
I
Nt @ @ ! —
= | Registrie:
3

Fig. 2. QuesT system.

4 QUEST ARCHITECTURE

QuEsT contains the following three major components (see
Fig. 2) and dataflow among them is shown in Fig. 2.

Data Collector: works at the organization and collects WiFi
connectivity (or association event) data of form (d;,l;,x),
when a device d; connects to a WiFi access point /; at time
tj. Particularly, at the organization side, the collector con-
tains a wireless controller that receives WiFi data from sev-
eral access points ((0), via several methods, e.g.,, SNMP
(Simple Network Management Protocol) traps [57], [67],
recent network management protocol NETCONF [30], or
Syslog [34]). Such data along with the registry is securely
transmitted to Quest, which is hosted at a public cloud (@)
over the network.

Data Encrypter. QuEst at the cloud contains two modules:
data encrypter and trapdoor generator. Both modules execute
inside a secure enclave. Data encrypter implements a cryp-
tographic technique (using cQuest Algorithm 1 or 1QUEST
Algorithm 3) over the data that is collected for a fixed inter-
val duration, called epoch (the reason of creating epochs will
be clear soon in §5) and outputs the secured data that is
written in the standard database management system
(DBMS) at the servers (@).

Trapdoor Generator. An application is submitted to the
trapdoor generator (®, @) that generates the secure
encrypted query, called trapdoor (using Algorithm 2 or 4) for
query execution on secured data. For exposure map applica-
tion, it receives a hash digest of device-id of infected per-
sons from P (®). For exposure tracing application, it
authenticates users based on public/private keys and
their information in the registry. Trapdoors are sent to
the DBMS containing the data at the server that executes
queries and sends back encrypted results (®). The results
are decrypted inside the enclave before producing the
final answer (@,0).

5 CQUEST PRoTOCOL

This section presents computationally-secure methods,
cQuesT to encrypt WiFi data and to execute queries on
encrypted WiFi data. First, we provide a high-level over-
view of the protocol.

I Data Collect | D Confirmation
| 1 )pevice asspciation ata @ Trapdoor
events throughy AKE A
| secured comminication Encrypter Generator PUb_llShel’
| . 1 Secured (Hospital/CDC)
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5.1 High-Level Overview of cQuEest

This section presents the high-level overview of cQuEsT and
details will be presented in the next section §5.2.

Data Encryption. QUEST partitions time into subintervals,
called epochs, and executes data encryption algorithm for
each row of each epoch (that has a unique identifier). In
Quest, the cleartext WiFi dataset contains three columns:
device-id (Dev), location (Loc), and time (Time), and each
row is of the following form: (d;,l;,t;). cQUEST encrypts
rows such that we satisfy the following two needs:

1) Secure ciphertext or ciphertext indistinguishability and
untrackable encrypted data. First note that satisfying
this need will result in addressing the three secu-
rity requirements R1, R2, R3 of §3.2. cQuEsT pro-
duces non-identical ciphertext for more than one
appearance of an identical device address or loca-
tion, by (i) implementing the hash function H
under the key « over each device address, and (i7)
adding an increasing counter or a random number
with the output of the hash function for a single
device address or a location along with the epoch
identifier, before encrypting them. Note that this
prevents an adversary from learning any informa-
tion by just looking at the ciphertext.

2)  Efficient query processing. While having only encrypted
device address and location columns for each epoch
can answer any query, CQUEST includes two additional
encrypted columns for efficient query processing: (i)
Acy, for finding all locations visited by a device in an
epoch by placing a list of locations visited by the device
in a row corresponding to the device’s first appearance
in the epoch, and (i) A, for finding unique devices at
different locations in an epoch by creating searchable
encrypted values for non-duplicated appearances of a
device. Acr, (and A,) column helps in the exposure
map (and occupancy) application.

Example 5.1.1. Table 1a shows six rows of WiFi data, and
Table 1 b shows encrypted rows that are partitioned over
two epochs, each containing three rows. The first epoch is
denoted by A, containing the first three rows, and the sec-
ond epoch is denoted by A, containing the last three rows.
The encrypted table (denoted by fR) has five columns:
Ay for encrypted epoch id, A;; for encrypted device
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TABLE 1
Original WiFi Dataset and Encrypted WiFi Dataset Using
cQuesT Algorithm 1

Dev Loc Time

1 dy 11 t1

2 do lo to

3 dy lo ts

4 do 15 ty

5 do 11 ts

6 ds lo te

(a) Cleartext original WiFi dataset.
Aa Aid Ay AL Acr,

U] Epi(As)| Era(di,1,A4) Exs(1,1,Ag)| Eka(ly, 1, Ag)| Eks(r li,la)
2] Eki(As)| Eralda, 1,A:) Eka(1,2,A:)] Era(lz, 1,As)] Exs(r, 1)
3| Exi(Ay)| Eka(di,r) Era(1,3,A.)] Era(la,2,A,)] Ers(Fake,3)
4] Er1(Ay)| Eralda, 1, Ay Ers(1,1,Ay)] Eralle, 1, Ay)| Exs(r,li,l2)
S| Eki(Ay)| Eka(de, ) Er3(0,7) Era(li,2,Ay)| Exs(Fake, 5)
6 gkl(Ay) Ekg(dg,l,Ay) 5&3(1,3,Ay) 5k4(12,1,Ay) g)cg,(’r‘,ll)

(b) Encrypted WiFi table for an epoch.

address, Aj, for encrypted location, A¢y, for an encrypted
list of locations visited by a device in an epoch, and A,
for the uniqueness of devices at different locations in an
epoch.

Note that first, we implement the hash function H under
the key « on the device-id d; € (d;,l;,t;) to produce
(H(di), 1;, t;) (to satisfy the above-mentioned first need). In
rest of the paper, for simplicity, we use d; instead of H,(d;).
Now, for producing secure ciphertext, cCQuEst adds counter
and random numbers in the values of 4;; and A; columns;
see any value in the second and fourth columns of Table 1 b
(e.g., E(l2,1) and &£(12, 2)).

For efficient query processing (the above-mentioned second

need), cQuEsT adds: (i) an encrypted column Ay, for example,
seerow 1in Ay column storing a list of locations visited by d;
in the epoch A,, while other appearances of d;, i.e., row 3, in
the same epoch A, do not contain the same list; and (i7) an
encrypted column A, for example, see row 1 and row 3 of A,
column that marks device d; at location {; and [, as unique (by
Ei3(1,1,4A,)) inrow 1 and (by £x3(1, 3, A,)) in row 3.
Query Execution. cQUEsT supports the three applications (as
mentioned in §1.1). Before executing a query, cQUEsT verifies
the querier’s identity. Then, cQUEST generates the encrypted
queries (called trapdoors) in the enclave according to the
application and fetches only the desired encrypted data in
the enclave to produce the final answer after filtering redun-
dant encrypted rows.

Example 5.1.2. Suppose, the device d; belongs to an
infected person. Such information is provided by the pub-
lisher to Quest by sending H,(d;). Now, assume that we
want to find locations visited by H,(d;) in epoch A,, i.e., exe-
cuting exposure map application for H,(d;) over the epoch
A,. Then, cQuest will generate the following trapdoor
E(He(dr),1,A,) (or £(dy, 1,A,), as mentioned before that for
simplicity we omit using H,(d;)) and will fetch a corre-
sponding value from A¢y, column.

5.2 Details of cQuest
Now, we will present details of cQUEsT’s algorithms.

5.2.1 cQuest Key Generation

QUEST encrypter generates a symmetric key, as follows: (s, &
kpio)||column;, i.e, the key is generated for each column of R
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by XORing the secret-key of QUEsT (s,) and public key of orga-
nization (k,,), and then concatenating with the column-id.
We denote the key for a column ¢ by k; in Algorithm 1, and
unless not clear, we drop the notation &; from the description.

Algorithm 1. cQuest Data Encryption Algorithm

Inputs: A: duration. (d;, l;, t;): A row. H: Hash function. &:
encryption function. PRF: a pseudo-random generator.

Output: R(Aq, Ay, A, Acr, Aa): An encrypted table 2.
Variable: ¢;;: A counter variable for location /;.
Function encrypt(A,) begin

Vty = <di,lj,tk> ISAW:

U; — create_list_ device_location(distinct(d;))
3 HTuab;q < init_hash_table_device(),

HTaby, < init_hash_table_location()

N —

4 fort, = (d;,l;, t;) € A, do
5 r — PRF()
6 //Allocating epoch identifier to rows and creating
column A,
R Asly] — En(Ar)
7 /[Encrypting device-ids and creating columns A;;
and A,
if HTab;g[H(d;)] # 1 then R. Ayly] — Era(d;, 1, 2),
SRAu[y] - gk3(17 Y, AI)/ Oli[] — l]
8 else if HTabiq[H(d;)] == 1 A l; ¢ o;[] then
R.Aidly] — Ea(diyr), RAY — Es(L,y,A0), i) 1
9 else if HTab;q[H(d;)] == 1 Al; € «;]] then
R Ajalyl = Era(di; ), RAuly] — Ei3(0,7)
10 /[Encrypting locations and creating columns A and
Act

if H(1,) ¢ HTaby A HTabi,[H(d;)] # 1 then
HTabyy[H(d;)] < 1, a; < 1, R.ALY] — 6k4(lj,czj,A7),
R Acrly] < Ers(r, 4i)

11 else if H(l;) ¢ HTub; N HTabi[H(d;)] == 1 then

a; <1, RAY — Eullyabs),  RAcly] — Eis
(Fake, )
12 else if H(l;) € HTab;, A HTab;q[H(d;)] # 1 then

HTabld[’H(d,)] — 1,
ER.ACL [y} — 5/{,(7‘,&)

SR.AL[y} — 5},«,4(6’,01]. + 1,AT),

13 else if H(l;) € HTab;, A\ HTubig[H(d;)] == 1 then
SR.AL [y] — 5k4(l7, Cli + 1, AT), SRACL[y} — 5k5(Fake, 7")
14 Crmaz < maz(cmaw Clj)a \V/lj

15 Delete all hash tables for A,

5.2.2 cQuest Data Encryption Method

Algorithm 1 provides pseudocode of the proposed data
encryption method that is executed at Quest encrypter. It
takes rows of an epoch, produces an encrypted table R with
five columns. Table 1 b shows an example of the produced
outputs by Algorithm 1, which works as follows:

Selecting epochs and creating column Ax (Lines 6). We use
bulk encryption. Note that WiFi access points capture time in
milliseconds and ping the same device after a certain interval,
during which the device can move. These two characteristics of
WiFi data make it hard to track a person based on time.* Thus,
we discretize time into equal-length intervals, called epoch, and

4. For example, a query to find a device’s location at 11:00am, cannot
be executed in a secure domain, due to unawareness of millisecond-
level time generated by access points.
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store a special identifier for each interval (that maps to the wall-
clock time). An epoch z is denoted by A, and is identified as a
range of begin and end time. All sensor readings during that
time period are said to belong to that epoch. Thus, we allocate an
identical epoch identifier to all rows belonging to epoch A, and
encrypt the identifier. Epoch identifiers allow searching based
on time.” There are no gaps between epochs, i.c., the end time of
the previous epoch is the same as the begin time of the next
epoch. For simplicity, we identify each epoch by its beginning.

Encrypting device-ids and creating column A;q (Lines 7-9).
On each device id d; of an epoch, cQuEsT first implements
the hash function H under key «, that results in H,(d;). For
simplicity, we use d; to denote H,(d;) in the following. As
mentioned before in §3.2, cQUEST uses deterministic encryp-
tion, which reveals frequency of a value via ciphertext, also
known as frequency-count attack. To prevent such informa-
tion leakage and efficiently finding the first appearance of d;
in any epoch (when executing exposure trace application),
CcQUEsT encrypts the first appearance of d; in an epoch A, as:
&(d;, 1,A,), where 1 shows the first appearance of d; in the
epoch A,. In addition, cQuesT maintains a hash table
(HTub;q) with value one for d; in the epoch A,. All the other
appearances of the device d; in the epoch A, are encrypts as
&(d;,r), where r is a random number used to produce secure
ciphertext, i.e., preventing the frequency count of a value via
ciphertext, in the epoch A,..

Algorithm 2. cQuest Query Execution Algorithm

Inputs: H: Hash function. £: encryption function. Registry|]:
As defined in §3.1. 7: A fixed interval (e.g., 14 days).
Output: Answers to queries.
1 Function Exposure_Map(q(d;, Time))begin
2 Q: Generate trapdoors £(d;, 1,A): A is the epoch-id cov-
ers the requested Time
S — Q: loc, epoch[*,*] — Location and epoch-ids from
Acr and Ay corresponding to £(d;, 1,A;) from Ajg
Q: Decrypt loc, epoch[+, ] and produce answers
Function Exposure_Trace(q(d;, Time))begin
Q: loc, epoch[*, %] < Location_Trace(q(d;, Time))
Q: Generate trapdoors: Vi; € loc: £(I;,m), m € {1, max
counter for anylocation}
8 S — Q:id]] <« Values from A;; corresponding to £(l;,m)
and 7 covers epoch][|
9  Q:Decrypt id]|
10 User — Q: know about their exposure
11 Q: Authenticate the user against the registry information
and if successful, perform intersection of id[| and the
user device address and return the appropriate answer
12 Function Occupancy-count(q(Time))begin
13 Q: Generate trapdoors: £(1,y,4A,;), y = max rows in any
epoch, A; = epoch-id covers the requested Time
14 S — Q:loc[] «— Location values from A;, corresponding to
E(1,y,Ay) from A,
15 Q:Vi; € Decrypt(loc[]), count;, «— count;, + 1

8]

N O O

Uniqueness of the device and creating column A,, (Lines 7-9).
To execute the occupancy count application, we need to
know unique devices at each location in the epoch A,. Thus,

5. Based on epoch-ids, we can execute a query to find the device’s
location at any desired time, e.g., 11:00am.
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when a device d; appears for the first time at a location in 3"
row, we add its uniqueness by £(1,y,A,). (As will become
clear soon, it will avoid cQuest to decrypt all encrypted
device-ids for knowing distinct devicesin A,.)

Encrypting locations and creating columns Ay and
Acr(Lines 10-13). First, we need to produce different cipher-
texts for multiple appearances of a location to prevent fre-
quency-count attack, while data is at-rest. To do so, cCQUEST
uses a counter variable for each location and increments by
1, when the same location appears again in a row of the
same epoch (and could, also, add epoch identifier, like d;’s
encryption). Second, we need to deal with d; that moves to
different locations in an epoch A,. Note that based on
&(d;,1,A,), we can search only the first appeared location of
d; in A,. Thus, cQuEsT collects all locations visited by d; in
A, and adds to the combined-locations column Agy in a
row having £(d;, 1, A, ). cQUEST pads the remaining values of
Acy, by encrypted fake values.

5.2.3 cQuesT Query Execution

Algorithm 2 explains encrypted query (called trapdoor) genera-
tion process and their execution at cQuest. We denote the pro-
cess in the enclave at cQuEsT by Q and the process outside of
the enclave by S. Below, we explain the execution of our three
applications. Table 9 in Appendix A, available in the online
supplemental material, shows SQL for the three applications.

Exposure map application (lines 1-4). This application
takes as input a period of time and a secure device address
(belonging to a real infected person) provided by the pub-
lisher. Before obtaining the a secure device address (denoted
by H(d;)), cQuEsT authenticate the publisher. Based on H(d;),
cQuEst produces a list of pairs of time period and exposed
regions within organizations where H(d;) was present. To do
s0, Q creates and sends trapdoors for d; as: £(d;, 1, A;),° where
t is the epoch-identifiers that can cover the desired queried
time (line 2). S executes a selection query for fetching the val-
ues of Acy, column corresponding to all encrypted query trap-
doors (line 3). The answers to the selection query are given to
Q that decrypts them to know the exposed or impacted loca-
tions in a given epoch (line 4).

Example 5.2.1. Suppose d; belongs to an infected person
in Table 1 b, and we wish to know the location visited by d;
in epoch A,. To execute exposure map application, Q cre-
ates trapdoor for dy, as: £(dy, 1,A,). S checks the trapdoor in
A;q column and sends the corresponding value of A¢y, col-
umn, ie., Ei(r,l,l:) to Q. On decrypting the received
answer, Q knows the impacted locations are /; and [».

Exposure Tracing Application (lines 5-11). This applica-
tion takes the output of exposed location tracing application
Al, ie., loc, epoch[x, x| (line 6). To produce a list of device ids
that may have been exposed (i.e., were at the infected loca-
tions), Q executes creates trapdoors for all such infected
locations (line 7), as: £(I;,m), where I; is the i impacted
location and m is the maximum counter value for any loca-
tion in any epoch, as obtained in Algorithm 1’s line 14.” S
executes a selection query for the trapdoor (or a join query

6. For simplicity, we denote a queried device-id by d;.

7. Generating trapdoors for impacted locations equals to the maxi-
mum counter value may incur computation and communication over-
heads. Thus, we will suggest optimization to prevent this.
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between a table having all trapdoors and another table hav-
ing the encrypted WiFi data) to know the corresponding
values of A;; column (line 8). All such values are sent to Q
that decrypts them to know the final list of potentially
exposed device addresses in the hash digest form (line 9).

If users request to know their exposure (i.e., the presence
at the infected location), Q first verifies the user, performs
the hash function H under the key « on the user device
address, and then executes an intersection between the hash
digests of user device address and the list of potentially
exposed device addresses in hash digest form (line 11).
Depending on the answer to the intersection, Q informs the
user.

Example 5.2.2. Suppose, in a time duration covered by

epoch A,, we wish to know the impacted people that may
in contact with the infected person whose device-id is d;.
From Example 5.2.1, we know that (l;,l) are the impacted
locations. Suppose the maximum counter value for any
location (¢q,) is two. Thus, Q generates trapdoors as fol-
lows: £(11,1), £(11,2), E(l2, 1), (15, 2), and sends them to S. S
executes a selection query over A; column for such trap-
doors and sends device-ids from A;; column, corresponding
to the trapdoors. After the decryption, Q knows that d, is
the device of a person that was in contact with the infected
person whose device-id is d;.
Occupancy count application (lines 12-15). In order to find
occupancy of locations in a given time, Q generates trap-
doors as: £(1,y,4;), where y is the maximum number of
rows in any epoch, and send such trapdoors to S. S executes
a selection query for fetching the values of A;, column corre-
sponding to all encrypted query trapdoors over A, column
(line 3). The answers to the selection query are given to Q
that decrypts and counts the appearances of each location
(line 4).

Example 5.2.3. Suppose that we want to find occupancy in
a time duration covered by epoch A,. Q generates the fol-
lowing three trapdoors to be searched by S in A, column:
E(1,1,A)), £(1,2,A,), and £(1,3,A,). Based on these trap-
doors, S sends £(I1,1) and &(ly,1) from A columns. On
receiving the encrypted location values, Q decrypts them
and counts the number of rows for each location.
Advantages of cQuest. CQUEST's approach is simple, but
maintains hash tables during encryption of rows belonging
to an epoch. Nevertheless, the size of hash tables is small for
an epoch, (see §7). cQuEst efficiently deals with dynamic
data, due to independence from an explicit indexable data
structure, (unlike indexable SSE techniques [46], [47] that
require rebuilding the entire index due to data insertion at
the trusted size). cCQUEST’s query execution algorithm avoids
reading, decrypting the entire data of an epoch to execute a
query, (unlike SGX-based systems [66]); thus, saves compu-
tational overheads. Also, the key generation by XORing s,
and k,, prevents the adversary to learn any information by
observing the encrypted data belonging to two (or multiple)
different organizations, since one of the keys will be surely
different at different organizations.

Optimizations for the Exposure Tracing Application. We
provide two optimizations for trapdoor generation in
Exposure_Trace(). §7 will show the impact of such optimi-
zations. Note that in the exposure trace application (Line 7
of Algorithm 2), cQUEsT generates the number of trapdoors
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equals to the maximum counter values (i.e., maximum con-
nection events at a location in any epoch; line 14 of Algo-
rithm 1). It may incur the overhead in generating multiple
trapdoors. We can reduce the number of trapdoors by keep-
ing two types of counters: (i) counter per epoch to contain
the maximum connection events at a location in each epoch,
and (ii) counter per epoch and per location to contain the maxi-
mum connection events at each location in each epoch.
Optimizations for the Occupancy Count Application. The
occupancy count application depends on counting the
unique devices at each location. In cQUEST query execution
algorithm (Line 13 Algorithm 2), we generate the number of
trapdoors equals to the maximum number of rows in any
epoch. We can avoid generating so many trapdoors, by
encrypting and outsourcing counter per epoch and per loca-
tion, as mentioned above. Note that based on the counter
per epoch and per location, we can find the unique device
at any location by just decrypting the counter value for the
desired location in the desired epoch.

Information Leakage Discussion. cQUEsT address all three
security requirements, mentioned in §3.2, by (i) producing
secure ciphertext or ciphertext indistinguishable data, (i7)
authenticating the user and producing a binary answer for
the exposure trace application, and hence restricting a user
to ask a query about other users, and (iii) carefully using
deterministic encryption techniques. Experiment 3 in §7.1
will also show the efficiency of cQuest. The query execution
reveals access-patterns (like SSEs or SGX-based systems [32],
[37], [64], [66]). Thus, an adversary, by just observing the
query execution, may learn additional information, e.g.,
which of the rows correspond to an infected device id (by
observing Ezposure_Map), how many people may get
infected by an infected person (by observing
Exposure_Map). Also, since cQUEsT is based on encryption,
a computationally efficient adversary can break the under-
lying encryption technique.

6 IQUEST PRoTOCOL

We provide one more version of QuesT, called 1QUEsT that
provides information-theoretic security, i.e., security regard-
less of the computational capabilities of an adversary.
IQUEsT is based on Shamir’s secret-shares [58] and string-
matching operation [29] on secret-shares. Sharing-sharing
techniques are also quantum secure and use multiple non-
colluding cloud servers to store data in the secret-share
form. These servers could be any cloud instantiations from
one or more vendors, such as Microsoft Azure, AWS, or
Google Cloud.

6.1 Background on Secret-Sharing

We provide an overview of Shamir’s secret-shares [58] and
the string matching algorithm [29] that are building blocks
of 1QUEST.

Shamir’s Secret-Sharing (SSS) [58]. Informally, in secret-
sharing techniques, a user can take a value, convert it
into multiple pieces (called shares), and store different
shares at different non-colluding servers. A server can
compute an operation over individual shares, and then,
the results computed over the shares are sent to the user
that computes the final answer after interpolation.
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TABLE 2
Secret-Shares of (1,0,0, 1), Created by the DB Owner

Values Polynomials 15! shares 119 shares I11'd shares

0 0+ 2z 2 4 6

1 148z 9 17 25
TABLE 3

Secret-Shares of (1, 0,0, 1), Created by the User

Values Polynomials Bt shares 11D shares 'Y shares
0 0+ 3x 3 6 9
1 1+ 72 8 15 22
TABLE 4

Servers’ Computation
Server 1 Server 2 Server 3
2x3=6 4x6=24 6x9=054
9x8="72 17 x 15 = 255 25 x 22 = 550
78 279 604

Formally, in using SSS [58], the database (DB) owner
divides a secret value, say S, into ¢ different shares, and
sends each share to a set of ¢ non-colluding partici-
pants/servers. These servers cannot know the secret S
until they collect ¢ < ¢ shares. In particular, the DB
owner randomly selects a polynomial of degree ¢ with ¢
random coefficients, i.e., f(x)=ap+ a1z +ax®+ -+
agx, where f(z) e F,[z], p is a prime number, F, is a
finite field of order p, ap =S, and a;, € N(1 <i < ¢/). The
DB owner distributes the secret S into ¢ shares by plac-
ing £=1,2,...,c into f(z). The secret can be recon-
structed based on any ¢ +1 shares using Lagrange
interpolation [25]. Note that ¢ < ¢, where ¢ is often taken
to be larger than ¢ to tolerate malicious adversaries that
may modify the value of their shares.

String Matching Over Secret-Sharing. Now, we explain the
string matching algorithm of [29].

DB Ouwner: outsourcing searchable-secret-share  (SSS).
Assume there are only two symbols: X and Y. Thus, X and Y
can be written as (1,0) and (0, 1). Suppose, the DB owner
wishes to outsource Y; thus, creates unary vector (0,1). But,
to hide exact numbers in (0, 1), she creates secret-shares of
each number using polynomials of an identical degree (see
Table 2) and sends shares to servers.

User: SSS query generation. Suppose a user wishes to
search for Y. She creates unary vectors of Y as (0,1), and
then, creates secret-shares of each number of (0,1) using
any polynomial of the same degree as used by the DB owner
(see Table 3). Note since a user can use any polynomial, it
prevents an adversary to learn an equality condition by
observing query predicates and databases.

Servers: String-matching operation. Each server has a
secret-shared database and a secret-shared query predicate.
For executing the string-matching operation, the server per-
forms bit-wise multiplication and then adds all outputs of
multiplication (see Table 4).
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Now, if the final answer is 1, it shows that the secret-shared
database at the server matches the user query.

Note. String matching operation over secret-shared data-
set executes multiplication operation, which increases the
degree of the polynomial. If the shares are created using
polynomials of degree one and the length of the string is ¢,
then we need at least 2¢ + 1 shares to execute string match-
ing operation.

6.2 High-Level Overview of IQuEsT

This section presents the high-level overview of 1IQuseT and
details will be presented in the next section. Data outsourc-
ing and query execution in IQUEsT setting is shown in Fig. 3.

Secret-Share Creation of WiFi Data. Likewise cQUEsT, IQUEST
partitions time into subintervals, called epochs, and executes
secret-sharing creation algorithm for each row of each epoch.
Likewise cQUEST, IQUEST satisfy the three security requirements
by ensuring ensures ciphertext indistinguishability and
untrackability of a user from secret-shared dataset, and by
appending additional columns for efficient query execution.

Before creating secret-shares of a device address, IQUEsT per-
forms the hash function H under the key «, and then imple-
ments secret-share creation algorithm over the entire row. Note
that 1IQUEsT creates two types of shares for each value of device
address and location: one is for performing string matching
operation using [29] and another is for retrieving the value. Fur-
ther note that having two different types of shares also helps in
efficient query execution, as will become clear soon. We will
denote columns for string matching operation by Ay, and col-
umns for value retrieval by A, where * can be device id or
location. For efficient execution of occupancy count, 1QUEST
adds one more column (denoted by A;,) to capture the unique
devices in an epoch.

Example 6.2.1. Table 5 a shows six rows of WiFi data, and
Table 5 b shows secret-shared rows that are partitioned over
two epochs, each containing three rows. The first epoch is
denoted by A, containing the first three rows, and the sec-
ond epoch is denoted by A, containing the last three rows.
The secret-shared table (denoted by S(R),) has six columns:
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TABLE 5
Original WiFi Dataset and Secret-Shared WiFi
Dataset Using 1QuesT Algorithm 3.

Dev Loc Time

1 d1 ll t1

2 d2 lz to

3 dl lz ts

4 d2 ll ta

5 d2 ll ts

6 d3 lz te

(a) Cleartext original WiFi dataset.

An | Aanid Asia Asu AsmL Asr
1 A, SSS(dy1) S(dy) S(1) SSS(11) S(i1)
2 | A, | SSS(d2) | S(d2) | S(1) | SSS(2) | S(i2)
3| A, | SSS(d1) | S(di) | S(1) | SSS(2) | S(i2)
T | A, | SSS(d2) | S(d2) | S(1) | SSS(I1) | S(h)
5| A, | SSS(d2) | S(d2) | S(0) | SSS(1h) | S(ih)
6 | A, | SSS(ds) | S(ds) | S(1) | SSS(l2) | S(i2)

(b) Secret-shared WiFi table for an epoch.

A, for epoch identifier in cleartext, Ay,,;; for device ids on
which we can execute string matching, A;; for device id for
retrieval operation, A, for storing the uniqueness of devices
in an epoch and locations, Ay, for locations on which we
can execute string matching, and A,; for location for
retrieval operation.

Query Execution Over Secret-Shared Datasets. 1QUEsT sup-
ports the three applications (as mentioned in §1.1). Before exe-
cuting a query, 1QUEsT verifies the querier’s identity. Then,
IQUEST generates trapdoors in the enclave according to applica-
tion and fetches only the desired secret-shared data in the
enclave to produce the final answer after interpolating the
retrieved rows and filtering redundant rows; see details below.

6.3 Details of IQuesT
Now, we will present details of IQUEST’s algorithms.

6.3.1 1QuesT Data Outsourcing Method

1QuEsT uses Algorithm 3 for creating secret-shares of input
WiFi table R. As clear by the description of 5SS in §6.1, a
secret-sharing algorithm creates multiple shares of a value.
In the enclave, 1Quest will produce multiple shares of a
value (device id, location, or time) and place each share into
a set of non-colluding servers. The share transmission from
the enclave to the servers can be done using anonymous
routing protocol [35] to hide the information about the
receiver servers from the adversary, and the transmission
can happen without storing shares on the disk at the server
where the enclave is hosted.

Note that 1QUEsT Algorithm 3 creates shares for string match-
ing denoted by SSS(v) and creates share of a complete value
denoted by S(v). SSS(v) of the value v is created by following
the strategy of string matching algorithm as mentioned
in §6.1. S(v) of the value v is created by implementing Sha-
mir’secret-sharing algorithm over v. To create shares, IQUEsT
randomly selects a polynomial of an identical degree. Note
that if the adversary cannot collude with two servers, then we can
use polynomials of degree one, (since based only on one share
the adversary cannot learn anything about the data). Table 5
b shows an example of the output of Algorithm 3. Algo-
rithm 3 selects an epoch duration (like cQuest (§5)) and pro-

duces an i secret-shared table S(R), with six columns,
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denoted by Aa, Asmid, Asid, Asu, Asmr, and Agp. Algorithm 3
works as follows:

Epoch-ids and creating column A (Line 4) Likewise cQUEST,
1QuEsT partition the input WiFi data into epochs and allocate
an identical epoch identifier to all rows of an epoch.

Algorithm 3. Secret-share creation algorithm.

Inputs: A: duration. (d;,[},?r): A row. H: A hash function
known to only 1QUEsT.
OutPUt: S(m), (A5‘7Tlid7 Asid7 Asua AsmL» AsL7 AA): An ith
encrypted table R with six columns.
Functions: SSS(v): A function for creating searchable secret-
shares of v. S(v): A function for creating Shamir’s secret-
shares of v.
1 Function create_shares(A,)begin
2 HTabyy < init_hash_table_device()
3 for ty = <di,l]',tk> €A, do
4 Allocating epoch identifier to rows and creating col-
umn Ax
R.Ap[y] — identifier(A,),
5 Creating shares of device-ids and creating columns
Asmid/ Asid
val «— last_v_bits(H(d;))
R.Agnialy] < SSS(val), R.Azaly] — S(val)
7 Creating shares of the uniqueness of device-ids and
creating columns A4,
if HTab,,;[H(d/)] 7& 1 theni)‘i.Ah.,,, [y] — S(l), o; H — l}
8 else if HTab,d[H(dl)} == 1A l; ¢ o []
then R.A,,[y] — S(1), o] — {;
9 else if HTab,,;[H(d,)] ==1A lj (SN0} []
then R.A,,[y] — S(0)
10 Creating shares of locations and creating columns
Agnr, Ast
R.Asmrly] < SSS(1), R Aly] < S(1))

(@)}

Secret-shares of devices and creating columns Agiq, Asia
(Lines 5-6). Likewise cQUEsT, on each device id d; of an epoch,
1QuEsT implements the hash function H under key «, that
results in H,(d;), and for simplicity, we use d; to denote
H,(d;) in the following. We create two types of shares of each
device id d;, one is denoted by SSS(d;) that is used for string
matching operation and stored in Aj,;4, and another is just a
Shamir’s secret-share of the entire device-id, denoted by S(d;)
and stored in Aj;q. The values in A4 help in searching for a
device-id when executing the exposure map application,
while the values in Ay helps in fetching the device-id when
executing the exposure tracing application.

Aside. Recall that creating secret-shares for string match-
ing requires converting the hash digest of device-ids into a
unary vector; as shown in Table 2. However, it increases the
length of device-ids significantly (i.e., 16 x 128 = 2,048,
often a hash digest contains 12 hexadecimal digits (a combi-
nation of numbers 0,1, ...,9 and alphabets A, B, ... F), and
thus, every single hash digest digit will use a unary vector
of size 16). Instead, we use the last v > 1 digits of the digest.
With a very low probability, the last v digits of two hash
digests will be identical.

Uniqueness of devices and creating column A, (Lines 7-9). To
find unique devices at each location in an epoch, 1QUEST
assigns value v =1 when a device d; appears for the first

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 05,2022 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.



SHARMA ET AL.: Quest: PRIVACY-PRESERVING MONITORING OF NETWORK DATA: A SYSTEM FOR ORGANIZATIONAL...

time at a location in an epoch; otherwise, v = 0, and then,
creates S(v).

Secret-shares of location and creating columns Agpmia, Asia
(Line 10). Likewise two types of secret-shares for device-ids,
IQUEST creates two types of shares of each location /;, one is
SSS(1;) — stored in Ay, and another is S(I;) stored in A,y.
Differences Between Data Outsourcing Methods of
cQuesT and 1QUEST. CQUEST is an encryption-based method
and IQUEST is a secret-sharing-based method. They, also, dif-
fer the way of keeping metadata (in Algorithms 1 and 3).
First, 1Quest does not keep a hash table for locations to
maintain their occurrences in rows of an epoch. Second,
1QuEsT does not need to first find all locations visited by a
device during an epoch and adds them in a special column;
hence, 1QuEsT does not keep column A¢y. Note that these
differences occur, due to exploiting the capabilities of SSS
and selecting different polynomials for creating shares of
any value, thereby, different occurrences of an identical
value appear different in secret-shared form.

Algorithm 4. 1IQUEST query execution algorithm.
the

Inputs: Secret-shared relation,
Algorithm 3.
Output: Answers to queries.
Notation: ®: string matching operation
Functions: SSS(v) and S(v): From Algorithm 3.
interpolate(shares): An interpolation function that takes
shares as inputs and produces the secret value.
1 Function Ezposure_Map(q(H,(d;), Time))begin
2 Q — S: y «— SSS(H.(d;)), Ay, where A, is the epoch-id
covers the requested Time
3 S: sLoc||,epoch]] — (Asmiali] ® y) x Asz, Avj € {1,y},
y = #rows in A;
4 Q: location|], epoch|] « interpolate(sLoc][]), epoch][]
5 Function Ezxposure_Trace(q(d;, Time))begin
6
7

ie., output of

Q: location|], epoch|] « Exposure_Map(q(d;, Time))
Q — S: sssLoc[] < SSS(location[]), Ay t covers the
requested Time
8 S: Vie{1,|sssLoc]l|}, Vje{l,y}, y= #rows in A,
sID[i, j] < (ssslocli] @ Agnr[f]) X Asialj]
9 Q: id[] < interpolate(sID[x, x]), Vi € {1, |sID[*, ]|}
10 User — Q: know about their exposure
11 Q: Authenticate the user against the registry informa-
tion and if successful, perform intersection of id[] and
the user device address and return the appropriate
answer
12 Function Occupancy_count(q(Time))begin
13 Q — S: As: t covers the requested Time
14 S — Q: sLoc[j] « Aglj] x Asf], Vi € A

15 Q: location[] < interpolate(sLoc]]) interpolates the
received locations
16 Q: Vi; € location[], count;, — count;, + 1

6.3.2 1QuesT Query Execution

Algorithm 4 explains secret-shared query generation at
IQuesT (denoted by Q), query execution at the server
(denoted by S), and final processing before producing the
answer at Q. Note that in Algorithm 4, ® denotes string-
matching operation and x denotes mormal arithmetic
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multiplication. Below, we explain query execution for differ-
ent applications over secret-shares.

Exposure Map (Lines 1-4). After verifying the publisher and
on receiving the hash digest H,(d;) from the publisher for a
device id belonging to an infected person, Q creates SSS of
H,(d;) (denoted by y) and sends it to each non-colluding
servers along with the desired epoch identifier (line 2). Each
server executes string-matching operation over each value
of Agyiq against y in the desired epoch, and it will result in
either 0 or 1 (recall that string-matching operation results in
only 0 or 1 of secret-shared form). Then, the i result of
string-matching operation is multiplied by i value of Ay,
resulting in the secret-shared location, if impacted by the
user; otherwise, the secret-shared location value will
become 0 of secret-shared form (line 3). Finally, Q receives
shares from all servers, interpolates them, and it results in
all locations visited by the infected person (line 4).

Example 6.3.1. Suppose d; belongs to an infected person

in Table 5 b. To execute exposure map application for an
epoch A,, Q generates SSS of d;, say y. S checks y against
the first three shares (via string-matching operation) in
Agmiq and results in (1,0, 1,) (of secret-shared form) that is
position-wise multiplied by (S(l1),S(l2),S(l2)). Thus, S
sends (l1,0,l2,1;) of secret-shared form to Q that interpo-
lates them to obtain the final answer as (I1,l5), i.e., l1,ls are
potentially exposed locations.
Exposure tracing (lines 5-11). First, Q executes Exposure_Map()
for knowing the exposed or impacted locations by an infected
person (line 6). Then, Q creates SSS of all impacted locations
(denoted by sssLoc[]) and sends them to the servers along with
the desired epoch-identifier (which is the same as in
Exposure_Map(); line 6). S executes string-matching operation
over each value of A, against each value of sssLoc]| in the
desired epoch and results in either 0 or 1 of secret-shared form.
Then, the i result of string-matching operation is multiplied by
the i value of Ay, resulting in the secret-shared device-ids, if
(potentially) exposed to the infected person; otherwise, the
secret-shared device-id value will become 0 of secret-shared
form (line 8). Finally, Q receives shares from all servers, interpo-
lates them, and results in the hash digest of device addresses of
the impacted people (line 9).

Now, likewise cQUEsT, if users request to know their expo-
sure (i.e., the presence at the infected location), Q verifies the
user, performs the hash function H under the key « on the user
device address, and then executes an intersection between the
hash digests of user device address and the list of potentially
exposed device addresses in hash digest form. Depending on
the answer of the intersection, Q informs the user.

Example 6.3.2. We continue from Example 6.3.1, where d;
was the device of an infected person in Table 5 b and impacted
locations were (I1,l5) that were known to Q after executing
Exposure_Map(x) (line 1). Now, to find impacted people, Q
generates SSS of [; and [y, say y, and y,, respectively. S checks
y1 and y, against the three shares (via string-matching opera-
tion) in Agpyz. It will result in two vectors: (1,0,0) of secret-
shared form corresponding to y; and (0, 1, 1) of secret-shared
form corresponding to y,. Then, the vectors are position-wise
multiplied by (S(di1),S(d2),S(d1),S(d1)). Thus, S sends
(d1,0,0) and (0,ds,d;) of secret-shared form to Q. Q interpo-
lates the vectors and knows that the device dy belongs to an
impacted person.
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Fig. 4. Exp 3: Scalability test of 10M and 50rows with varying other parameters.

Occupancy Count (Lines 12-16). Q sends the desired epoch
identifier to the servers (line 13). Based on the desired
identifier, each server multiplies the i value of A,, with
the " value of A,;, and it results in all locations having
the unique devices. The server sends all such locations
to Q (line 14). First, Q interpolates the received locations
(line 15) and then, counts the appearance of each loca-
tion (line 16).

Example 6.2.3. Suppose, we want to find occupancy of all

location in epoch A,. Q sends the desired epoch identifier
A, to S that executes position-wise multiplication and sends
the output of the following to Q: (S(1) x S(L),S(1) x
S(ly), S(1) x S(l). Q interpolates the received answers,
counts the number of each location as: [; = 1 and [, = 2.
Advantages of 1QUEsT over cQUEST. Note that IQUEST executes
an identical operation on each row for executing an application,
and it hides access-patterns, i.e., the identity of rows that satisfy
a query. Furthermore, due to using SSS, 1QUEsT provides the
highest level of security, as well as addresses all the security
requirements, mentioned in §3.2. In addition, 1QuEsr is fault-tol-
erant, due to using multiple servers.
Information Leakage Discussion. Since Algorithm 3 uses dif-
ferent polynomials of the same degree for creating shares of a
value, an adversary cannot learn anything by observing the
shares. Thus, 1QUEsT produces ciphertext indistinguishable or
secure ciphertext dataset. Also, the query execution Algo-
rithm 4 creates secret-shares of a query predicate that appears
different from the secret-shared data. Thus, the adversary by
observing the query predicate cannot learn which rows satisfy
the query. In addition, since query execution Algorithm 4 per-
forms an identical operation on each share (e.g., lines 3,8,14),
1QuEsT hides access patterns; thus, the adversary cannot learn
anything from the query execution, also. Hence, in 1QUEST pro-
vides stronger security than cQUEsT.

1QuEsT also authenticates the user and produces a binary
answer for the exposure trace application, and hence
restricting a user to ask a query about other users. However,
as we will see in Experiment 3 in §7.1, while providing
strong security guarantees, IQUEST is a little bit slower as
compared to CQUEST.

7 EXPERIMENTAL EVALUATION

Quest has been deployed at University of California Irvine
(UCD), to support occupancy count on a daily basis. (Please
see interfaces of the three applications in Appendix B, avail-
able in the online supplemental material.) Since the expo-
sure map and tracing applications are based on the device

TABLE 6
Characteristics of the Datasets Used in Experiments

#rows Cleartext Days Encrypted  Secret-Share
size covered size size

10M 1.4GB 14 5GB 25GB

50M 7.0GB 65 13GB 65GB

address of an infected person, we simulate such a scenario
to evaluate the performance of Quesr. This section evaluates
the scalability of QUEsT to evaluate its practicality for larger
deployments and for all supported applications. We used
AWS servers with 192GB RAM, 3.5GHz Intel Xeon CPU
with 96 cores, and installed MySQL to store the secured
datasets. A 16GB RAM machine at the local-side hosts
worked as the data collector that is hosted at the university
IT department, which manages the WiFi infrastructure at
the university.

Dataset. We used WiFi association data generated using
SNMP traps at the campus-level WiFi infrastructure at UCI
that consists of 2000 access points with four controllers.
Experiments used real-time data received at one of the four
controllers (that collects real-time WiFi data from 490 access
points spread over 40+ buildings). Using this WiFi data, we
created two types of datasets, refer to Table 6. For evaluat-
ing 1QQUEST, we created nine shares, since at most 2(¢ + y) +
1 shares are required (as mentioned in §6.1), where ¢ =3
(the length of device-ids, line 5 Algorithm 3) and y =1 (a
single secret value in column Ay, line 10 Algorithm 3).

Queries. We executed our three applications: exposure
map, exposure tracing, and occupancy count over the 10M
and 50M datasets, as mentioned above.

7.1 Performance Evaluation of Quest

This section presents how does Quest behave on different
parameters and evaluates the scalability of Quesr.

Exp 1: Throughput. In order to evaluate the overhead of
cQuEsT and IQUEST at the ingestion time, we measured the
throughput (rows/minute) that QUEST can sustain. CQUEST
Algorithm 1 can encrypt ~494,226 rows/min, and 1QUEST
Algorithm 3 can create secret-shares of ~38,935 rows/min.
Though the throughput of Algorithm 3 is significantly less
than Algorithm 1 due to creating 9 (different) shares, Algo-
rithm 3 sustains UCI level workload.

Exp 2: Metadata size. Recall that Algorithm 1 (Algorithm 3) for
cQuEst (1IQuUEsT) maintains hash-tables for a certain duration.
Table 7 shows the size of hash tables created for epochs of
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Fig. 5. Exp 7: Using other systems (secure hardware based Opaque and secret-sharing-based Jana) vs cQuest and IQuesT on 10M.

different sizes: 15min, 30min, and 60min. Note that the meta-
data size for cQUEST is more than the metadata size for 1QUEST,
since CQUEST uses two hash tables (see line 3 Algorithm 1) and
one list of visited places by each device, while IQUEsT uses only
one hash table (line 2 Algorithm 3). Nevertheless, metadata
overheads remain small for both techniques.
Exp 3: Scalability. We measured the scalability of QUEsT in
three scenarios: (i) varying the number of infected people
from 1 to 100, (i) varying the days for tracing from 1 to 14
days, and (iii) varying dataset size from 10M to 50M. Fig. 4
shows the result of this experiment. In Fig. 4, Q1 denotes
exposure map, Q2 denotes exposure tracing, and Q3 denotes occu-
pancy count applications. Note that in Fig. 4, we have combined
all three applications to compare all of them. However, only expo-
sure map and exposure tracing applications exploit the number of
infected persons, which we vary from 1 to 100. We execute all
three applications for 1 and 14 days on 10M and 50M rows.
In exposure map application (Q1), a device has visited
between 1 to 55 locations in 1 epoch. Note that Q1 using
CcQUEST took less time in all three cases (i.e., varying the
number of the infected person, number of days, and the
dataset size), since it uses an index on A;; column (line 3
Algorithm 2); while 1QUEsT took more time, since it scans all
data depending on the queried interval (line 3 Algorithm 4).
As the number of infected people increases, the query time
increases too. The cost analysis follows the same argument
for the exposure tracing application (Q2) that is an extension
of the exposure map application (Q1). Since in the exposure
tracing application (Q2), we also find potentially impacted
people after executing the exposure map application (Q1),
exposure tracing application (Q2) takes more time than Q1.
For the occupancy count application (Q3) in Figs. 4a and 4b,
IQUEST took less time than cQUEsT. The reason is: IQUEST performs
multiplication on i values of A, and Ay, (line 14 Algorithm 4),
and the cost depends on the number of rows in the desired
epochs. However, cQUEsT joins a table of size y x A; x x with
the encrypted WiFi data table on A;, column to obtain the num-
ber of locations having unique devices (line 14 Algorithm 2),
where y is the maximum appearance of a location in any epoch
(can be of the order of 10,000, causing a larger join table size), A;
is the number of desired epochs, and z is the number of loca-
tions. Observe that for occupancy count application in Figs. 4c
and 4d, 1QuEsT took more time than cQUEsT, since the increase in
the cost of multiplication operations (due to larger dataset of 14-
days tracing period) in IQUEsT overtook the increase in the cost of
join in cQUEST. It shows cQUEsT is more scalable than IQUEST.
Exp 4: Impact of Optimization. We have implemented the
optimization method to minimize the value of max location
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1 20 25 1 5 20 25
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(a) Access-patterns of CQUEST.  (b) Access-patterns of IQUEST.

Fig. 6. Exp 5: Access-patterns created by QUEsT.

counter (§5) for cQuest and measured the performance
improvement over 10M rows, while fixing the number of
infected people to 100 and interval duration to 1-day. The
counter per epoch for the exposure tracing application
reduced the computation time from 63s (Fig. 4b) to ~35s
and used 128KB more space to maintain the counter; while
the counter per epoch and per location for the exposure tracing
application took only ~2sec with 55MB space to store the
counters.

We have also implemented the optimization method for
the occupancy count application that finds unique devices
in an epoch. The proposed optimization (i.e.,, outsourcing
encrypted counter per epoch and per location) reduces the
time of the occupancy count application from 179.4s
(Fig. 4b) to 1s.

Exp 5: Memory Access-Patterns. Recall that access patterns
refer to the identity of rows that satisfy a query. Fig. 6 shows
a sequence of memory accesses by cQUEsT and 1QuEsT. For
this, we run the exposure tracing application multiple times,
by selecting different device-ids each time over a fixed set of
epochs. It is clear that 1IQUEsST accesses the same memory
locations (accesses all the rows of the given set of epochs)
and produces an output for each accessed row for different
queries, while cQUEsT accesses different memory locations
(different rows for different device-ids) for answering dif-
ferent queries. It also experimentally validate that 1QuEsT
hides the access patterns, while cQUEsT does not hide access
patterns.

Exp 6: Impact of Communication. Recall that IQUEST creates
multiple shares of a value, places them on multiple non-col-
luding servers, and fetches the shared data that is proposi-
tional to the epoch size when executing an application.
Thus, we need to measure the impact of communication on
1QuEsT. Table 8 shows the amount of data transfer using
1Quest and the data transfer time using different transfer
speeds.
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TABLE 7
Exp 2: Size of Hash Tables, for Different Epoch Sizes
Epoch duration CQUEST 1QUEST
15min 1.96MB 0.93MB
30min 3.40MB 1.37MB
60min 5.84MB 2.10MB

From Table 8, it is clear that IQUEST incurs communication
overhead, while 1QUEsT provides a high-level of security. In
particular, the exposure map application requires us to fetch
~32MB data from each server when the tracing period was
14-days for an infected person. As the exposure tracing
application requires two communication rounds (the first
for knowing the impacted locations and another for know-
ing the impacted device ids), the exposure tracing applica-
tion incurs significant communication cost by fetching
~3.5GB data from each server. The reason is: we need to
fetch data corresponding to 55 locations that a user can visit
during an epoch. In the occupancy count application, we
also need to fetch data corresponding to all locations in
epochs that cover 14-day time duration. Thus, the occu-
pancy count application, also, requires fetching ~3.5GB
data from each server.

To calculate the data transfer time, we calculated the size
of the data to be transferred and divided by different data
transfer speeds to find the time required to move the data.

7.2 Comparing Quest Against Other Systems

Now, we compare QUEST against two existing systems (since
these systems were available to us and work on any dataset).
Exp 7: Using Other Existing Systems to Support QUEST
Applications. Since cQuEsT uses SGX-based processing, we
compare CQUEST against the state-of-the-art SGX-based sys-
tem Opaque [66]. Also, we compare IQUEST against the state-
of-the-art secret-sharing-based system Jana [17], since
IQUEST is built over secret-sharing techniques. We tried one
more secret-sharing-based system, namely SMCQL [18];
however, it does not support any arbitrary as well as a large
amount of dataset. For this experiment, we took 10M rows
of WiFi dataset and vary: (i) the number of infected people
from 1 to 100 and (ii) the days for tracing from 1 to 14.

We inserted data using non-deterministic encryption [36]
in Opaque and using the underlying secret-sharing mecha-
nism in Jana. Then, we used their query execution mecha-
nisms for our three applications. Fig. 5 shows the impact of
using different systems for supporting our three applica-
tions, denoted by Q1, Q2, and Q3. Note that we drop any
query that took more than 1000s.

In terms of performance, observe that cQuest works well
compared to Opaque, since cQuUEsT uses index-based
retrieval, while Opaque reads entire data in secure memory
and decrypts it. In terms of security, cQuest and Opaque
provides the same security, i.e., ciphertext indistinguishabil-
ity, and reveals access-patterns. Note that cQUEST reveals
access-patterns via index-scan, while Opaque reveals
access-patterns due to side-channel (cache-line [37] and
branch-shadow [64]) attacks. Furthermore, if data belonging
to multiple organizations is non-deterministically encrypted
and hosted at the same cloud, then while Opaque does not
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TABLE 8
Exp 6: 1QuesT: the Amount of Data to be Transferred, and the
Required Time to Transfer Data on Different Data Transfer

Speeds
Criteria Exposure Map  Trace  Occ. count
Dataset size 32MB 3.6GB 3.6GB
Trans. speed 25MB/s Neg. ~2.5m  ~2.5m
Trans. speed 100MB/s Neg. ~1lm ~lm
Trans. speed 500MB/s Neg. ~11s ~11s

Neg. refers to negligible.

need to develop any encryption or query execution algo-
rithm, by just observing the ciphertext dataset, an adversary
may deduce the information about those users who work in
multiple organization.

In terms of performance, IQUEsT is efficient compared to Jana
that takes more than 1000s in each application. The reason is:
1QUEST does not require communication among servers due to
using string-matching over secret-shares [29], while Jana
requires communication among servers. In terms of security,
1QuEsT and Jana provide identical security by hiding access-pat-
terns, due to executing identical operations on each row.

8 CONCLUSION

In this paper, we designed, developed, and validated a sys-
tem, called QUEsT for privacy-preserving presence/exposure
tracing and occupancy count at the organizational level
using WiFi connectivity data to enable community safety in
a pandemic. QUEST incorporates a flexible set of methods
that can be customized depending on the desired privacy
needs of the smartspace and its associated data. Particu-
larly, QuEst comes with both flavors of the security, namely
computational security via cQuest and information-theo-
retic security via IQUEsT. The capabilities provided by Quest
are vital for organizations to resume operations after a com-
munity-scale lockdown. Additionally, Quest shows an inter-
esting and practical use-case of cryptographic techniques,
explored for data outsourcing.

Future Directions. Below, we discuss a few directions in
which QuEsT can be extended.

1) Malicious entities and use of blockchains. This paper
focused on protocols to collect, store, and search
data in encrypted form to support the three applica-
tions. In doing so, our solutions have assumed both
the organization and the cloud to be non-malicious
— they could be honest-but-curious and may wish
to learn the behavior of individuals either from the
ciphertext or query execution. We have not consid-
ered approaches to protect against attacks, such as
an organization or the cloud deliberately deleting
the data about an individual (log truncation attack),
or maliciously modifying users’ data. If such attacks
were to be considered, solutions such as blockchains
would be required to address such concerns and to
write authenticated tamper-proof logs, which could
be written into the blockchain.

2)  Quest with cleaned WiFi data. As mentioned earlier,
there are some issues with WiFi also, as: duplicate
devices, the presence of spurious devices (such as
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printers/machines) in buildings that may artificially
affect the occupancy counts, missing sensor values
(due to disconnections), and location ambiguity dye
to coarse nature of region covered by an access point,
etc. As mentioned before, there are tools (such as [7],
[8], [48]) that exploit semantic information about
locations and people to clean WiFi data and reach
accuracy as high as 92-93%. One can think about
using tools to clean WiFi data and then use QUEsT
and compare the accuracy among two different sce-
narios. Another interesting direction would be to use
data cleaning tools at the cloud equipped with
secure hardware (such as Intel Software Guard
eXtension — SGX).
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