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Structure–reactivity relationships in Chevrel phase
electrocatalysts for small-molecule reduction
reactions
Jessica C. Ortiz-Rodríguez and Jesús M. Velázquez

Abstract
Chevrel phases, MxMo6X8 (M = metal intercalant,
X = chalcogen), constitute a family of materials with
composition-dependent physicochemical properties that have
shown promising electrocatalytic activity for various small-
molecule reduction reactions. The wide range of possible
compositions among the Chevrel phase family offers the op-
portunity to tune the local and electronic structure of discrete
Mo6X8 cluster units within the extended MxMo6X8 framework.
Thus, making them an ideal platform for studying
structure– function relationships and generating design princi-
ples for improved electrocatalytic reactivity. This review sum-
marizes the state of the art in experimental and computational
evaluations of Chevrel phases as electrocatalysts for hydrogen
evolution, CO2 reduction, and nitrogen reduction reactions. We
aim to elucidate the uncharted small-molecule electrochemical
reactivity of Chevrel phases as a function of composition and
consequently guide the design of promising multinary chalco-
genides for energy conversion reactions.
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Introduction
Materials with tunable compositions offer a platform to
study structureefunction relations that could lead to
design principles for improved catalysis [1e7]. Among
the highly-tunable families of materials, Chevrel phases
(CPs) have been computationally and experimentally

evaluated for various small-molecule electrochemical
reduction reactions such as oxygen reduction reaction
(ORR) [8e18], hydrogen evolution reaction (HER)
[17e25], CO2 reduction reaction (CO2RR) [26e32],
and nitrogen reduction reaction (NRR) [33]. Figure 1

shows the crystal structure of CPs, which is composed
of discrete molybdenum octahedron inside a chalcogen
cage with the general formula Mo6X8 (X = S, Se, Te).
The chalcogen cage and the molybdenum octahedron
can be partially substituted (Figure 1a), while the
framework forms large cavities that allow the intercala-
tion of metals (Figure 1b).

The highly tunable structure of CPs allows changes in
the electronic structure that can influence charge trans-
fer and binding of intermediates at the catalyst surface.
Furthermore, geometric structural changes provide
diverse chemical environments at the atomic scale with
composition-dependent physicochemical properties that
can effectively alter reaction pathways [34e37]. There-
fore, changes in reactivity and selectivity could be
induced through compositional changes. Due to the
numerous thermodynamically accessible CP composi-
tions, improved catalysts’ design will benefit from iden-
tifying properties that can describe and predict catalytic
performance, coined reactivity descriptors. Hence, reac-
tivity descriptors such as the d-band model used to
describe bond formation on transition-metal surfaces
[38e40], and the bulk-phase oxygen p-band center used
to describe ORR on perovskite cathodes [6,41,42] have
shown to enable the design of new catalysts and facilitate
the screening of high-throughput catalysts [43].

While the changes in reactivity and selectivity as a
function of composition have been widely reported for
ORR in CPs [44e49], analogous literature for other
electrochemical small-molecule reduction reactions
remain scarce. This review provides an overview of the
computational and experimental efforts to elucidate the
electrocatalytic activity of CPs for HER, CO2RR, and
NRR. Given the inherent complexity of the aforemen-

tioned reactions, the scope of this review is narrowed to
the current knowledge on the interactions at the bulk
surfaceeadsorbate interface (e.g., H adsorption and CO
hydrogenation) that dominate electrochemically driven
reaction pathways. Through our discussion, we aim to
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elucidate factors in the electronic structure that prefer-
entially favor interactions with reaction intermediates for
HER, CO2RR, or NRR (structureefunction relation-
ships), as well as reactivity trends as a function of
composition for each of the reactions of interest (struc-
tureereactivity relationships). We intend that the com-
pendium of literature included stimulates the further
study of CPs, expanding their composition design and

electrocatalytic evaluation.

CPs as HER catalyst
Since their discovery, CPs have been extensively eval-
uated as HER catalysts [17e25]. As shown in Table 1,

HER relies on the ability of the catalytic surface to
adsorb H, making the adsorption/desorption behaviors
of the solid surface a crucial property in HER catal-
ysis [50,51].

Theoretical studies under various reaction conditions
agree that H adsorption (Hads) interactions in CPs occur

through the chalcogenemolybdenum bridging site
[22,31,32,52]. A recent investigation by Ortiz-Rodrı́guez
et al. [22] has supported such results by elucidating
changes in the HER activity of CPs as a function of
chalcogen (Mo6X8, X = S, Se, Te) in acidic media.
Figure 2a shows the polarization curves for poly-
crystalline CP powders deposited on a carbon substrate.
The decrease in overpotential to achieve a current

density of 10 mA cm�2
ECSA indicates an increase in the

HER activity as the Lewis basicity of the X8 chalcogen
cage increases. The reactivity trend was explained by
the decrease in XeH distance as well as the improved
Hads energy calculated for the CP sulfide compared to
the selenide and telluride phases. Such changes are
illustrated in Figure 2b where Hads occurs farther from
the chalcogen as the electronegativity of the chalcogen
decreases (HeS<HeSe<HeTe). Furthermore, Mo6S8
maintained a steady time-dependent overpotential at a
current density of 10 mA cm�2 over 48 h.

It was concluded that the changes in H stabilization are
influenced by changes in the local bonding environment
(local effect) and the bulk electronic structure as a
function of chalcogen (electronic effect), which can be
described using the simplified orbital representation in
Figure 3. Hughbanks and Hoffmann [53] elucidated
that the frontier orbitals of CPs are formed by twelve
bonding and eighteen antibonding orbitals, primarily Mo
d in character. The relative positions and the width of
the d bands are strongly influenced by the covalent

Figure 1

(a) CP structure depicting the possible partial substitutions in the Mo6X8 cluster and (b) the cavities formed between clusters which allow the intercalation
of a variety of metals.

Table 1

HER mechanism in acidic electrolyte.

Acidic electrolyte
2H(aq)

+ + 2e− / H2(g)

Volmer step H+ + e− / Hads

Tafel step 2Hads / H2

Heyrovsky step H+ + Hads + e− / H2
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mixing with the X p states, which decreases in the
sequence Mo6S8<Mo6Se8<Mo6Te8 [54]. The lower 3p

sulfur orbitals of Mo6S8 shown in Figure 3 have a higher
p character which improves the HeS orbital overlap and
allows the favorable stabilization of H at the chalcogen
site (local effect). Likewise, the increase in energy of
the chalcogen p orbitals leads to a higher p band center
(Figure 3, dashed blue line) which scales inversely with
the observed HER overpotentials (electronic effect).
Therefore, the observed reactivity trend suggests that in

binary CPs the position of the p-band center is a useful
descriptor to predict their HER activity, which has also

been the case for other recent HER catalyst [62e65].

Metal-intercalated and Mo6 octahedron substituted CPs
havealsobeenevaluatedasHERcatalyst [17,18,20,24,25].
By evaluating various metal-intercalated and octahedron
substituted CPs, Shubert and Tributsch [20] identified
that the single most activemetal center favorsHER. That
is, either the Mo of the Mo6-octahedron or the

Figure 2

(a) HER polarization curves for CP chalcogenide electrodes in 0.5 M H2SO4, along with 20% Pt/C on Vulcan Carbon Cloth and a blank (carbon paper with
PTFE/carbon black/IPA ink) for comparison. (b) Graphical representation of the changes in Hads interactions as a function of chalcogen along the
calculated X–H bond distances and corresponding p band center. Copyright 2020 American Chemical Society. Figure reproduced with permission from
Ortiz-Rodríguez et al. [22].

Figure 3

Simplified representation of the frontier orbital interactions of CP chalcogenides based on the studies by Schubert et al., Hughbanks et al., Singstock
et al., Lilova et al. [18,54,55,56]. The slight increase in the density of states at the Fermi level as the electronegativity of the chalcogen decreases is
caused by a decrease in the formal charge of the chalcogen [55–61].
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intercalated/substituted metal determines the catalytic
activity. Figure 4 shows the results that lead to this
conclusion. The authors evaluated the exchange current
(i0) and overpotential (h) of various polycrystalline CPs
with the samefigures ofmerit formonometallic electrodes
of the corresponding intercalated/substituted metal in
acidic media (e.g., CdMo6S8/Cd; Mo2Re4S8/Re). To
identify the active center for HER, correlations between

the i0 and h of CPs and the monometallic electrodes were
made. It was noticed that although the i0 and h varied
continuously for each monometallic electrode (x axis),
multiple CPs share the same i0 and h value (y axis). The
shaded areas indicateCPswith statistically identical i0 and
h values while the values for their corresponding metal
intercalant (Cd, In, Pb, Sn, Zn,Cu,Mo) change.Thus, it is
believed that theMo octahedron is mainly responsible for
proton reduction in this case as if themetal intercalantwas
the active center, the i0 and h values for the CPs will vary.
In contrast, deviations from the shaded area suggest that

the intercalated or substituted metal strongly influences
the catalytic activity as the i0 and h for the CP and the
monometallic electrode change continuously.

Based on these results, HER activity is directed by the
Mo octahedron for MMo6S8 (M = Cd, In, Pb, Sn, Zn,
Cu2), which all have a lower HER activity than Mo6S8.
The trend observed is further exemplified by the de-
scriptors elucidated by Ortiz-Rodriguez et al. [22] since
higher p-band centers are expected upon metal inter-
calation due to the electron donation from the metal

intercalant to the chalcogen [30,66e68]. Interestingly,
the intercalated or substituted metal dominates HER
activity in MMo6S8 (M = Ag, Pd) and Mo2Re4S8. The
improved HER activity of these CPs compared to Mo6S8

suggest the direct participation of the intercalated/
substituted metal as an active site for Hads. However,
further evaluations that elucidate changes in proton
adsorption as the chemical environments that influence
HER activity change (intercalated/substituted metal or
Mo octahedron) remain to be performed.

Recent efforts to improve the HER activity of CPs have

been focused on the design of nanoscale CPs [19,21,23].
A comparison between bulk and nanoparticulate Mo6S8
in acidic media shows an increase in the HER activity as
the surface area-to-volume increases as well as structural
stability after 1000 voltammetry cycles [19]. Nanoscale
Mo6S8 also shows an improved HER activity to nano-
scale MMo6S8 (M = Cu, Zn), which agrees with the
results obtained by Shubert and Tributsch [20]. Im-
provements in the catalytic activity of CP nanoparticles
have also been observed by the inclusion of carbon ad-
ditives in the catalyst electrode [23,24]. Although these

approaches have shown to successfully enhance the
HER activity of CPs, significant improvements could be
made by atomically identifying the most active surface
sites(s) in CP nanoparticles and generating synthetic
approaches that could preferentially yield such active
site ensembles. Likewise, fewer reports have evaluated
the HER activity of CPs in alkaline media, which have
shown promising electrocatalytic activity and stability
under these conditions [21,25]. Therefore, the reac-
tivity trends discussed remain to be further evaluated in
alkaline reaction conditions.

CPs as CO2RR and NRR catalyst
Favorable intermediates energies are predicted for the
reduction of CO2 to methanol in Mo6S8 and metal-

Figure 4

(a) Correlation between log (i0) of CPs and log (i0) of monometallic electrodes of the corresponding intercalated/substituted metal. (b) Correlation between
h of CPs and the h of monometallic electrodes of the corresponding intercalated/substituted metal. CP electrodes contained polycrystalline CP powders,
graphite powder (improve conductivity) and nujol (pasting medium). Shaded area includes materials in which the Mo-octahedron is strongly dominating
the reduction mechanism. Data obtained from Schubert et al. [20].
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intercalated CPs [29,31] following the chemi-

cal equation:

CO2 þ 6Hþ þ 6e� / CH3OH þ H2O

As shown in Figure 5, CO2RR intermediates are
predicted to interact at the Mo sites in Mo6S8

preferentially, whereas S atoms facilitate HeH bond
cleavage by forming relatively strong SeH bonds [31].
The addition of metal intercalants and substitutions in
the Mo octahedron are expected to change the in-
teractions of CO2RR intermediates compared to Mo6S8;
however, Hads still preferentially occurs through chal-
cogen interactions [26e29,32]. Figure 6 shows the ex-
pected influence of metal intercalants in the CO2RR

mechanism of CPs, which includes interactions through
modifications in the electronic structure (ligand effect)
or participation of the metal intercalant as an active site
(ensemble effect) [29].

Perryman et al. [30] experimentally validated the
CO2RR activity of CPs elucidated by theory. This
study evaluated the ability of polycrystalline Mo6S8,
Cu2Mo6S8, Ni2Mo6S8, and Cr1.73Mo6S8 to reduce
CO2 and CO in 0.1 M Na2CO3 and 0.1 M NaHCO3,
respectively. Electrochemical results followed by

gaseous and liquid product analysis show that all CPs
reduced CO2 to only methanol and formate in the
liquid phase, while H2 production had the highest
faradaic efficiency. The electrocatalytic performance
of Cu2Mo6S8 was maintained over the course of
multiple hours of electrolysis, even at a reductive
potential of -1 V versus RHE. Furthermore, the
selectivity of Cu2Mo6S8 towards methanol produc-
tion was increased when CO was introduced as the
target for reduction, which circumvents formate
production. These results suggest that the pathway

for methanol production on Cu2Mo6S8 catalysts does
proceed via CO hydrogenation following the predic-
ted mechanism for CO2RR in Mo6S8 [31] (Figure 5).
Therefore, the dominance of the ligand effect over
the ensemble effect is expected for Cu2Mo6S8, but
further operando experiments are needed to confirm
this hypothesis.

Figure 5

Optimized potential energy diagram for methanol synthesis from CO2 and
H2 on a Mo6S8 cluster. Thin bars represent the reactants, products, and
intermediates; the thick bars stand for the transition states (Mo, cyan; S,
yellow; C, gray; O, red; H, white). Copyright 2009 American Chemical
Society. Figure reproduced with permission from Liu et al. [31].

Figure 6

Electrocatalytic (a) ligand and (b) ensemble effect of metal intercalants in the CP structure.
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Figure 7 shows the changes in the electronic structure
upon Cu intercalation into the Mo6S8 cluster obtained
through X-ray Absorption Near-Edge Structure
(XANES). The minimal shift in the Mo K-edge absorp-
tion observed for Mo6S8 and Cu2Mo6S8 in Figure 7a in-
dicates an insignificant change in the electronic structure
of the Mo, which is predicted to be crucial in the stabi-
lization of CO2RR intermediates [26e29,31,32]. The

intercalation of Cu seems to preferably influence the
electronic structure of the chalcogen cage as it fills
available S 3p orbitals causing a decrease in the S K pre-
edge shoulder (w2471 eV) of Cu2Mo6S8 compared to
Mo6S8 (Figure 7b). Following the previous discussion
regarding Hads interactions, the electronic changes
induced by Cu intercalation could influence Hads at the
SeMo bringing site rather than CO2RR intermediates at
the Mo site, which could be a topic of interest for
future studies.

An alternative to increase methanol production in CPs
could be to increase the d-band electron density, which
has been shown to increase the activity of CPs for ORR.
Vante et al. [17] evaluated different Mo-containing com-
pounds in which the concentration of d electrons changes
by rising the Fermi level when going from the Mo cluster
(Mo6Se8) to the substituted ones (Mo4Ru2Se8/
Mo2Re4Se8). As shown in Figure 8, partial substitution of
theMo octahedron by Re or Ru raises the valency electron
concentration in the cluster from 20e� to 24 e�, which
increases the occupation of metal d states near the Fermi

levelwhile the chalcogenelectronic structure isminimally
altered [69e71] (Figure 8). Such electronic changes have
been shown to significantly improve the ORR activity of
CPs [9,11,15,44]. The poor ORR catalytic properties of

Mo6Se8 compared to Mo4Ru2Se8/Mo2Re4Se8 can be
related to the small metal d-density at the Fermi edge,
which decreases the stabilization of oxygen intermediates
[15,44,48]. Similar towhat is predicted forCO2,molecular
oxygen interacts preferentially with the metallic centers
at the octahedron, therefore the evaluation of CPs with
increased metal d-density at the Fermi edge could lead to
improved CO2RR catalytic activity.

Lastly, computational calculations can also assist in
designing CPs with improved CO2RR efficiencies.

Figure 7

(a) K-edge XANES for Mo in Cu2Mo6S8 and Mo6S8, with Mo0 foil for reference. (b) K-edge XANES for S in Cu2Mo6S8 and Mo6S8. Copyright 2020 Royal
Society of Chemistry. Figure reproduced with permission from Perryman et al. [30].

Figure 8

Simplified representation of the changes in frontier orbital interactions for
Mo6Se8 and Ru2Mo4Se8 based on the studes by Alonso Vante et al.,
Jaegermann et al., Jaegermann et al.[9,44,71].
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KMo6S8 has been predicted to facilitate CO2 to meth-
anol conversion due to a strong ensemble effect of K,
which could stabilize CO2 intermediates through elec-
trostatic interactions and lower the corresponding
transition states involving HxCOy radicals [29]. Single-

atom catalysis on CPs [26,27,52] and other metal
intercalated CPs [28,32,72] have also been computa-
tionally evaluated as CO2 and CO conversion catalysts,
showing promising C1 and C2 products. However, there
is currently no experimental evidence to confirm such
predictions. It is important to mention that most of the
computational studies discussed do not consider struc-
tural effects such as the synthetic accessibility of CPs
[73,74], changes in cavity occupancy as a function of
metal intercalant stoichiometry and/or identity
[73,75e77], metal intercalant mobility [78e80], and

metal de-intercalation upon applied potential [18].
Therefore, there is a broad opportunity to experimen-
tally validate computational predictions and study other
structural effects not considered by theory.

Although NRR has been less studied in CPs, experi-
mental results strongly suggest that the ensemble effect
dominates the reaction. Lu et al. [33] evaluated poly-
crystalline Mo6S8, Cu2Mo6S8, Mn2Mo6S8, and Fe2Mo6S8
as electrocatalysts for the conversion of N2 to NH3 in
aqueous solution (pH w4.6), following the chemi-

cal equation:

N2 þ 6Hþ þ 6e� / 2NH3

An increase in faradaic efficiency and NH3 production
rate was observed in metal-intercalated CPs, being
Fe2Mo6S8 the best performing catalyst (Figure 9a). The
intercalation of Fe into the CP cluster also increased the

overpotential for the competing HER (Figure 9b) leading
to the increased NRR selectivity. In addition, chro-
noamperometric responses for Fe2Mo6S8 at potentials
ranging from�0.15 V to�0.40 V versus RHE show stable
currents for the 2hr testing period. It was concluded that

Femust participate in the absorption and/or conversion of
N2, while Mo and S atoms alone are unable to activate
N2. The proposed mechanism for N2 conversion on
Fe2Mo6S8 is shown in Figure 9c in which Fe directly in-
teracts with N2 while the chalcogen sites are expected to
assist in Hads. Further improvements in catalytic activity
will highly benefit from computational work that unravels
the NRR mechanism on Fe2Mo6S8 and could identify
ways to enhance intermediate stabilization.

Conclusion and outlook
This review emphasized the adsorption of key in-
termediates in CPs under HER, CO2RR, and NRR

conditions as well as their composition-dependent elec-
trochemical properties. The discussion highlights the
compositional control over orbital population, orbital
symmetry, and intermediate adsorption strength in CPs
which provide a platform to generate transferable prin-
ciples for improved catalyst design. Among those, we
highlight the influence of the local and electronic struc-
ture in the HER activity of CPs as well as the predicted
ligand and ensemble effects that dominate reaction tra-
jectories in CO2RR, and NRR. Several routes to improve
the electrocatalytic activity of CPs are proposed,

considering computational and experimental efforts that
elucidate electrochemical small-molecule reactivity.

As the electrochemical evaluation of CPs for energy
conversion reactions moves forward, it is imperative to
unravel the structural changes at the catalyst interface

Figure 9

(a) Comparison of N2 to NH3 conversion efficiency and average NH3 production rate for Mo6S8 and M2Mo6S8 (M = Fe, Mn, and Cu) electrocatalysts in
aqueous electrolyte (0.5 M Na2SO4/0.1 M sodium citrate buffer). (b) Linear sweep voltammetry (LSV) curves for hydrogen evolution in Ar-saturated
electrolyte. (c) Schematic illustration of the proposed binding mechanism for N2 absorption and subsequent conversion to NH3. Copyright 2021 American
Chemical Society. Figure reproduced with permission from Lu et al. [33].
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under an electrochemical environment in order to
generate reactivity descriptors that extend from the bulk
electronic properties discussed. To this end, we suggest
the incorporation of in situ/operando experimentation
such as in situ atomic scale scanning transmission elec-
tron microscopy (STEM) [81,82], electrochemical
scanning tunneling microscopy (ECSTM) [83,84] and in
situ/operando synchrotron-based X-ray techniques to

understand changes at the electrodeeelectrolyte inter-
face [85,86]. Likewise, the incorporation of electroana-
lytical techniques such as scanning electrochemical
microscopy (SECM) [87,88], differential electro-
chemical mass spectrometry (DEMS) [89e91] and in-
situ electrochemical Fourier transform infrared spec-
troscopy (FTIR) [92e94] will enable direct probing of
the local activity and improve the current mechanistic
understanding of CO2RR and NRR on the CP interface
by allowing the detection of key intermediate species
beyond those included herein.

Besides the inherent challenges of applying the sug-
gested techniques to fully understand the electro-
catalytic activity of CPs [95e97], it is essential to
develop alternative synthetic approaches that would
generate well-defined CP nanoparticles and thin films
which allow the proper characterization of the outer-
most atomic layer of CPs at which intermediate
adsorption and charge transfer interactions take place.
The latter is specifically important when considering
spectroscopy techniques in which the penetration

depth of the emission source will lead to contributions
from the bulk and surface electronic structure
[86,98,99]. Lastly, a systematic evaluation of catalytic
activity as a function of reaction conditions (e.g., pH,
electrolyte ions, crystallinity of the electrode), as well as
long-term stability measurements, must be evaluated
for future comparisons with state-of-the-art electro-
catalysts. We expect that the comprehensive concep-
tualization in this review reveals the underexplored
potential of CPs as a highly tunable platform to study
composition-dependent reactivity trends and generate
design principles for improved catalyst design.
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