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1 Introduction

A particle consistent with the Standard Model (SM) Higgs boson [1–6] was discovered in
2012 by the ATLAS and CMS collaborations [7, 8] from the analysis of proton-proton (pp)
collisions produced by the Large Hadron Collider (LHC) [9]. Since then, the analysis of data
collected at centre-of-mass energies of 7 TeV, 8 TeV and 13 TeV in Runs 1 and 2 of the LHC1

1
Run 1 signifies the LHC data-taking period in the years 2010–2012 and Run 2 the one in 2015–2018.
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has led to the precise measurement of the Higgs boson mass, mH = 125.09 GeV [10], and to
the observation and measurement of the four main production modes (gluon-gluon fusion,
vector-boson fusion, and associated production with either a weak gauge boson or a pair of
top quarks) and of several decay channels of the Higgs boson predicted by the SM [11–25].

The decay into a τ+τ− pair2 has the largest branching fraction of all leptonic Higgs
boson decays (6.3% [26, 27] for a mass of mH = 125.09 GeV). The large number of Higgs
boson decays into ττ produced at the LHC (≈ 500 · 103 during Run 2) offers a unique
opportunity to study the Yukawa mechanism in detail. Measurements in this final state are,
however, complicated at the experimental level, as the presence of two to four neutrinos3

in the final state significantly degrades the resolution of the measured Higgs boson four-
momentum, rendering the separation between the signal and the large background from
Z → ττ events difficult. This effect can be mitigated through the dedicated study of the
Higgs production modes where the event topology differs drastically from that of Z+jets
events, the two most sensitive being the production of the Higgs boson through vector-
boson fusion (VBF) and its production through gluon-gluon fusion (ggF) with Higgs boson
produced with a large transverse momentum.

The first evidence of the ττ decay of the Higgs boson was obtained by the ATLAS [28]
and CMS [29] collaborations using data collected at centre-of-mass energies of 7 TeV and
8 TeV during Run 1 of the LHC. The combination [21] of these two results led to the first
observation of the ττ decay of the Higgs boson. More recent measurements in the H → ττ

decay channel are documented in refs. [30–32].

This paper presents measurements of the Higgs boson decaying into a ττ pair with the
ATLAS detector, using the full Run 2 LHC dataset. The pp → H → ττ process is measured
inclusively, in the four dominant production modes simultaneously, and as a function of key
properties of the event. This is achieved with an optimised categorisation of the collected
events. Three ττ final states are targeted: two hadronically decaying τ -leptons (τhad, where
the tau decays into hadrons plus a neutrino), denoted τhadτhad; one leptonically decaying
τ -lepton (τlep) and one τhad, denoted τlepτhad;4 and two τlep with different flavours, denoted
τeτµ. The remaining final states, with two same-flavour light leptons (τe τe and τµ τµ),
are not considered due to large uncertainties in Z → ee and Z → µµ contributions to the
expected background. The dominant background processes after the event selection are
Z → ττ decays, tt̄ production, and processes with at least one jet misreconstructed as a τhad.
Smaller contributions to the background arise from events with Z → ℓℓ5 decays, two weak
vector bosons V V (diboson), and H → WW ∗ decays. Templates of the estimated invariant
mass of the ττ pairs are built for each process in the signal regions (SR) defined by the
event selection and categorisation. The templates are used as input to a binned maximum-
likelihood fit which allows the yields and kinematics of both the signal and the background
processes to be measured. Control regions (CR) enter the fit as event counts and help
determine the normalisation of the main backgrounds as well as constrain their uncertainties.

2
For simplicity, a τ

+
τ

−

pair is denoted by ττ throughout the paper.
3
The number of neutrinos depends on the decay modes of the two τ -leptons.

4
The τlepτhad categories can be split into τeτhad and τµτhad when distinguishing the light lepton’s flavour

is appropriate.
5
In this document, ℓ = e, µ.
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This work uses 139 fb−1 of pp collision data collected at a centre-of-mass energy of 13 TeV,
to be compared with 36 fb−1 for the previous H → ττ cross-section measurements [22]. It
introduces a new reconstructed-event categorisation designed for the improved stage 1.2

binning [33] of the simplified template cross-section (STXS) framework [27]. The treatment
of ggF events with Higgs boson produced with a large transverse momentum is refined
with three times more categories. Selected events are categorised with requirements on
the transverse momentum of the reconstructed Higgs boson candidate (pT(H)) and on
the potential additional hadronic jets. Two new categories targeting production modes
where the Higgs boson is created in association with other objects are added, based on
requirements on the kinematics and tagged flavour of the jets in the event. The first targets
the production of a Higgs boson in association with a pair of top quarks (tt̄H), where
both top quarks and both τ -leptons decay hadronically, complementing the explorations
in ref. [34], and is denoted by tt(0ℓ)H → τhadτhad in the rest of this paper. The second
targets the production of a Higgs boson in association with a vector boson V (W , Z). This
new category, referred to as V(had)H, focuses on events with a hadronic decay of the V

boson while the production of Z(→ ℓℓ)H and W (→ ℓν)H events is studied separately [35].
Finally, the selection of VBF events was also improved by multivariate techniques.

In addition to the new extended categorisation, several improvements to the analysis
methodology have been implemented: the object selection has been improved, multivariate
discriminants have been optimised to enhance the purity of the SRs in the targeted Higgs
boson production modes, the number of simulated background events has been increased
significantly and the usage of the Z → ℓℓ control region has been refined. The latter relies
on a new simplified implementation of the embedding technique [36, 37] which, instead
of replacing the reconstructed electrons and muons from Z → ℓℓ events by equivalent
simulated τ -lepton decay products, simply rescales their transverse momentum to that of
an equivalent τ -lepton.

This document is organised as follows. Section 2 describes the ATLAS detector. This is
followed in section 3 by a description of the dataset and Monte Carlo (MC) simulated samples
employed in the measurement. Section 4.1 details the reconstruction of the physics objects.
The event selection and categorisation is described in section 4.2. In section 5, the estimation
of the background processes is discussed with an emphasis on the simplified embedding
technique to model Z → ττ processes in section 5.1 and the data-driven estimates of the
processes with at least one jet misidentified as an electron, a muon or a τhad in section 5.2.
Section 6 presents the systematic uncertainties affecting the measurement and their
estimation. The details of the signal extraction fit are discussed in section 7, and section 8
presents the results of the measurement. Section 9 summarises the conclusions of this work.

2 The ATLAS detector

The ATLAS detector [38] at the LHC covers nearly the entire solid angle around the collision
point.6 It consists of an inner tracking detector surrounded by a thin superconducting

6
ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre
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solenoid, electromagnetic and hadron calorimeters, and a muon spectrometer incorporating
three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measurements per track, the first hit
normally being in the insertable B-layer installed before Run 2 [39, 40]. It is followed by
the silicon microstrip tracker, which usually provides eight measurements per track. These
silicon detectors are complemented by the transition radiation tracker (TRT), which enables
radially extended track reconstruction up to |η| = 2.0. The TRT also provides electron
identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadron
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three
barrel structures within |η| < 1.7, and two copper/LAr hadron endcap calorimeters. The
solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the
superconducting air-core toroidal magnets. The field integral of the toroids ranges between
2.0 and 6.0 T m across most of the detector. A set of precision chambers covers the region
|η| < 2.7 with three layers of monitored drift tubes, complemented by cathode-strip chambers
in the forward region, where the background is highest. The muon trigger system covers
the range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers in
the endcap regions.

Interesting events are selected by the first-level (L1) trigger system implemented in
custom hardware, followed by selections made by algorithms implemented in software in
the high-level trigger [41]. The first-level trigger accepts events from the 40 MHz bunch
crossings at a rate below 100 kHz, which the high-level trigger reduces in order to record
events to disk at about 1 kHz.

An extensive software suite [42] is used in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of
the experiment.

3 Data and simulated event samples

The data used in this analysis were collected using unprescaled single-lepton, dilepton or ττ

triggers [43–46] at a centre-of-mass energy of 13 TeV during the 2015–2018 LHC running

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡

√

(∆η)
2

+ (∆φ)
2
.
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Process Generator PDF set Tune Normalisation

ME PS ME PS

Higgs boson

ggF Powheg Box v2 Pythia 8 PDF4LHC15nnlo CTEQ6L1 AZNLO N3LO QCD + NLO EW

VBF Powheg Box v2 Pythia 8 PDF4LHC15nlo CTEQ6L1 AZNLO NNLO QCD + NLO EW

V H Powheg Box v2 Pythia 8 PDF4LHC15nlo CTEQ6L1 AZNLO NNLO QCD + NLO EW

tt̄H Powheg Box v2 Pythia 8 NNPDF3.0nnlo NNPDF2.3lo A14 NLO QCD + NLO EW

tH
MadGraph5_

Pythia 8 CT10 NNPDF2.3lo A14 NLO
aMC@NLO

bb̄H Powheg Box v2 Pythia 8 NNPDF3.0nnlo NNPDF2.3lo A14 NLO

Background

V + jets (QCD/EW) Sherpa 2.2.1 NNPDF3.0nnlo Sherpa NNLO for QCD, LO for EW

tt̄ Powheg Box v2 Pythia 8 NNPDF3.0nnlo NNPDF2.3lo A14 NNLO + NNLL

Single top Powheg Box v2 Pythia 8 NNPDF3.0nnlo NNPDF2.3lo A14 NLO

Diboson Sherpa 2.2.1 NNPDF3.0nnlo Sherpa NLO

Table 1. Overview of the MC generators used for the main signal and background samples. The
last column, labelled ‘Normalisation’, specifies the order of the cross-section calculation used for the
normalisation of the simulated samples.

periods. Events are selected for analysis only if they are of good quality and if all the
relevant detector components are known to have been in good operating condition [47],
which corresponds to a total integrated luminosity of 139.0 fb−1.

MC simulated events are used to model most of the backgrounds from SM processes
and the H → ττ signal processes. A summary of all the generators used for the simulation
of the signal and background processes is shown in table 1. The same event generators
as in ref. [22] were used, but the number of simulated events in each sample was at least
quadrupled, which is the factor by which the integrated luminosity grew since the previous
publication. In addition, the total number of simulated Z → ττ events was increased by a
further factor of approximately four. This computationally expensive task helps to densely
populate the phase space where Z → ττ events are produced in association with several jets.

All samples of simulated events were processed through the ATLAS detector
simulation [48] based on Geant4 [49]. The effects of multiple interactions in the same
and nearby bunch crossings (pile-up) were modelled by overlaying minimum-bias events,
simulated using the soft QCD processes of Pythia 8.186 [50] with the A3 [51] set of tuned
parameters and NNPDF2.3lo [52] parton distribution functions (PDF).

The decays and spin correlations for τ -leptons are handled by Sherpa for the samples
it generated, and by Pythia for the other MC event generators. The decays and spin
correlations have been included in Pythia version 8.150 [53], and have been thoroughly
validated by comparisons with Tauola [54].

3.1 Higgs boson simulation samples

The main Higgs boson production mode at the LHC is ggF with a total expected cross-
section of 48.6 pb, followed by VBF (3.78 pb), associated V H (2.25 pb), associated bb̄H

(0.64 pb) and tt̄H (0.51 pb) production. Simulated event samples for these production
modes were generated using Powheg Box v2 [55–59]. The tH process was also considered,

– 5 –
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but with a cross-section of 0.092 pb its expected contribution was found to be negligible. It
was simulated with the MadGraph5_aMC@NLO 2.6.2 [60] generator.

For the ggF sample the PDF4LHC15nnlo PDF set [61] was used, while VBF and V H

production samples used the PDF4LHC15nlo PDF set. The tt̄H and bb̄H events were
produced with the NNPDF3.0nlo PDF set [62], and tH events with the CT10 PDF set [63].
Parton shower (PS) and non-perturbative effects were modelled with Pythia 8.230 [64]
with parameter values set according to the AZNLO tune [65], except for tt̄H, bb̄H and tH

events, which rely on the A14 tune [66].
Higgs boson production via gluon-gluon fusion was simulated at next-to-next-to-

leading-order (NNLO) accuracy in QCD. The simulation achieves NNLO accuracy for
arbitrary inclusive gg → H observables by reweighting the Higgs boson rapidity spectrum
in Hj-MiNLO [67–69] to that of HNNLO [70]. The gluon-gluon fusion prediction from
the MC simulated samples is normalised to the next-to-next-to-next-to-leading-order
(N3LO) cross-section in QCD plus electroweak (EW) corrections at next-to-leading order
(NLO) [27, 71–80].

Higgs boson production via vector-boson fusion was simulated at NLO accuracy in
QCD. It is tuned to match calculations with effects due to finite heavy-quark masses and
soft-gluon resummations up to next-to-next-to-leading logarithms (NNLL). The prediction
from the MC simulated samples is normalised to an approximate-NNLO QCD cross-section
with NLO electroweak corrections [81–83].

Higgs boson production in association with a vector boson was simulated at next-to-
leading order accuracy for V H plus one-jet production. The loop-induced gg → ZH process
was generated separately at leading order in QCD. The prediction from the MC simulated
sample is normalised to cross-sections calculated at NNLO in QCD with NLO electroweak
corrections for pp → V H and at NLO and next-to-leading-logarithm accuracy in QCD for
gg → ZH [84–90].

The production of tt̄H events was simulated at NLO accuracy in QCD. The decays of
bottom and charm hadrons were performed by EvtGen 1.6.0 [91]. The cross-section used to
normalise the tt̄H process is calculated at NLO in QCD and electroweak couplings [27, 92–
95]. The production of bb̄H and tH events was simulated at NLO. The prediction from the
MC simulated samples is normalised to cross-sections calculated at NLO in QCD [96–98].

The normalisation of all Higgs boson samples accounts for the decay branching ratio
calculated with HDECAY [26, 99, 100] and Prophecy4f [101–103]. A Higgs boson mass
of 125.09 GeV is assumed in the calculation of the expected cross-sections throughout this
measurement.

3.2 Background processes simulation samples

The QCD production of V + jets events was simulated with the Sherpa 2.2.1 [104] generator
using NLO matrix elements for up to two partons, and LO matrix elements for up to four
partons, calculated with the Comix [105] and OpenLoops [106–108] libraries. They were
matched with the Sherpa parton shower [109] using the MEPS@NLO prescription [110–113]
using the set of tuned parameters developed by the Sherpa authors. The NNPDF3.0nnlo

set of PDFs [62] was used and the samples are normalised to a NNLO prediction [114].

– 6 –
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Electroweak production of ℓℓjj, ℓνjj and ννjj final states was generated with
Sherpa 2.2.1, using LO matrix elements with up to two additional parton emissions. The
matrix elements were merged with the Sherpa parton shower following the MEPS@LO

prescription and using the set of tuned parameters developed by the Sherpa authors.
Similarly to the QCD V + jets processes, the NNPDF3.0nnlo set of PDFs was employed.
The samples were produced using the VBF approximation, which avoids an overlap with
semileptonic diboson topologies by requiring a t-channel colour-singlet exchange. They are
normalised using the Sherpa cross-section predictions.

QCD and electroweak predictions for V + jets events are grouped in the analysis and
collectively referred to as V + jets in the rest of the paper.

The production of tt̄ events was modelled by the Powheg Box v2 generator at NLO
with the NNPDF3.0nlo PDF set and the hdamp parameter7 set to 1.5 mtop [115]. The events
were interfaced to Pythia 8.230 to model the parton shower, hadronisation, and underlying
event, with parameters set according to the A14 tune and using the NNPDF2.3lo set of
PDFs. The decays of bottom and charm hadrons were performed by EvtGen as for the
tt̄H sample. The tt̄ sample is normalised to the cross-section prediction at NNLO in QCD
including the resummation of NNLL soft-gluon terms calculated using Top++ 2.0 [116–122].

Single-top s-channel (t-channel) production was modelled using the Powheg Box v2 [55–
58] generator at NLO in QCD in the five-flavour (four-flavour) scheme with the
NNPDF3.0nlo set of PDFs [62]. The events were interfaced with Pythia 8.230 [64]
using the A14 tune [66] and the NNPDF2.3lo PDF set. The sample is normalised to the
theory prediction calculated at NLO in QCD with Hathor 2.1 [123, 124].

Diboson production was simulated with the Sherpa 2.2.1 or 2.2.2 generator depending
on the process. Fully leptonic final states and semileptonic final states, where one boson
decays leptonically and the other hadronically, were generated using matrix elements at
NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to
three additional parton emissions. Samples for the loop-induced processes gg → V V were
generated using LO-accurate matrix elements for up to one additional parton emission for
both the fully leptonic and semileptonic final states. The matrix element calculations were
matched and merged with the Sherpa parton shower based on Catani-Seymour dipole
factorisation [105, 109] using the MEPS@NLO prescription. The virtual QCD corrections
were provided by the OpenLoops library. The NNPDF3.0nnlo set of PDFs was used [62],
along with the dedicated set of tuned parton-shower parameters developed by the Sherpa

authors. The samples are normalised to a NLO prediction [125].

The background originating from H → WW ∗ decays was modelled using the same
simulation strategy as the H → ττ signal.

7
The hdamp parameter is a resummation damping factor and one of the parameters that controls the

matching of Powheg matrix elements to the parton shower and thus effectively regulates the high-pT

radiation against which the tt̄ system recoils.
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4 Object and event selection

The topology of H → ττ events requires the reconstruction of electrons, muons, visible
products of hadronically decaying τ -leptons (τhad-vis), jets (along with their b-tagging
properties) and missing transverse momentum. The numbers of reconstructed electrons,
muons and τhad-vis in each event are used to define the different channels of the analysis.
Requirements on the number of additional jets in the event are used in the signal region
categorisation and to suppress backgrounds.

4.1 Object reconstruction

Tracks measured in the ID are used to reconstruct interaction vertices [126], of which the
one with the highest sum of squared transverse momenta of the associated tracks is selected
as the primary vertex of the hard interaction.

Electrons are reconstructed from topological clusters of energy deposits in the
electromagnetic calorimeter which are matched to a track reconstructed in the ID [127].
They are required to satisfy the ‘Loose’ identification criteria, to have pT > 15 GeV, and to
be in the fiducial volume of the ID and the high-granularity electromagnetic calorimeters,
|ηcluster| < 2.47. The transition region between the barrel and endcap calorimeters
(1.37 < |ηcluster| < 1.52) is excluded except for the Z → ℓℓ control region where it is
kept to facilitate the embedding procedure (see section 5.1). In the τeτµ and τeτhad channels,
the selected electron is further required to satisfy the ‘Medium’ identification, which has an
associated efficiency of 80% to 90%, and the ‘Loose’ isolation criterion [127] in the signal
regions and most control regions, which has an efficiency of 90% for 15 GeV candidates,
increasing to more than 98% for 30 GeV candidates. In the τeτhad channel, the requirement
on the electron transverse momentum is further tightened by 1 GeV above the nominal
trigger pT threshold for electrons matched to the single-electron trigger to ensure operation
at the trigger’s plateau efficiency. Similarly, in the τeτµ channel, the requirement is tightened
if the event is accepted by the single-electron trigger or the electron-muon trigger. Table 2
summarises the exact requirements used depending on the data-taking period.

Muons are reconstructed from signals in the MS matched with tracks inside the ID.
They are required to satisfy the ‘Loose’ identification criteria [132], corresponding to an
efficiency above 97% for all muon candidates considered in this analysis, and to have
pT > 10 GeV and |η| < 2.5. In the τeτµ and τµτhad channels, the selected muon in the
signal regions is further required to satisfy a ‘Tight’ isolation criterion [132] based on track
information. This requirement has an efficiency increasing from 85% to 99% for muons with
transverse momentum increasing from 10 GeV to 50 GeV and above. In the τµτhad channel,
the requirement on the muon transverse momentum is further tightened to select events
in which the single-muon trigger operates with very high efficiency. Similarly, in the τeτµ

channel, the requirement is further tightened if the event is accepted by the single-muon
trigger or the electron-muon trigger. Table 2 summarises the requirements used depending
on the data-taking period.

Jets are reconstructed using a particle-flow algorithm [133] from noise-suppressed
positive-energy topological clusters in the calorimeter using the anti-kt algorithm with a

– 8 –
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Trigger signature Data-taking period pT threshold [GeV] used in event selection

Single electron
2015 pT(e) > 25

2016–2018 pT(e) > 27

Single muon
2015 pT(µ) > 21

2016–2018 pT(µ) > 27.3

One electron, one muon 2015–2018 pT(e) > 18, pT(µ) > 14.7

Two τhad-vis 2015–2018
pT(leading τhad-vis) > 40

pT(sub-leading τhad-vis) > 30

Table 2. Transverse momentum thresholds applied to the selected electrons, muons and τhad-vis

depending on the trigger signature and the data-taking period. The pT thresholds of the ATLAS
lowest unprescaled triggers during the Run 2 data-taking are reported in refs. [128–131]. The electron
and muon trigger menu evolution throughout the Run 2 data-taking is discussed in refs. [43, 44].

radius parameter R = 0.4. Cleaning criteria are used to identify jets arising from non-
collision backgrounds or noise in the calorimeters [134], and events containing such jets are
removed. A jet vertex tagger (JVT) [135] is used to remove jets with pT < 60 GeV and
|η| < 2.5 that are identified as not being associated with the primary vertex of the hard
interaction. Similarly, pile-up jets in the forward region are suppressed with a “forward
JVT” [136] algorithm, exploiting jet shapes and topological jet correlations in pile-up
interactions, which is applied to all jets with pT < 60 GeV and |η| > 2.5. Only jets with
pT > 20 GeV are considered.

Jets with pT > 20 GeV and |η| < 2.5 containing b-hadrons are identified using the DL1r
b-tagging algorithm [137, 138]. In the τeτµ and τlepτhad channels, the fixed 85% efficiency
working point is used, while the 70% efficiency working point is used in the τhadτhad channel
(the target efficiencies being measured in simulated tt̄ events). Since the algorithm is used
to veto b-tagged jets, the 70% efficiency working point offers a looser veto criterion which
improves the sensitivity in the τhadτhad channel where the backgrounds from tt̄ events are
less significant. The rejection factors for b-tagged jets initiated by c-quarks and light partons
are 9.4 (2.6) and 390 (29) respectively for the 70% (85%) efficiency working point.

Decays of τhad are composed of a neutrino and a set of visible decay products,
most frequently one or three charged pions and up to two neutral pions and denoted
by τhad-vis. The reconstruction of the τhad-vis is seeded by jets reconstructed using the
anti-kt algorithm [139], using calibrated topological clusters [140] as inputs, with a radius
parameter of R = 0.4 [141]. The jets form τhad-vis candidates and are additionally required
to have pT > 10 GeV and |η| < 2.5. Reconstructed tracks are matched to τhad-vis candidates.
A multivariate discriminant is used to assess whether these tracks are likely to have been
produced by the charged τhad decay products, and is used to reject tracks originating from
other interactions, nearby jets, photon conversions or misreconstructed tracks. The τhad-vis

objects are required to have one or three associated tracks selected by this discriminant.
Their charge (q) is defined as the sum of the measured charges of these associated tracks and
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must have |q| = 1. The τhad-vis objects must also satisfy the requirements pT > 20 GeV and
|η| < 2.47, excluding the region 1.37 < |η| < 1.52. These requirements have an efficiency
of about 85% (70%) for the majority of hadronic τ decays with one (three) associated
tracks measured in simulated Z → ττ events. The τhad-vis energy scale is determined by
combining information from the associated tracks, calorimeter clusters and reconstructed
neutral pions [142] using a multivariate regression technique [141] trained in MC samples.

To separate the τhad-vis candidates produced by hadronic τ decays from those due
to jets initiated by quarks or gluons, a recurrent neural network (RNN) identification
algorithm [143] is constructed employing information from reconstructed charged-particle
tracks and calorimeter energy clusters associated with τhad-vis candidates, as well as
high-level discriminating variables. A separate boosted decision tree discriminant (‘eBDT’)
is also constructed to reject backgrounds arising from electrons misidentified as τhad-vis

(mainly from Z → ee events in the τeτhad channel in this analysis). This discriminant
is built using information from the calorimeter and the tracking detector, most notably
transition radiation information from the TRT system and variables sensitive to the
ratio of the energy deposited in the calorimeter and the visible momentum measured
from the reconstructed tracks. In addition, a very loose requirement on the RNN score
(corresponding to a percent level efficiency loss for signal τhad-vis) is applied, as well as
a dedicated muon veto criterion, designed to reject muons misreconstructed as τhad-vis

(typically due to large calorimeter energy deposits).

In the τhadτhad channel, the reconstructed τhad-vis objects are required to match the
two τhad-vis candidates of the ττ trigger, thus defining the two selected τhad-vis of the event.
In the τlepτhad channel, the τhad-vis candidate with the highest transverse momentum is
the only one kept, and other ones are considered as jets. This minimum requirement is
much looser than the final RNN selection, and leads to a small loss of signal events where a
quark- or gluon-initiated jet is taken as the τhad-vis candidate, quantified to be at the level
of 2.5% (4%) for the ggF (VBF) production process. However, this strategy simplifies the
treatment of the background processes with jets misidentified as τhad-vis. The estimation
of this background relies on a control region defined by inverting the final RNN selection.
Picking a minimum requirement aimed at recovering the majority of this signal efficiency
loss would sacrifice 30% to 40% of the statistical power in the control region, and would
consequently degrade the estimate of this background (see section 5.2).

The τhad-vis objects are further required to fulfil the ‘Medium’ identification criteria in
the signal regions of the τlepτhad and τhadτhad channels, which corresponds to an efficiency
of 75% (60%) for candidates with 1 (3) associated track(s). In the τeτhad channel, for events
where the τhad-vis object has only one associated charged track, the τhad-vis object is required
to pass the ‘Medium’ working point of the eBDT algorithm, which corresponds to an 85%
efficiency for candidates which already satisfy the identification requirement. The transverse
momentum requirement for the τhad-vis objects in the τhadτhad final state is tightened to
select events recorded with the τhad-vis trigger operating at its plateau efficiency, as shown
in table 2. In the τlepτhad final state, the τhad-vis transverse momentum requirement is also
tightened to pT > 30 GeV to improve background rejection.
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Object to remove Object to keep Criteria

electron electron If they share the same track,
the electron with the highest
transverse momentum is kept.

τhad-vis electron If ∆Ry < 0.2, the electron is
kept.

τhad-vis muon If ∆Ry < 0.2, the muon is
kept.

electron muon If they share a track, the
electron is removed if the
muon is associated with
a signature in the muon
spectrometer, otherwise the
muon is removed.

jet electron Any jet within ∆Ry = 0.2 of
an electron is removed.

jet muon Any jet within ∆Ry = 0.2 of a
muon is removed if it has fewer
than three associated tracks.

electron jet Any electron within ∆Ry =

0.4 of a jet is removed.

muon jet Any muon within ∆Ry = 0.4

of a jet is removed.

jet τhad-vis Any jet within ∆Ry = 0.2 of
a τhad-vis is removed.

Table 3. Criteria applied to overlapping reconstructed objects. The criteria are listed in the order
they are applied.

The reconstructed objects used in this analysis are not built from disjoint sets of
tracks or calorimetric clusters. It is therefore possible that two different objects share most
of their constituents. An overlap removal procedure is applied to resolve this ambiguity.
This procedure is summarised in table 3. It uses a definition of angular distance, ∆Ry =
√

(∆y)2 + (∆φ)2, that is based on the rapidities y of the objects.

The missing transverse momentum vector, ~Emiss
T , is reconstructed as the negative vector

sum of the transverse momenta of leptons, τhad-vis and jets, and a “soft-term”. The soft-term
is calculated as the vectorial sum of the pT of tracks matched to the primary vertex but
not associated with a reconstructed lepton, τhad-vis or jet [144]. The magnitude of ~Emiss

T is
referred to as the missing transverse momentum, Emiss

T .
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4.2 Event selection

Events are selected if they contain a H → ττ candidate in one of the final states under
study (τeτµ, τlepτhad, τhadτhad).

The Higgs boson candidate is formed by the vector momentum sum of the visible
τ -lepton decay products and ~Emiss

T . Its invariant mass (mMMC
ττ ) is calculated using an

advanced likelihood-based technique, the Missing Mass Calculator (MMC) [145], which
relies on information about the τ -lepton candidate momenta, the presence of additional
jets, ~Emiss

T and the type of τ -lepton decay. The addition of information about the number
of reconstructed charged and neutral pions [142] in hadronic decays of the τ -leptons in
new parameterisations for the likelihood function derived using Z → ττ MC events are
improvements with respect to ref. [22] and lead to a 1% absolute improvement on the width
of the reconstructed mass distribution.

For each channel a series of selection criteria are applied to enhance the sensitivity
to the SM Higgs boson signal and ensure a robust estimate of the invariant mass of the
reconstructed τ+τ− system. These are summarised in table 4.

In the τeτµ channel, events must have a single reconstructed electron and a single
reconstructed muon satisfying the criteria discussed in section 4.1. In order to reject events
coming from W+jets, Z+jets and top processes,8 the charges of the two reconstructed
leptons must be of opposite sign, the invariant mass of the eµ system (meµ) must be between
30 GeV and 100 GeV, and the collinear mass9 (mcoll

ττ ) must be greater than (mZ − 25 ) GeV.
This last criterion ensures the selected dataset does not include any event considered in
the signal regions of the ATLAS measurements of the H → WW ∗ process discussed in
ref. [147]. To further reduce backgrounds from top processes, events with a b-tagged jet
are rejected. In addition, angular requirements are placed on ∆Reµ and |∆ηeµ|. Finally, a
pT > 40 GeV requirement is applied to the leading jet in the event to suppress backgrounds,
as the signal final states considered include at least one high-pT jet.

In the τlepτhad channel, events must have a single reconstructed light lepton and a single
reconstructed τhad-vis satisfying the criteria discussed in section 4.1. In order to reject events
coming from W+jets and top processes, the charges of the reconstructed light lepton and
the reconstructed τhad-vis must be of opposite sign. The transverse mass of the lepton+Emiss

T

system (mT) is required to be smaller than 70 GeV in order to efficiently suppress W+jets
processes. To further reduce backgrounds from top processes, an explicit requirement is
imposed to reject events with a b-tagged jet. In addition, angular requirements are placed
on ∆Rℓτhad-vis

and |∆ηℓτhad-vis
|. The requirement on the leading jet transverse momentum in

the event is the same as for the τeτµ channel.
In the τhadτhad channel, events must have exactly two reconstructed τhad-vis objects

satisfying the criteria discussed in section 4.1. In order to maintain low thresholds for
the pT of the τhad-vis, additional criteria for the angular separation of the two τhad-vis

8
In the following, ‘top processes’ in the text (‘Top’ in tables and figures) collectively refer to single and

pair production of top quarks.
9
The ττ mass reconstructed in the collinear approximation assumes that the neutrinos from the τ -lepton

decays propagate in the same direction as the visible decay products and that the missing transverse

momentum is caused solely by those neutrinos [146].
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Criteria τeτµ τlepτhad τhadτhad

τeτhad τµτhad

N(e) 1 1 0 0

N(µ) 1 0 1 0

N(τhad-vis) 0 1 1 2

N(b-jets) 0 (85% WP) 0 (85% WP) 0 (85% WP) 0 (70% WP)

(≥ 1 or 2 in ttH categories)

pT(e) [GeV] > 15 to 27 > 27

pT(µ) [GeV] > 10 to 27.3 > 27.3

pT(τhad-vis) [GeV] > 30 > 40, 30

Identification e/µ: Medium e/µ/τhad-vis: Medium τhad-vis: Medium

Isolation e: Loose, µ: Tight e: Loose µ: Tight

Charge Opposite charge

Emiss
T [GeV] > 20

Kinematics
mcoll

ττ > (mZ − 25) GeV mT < 70 GeV

30 GeV < meµ < 100 GeV

Leading jet pT > 40 GeV pT > 70 GeV, |η| < 3.2

Angular
∆Reµ < 2.0 ∆Rℓτhad-vis

< 2.5 0.6 < ∆Rτhad-visτhad-vis
< 2.5

|∆ηeµ| < 1.5 |∆ηℓτhad-vis
| < 1.5 |∆ητhad-visτhad-vis

| < 1.5

Coll. app. x1/x2

0.1 < x1 < 1.0 0.1 < x1 < 1.4 0.1 < x1 < 1.4

0.1 < x2 < 1.0 0.1 < x2 < 1.2 0.1 < x2 < 1.4

Table 4. Summary of the event selection for all sub-channels. The electron and muon pT thresholds
correspond to the 2016–2018 dataset. In the τeτµ channel, events recorded with the electron trigger
must satisfy pT(e) > 27 GeV and pT(µ) > 10 GeV, events recorded with the muon trigger must
satisfy pT(e) > 15 GeV and pT(µ) > 27.3 GeV, and events recorded with the electron-muon trigger
must satisfy pT(e) > 18 GeV and pT(µ) > 14.7 GeV. Thresholds for the 2015 dataset are given in
table 2. The b-veto requirement in the τhadτhad channel is not applied in the tt(0ℓ)H → τhadτhad

category. The quantities x1 and x2 are the momentum fractions carried by the visible decay products
of the two τ -leptons in the collinear approximation, as described in the text.
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and the presence of an additional jet in the event were added to the lowest unprescaled
ττ trigger during the Run 2 data-taking. The additional criteria were imposed on the
regions-of-interest (ROI) defining the τhad-vis candidates at the L1 trigger. In order to ensure
that the ROIs of the two reconstructed τhad-vis do not have overlapping cores, the criterion
∆Rτhad-visτhad-vis

> 0.6 is applied. The extra-jet trigger criterion mentioned above translates
into a requirement on the presence of at least one jet with |η| < 3.2 and pT greater than
70 GeV. Similarly to the τeτµ and τlepτhad channels, the charges of the two reconstructed
τhad-vis must be of opposite sign in order to reject events coming from W+jets and top
processes. Events with b-tagged jets are rejected, except for the tt(0ℓ)H → τhadτhad signal
region (see next section 4.3).

Finally, criteria concerning Emiss
T and the fraction of the τ -lepton’s momentum carried

by its visible decay products, computed with the ~Emiss
T components decomposed into the

collinear approximation (defined as x1 and x2 for leading and sub-leading reconstructed
visible τ -lepton candidates respectively) are applied to improve the invariant mass estimation
in the three channels.

Assuming SM predictions, about 2920 H → ττ events (330, 1410, and 1180 events in
the τeτµ, τlepτhad, and τhadτhad channels respectively) are expected to be reconstructed and
satisfy the event selection from the ≈ 440 · 103 H → ττ events that were produced with
|yH | < 2.5 during the LHC Run 2. In data, 204 442 events are selected.

4.3 Event categorisation

The categorisation of selected events targets the four dominant Higgs boson production
modes (see section 1), uses their unique and characteristic signatures and is designed to
closely match the production bins within the stage 1.2 of the STXS framework. Bins of the
full stage 1.2 scheme are merged to match the available sensitivity of the selected H → ττ

events. Both the STXS bins and the event categories are illustrated in figure 1.
Requirements on the reconstructed Higgs boson transverse momentum, pT(H), and on

properties of additional jets are described in the following. Events in the VBF, V(had)H and
tt(0ℓ)H → τhadτhad categories are further split with BDT taggers into two subcategories,
the first (suffixed _1) with enhanced signal fractions and the second (suffixed _0) containing
the remaining events. All taggers are designed inclusively for all ττ decay modes and the
variables are chosen to avoid any potential bias in the mMMC

ττ distribution. For each tagger,
this is verified by comparing templates of the mMMC

ττ distribution for signal and background
processes between the relevant subcategories. The taggers are described in the following
and their input variables are listed in table 5.

tt(0ℓ)H → τhadτhad categorisation. The final state targeted in the tt(0ℓ)H → τhadτhad

category includes six jets and two of these jets are initiated by the hadronisation of a b-quark.
However, to enhance the signal acceptance, the selection allows exactly one of these two
numbers to be off by one unit. Therefore, the event selection in the tt(0ℓ)H → τhadτhad

category requires the presence of either six jets with pT greater than 20 GeV including at
least one b-tagged jet or five jets including at least two b-tagged jets. The events satisfying
these criteria are not considered by the analysis reported in ref. [34].
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Variable VBF V(had)H ttH vs tt̄ ttH vs Z → ττ

Je
t

pr
op

er
ti

es

Invariant mass of the two leading jets • •
pT(jj) • •
Product of η of the two leading jets •
Sub-leading jet pT •
Leading jet η •
Sub-leading jet η •
Scalar sum of all jets pT • •
Scalar sum of all b-tagged jets pT •
Best W -candidate dijet invariant mass • •
Best top-quark-candidate three-jet invariant mass • •

A
ng

ul
ar

di
st

an
ce

s

∆φ between the two leading jets •
∆η between the two leading jets • •
∆R between the two leading jets •
∆R(ττ, jj) •
∆R(τ, τ) • •
Smallest ∆R (any two jets) •
|∆η(τ, τ)| • •

τ
pr

op
. pT(ττ) •

Sub-leading τ pT •
Sub-leading τ η •

H

ca
nd

.

pT(Hjj) • •
pT(H)/pT(jj) •

~ E
m

is
s

T

Missing transverse momentum E
miss
T • • •

Smallest ∆φ (τ, ~E
miss
T ) •

Table 5. Variables used in the four multivariate taggers employed in the analysis. For each tagger,
the presence or absence of a • indicates whether the variable is used or not. The symbol τ stands
for any reconstructed τ -lepton candidate (electron, muon or τhad-vis) as appropriate in each channel.
The symbols ττ and jj indicate the vectorial sums of the momenta of two visible τ -lepton candidates
and of the two leading jets, respectively. The Higgs boson candidate H is formed by the vector
sum of the two τ -lepton candidates’ momenta and ~E

miss
T . The W candidate is built as the pair of

non-b-tagged jets in the event with invariant mass closest to mW . The top-quark candidate is built
as the system of the W candidate and a b-tagged jet in the event with invariant mass closest to mtop.
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The signal-enhancing separation in this category uses two BDTs: one BDT is optimised
to enhance tt̄H signal events over Z → ττ background events, while the second BDT
is optimised to enhance tt̄H signal events over tt̄ background events. A variety of two-
dimensional combinations of requirements on the two BDT scores were studied, using
the expected counting-experiment statistical significance,10 including an estimate of the
systematic uncertainties in the background normalisations, as an estimator for their
performance; none was found to outperform a simple rectangular requirement in the plane
formed by the two BDT scores, and this was the requirement ultimately selected. Of all Higgs
boson events selected in the ttH_0 (ttH_1) categories 74% (92%) are due to the tt̄H process.

All other event categories in the τhadτhad channel require that no b-tagged jets with
pT > 20 GeV and |η| < 2.5 are present.

VBF categorisation. The VBF categories are designed to select Higgs bosons produced
from the fusion of two vector bosons emitted by two quarks of the colliding protons. The
scattered quarks give rise to two high-pT jets with a large rapidity gap and therefore large
invariant mass mjj . This signature allows VBF events to be experimentally distinguished
from the other Higgs production modes and Z → ττ events.

To match the STXS qq → H particle-level pjet
T requirement and mjj binning, events

selected in the VBF categories must have mjj > 350 GeV and pT of the sub-leading jet
greater than 30 GeV. Additional selection criteria are applied to enhance the VBF Higgs
production mode relative to the Z → ττ background. The product of the pseudorapidities
of the two leading jets (η(j0) × η(j1)) is required to be negative (i.e. jets must be in opposite
hemispheres of the detector). The absolute difference in pseudorapidity (|∆ηjj |) is required
to be greater than 3. Finally, the visible decay products of the τ -leptons are required to be
reconstructed in the rapidity gap between the VBF jets.

The VBF tagger is optimised by treating both the ggF H → ττ and Z → ττ events as
backgrounds and relies solely on observables based on the kinematics of the two leading
jets (see table 5). While the expected contribution from ggF H → ττ events is small, the
considerably larger theoretical uncertainty associated with its cross-section prediction in
this kinematic phase space can significantly enlarge the systematic uncertainty of the VBF
production cross-section measurement.

The BDT score requirement used to define the categories was optimised to give the
smallest uncertainty in the VBF cross-section, and provides a selection where the fraction
of VBF events among all Higgs boson events is about 94% (63%) in the VBF_1 (VBF_0)
region.

V(had)H categorisation. To match the STXS qq → V (→ qq)H particle-level pjet
T

requirement and mjj binning, events selected in the V(had) categories must satisfy 60 GeV <

mjj < 120 GeV and pT of the sub-leading jet greater than 30 GeV.
The V(had)H tagger was trained by treating all Higgs events produced by processes

other than V H as background. The BDT score requirement used to define the two categories
was optimised to give the smallest uncertainty for the V(had)H cross-section, and provides

10
The “Poisson-Binomial model” in ref. [148].
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Njets(pT > 30 GeV)
pT(H) bins in GeV

[100, 120] [120, 200] [200, 300] [300, ∞[

Exactly 1 boost_0_1J boost_1_1J
boost_2 boost_3

At least 2 boost_0_ge2J boost_1_ge2J

Table 6. Definition of the six categories in the boosted phase space.

a selection where the expected fraction of V(had)H among all Higgs boson events is 66%
(24%) in the VH_1 (VH_0) category.

Boost categorisation. Events failing to meet the criteria of the VBF, V(had)H and ttH
categories but having high-pT Higgs candidates are considered for the ‘boost’ categories
targeting ggF events with large Higgs boson transverse momentum. The reconstructed Higgs
boson transverse momentum, pT(H), is determined from the Higgs boson candidate defined
by the vectorial sum of the momenta of the visible decay products of the τ -leptons and
~Emiss

T . Events in the boost category must satisfy pT(H) > 100 GeV. To match the STXS
gg → H particle-level requirements, events are further categorised by pT(H) value and by
the total number of jets with pT greater than 30 GeV (Njets(pT > 30 GeV)). Events with
pT(H) < 200 GeV are separated into 1-jet and ≥2-jet categories, while for pT(H) > 200 GeV

events with at least one jet are considered without further jet-multiplicity separation of the
events. Table 6 describes the boost phase-space categorisation.

The three analysis channels are therefore split into six kinematic categories in the
boost phase space for a total of eighteen categories in the fit performed for the cross-section
measurement.

Summary. Nine bins of the STXS framework are targeted in the measurement presented
in this paper and are illustrated in figure 1. The expected signal yields for each of these
bins is presented in figure 2(a), while figure 2(b) illustrates the relative population of these
nine bins in each reconstruction category described in this section. Events selected in
each reconstruction category are used to build templates of the mMMC

ττ variable for each
of the nine bins. As illustrated in figure 2, ggF events produced with pT(H) < 200 GeV
and two additional jets forming a system with mjj > 350 GeV are mainly reconstructed
in the VBF_0 category (61%) and the boost_1_ge2J category (36%). It is difficult to
select these events in only a single category but through the simultaneous usage of all
the categories, their production rate can be measured. In contrast, the reconstructed ggF
event candidates satisfying 60 GeV < pT(H) < 120 GeV are further separated into those
produced with a single jet (boost_0_1J) and those produced with two jets forming a system
with mjj < 350 GeV (boost_0_ge2J). However, the categorisation does not provide enough
sensitivity to measure these two contributions individually and they are therefore combined.
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Figure 2. (a) Expected H → ττ signal yield in each of the reconstructed-event categories of the
analysis (y-axis) for each of the nine measured STXS bins (x-axis). (b) Relative contribution of each
of the nine measured STXS bins to the total H → ττ signal expectation in each reconstructed-event
category. The spades symbol (♠) indicates that the criteria for mjj only apply to events with at least
two reconstructed jets. Yields are summed over the three ττ decay channels (τeτµ, τlepτhad, τhadτhad).
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5 Background modelling

The expectations from SM processes other than the H → ττ signal in the phase space of the
analysis are evaluated using a mixture of simulations and data-driven techniques. Processes
with τhad-vis, prompt light leptons or light leptons from τ -lepton decays are estimated
through simulations. Among these, Z(→ ττ) + jets and top processes are dominant, and
dedicated control regions are employed to validate the simulations of both processes and to
constrain their normalisation in the signal regions. For the Z(→ ττ) + jets background, a
control region enriched in Z(→ ℓℓ) + jets events is defined as described in section 5.1. In
the τeτµ and τlepτhad channels, control regions enriched in top-induced processes are defined
by replacing the b-jet veto from the event selection (see table 4) with a requirement of at
least one b-tagged jet.

Using these control regions, the templates of the mMMC
ττ observable from the simulations

are checked in each event category (see section 4.3). Very good agreement with the data is
observed.

Smaller background contributions are due to diboson, Z(→ ℓℓ) + jets and H → WW ∗

processes. They are normalised to their theoretical expectations. Contributions from light-
and heavy-flavour jets misidentified as electrons, muons or τhad-vis, as well as non-prompt
electrons or muons, collectively referred to as misidentified τ background, are estimated
using data-driven techniques. Their estimation is detailed in section 5.2.

Figure 3 illustrates the measured composition of the selected events in each category of
the analysis.
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Figure 3. Relative contribution of each process to the total measured yields in each category of the
analysis for the (a) τhadτhad, (b) τlepτhad and (c) τeτµ channels, within 100 GeV< m

MMC
ττ < 150 GeV.

‘Other backgr.’ includes diboson and H → WW
∗ processes.
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5.1 Z → ττ background modelling using Z → ℓℓ events

Events from the Z(→ ττ) + jets process form the dominant source of background in this
measurement. They account for 79% of the background across all signal regions, and up
to 90% of the background in the most boosted regime investigated in the analysis. They
are estimated using MC simulations validated with data. The predictions from these MC
simulations are corrected using dedicated control regions based on the Z(→ ℓℓ) + jets
process with kinematic properties of the events similar to those of the corresponding signal
regions as explained in the following.

In order to mimic as well as possible the boson kinematics and the associated production
of jets in Z(→ ττ) + jets events selected in the signal regions, the selected Z(→ ℓℓ) + jets
events are modified through a simplified implementation of the embedding procedure. The
kinematic properties of the boson are reconstructed with a much better resolution in the
Z → ℓℓ decay channel than in the Z → ττ one due to the absence of neutrinos and the
excellent momentum resolution of the ATLAS detector for electrons and muons. While the
original method presented in refs. [36, 37] relied on substituting the detector signatures of the
objects before re-reconstructing the event, the simplified embedding consists of a rescaling of
the transverse momentum of each reconstructed lepton through parameterisations, followed
by a recomputation of all the relevant kinematic quantities in the analysis. The method
used entails a significant reduction of complexity.

Embedding techniques are of particular interest in this analysis, where no statistically
significant study of the Z(→ ττ) + jets background can be performed in data without
looking at the signal regions. In this context, the simplified embedding can be applied to
data events passing the Z(→ ℓℓ) + jets selection, thus obtaining a Z → ττ control region
that is orthogonal to the signal region. This control region can also be used to measure the
Z → ττ normalisation in a phase space relevant to this measurement.

The Z(→ ℓℓ) + jets events are selected using the single-lepton triggers and are required
to have exactly two electrons or two muons with opposite charge. The selected electrons and
muons must satisfy the identification and isolation criteria defined in table 4. Additionally,
the invariant mass of the dilepton system must be above 80 GeV. The selected sample
contains about 9.3·106 data events and 99% of them are expected to come from Z(→ ℓℓ)+jets
processes. A small contribution from diboson and top processes with two electrons or two
muons in the final state is also expected and the embedding procedure is also applied to
them. Contributions from processes with jets misidentified as leptons were found to be
negligible. Selected events in data and simulation are then randomly separated into three
subsets to provide a statistically independent control region for each of the τeτµ, τlepτhad

and τhadτhad signal regions.

Weights derived in simulations are applied to each event to remove the kinematic biases
and normalisation effects introduced by the electron and muon trigger, reconstruction,
identification, and isolation algorithms. The four-vectors of the reconstructed electrons
and muons are used to pair each lepton in the Z(→ ℓℓ) + jets event with a scaling term,
which parameterises the effects of τ -lepton decay kinematics and of the energy calibration
algorithms for τ -leptons with similar four-vectors. The scaling term is derived as a function
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of the transverse momentum and the pseudorapidity of the τ -lepton before it decays.
The original four-vectors of the electrons and muons are scaled using this term so that
they match those of the visible reconstructed decay products of either leptonically or
hadronically decaying τ -leptons. The Z(→ ℓℓ) + jets event yields are then reweighted to
account for the expected efficiencies of the reconstruction, identification and calibration
steps for the visible τ decay products.

The per-lepton weights assume collinearity of the τ -lepton and its visible decay products
and cannot take into account any correlation between the boson decay products. All event
variables used in the signal region definitions are recalculated using the kinematics of the
new final-state physics objects, and a weight is applied to each event to account for the
expected trigger efficiency associated with these objects. The implementation of the new
embedding procedure is validated by comparing Z → ℓℓ simulated events, after applying
this procedure, with Z → ττ simulations, where both the kinematic and spin-correlation
effects are modelled correctly. Figure 4 shows good agreement between the distributions
of the two samples for two illustrative cases and indicates that the assumptions made in
calculating the weights have negligible impact on the relevant observables.

All uncertainties affecting the reconstructed physics objects used in embedding are
propagated through the full procedure, including those associated with the parameterisations.
Dedicated uncertainties affecting each control region are assigned to account for the
differences in modelling observed between the Z → ττ and embedded Z → ℓℓ MC predictions,
which are expected to come from approximations associated with the simplified embedding
procedure. These uncertainties are derived by studying the change in the data-to-simulation
normalisation factors as events are moved between different control regions to cover the
observed acceptance mismodeling. They are found to be at the 1% level and cover for the
residual non-closure observed in figure 4.

Distributions for this control region, and a comparison with the embedding of all the
simulated background processes, are shown in figure 5. The observed discrepancies are
consistent with the results reported in dedicated measurements of the Z+jets processes [149,
150]. The impact of this mismodelling on the analysis is alleviated by the use of control
regions mimicking the event selection criteria after the embedding procedure is applied to
data and simulated events.

– 23 –







J
H
E
P
0
8
(
2
0
2
2
)
1
7
5

5.2 Data-driven estimate of misidentified τ processes

Processes with at least one jet misidentified as an electron, muon or τhad are collectively
referred to as misidentified τ background. They account for a fraction of the total background
ranging from 5% to 25%, with less importance in the more boosted categories. They are
evaluated in a similar fashion in the three channels of the analysis. First, data events are
selected using the same criteria as for the SRs with the exception of the criteria for electron
or muon identification and isolation and the criteria for τhad-vis identification. These criteria
are loosened or inverted depending on the specific methodology used in each channel. Then,
transfer factors are computed in dedicated control regions. These factors are used to correct
for the kinematic and normalisation differences between the events with altered isolation or
identification criteria and the SRs.

In the τeτµ channel, the misidentified τ background is estimated using the matrix-
method technique [151]. Data events are selected by removing the lepton isolation criteria
from the nominal selection, and loosening the identification criteria for electrons. The
expected number of fake leptons in the SR is computed from a system of equations relating
the efficiencies for real (ǫr) and fake leptons (ǫf) to the observed event yields. The efficiencies
are estimated separately for electrons and muons and are parameterised as a function of the
pT and η of the leptons. The real-lepton efficiencies ǫr are estimated using simulations, while
the fake-lepton efficiencies ǫf are measured using data events selected to have two leptons of
the same charge. For the latter, the contribution from events with real leptons is subtracted
using MC simulations; they account for approximately 35% of the 1333 selected events.

Dedicated uncertainties estimated for these predictions account for: statistical
uncertainties in the derived efficiencies (∼10%), dependencies of ǫf on the numbers of jets and
b-tagged jets in the final state (∼35%), the dependency of ǫr on whether they are measured in
tt̄, Z(→ ℓℓ)+ jets or Z(→ ττ)+ jets events (∼15%), and the uncertainty associated with the
normalisation of the contribution from real leptons during the measurement of ǫf (∼15%).

In the τlepτhad channel, the misidentified τ background refers to events with a jet
misidentified as a τhad-vis. Contributions with a real τhad and a jet misidentified as an
electron or a muon are estimated from simulations to be negligible. The misidentified τ

background is evaluated using the fake-factor technique [152]. Data events are selected if
they satisfy a very loose requirement on the τhad-vis identification score but do not satisfy
the ‘Medium’ working point criteria (such events are ‘reverse-identified’). All other criteria
of the nominal selection of the τlepτhad channel are applied. Residual contributions from
processes with real τhad-vis satisfying this requirement are evaluated using simulations and
subtracted accordingly. They account for approximately 18% of the 136 500 selected events.

The distribution of the misidentified τ background component in the SR is obtained by
multiplying the contribution of the data events selected by the reverse-identified criterion
with a fake factor defined as the ratio of misidentified τhad-vis that respectively pass or fail
the ‘Medium’ working point of the τhad-vis identification algorithm. These fake factors are
parameterised as a function of the pT and track multiplicity of the τhad-vis. Two sets of fake
factors are derived in separate regions and then combined for the final estimate. The first set
is derived in a region enriched in W+jets processes obtained by inverting the SR criterion
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for mT (see table 4). The second set is derived in a control region enriched in QCD multijet
processes obtained by inverting the isolation criteria for the selected electron or muon. An
estimate of the fraction of events expected to originate from QCD multijets is used to
determine the relative weighting of both sets of fake factors; it is parameterised as a function
of the pT and η of the τhad-vis candidate. This estimate is obtained by scaling the number of
events in the second control region by the ratio of events where the light lepton respectively
fails or passes the isolation requirements, measured in another QCD-multijet-enriched region
where the τlep and τhad have the same charge.

Uncertainties in the fake factors are estimated, and account for statistical uncertainties
in the fake factors and their relative weighting (∼15%), for uncertainties associated with
the subtraction of the residual contributions from processes with real τhad (∼10%), and
for uncertainties in the flavour composition (∼10%), taken from comparisons between the
predicted and observed backgrounds in a dedicated validation region.

In the τhadτhad channel, the misidentified τ background is also determined using a
fake-factor approach. The method differs slightly from the one used in the τlepτhad channel:
the fake factors are parameterised to simultaneously account for processes with one or
two jets misidentified as τhad-vis. Additionally, the reconstructed τhad-vis candidates are
matched to their high-level-trigger counterparts. The fake factors are estimated in the
W+jets-enriched region defined for the τlepτhad channel, but with the addition of the
trigger-matching requirement in the τhad-vis definition.

Two alternative sets of fake factors are computed in control regions defined with
two τhad-vis. The first alternative set is derived by inverting the requirement on the
∆η(τhad-vis, τhad-vis) variable with respect to the signal region. The second is derived by
requiring the charges of the two τhad-vis to have the same sign. The difference between
these two alternative sets and the nominal fake factors derived in the W+jets-enriched
control region is used to estimate the uncertainty in the composition of the misidentified
τ background (∼15%). Two additional uncertainties in the misidentified τ background
estimate in the τhadτhad channel are considered: the statistical uncertainty of the fake-factor
calculation (∼15%), and uncertainties related to the parameterisation choice for the fake
factors (∼5%).

In the τeτµ and τlepτhad channels, the analysis employs control regions enriched in top
processes. In these control regions, heavy-flavour jets misidentified as electrons or muons
represent 70% to 80% of the expected contributions for the τeτµ channel, while for the
τlepτhad channel about 25% of misidentified τhad-vis originate from heavy-flavour jets. To
estimate these contributions, the data-driven estimate described above is repeated with the
b-jet veto replaced by a b-tagged jet requirement to mimic the control region selection.

The modelling of the misidentified τ background was validated in dedicated regions
for each channel. In the τhadτhad channel, the validation region selects events with
∆η(τhad-vis, τhad-vis) > 2.0. In the τlepτhad channel, the validation region contains events
with a light lepton and τhad-vis of the same charge. Finally, events with same-charge leptons
are used as the validation region for the τeτµ channel. Figure 6 illustrates the modelling of
the misidentified τ background in the validation region for each channel. Good agreement
between the observed data and the prediction is seen in all cases.
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Figure 6. Validation of the data-driven estimate of the processes with jets misidentified as τhad-vis in
the VBF categories: (a) events with ∆η(τhad-vis, τhad-vis) > 2.0 in the τhadτhad final state, (b) events
with a light lepton and τhad-vis of the same charge in the τlepτhad channel, and (c) events with same-
charge leptons in the τeτµ final state. The hashed band represents the statistical uncertainty due to
the limited size of the simulated samples and the systematic uncertainty of the data-driven estimate.
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Source of uncertainty
Impact on ∆σ / σ(pp → H → ττ) [%]

Observed Expected

Theoretical uncertainty in signal 8.7 8.5

Jet and ~Emiss
T 4.5 4.2

Background sample size 4.0 3.7

Hadronic τ decays 2.1 2.1

Misidentified τ 2.0 2.0

Luminosity 1.8 1.8

Theoretical uncertainty in Z+jets processes 1.7 1.2

Theoretical uncertainty in top processes 1.1 1.1

Flavour tagging 0.4 0.5

Electrons and muons 0.4 0.4

Total systematic uncertainty 12.0 11.4

Data sample size 7.2 6.7

Total 13.9 13.2

Table 7. Summary of the different sources of uncertainty in decreasing order of their impact on
σ(pp → H → ττ). Their observed and expected fractional impacts, both computed by the fit,
are given, relative to the σ(pp → H → ττ) value. Experimental uncertainties for reconstructed
objects combine efficiency and energy/momentum scale and resolution uncertainties. Background
sample size includes the bin-by-bin statistical uncertainties in the simulated backgrounds as well as
statistical uncertainties in misidentified τ backgrounds, which are estimated using data.

6 Systematic uncertainties

Systematic uncertainties affect the yields in the various signal and control regions as well
as the distribution shape of the main fit observable (mMMC

ττ ). They can be assigned to
three main groups: the experimental uncertainties, the theoretical uncertainties for the
backgrounds and the theoretical uncertainties for the signal. They are detailed in the
following sections. Their impact on the measured pp → H → ττ cross-section is summarised
in table 7. Systematic uncertainty sources are parameterised in the statistical analysis using
nuisance parameters with Gaussian priors (see section 7).

6.1 Experimental uncertainties

In addition to the object misidentification rate already discussed in section 5.2, experimental
systematic uncertainties include those on the trigger, reconstruction, identification and
isolation efficiencies for the final-state particle candidates, and their energy scale and
resolution. These uncertainties affect the shape of the mMMC

ττ distribution, the background
yields and the signal cross-section through their effects on the acceptance and the migration
between different event categories.
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The dominant experimental uncertainties in the measurement of the pp → H → ττ

cross-section are related to the jet energy scale and resolution, to the τhad-vis candidate
identification and energy scale, and to the object misidentification rates, as shown in table 7.
The uncertainties related to the reconstruction and identification of electrons and muons
and the jet b-tagging efficiency have only a minor impact on the measurement.

The jet energy scale uncertainty consists of components related to the in situ calibration
of jets as well as pile-up, the extrapolation to higher transverse momentum, and uncertainties
related to the different responses to quark- and gluon-initiated jets. The latter is of particular
importance and covers both the uncertainties in the response of the detector to particular
jet flavours and the uncertainty in the response due to the unknown fractions of quark-
and gluon-initiated jets within the sample. The jet energy scale uncertainty for central jets
(|η| < 1.2) varies from 1% for a wide range of jet pT (250 GeV < pT < 2000 GeV), to 5%
for very low pT jets (20 GeV) and 3.5% for very high pT jets (> 2.5 TeV). The relative jet
energy resolution is measured in a dedicated analysis [153] and ranges from (24 ± 5)% at
20 GeV to (6 ± 0.5)% at 300 GeV.

The uncertainties in the τhad-vis identification efficiency are in the range of 2% to
6%, while the trigger efficiency and the eBDT efficiency uncertainties are of the order
of 1% to 1.5% and 1% to 2%, respectively. All these uncertainties are parameterised as
a function of the τhad-vis pT and number of associated tracks (identification and trigger
efficiency) or τ decay mode (eBDT efficiency). As this analysis is highly sensitive to the
τhad-vis reconstruction efficiency uncertainty due to the introduction of the Z → ℓℓ control
regions, this efficiency is left as a free parameter in the fit and measured in situ; the
associated uncertainty is found to be at the 2% level. For the τhad-vis energy scale, the total
uncertainty is in the range of 1% to 4%, arising from a combination of measurements: a
direct measurement with Z → ττ → µτhad-vis + 3 ν events, measurements of the calorimeter
response to single particles, and comparisons between simulations using different detector
geometries or Geant4 physics lists. This uncertainty is also parameterised as a function of
the τhad-vis pT and number of associated tracks [141].

All of the above uncertainties affecting the different hard objects are propagated through
the ~Emiss

T calculation. Additional uncertainties associated with the scale and resolution of
the soft-term of the ~Emiss

T [144] are also considered.
The luminosity uncertainty is considered only for the background samples whose

normalisations are not determined in data (diboson, Z → ℓℓ, non-(H → ττ) Higgs) and to
derive the signal cross-sections from the measured yields. The uncertainty in the combined
2015–2018 integrated luminosity is 1.7% [154], obtained using the LUCID-2 detector [155]
for the primary luminosity measurements.

6.2 Background theoretical uncertainties

Theoretical uncertainties are considered for the two main background contributions in this
analysis: Z+jets and tt̄. The normalisation of these backgrounds is determined in the fit to
the data in the signal and control regions (see section 7). The theoretical uncertainties of
Z+jets and tt̄ are therefore parameterised to account for the migration across the analysis
regions and to account for their impact on the mMMC

ττ templates in each region.
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For Z+jets, uncertainties were considered for renormalisation (µr), factorisation (µf)
and resummation scale (µq) variations, for the jet-to-parton matching scheme (CKKW),
for variations in the choice of αs value, and for the choice of PDFs. Uncertainties from
missing higher orders were evaluated [156] using six variations of the QCD µr and µf scales
in the matrix elements by factors of 0.5 and 2, avoiding the extreme variations in opposite
directions. Uncertainties in the nominal PDF set were evaluated using 100 replica variations;
an uncertainty is derived in each bin of the mMMC

ττ templates by evaluating the ±1σ spread
of the 100 replica variations. The effect of the uncertainty in the strong coupling constant αs

was assessed by variations of ±0.001. The resummation scale uncertainties were estimated
using generator-level parameterisations derived from samples with µq varied by factors of 2
and 0.5 from its nominal value. Similarly, the jet-to-parton matching uncertainties were
estimated using generator-level parameterisations derived from samples with the CKKW
parameter set to 15 GeV and 30 GeV, compared to the nominal value of 20 GeV.

For tt̄, uncertainties were considered for the choice of matrix element and parton
shower generators, the choice of model for initial- and final-state radiation (ISR and FSR
respectively), and the choice of PDFs. The uncertainty due to ISR was estimated by
simultaneously varying the hdamp parameter and the µr and µf scales, and propagating the
αs uncertainties through the Var3c parameter of the A14 tune as described in ref. [157].
The impact of FSR was evaluated by varying the µr scale for emissions from the parton
shower by factors of 2 and 0.5. The impact of using a different matrix element was
evaluated by comparing the nominal tt̄ sample with an event sample produced using
MadGraph5_aMC@NLO 2.6.0 instead of Powheg Box v2 but keeping the same parton
shower model. The impact of using a different parton shower and hadronisation model
was evaluated by comparing the nominal tt̄ sample with an event sample which was
interfaced with Herwig 7.04 [158, 159] instead of Pythia 8 and used the H7UE set of
tuned parameters [159] and the MMHT2014lo PDF set [160].

The NNPDF3.0lo replicas were used to evaluate the PDF uncertainties for the nominal
PDF. For both Z+jets and tt̄, the central value of the PDF was additionally compared
with the central values of the CT14nnlo [161] and MMHT2014nnlo [160] PDF sets.

Theory uncertainties in Z+jets and tt̄ predictions represent a sub-leading contribution,
compared to signal theoretical uncertainties and experimental uncertainties (see table 7).

For renormalisation and factorisation scale variations and PDF uncertainties, their
impact on the extrapolation factor between each SR and its corresponding Z → ℓℓ control
region, and on the shape of the mMMC

ττ distribution, is treated as uncorrelated across the
different categories. This choice is driven by the structure of the statistical analysis, which
employs a dedicated control region to constrain the Z+jets prediction in each signal region.

6.3 Signal theoretical uncertainties

Signal theoretical uncertainties are the dominant source of uncertainty for this analysis.
For each signal process, several sources of uncertainty are considered, including the
uncertainty in the total inclusive cross-section (evaluated only for the pp → H → ττ

cross-section measurement), the parton-shower and hadronisation model effect and the
migration uncertainties among the STXS bins. The migration uncertainties stem from the
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determination of the kinematic quantities used in the STXS framework as well the expected
relative contribution of each process in the signal regions. These uncertainties can affect
signal acceptance in the various SRs as well as the mMMC

ττ shape. For all production modes,
uncertainties are estimated for the PDF and αs, the parton shower and hadronisation model,
and missing higher orders in the matrix element calculation. PDF and αs uncertainties were
estimated using the PDF4LHC15nlo set of eigenvectors. The impact of using a different
parton shower and hadronisation model is evaluated by comparing the nominal sample with
an event sample which was interfaced with Herwig 7 instead of Pythia 8. The effects on
the signal expectations are treated as uncorrelated between the production modes, and the
comparison leads to the largest uncertainty in the pp → H → ττ cross-section measurement.
Uncertainties from missing higher orders are calculated following the methodology outlined
in refs. [27, 162] and are determined as follows.

For the ggF process, 15 main sources of uncertainty were considered. Four of these
are jet-multiplicity-related uncertainties due to missing high-order corrections, and are
estimated using the approach described in refs. [27, 163]. Three uncertainties parameterise
the uncertainties in modelling the Higgs boson pT and the 0-jet bin, one of which encapsulates
the treatment of the top-quark mass in the loop corrections. Three uncertainties take into
account dijet mass migrations across the STXS bin boundaries. Finally, three uncertainties
are considered for the modelling of the ggF process in the VBF phase space. Two of them are
derived using the method described in ref. [164], from the study of the selection of exactly
two or at least three jets. The third one is derived from the comparison of the Powheg

prediction with MadGraph5_aMC@NLO samples using the FxFx prescriptions [165] to
merge the jet multiplicities and it also applies to the V H phase space. As the ggF process
in the VBF phase space is difficult to model, the impact of increasing its contribution in
the VBF_1 category was estimated. Doubling its contribution induced a 7% shift in the
apparent VBF production cross-section.

For the VBF and V H processes, ten uncertainties related to the STXS categorisation
were considered: one related to the inclusive cross-section of the process, one related to the
two-jet requirement, one related to the Higgs boson pT selection at 200 GeV, one related to
the pT balance between the Higgs boson and the dijet system in events with two or three
jets, and six uncertainties taking into account dijet mass migrations across the STXS bin
boundaries.

For the tt̄H process, six other uncertainties are included: one related to the inclusive
cross-section of the process, and five migration uncertainties related to Higgs boson pT

boundaries in the STXS scheme.

7 Statistical analysis

A statistical analysis of the collected data is performed to measure the pp → H → ττ cross-
sections. The procedure relies on a likelihood function constructed as the product of Poisson
probability terms over the bins of the input distributions. The uncertainties affecting the
model (see section 6) are included in the likelihood function through nuisance parameters
that are constrained by Gaussian probability terms that multiply the Poisson probability
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terms. The parameters of interest (POIs) of the model are estimated by maximising the
likelihood. The likelihood function comprises 32 signal regions and 36 control regions. In
each signal region, Poisson terms describe the expected event counts in each bin of the
mMMC

ττ distribution, while in each control region a single Poisson term describes the total
expected event yield in that region. Figure 7 illustrates the usage of the signal and control
regions in the construction of the likelihood function. The test statistic is constructed from
the profile likelihood ratio and the confidence intervals on the parameters of interest are
derived unsing the asymptotic approximation [166].

The normalisation of the Z → ττ background is left as a freely floating parameter in
the fit in several regions. Each signal region in the boost, VBF and V(had)H categories
is paired with an associated embedded Z → ℓℓ control region and both share a common
Z → ττ normalisation factor. Additionally, a common Z → ττ normalisation factor is
shared between the ttH_0 and ttH_1 signal regions. In total, 31 floating normalisation
factors are defined in order to constrain the yields of the Z → ττ background in the
signal regions. The normalisation of the top processes is also allowed to float freely with
six normalisation factors defined for boost, VBF, and V(had)H signal regions in the τeτµ

and τlepτhad channels separately and one for the ttH categories in the τhadτhad channel.
The other backgrounds are normalised to their expected cross-section and the integrated
luminosity of the recorded data.

In the signal regions, a smoothing procedure is applied to remove potentially large
local fluctuations in the mMMC

ττ templates caused by the limited size of the MC samples
used to build the templates. The mMMC

ττ template of uncertainties that are subject to large
statistical fluctuations is smoothed, and uncertainties that have a negligible impact on the
final results are pruned away sample-by-sample and region-by-region.

The mMMC
ττ discriminant distributions in each SR are binned in a way that maximises

the significance of each targeted signal production mode, taking into account the full
uncertainties. Effectively, this leads to a fine binning near the resonant Z → ττ peak with
coarser binning further away from it.

Three different measurements are performed. They include the branching ratio of
H → ττ and are performed with true Higgs boson rapidity |yH | < 2.5. They differ in the
definition of the POIs (see also figure 1):

1. pp → H → ττ cross-section: a single POI, corresponding to the pp → H → ττ

cross-section, is estimated by the fit. In the likelihood function, the signal yields in
each category are parameterised as the product of the pp → H → ττ cross-section,
the integrated luminosity and the efficiency (including the acceptance of the ATLAS
detector) of the selection for a SM Higgs boson with a mass of 125.09 GeV. In this
measurement, the relative contributions to the pp → H → ττ cross-section from the
various production modes are fixed to the SM predictions.

2. Cross-sections per production mode: four POIs, corresponding to the cross-sections
of the four dominant production modes (ggF, VBF, V H, tt̄H) of the Higgs boson,
are estimated by the fit. In this configuration, the event yields in the likelihood
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function are the sum of those from each individual production mode, parameterised
as a function of the POI similarly to the way for the first measurement.

3. Reduced Simplified Template Cross-Sections: nine POIs, corresponding to the cross-
sections of merged bins of the STXS stage 1.2 framework shown in figure 2, to
which this analysis is sensitive, are determined by the fit. The cross-sections for tt̄H

production and for VBF + qq → V (→ qq)H production are measured. The latter
is measured for events with particle-level dijet mass between 60 GeV and 120 GeV
or above 350 GeV. In addition, the cross-section of ggF production is measured in
six bins of the phase space. One of them is a combination of two bins in the stage

1.2 prescription: events with one jet and intermediate pT(H) (60 to 120 GeV) are
measured together with events with two or more jets, low mjj (< 350 GeV) and the
same intermediate pT(H).

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
5

Signal Regions

VBF 0

VBF 1

Signal Regions

boost 0 1J

boost 0 ge2J

boost 1 1J

boost 1 ge2J

boost 2

boost 3

Signal Regions

VH 0

VH 1

Embed. Z → ℓℓ CRs

VBF 0

VBF 1

Embed. Z → ℓℓ CRs

boost 0 1J

boost 0 ge2J

boost 1 1J

boost 1 ge2J

boost 2

boost 3

Embed. Z → ℓℓ CRs

VH 0

VH 1

tt(0ℓ)H → τhadτhad SRs

ttH 0

ttH 1

Top CR
τeτµ, τlepτhad only

Top CR
τeτµ, τlepτhad only

Top CR
τeτµ, τlepτhad only

VBF topology

Boost topology

V(had)H topology

ttH topology

7 Top NFs
31 Z → ττ NFs

Figure 7. Graphical representation of the regions considered in the likelihood function and the
normalisation factors (NFs) defined in the analysis. The four unfilled black boxes represent the
four main topologies targeted in this measurement. Within each unfilled black box, the dark filled
coloured boxes represent from left to right, the Top control regions, the signal regions and the
Z → ℓℓ control regions. When applicable the subcategories are represented by a light filled colour.
Each blue solid arrowed-line represents a normalisation factor that applies to the Z(→ ττ) + jets
process in the signal regions and to the Z(→ ℓℓ) + jets process in the Z → ℓℓ control regions. Each
orange dashed arrowed-line represents a normalisation factor that applies to the top processes in
the signal regions and to the top processes in the Top control regions. The arrow ends of each line
indicate which regions are connected by each normalisation factor. In the likelihood function, there
are signal regions and Z → ℓℓ control region for each final state in the VBF, boost and V(had)H
topologies. Therefore, the ten signal regions and Z → ℓℓ control regions are repeated three times.
The Top control regions are only used in the τeτµ and τlepτhad final states. Additionally, only one
Top control region is considered by each topology.
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8 Results

The results of the statistical analysis (see section 7) performed for the pp → H → ττ cross-
section measurement are presented in figures 8, 9, 10 and 11. Additional figures displaying the
results of the total cross-section measurement with the binning used in the statistical analysis
are available in the appendix. The observed event yields and predictions as computed by the
fit in the signal regions of the analysis are reported in tables 8, 9, 10, 11, 12 and 13. Excellent
agreement is observed between the data and the expectations. All measurements include the
branching ratio of H → ττ and are performed with true Higgs boson rapidity |yH | < 2.5.

The pp → H → ττ cross-section is measured to be 2.94 ± 0.21(stat)+ 0.37
− 0.32(syst) pb, in

agreement with the SM predictions (3.17 ± 0.09 pb) with a p-value of 0.58.
The measurement is also performed in the τhadτhad, τlepτhad and τeτµ final states

separately and in the boost, VBF, V(had)H and tt(0ℓ)H → τhadτhad categories. The results
are illustrated in figure 12. The p-values for the compatibility of the measurements are 0.30

across τ -lepton decay modes and 0.72 across kinematic categories.
The same dataset is subsequently used to measure the production cross-section for the

Higgs boson in the four dominant production mechanisms. The results are illustrated in
figure 13(a) and reported in table 14 with a breakdown of the uncertainties. They are all
consistent with the SM predictions, with a p-value of 0.98. The measurement establishes
the observation of the VBF production of the Higgs boson in the ττ decay channel with an
observed (expected) significance of 5.3σ (6.2σ).

The VBF production cross-section measurement is the most precise of the four dominant
production mechanisms. The theoretical uncertainties in VBF production are smaller
than in the other channels, and the VBF_1 categories represent the best combination of
high signal yields and purity in this measurement. The measured VBF cross-section is
0.197 ± 0.028(stat)+ 0.032

− 0.026(syst) pb. The second most precisely measured cross-section is that
of ggF, 2.7 ± 0.4(stat)+ 0.9

− 0.6(syst) pb, corresponding to an observed (expected) significance of
3.9σ (4.6σ). The V H and tt̄H production modes are determined with lower precision. The
measured V H cross-section is 0.12 ± 0.06(stat) ± 0.04(syst) pb, while the tt̄H cross-section
is 0.033+ 0.033

− 0.029(stat)+ 0.022
− 0.017(syst) pb. Figure 13(b) illustrates the observed correlation between

the measured cross-section parameters in the fit. The ggF cross-section exhibits an anti-
correlation of 24% and 29% with the VBF and V H cross-sections respectively. This is caused
by a significant contribution of ggF events to the VBF_0, VH_0 and VH_1 categories
as illustrated by figure 2. The simultaneous measurement of the cross-sections of the four
dominant production modes is compatible with the SM expectations, with a p-value of 0.88.

Finally, the pp → H → ττ cross-sections are measured as a function of pT(H),
Njets(pT > 30 GeV) and mjj in a reduced set of the bins of the stage 1.2 of the STXS
framework. The results, illustrated in figure 14(a), are reported in table 15. They are in
very good agreement with the SM expectations. The gluon-gluon fusion + gg → Z(→ qq)H

production mode is measured in four pT(H) intervals starting at 60 GeV. For pT(H) values
between 120 GeV and 200 GeV, the measurements are further separated depending on the
number of jets in the event. The best precision is obtained in the pT(H) interval between
200 GeV and 300 GeV and in the pT(H) regime above 300 GeV. The cross-sections are
determined with an uncertainty of 37% and 42% respectively.
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VBF τhadτhad V(had)H τhadτhad tt(0ℓ)H → τhadτhad

VBF_0 VBF_1 VH_0 VH_1 ttH_0 ttH_1

Z → ττ 2051 ± 50 115 ± 11 4636 ± 84 539 ± 24 265 ± 24 20 ± 4

Fake 1027 ± 68 39.6 ± 5.3 1627 ± 110 112 ± 10 182 ± 17 6.5 ± 1.7

Top 239 ± 26 15.2 ± 3.4

Other backgrounds 57.1 ± 5.2 1.7 ± 0.6 209 ± 12 43.1 ± 2.9 15.7 ± 2.1 5.0 ± 0.8

ggF, H → ττ 38.5 ± 9.5 3.2 ± 1.8 72 ± 14 6.8 ± 1.7 1.96 ± 0.41 0.42 ± 0.08

VBF, H → ττ 72 ± 10 40 ± 5 8.1 ± 1.3 0.5 ± 0.1 0.23 ± 0.03 < 0.01

WH, H → ττ 1.00 ± 0.14 < 0.01 15.2 ± 2.5 9.8 ± 1.5 0.24 ± 0.03 0.034 ± 0.005

ZH, H → ττ 0.8 ± 0.1 < 0.01 12.4 ± 2.3 5.4 ± 1.1 0.69 ± 0.15 0.15 ± 0.02

ttH, H → ττ 0.19 ± 0.03 < 0.01 0.52 ± 0.07 0.22 ± 0.03 7.5 ± 1.6 5.4 ± 1.3

tH, H → ττ 0.41 ± 0.06 < 0.01 0.25 ± 0.03 0.07 ± 0.01 0.92 ± 0.13 0.41 ± 0.06

bbH, H → ττ 0.10 ± 0.02 < 0.01 0.14 ± 0.02 0.015 ± 0.002 0.27 ± 0.04 0.09 ± 0.02

Total background 3135 ± 84 156 ± 12 6472 ± 136 694 ± 26 703 ± 33 46.6 ± 5.3

Total signal 113 ± 15 43.6 ± 5.2 109 ± 16 23.0 ± 3.2 12 ± 2 6.6 ± 1.4

Total 3248 ± 84 200 ± 12 6581 ± 135 717 ± 26 715 ± 33 53.3 ± 5.5

Data 3318 197 6532 720 727 49

Table 8. Observed event yields and predictions as computed by the fit in the VBF, V(had)H and
tt(0ℓ)H → τhadτhad signal regions of the τhadτhad channel. In the VBF and V(had)H categories,
the top processes are estimated with the other backgrounds (diboson, H → WW

∗) by the fit.
Uncertainties include statistical and systematic components. The prediction for each sample is
determined from the likelihood fit performed to measure the pp → H → ττ cross-section.

VBF τlepτhad V(had)H τlepτhad

VBF_0 VBF_1 VH_0 VH_1

Z → ττ 2362 ± 59 162 ± 12 6724 ± 112 535 ± 23

Fake 611 ± 49 30 ± 3 1315 ± 126 80 ± 8

Top 107 ± 12 5.3 ± 1.5 243 ± 25 27 ± 5

Other backgrounds 139 ± 17 5.8 ± 2.4 396 ± 39 50 ± 4

ggF, H → ττ 71 ± 28 3.5 ± 1.2 87.3 ± 20.3 5.1 ± 2.2

VBF, H → ττ 84.4 ± 11.2 52 ± 6 9.3 ± 1.6 0.5 ± 0.2

WH, H → ττ 0.83 ± 0.11 0.011 ± 0.002 17.4 ± 2.6 8.1 ± 1.2

ZH, H → ττ 0.86 ± 0.12 < 0.01 13.3 ± 2.5 5.0 ± 0.9

ttH, H → ττ 0.10 ± 0.01 < 0.01 0.35 ± 0.05 0.13 ± 0.02

tH, H → ττ 0.26 ± 0.04 0.023 ± 0.003 0.17 ± 0.03 0.030 ± 0.004

bbH, H → ττ 0.09 ± 0.01 0.16 ± 0.02

Total background 3219 ± 75 203 ± 13 8678 ± 143 692 ± 24

Total signal 158 ± 30 56 ± 7 128 ± 23 19 ± 3

Total 3377 ± 76 259 ± 13 8806 ± 143 711 ± 24

Data 3402 267 8780 743

Table 9. Observed event yields and predictions as computed by the fit in the VBF and V(had)H
signal regions of the τlepτhad channel. Uncertainties include statistical and systematic components.
The prediction for each sample is determined from the likelihood fit performed to measure the
pp → H → ττ cross-section.

– 40 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
5

VBF τeτµ V(had)H τeτµ

VBF_0 VBF_1 VH_0 VH_1

Z → ττ 820 ± 29 49.3 ± 6.5 2424 ± 58 186 ± 13

Fake 90 ± 21 3.3 ± 5.3 214 ± 42 33 ± 14

Top 165 ± 15 9 ± 2 346 ± 29 33 ± 5

Other backgrounds 96.1 ± 8.5 11.9 ± 1.6 259 ± 23 28 ± 2

ggF, H → ττ 12.7 ± 3.2 1.05 ± 0.31 26 ± 5 1.8 ± 0.6

VBF, H → ττ 22 ± 3 14.3 ± 1.8 2.41 ± 0.43 0.13 ± 0.02

WH, H → ττ 0.21 ± 0.03 4.3 ± 0.7 2.5 ± 0.4

ZH, H → ττ 0.14 ± 0.02 3.6 ± 0.8 1.5 ± 0.3

ttH, H → ττ < 0.01 < 0.01 0.08 ± 0.01 0.021 ± 0.003

tH, H → ττ 0.13 ± 0.02 0.014 ± 0.002 0.038 ± 0.005 0.018 ± 0.002

bbH, H → ττ 0.026 ± 0.004 0.046 ± 0.006

Total background 1171 ± 35 73.5 ± 9.4 3243 ± 63 281 ± 18

Total signal 35.4 ± 3.7 15.3 ± 1.2 36.5 ± 5.2 6 ± 1

Total 1206 ± 35 88.8 ± 8.6 3280 ± 63 287 ± 18

Data 1215 98 3277 286

Table 10. Observed event yields and predictions as computed by the fit in the VBF and V(had)H
signal regions of the τeτµ channel. Uncertainties include statistical and systematic components.
The prediction for each sample is determined from the likelihood fit performed to measure the
pp → H → ττ cross-section.

Boost τhadτhad

pT(H) [GeV] [100, 120] [120, 200] [200, 300] [300, ∞[

Njets(pT > 30 GeV) = 1 ≥ 2 = 1 ≥ 2 ≥ 1 ≥ 1

Z → ττ 5635 ± 115 2640 ± 67 11 863 ± 134 10 076 ± 125 7252 ± 93 973 ± 30

Fake 3388 ± 224 1729 ± 118 2312 ± 155 2072 ± 140 293 ± 32 54 ± 20

Other backgrounds 61 ± 9 74.2 ± 11.3 116 ± 19 251 ± 14 157 ± 10 53.6 ± 5.5

ggF, H → ττ 54.4 ± 9.7 23.1 ± 4.1 112.8 ± 20.5 109 ± 21 96.2 ± 17.2 30 ± 7

VBF, H → ττ 11.3 ± 2.0 5.8 ± 0.9 27.6 ± 4.7 24.6 ± 4.2 23.7 ± 3.6 7.3 ± 1.1

WH, H → ττ 2.1 ± 0.6 1.5 ± 0.3 3.8 ± 1.1 7.0 ± 1.1 4.6 ± 0.7 2.5 ± 0.7

ZH, H → ττ 1.4 ± 0.3 1.1 ± 0.3 2.7 ± 0.9 5.3 ± 1.0 3.7 ± 0.5 1.5 ± 0.2

tt̄H, H → ττ < 0.01 0.27 ± 0.04 < 0.01 1.01 ± 0.14 0.8 ± 0.1 0.35 ± 0.05

tH, H → ττ 0.023 ± 0.003 0.06 ± 0.01 0.029 ± 0.004 0.30 ± 0.04 0.39 ± 0.05 0.09 ± 0.01

bbH, H → ττ 0.19 ± 0.03 0.07 ± 0.01 0.21 ± 0.03 0.30 ± 0.04 0.21 ± 0.03 0.05 ± 0.01

Total background 9084 ± 244 4444 ± 132 14 291 ± 199 12 398 ± 188 7702 ± 96 1080 ± 32

Total signal 69.5 ± 11.0 32 ± 5 147 ± 23 148 ± 22 130 ± 18 41.7 ± 7.2

Total 9153.5 ± 243.5 4476 ± 132 14 438 ± 198 12 546 ± 187 7832 ± 95 1122 ± 32

Data 9163 4503 14389 12585 7800 1124

Table 11. Observed event yields and predictions as computed by the fit in the boost signal regions
of the τhadτhad channel. Uncertainties include statistical and systematic components. The prediction
for each sample is determined from the likelihood fit performed to measure the pp → H → ττ

cross-section.
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Boost τlepτhad

pT(H) [GeV] [100, 120] [120, 200] [200, 300] [300, ∞[

Njets(pT > 30 GeV) = 1 ≥ 2 = 1 ≥ 2 ≥ 1 ≥ 1

Z → ττ 5583 ± 100 3228 ± 69 10 927 ± 130 9546 ± 118 7195 ± 92 2413 ± 46

Fake 1119 ± 58 832 ± 44 1324 ± 76 1434 ± 81 536 ± 35 139 ± 12

Top 65 ± 9 123 ± 16 81 ± 13 317 ± 25 129 ± 12 52 ± 8

Other backgrounds 214 ± 40 177 ± 22 374 ± 40 447 ± 33 300 ± 17 164 ± 6

ggF, H → ττ 45.4 ± 11.6 44.8 ± 15.2 99.5 ± 19.7 123 ± 29 91.2 ± 24.4 33.5 ± 8.9

VBF, H → ττ 12.1 ± 2.0 7.2 ± 1.1 26.9 ± 4.1 23.6 ± 3.7 21.6 ± 3.2 8.6 ± 1.4

WH, H → ττ 1.7 ± 0.3 2.2 ± 0.6 3.5 ± 2.0 6.5 ± 1.2 4.4 ± 0.8 3.3 ± 1.0

ZH, H → ττ 1.2 ± 0.3 1.3 ± 0.2 2.4 ± 0.3 4.7 ± 0.6 3.0 ± 0.4 1.8 ± 0.2

tt̄H, H → ττ < 0.01 0.11 ± 0.01 < 0.01 0.55 ± 0.08 0.36 ± 0.05 0.22 ± 0.03

tH, H → ττ < 0.01 0.09 ± 0.01 0.018 ± 0.002 0.28 ± 0.04 0.17 ± 0.02 0.042 ± 0.006

bbH, H → ττ 0.13 ± 0.02 0.13 ± 0.02 0.17 ± 0.02 0.21 ± 0.03 0.12 ± 0.02 0.04 ± 0.01

Total background 6981 ± 112 4360 ± 82 12 706 ± 144 11 743 ± 135 8160 ± 94 2768 ± 49

Total signal 61 ± 13 56.0 ± 15.4 133 ± 22 160 ± 31 121 ± 25 47.6 ± 9.2

Total 7042 ± 112 4416 ± 81 12 839 ± 143 11 903 ± 134 8281 ± 93 2816 ± 49

Data 7094 4374 12779 11 886 8236 2848

Table 12. Observed event yields and predictions as computed by the fit in the boost signal regions
of the τlepτhad channel. Uncertainties include statistical and systematic components. The prediction
for each sample is determined from the likelihood fit performed to measure the pp → H → ττ

cross-section.

Boost τeτµ

pT(H) [GeV] [100, 120] [120, 200] [200, 300] [300, ∞[

Njets(pT > 30 GeV) = 1 ≥ 2 = 1 ≥ 2 ≥ 1 ≥ 1

Z → ττ 2642 ± 64 1523 ± 42 3912 ± 69 3453 ± 68 1734 ± 37 469 ± 20

Fake 101 ± 31 85 ± 23 117 ± 36 179 ± 42 88 ± 24 37 ± 13

Top 101 ± 8 187 ± 20 157 ± 11 569 ± 44 258 ± 16 104 ± 11

Other backgrounds 118 ± 17 101 ± 16 273 ± 14 325 ± 30 294 ± 8 173 ± 5

ggF, H → ττ 16.6 ± 3.2 11 ± 2 35 ± 7 36.8 ± 7.1 25.5 ± 4.6 8.7 ± 2.2

VBF, H → ττ 3.4 ± 0.6 2.2 ± 0.3 8.7 ± 1.6 7.8 ± 1.1 6.2 ± 0.9 2.1 ± 0.3

WH, H → ττ 0.44 ± 0.06 0.57 ± 0.13 1.35 ± 0.56 2.22 ± 0.57 1.29 ± 0.18 0.87 ± 0.35

ZH, H → ττ 0.29 ± 0.04 0.33 ± 0.05 0.73 ± 0.10 1.57 ± 0.22 0.85 ± 0.12 0.41 ± 0.06

tt̄H, H → ττ < 0.01 0.029 ± 0.004 < 0.01 0.20 ± 0.03 0.08 ± 0.01 0.07 ± 0.01

tH, H → ττ 0.08 ± 0.01 0.025 ± 0.003 0.13 ± 0.02 0.11 ± 0.02 0.033 ± 0.005

bbH, H → ττ 0.038 ± 0.005 0.026 ± 0.004 0.06 ± 0.01 0.11 ± 0.01 0.06 ± 0.01 0.017 ± 0.002

Total background 2961 ± 65 1896 ± 47 4458 ± 70 4526 ± 75 2373 ± 43 783 ± 25

Total signal 21 ± 3 14 ± 3 46 ± 6 49 ± 7 34 ± 4 12 ± 2

Total 2982 ± 65 1910 ± 47 4504 ± 70 4575 ± 75 2407 ± 42 795 ± 25

Data 2973 1877 4458 4594 2325 743

Table 13. Observed event yields and predictions as computed by the fit in the boost signal regions
of the τeτµ channel. Uncertainties include statistical and systematic components. The prediction
for each sample is determined from the likelihood fit performed to measure the pp → H → ττ

cross-section.

– 42 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
5

0 0.5 1 1.5 2 2.5 3 3.5 4
SM

B)×σ / (
meas

B)×σ(

Comb.

had
τ

had
τ

had
τ
l

τ

µτeτ

0.12−

+0.13
0.93  0.07−

+0.07
                                0.10−

+0.12
                                                 (                 )         

0.16−

+0.17
0.97  0.09−

+0.10
                                0.13−

+0.15
                                                 (                 )         

0.17−

+0.18
0.91  0.10−

+0.10
                                0.13−

+0.16
                                                 (                 )         

0.42−

+0.41
0.42  0.24−

+0.25
                                0.34−

+0.33
                                                 (                 )         

Tot.     Stat., Syst.                    (                 )         

ATLAS ττ →H -1 = 13 TeV, 139 fbs

| < 2.5
H

|yTotal Stat. Theo.

0 1 2 3 4 5
SM

B)×σ / (
meas

B)×σ(

Comb.

VBF

Boost

V(had)H

)hτhτtt(0L)H(

0.12−

+0.13
0.93  0.07−

+0.07
                                0.10−

+0.12
                                                 (                 )         

0.14−

+0.17
0.82  0.09−

+0.09
                                0.11−

+0.14
                                                 (                 )         

0.21−

+0.26
0.99  0.10−

+0.10
                                0.19−

+0.24
                                                 (                 )         

0.33−

+0.37
0.82  0.20−

+0.21
                                0.27−

+0.30
                                                 (                 )         

0.81−

+0.97
1.02  0.68−

+0.76
                                0.45−

+0.60
                                                 (                 )         

Tot.     Stat., Syst.                    (                 )         

ATLAS ττ →H -1 = 13 TeV, 139 fbs

| < 2.5
H

|yTotal Stat. Theo.

(a) (b)

Figure 12. The measured values for σH × B(H → ττ) relative to the SM expectations when only
the data of (a) individual channels or (b) individual categories are used. The total ±1σ uncertainty
in the measurement is indicated by the black error bars, with the individual contribution from the
statistical uncertainty in blue. The results have been extracted performing a fit for the inclusive
cross-section measurement.
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Figure 13. (a) The measured values for σH × B(H → ττ) relative to the SM expectations in the
four dominant production modes. The total ±1σ uncertainty in the measurement is indicated by the
black error bars, with the individual contribution from the statistical uncertainty in blue. (b) The
measured correlations between each parameter of interest in the measurement of the cross-sections
per production mode. The results have been extracted performing a fit for the production mode
cross-section measurements. The measured values for σH ×B(H → ττ) along with the corresponding
correlation matrix are available in the HEPData repository [167].
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Production Mode SM prediction Result Stat. unc. Syst. unc. [pb]

[pb] [pb] [pb] Th. sig. Th. bkg. Exp.

tt̄H 0.0313 ± 0.0032 0.033 ± 0.037 ±0.031 ±0.010 ±0.010 ±0.010

V H 0.1176 ± 0.0025 0.115 ± 0.070 ±0.058 ±0.016 ±0.005 ±0.021

ggF 2.77 ± 0.09 2.65 ± 0.85 ±0.41 ±0.56 ±0.07 ±0.45

VBF 0.220 ± 0.005 0.197 ± 0.041 ±0.028 ±0.024 ±0.005 ±0.012

pp → H 3.17 ± 0.09 2.94 ± 0.41 ±0.21 ±0.26 ±0.05 ±0.19

Table 14. Best-fit values and uncertainties for the pp → H → ττ cross-section measurement and the
measurement in the four dominant production modes. All measurements include the branching ratio
of H → ττ and refers to true Higgs boson rapidity |yH | < 2.5. The SM predictions for each region,
computed using the inclusive cross-section calculations and the simulated event samples are also
shown. The contributions to the total uncertainty in the measurements from statistical (Stat. unc.)
or systematic uncertainties (Syst. unc.) in the signal prediction (Th. sig.), background prediction
(Th. bkg.), and in experimental performance (Exp.) are given separately. Each uncertainty is reported
as the average of its upward and downward fluctuations. The total systematic uncertainty, equal to the
difference in quadrature between the total uncertainty and the statistical uncertainty, differs from the
sum in quadrature of the Th. sig., Th. bkg., and Exp. systematic uncertainties due to correlations.

STXS bin SM prediction Result Stat. unc. Syst. unc. [fb]

Process mjj [GeV] pT(H) [GeV] Njets [fb] [fb] [fb] Th. sig. Th. bkg. Exp.

gg
F

+
g
g

→
Z

(→
qq

)H

[0, 350]♠ [60, 120] ≥ 1 394 ± 60 189 ± 390 ±220 ±59 ±152 ±240

[120, 200] = 1 47 ± 11 17 ± 30 ±18 ±4 ±4 ±16

[0, 350] [120, 200] ≥ 2 59 ± 20 33 ± 39 ±27 ±10 ±10 ±23

[200, 300] ≥ 0 30 ± 9 30.3 ± 11.0 ±8.6 ±2.9 ±0.8 ±5.6

[300, ∞[ ≥ 0 7.7 ± 3.0 9.35 ± 3.80 ±3.50 ±1.00 ±0.22 ±1.20

[350, ∞[ [0, 200] ≥ 2 55 ± 13 143 ± 110 ±54 ±58 ±6 ±71

EW
[60, 120] ≥ 2 33.1 ± 1.1 32 ± 20 ±17 ±4 ±2 ±6

[350, ∞[ ≥ 2 90.1 ± 2.2 71 ± 17 ±13 ±10 ±2 ±4

tt̄H 31.3 ± 3.2 34 ± 37 ±32 ±7 ±10 ±8

Table 15. Best-fit values and uncertainties for the pp → H → ττ cross-sections, in the reduced
stage 1.2 STXS scheme described in the text. The EW production mode includes vector-boson fusion
and qq → V (→ qq)H processes. All measurements include the branching ratio of H → ττ and refers
to true Higgs boson rapidity |yH | < 2.5. The SM predictions for each region, computed using the
inclusive cross-section calculations and the simulated event samples are also shown. The contributions
to the total uncertainty in the measurements from statistical (Stat. unc.) or systematic uncertainties
(Syst. unc.) in the signal prediction (Th. sig.), background prediction (Th. bkg.), and in experimental
performance (Exp.) are given separately. Each uncertainty is reported as the average of its upward
and downward fluctuations. The total systematic uncertainty, equal to the difference in quadrature
between the total uncertainty and the statistical uncertainty, differs from the sum in quadrature
of the Th. sig., Th. bkg., and Exp. systematic uncertainties due to correlations. The spades symbol
(♠) indicates that the criteria for mjj only apply to events with at least two reconstructed jets.
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Figure 14. (a) The measured values for σH × B(H → ττ) relative to the SM expectations in the
nine fiducial volumes defined in the STXS measurement. Also shown is the result from the combined
fit. The total ±1σ uncertainty in the measurement is indicated by the black error bars, with the
individual contribution from the statistical uncertainty in blue. (b) The measured correlations
between each pair of parameters of interest in the STXS measurement. The spades symbol (♠)
indicates that the criteria for mjj only apply to events with at least two reconstructed jets. The
measured values for σH × B(H → ττ) along with the corresponding correlation matrix are available
in the HEPData repository [167].
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9 Conclusion

Measurements of production cross-sections for Standard Model Higgs bosons decaying into
a pair of τ -leptons are presented. The measurements use data collected by the ATLAS
experiment from proton-proton collisions in Run 2 of the LHC. The data correspond to an
integrated luminosity of 139 fb−1.

All measurements include the branching ratio of H → ττ and refer to true Higgs
boson rapidity |yH | < 2.5. The pp → H → ττ cross-section is measured to be
2.94 ± 0.21(stat)+ 0.37

− 0.32(syst) pb, in agreement with the SM prediction of 3.17 ± 0.09 pb.
The observed (expected) uncertainty in the pp → H → ττ cross-section determination was
reduced from + 28

− 25 % (+ 27
− 24 %) in the measurement reported in ref. [22] to ±13.9% (±13.2%)

in this work. In particular, the impact of the systematic uncertainties was reduced by
approximately a factor of two from ±21.5% to ±12%.

Cross-sections are determined separately for the four main production modes: 2.65 ±
0.41(stat)+ 0.91

− 0.67(syst) pb for the gluon-gluon fusion mode, 0.197 ± 0.028(stat)+ 0.032
− 0.026(syst) pb

for the vector-boson fusion mode, 0.115 ± 0.058(stat)+ 0.042
− 0.040(syst) pb for production with a

vector boson, and 0.033 ± 0.031(stat)+ 0.022
− 0.017(syst) pb for production with a top-quark pair.

Measurements are also performed as a function of key kinematic properties of the
reconstructed event. Cross-sections of the production of a Higgs boson decaying into τ -
leptons are measured as a function of the Higgs boson transverse momentum, the number of
jets produced in association with the Higgs boson, and the invariant mass of the two leading
jets when applicable. They represent the most detailed study of Higgs boson production
in the ττ decay channel to date. The measurements attain an uncertainty of ±24% for
electroweak production with two jets of invariant mass greater than 350 GeV. The ggF
production mode is measured with an uncertainty of ±36% and ±40% when the Higgs
boson transverse momentum is between 200 and 300 GeV and above 300 GeV respectively.
All measurements are in agreement with the Standard Model predictions.
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