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ABSTRACT

In machine learning, we often face the situation where the event we are interested in has very
few data points buried in a massive amount of data. This is typical in network monitoring, where
data are streamed from sensing or measuring units continuously but most data are not for events.
With imbalanced datasets, the classifiers tend to be biased in favor of the main class. Rare
event detection has received much attention in machine learning, and yet it is still a challenging
problem. In this paper, we propose a remedy for the standing problem. Weighting and sampling
are two fundamental approaches to address the problem. We focus on the weighting method
in this paper. We first propose a boosting-style algorithm to compute class weights, which is
proved to have excellent theoretical property. Then we propose an adaptive algorithm, which is
suitable for real-time applications. The adaptive nature of the two algorithms allows a controlled
tradeoff between true positive rate and false positive rate and avoids excessive weight on the
rare class, which leads to poor performance on the main class. Experiments on power grid data
and some public datasets show that the proposed algorithms outperform the existing weighting
and boosting methods, and that their superiority is more noticeable with noisy data.

Keywords: Imbalanced Dataset, Bias, Classification, Machine Learning, Rare Event

1 INTRODUCTION

In this paper, we study the problem of learning with an imbalanced dataset. In classification, this is also
called rare events problem, in which there are thousands of times fewer yes cases than no cases. The
yes cases are called events. Usually the events are what we are interested in, which may have very few
occurrences while the nonevent cases are abundant. This is typical in network monitoring applications,
where data representing events are only a tiny portion of the entire dataset. For instance, we may have a
fault or anomaly observed in one month’s worth of data while all other observations are nonevents. Using
machine learning approach for event detection and identification would require training a machine learning
algorithm with these data, but the scarce representation of events in the dataset makes learning the rare
event difficult.

It has been reported in the statistics literature that rare events are difficult to predict (see [[1] and others).
In [2], it is pointed out that with imbalanced datasets, the learning algorithms are biased in favor of the class
priors. The statistical procedure to predict the event, such as Logistic Regression, often underestimates
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the probability of the rare events. Such procedures will have a high overall prediction accuracy mainly
due to the correct predictions on the large number of nonevent cases, but the recall metrics, defined as the
fraction of true positives that have been successfully predicted, is extremely low. Such performance does
not serve the purpose of event detection, since what we are interested in is the event. For event detection
in a networked system, having a missed detection on important events has more detrimental effect than
having a false alarm. Oftentimes we are willing to improve the detection rate even if it will generate more
false positives. However, using the standard classifiers, the cost associated with misclassification on either
class has the same contribution in the cost function.

To address the problem, we need to give more importance to the rare class in the cost function. This
can be done either by directly changing the number of examples in each class in the training set, i.e.,
by sampling [3], or by changing the weights of the classes, which also changes the distribution of the
classes. A review article [S]] provided an in-depth study of data sampling strategies and weight-modification
strategies from the Bayesian classification point of view. In addition, the number of classes is also not
limited to two classes. It can be extended to multiple-classes [4].

Sampling has the merit of simplicity but it also has limitations. First, there are two forms of rarity as
pointed out in [2]]: absolute rarity and relative rarity. While relative rarity can be corrected by under-
sampling the main class, absolute rarity can only resort to oversampling the rare class. However there is
an issue with this approach— in case there are outliers in the data, the oversampled outliers will ruin the
prediction performance. Moreover, under-sampling may also cause loss of information. It is necessary to
consider an alternative way to address the rarity issue.

In this paper, we focus on weighting methods. Unlike the previous weighting methods that use the
population information or the relative rarity in the sample to decide the weights, we develop algorithms to
compute the weights during the training process. The weighting algorithms can work with any classifier.
In this paper, we use Logistic Regression, Random Forest, and Support Vector Machine to demonstrate
its effectiveness. The proposed algorithms have the advantages of not relying on unknown population
information, and being able to improve the prediction performance of the rare class with a controllable
tradeoff with the main class. Most importantly, this is the best approach to deal with absolute rarity, which
poses great challenges to other methods.

In practice, a user does not have to choose between a weighting method and a sampling method. An
ensemble approach that combines sampling techniques and weighting techniques can achieve the best of
the two worlds. For instance, [6] combines generating synthetic data and boosting procedures to improve
the predictive accuracies of both the majority and minority classes. An improvement on the weighing
method also contributes to the ensemble techniques.

The rest of the paper is organized as follows: in Section 2} we cover the preliminaries for classification with
imbalanced dataset; in Section [3, we propose two weighting algorithms, DiffBoost and AdaClassWeight.
They can address both forms of rarity by adaptively adding weights and combining weighting with boosting;
and subsequently in Section {4, we explain how to train a classifier under the computed weights; in Section
we provide performance results for the proposed algorithm, along with comparison with related methods;
and in Section [6] we conclude the paper with outlook for future work.

2 CLASSIFICATION WITH IMBALANCED DATASETS

Among many others [7, 8, 9]], using weights is a fundamental approach to address the data imbalance
problem in classification. We focus on the use of class weights in this paper, in which we add class weights
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to the loss function, making it more expensive to have a classification error in the rare class. This is
done by assigning the rare class a larger weight and the main class a smaller weight. Weighting is also
considered a type of cost-sensitive learning method [10]. In cost-sensitive learning, the cost associated
with misclassifying a rare class outweighs the cost of correctly classifying the main class. In [1]], weights
are decided based on sample distribution in the population: the rare class weight w™ = 7 /7 and the main
class weight w™ = (1 — 7)/(1 — ), where 7 is the fraction of the rare class in the population, and 7 is the
fraction in the sample, respectively. In some applications, population information may be straightforward
to know, such as in political activities [[1]. However, in most other applications, we do not know the class
distribution in the population. For convenience, many resort to using the sample information, i.e., in the
training set if there are Nt examples in the rare class, and N~ examples in the main class, the weight
would be N~ /N for the rare class and 1 for the main class. This method, as we will see later in this paper,
has the disadvantage of not considering the absolute rarity, and also not having control over the trade off
between the false positive rate and the false negative rate. In case we need to prioritize the rare class, we
cannot improve the performance on the rare class further since the fixed weights only reflect the ratio of the
examples in the sample.

Similar to the class-weighted methods, there are previous work that use individual weights in the
classification algorithms. We briefly review some existing work that are developed based on the idea of
introducing a cost for each individual example. The weight update rule was first introduced in AdaBoost
[11]] to force the classifier to be biased towards the minority class.

Given the number of iterations 7', and training data {(z;,y;),i = 1,..., N}, the AdaBoost algorithm
computes the sample weight distribution D; at the ¢-th iteration. h; is the classifier trained under weight
distribution D;. The weight update rule in AdaBoost is given by

Dy (i) exp (—aghy (x;) yi)
Zy ’

Dt (i) = (1)

where oy is a weight update parameter that needs to be computed in each iteration. Z; is normalization
factor defined as

Iy = Z Dy (1) exp (—ahy () y4) - (2)

1

Based on the weight update rule of AdaBoost, later works AdaC1, AdaC2, and AdaC3 from [12]], CSB1
and CSB2 from [13]], and Adacost from [14] were developed by associating a cost C; > 0 with individual
examples in equation (1]). Examples from the minority class are associated with larger costs than those
from the majority class.

¢ AdaCl1 modifies eq. (1)) by introducing C; inside the exponent,

Dy(e —ayCihy (23) yi
Dy (i) = 210 =P 2 (i) ) 3)

e AdaC2 adds a cost C; outside the exponent of eq. (1),

CiDy(i —ahy (23) yi
Dy (i) = t(2) eXP(ZtOét t(x)y). (4)

Frontiers 3
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e AdaC3 can be considered as a combination of AdaC1 and AdaC2, in which C; is included both inside

and outside the exponent,
Dt+1<l> — 7 t(@) eXp(Zat i1 (xl) y'L) (5)
t
e AdaCost also uses a cost inside the exponent of eq. (1), however, instead of directly using cost item
Cj, it defines a cost adjustment function I'y (heei) i) based on C},
Dy (i) exp <_04tF]L ooy o T () yz)
Dt+1(i) — Z( t( Z)’yl) , (6)
t
where Fl(hf(at-) s;) €30 besetas 'y = —0.5C; + 0.5 if classified correctly, and I'_ = 0.5C}; + 0.5 otherwise.
All the aforementioned methods involve using a cost. A common drawback of them is that one must
manually determine the “optimal” cost, which is predetermined. Arbitrarily selected costs can result in poor

classification performance as shown in Section E However, there is no better algorithm than exhaustive
search to decide the costs. This motivates an algorithm that computes the weights solely from the data and
does not depend on any hyper-parameter.

3 THE PROPOSED WEIGHTING METHODS

Throughout this paper, we assume the rare class is the positive class. Let N be the number of examples in
the rare class, and N~ the number of examples in the main class, and N* < N . The class weights are
denoted as w™ for the rare class and w ™~ for the main class.

Through numerous tests, it is observed that what makes it difficult to learn from an imbalanced dataset
is not the relative ratio of the rare class to the main class, rather it is the small number of examples
in the rare class. In other words, the absolute rarity matters much more than the relative rarity. This
is especially true for Logistic Regression, as the logistic model is often estimated by using maximum
likelihood estimation and inherently has the “small-sample bias” issue [[1]]. The simple ratio-based algorithm
that uses w* /w~™ = N~ /N* will only use the ratio information regardless of the sample size and is
deemed unable to find the optimal weights. For a dataset with (N, N~) = (200, 2000), a weight ratio of
wT /w™ = 10 gives too much weight to the rare class, leading to overfitting the rare class; and for a dataset
with (N1, N7) = (2,10), using a weight ratio of w™ /w™ = 5 is not enough.

We use two experiments on the Spam data to demonstrate the effect of the absolute rarity. In the first
experiment, the training set has a total of 2200 examples, with (N TN *) = (200, 2000). We compare
results using a sequence of weights: w* /w™ € {2,5,7.5,10}. Table [l shows the results. It is noted that
for the simple ratio-based algorithm using w™ /w™ = 10, while the recall is the highest, the precision is the
lowest for both training and test, and the sum of recall and precision is the lowest. Therefore, the results
support the claim that w™ /w™ = 10 leads to overfitting on the rare class. On the other hand, the algorithm
with w™ /w™ = 5 has competitive performance, with a close-to-the-highest recall and the highest sum of
recall and precision, indicating that w™ /w™ = 5 is the best among the four options.

For the second experiment, the training set has a total of 12 examples, with (N N _) = (2,10). We
used a sequence of weights: wt /w™ € {5,7.5,10,12}, and the results are shown in Table |Z It is noted
that simply setting w /w™ = 5 according to the ratio of the examples in the training set is not enough

This is a provisional file, not the final typeset article 4
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Table 1. Spam Data. The number of examples in the training set is (N N *) = (200, 2000).

\ Training | Test
| Recall | Precision | Recall | Precision

|
|
| wh/w= =2 | 0819 | 0804 |0.776 | 0752 |
| wh/w= =5 ] 0910 | 0716 | 0870 | 0676 |
|
|

| wh/w=75] 092 | 0668 | 0.887 | 0.627
| wh/w™ =10 | 0.924 | 0491 | 0.897 | 0.440

134 to have a high recall. The algorithm with w™ /w~ = 12 has the highest recall, and the algorithm with
135 w™ /w™ = 10 has a close-to-the-highest recall and the highest sum for recall and precision.

Table 2. Spam Data. The number of examples in the training set is (N, N7) = (2,10).

Training Test
eca recision | Reca recision

| wh/w= =5 | 0800 | 0559 | 0580 | 0239 |
| wh/w™ =75 0950 | 0388 | 0620 | 0223 |
|
|

| wh/w™ =10 | 1.000 | 0382 | 0.640 | 0.206
| wh/w™ =12 | 1.000 | 0382 | 0.660 | 0.183

136 The experiments verified that it is the number of examples in the rare class that determines the error.
137 Therefore, it is necessary to look beyond the ratio and develop an algorithm to find the class weights. We
138 present two algorithms, Differentiated Boosting (DiffBoost) and Adaptive Class Weights (AdaClassWeight).

139 3.1 A Boosting Style Weighting Method: DiffBoost

140  We define two index sets /T = {i : y; = 1},and [~ = {i : y; = —1}. We use + to denote the rare class
141 and — to denote the main class. In the algorithm DiffBoost, we compute the weights iteratively under an
142 overarching boosting framework.

Frontiers 5
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ALGORITHM DIFFBOOST
Input: {(z;,v;),i=1,...,N},x; € x,ys € {—1,1}
Initialization: for t = 1,
w;' =w, =1
D(i) = v+, Vie I
Di(i) = w=,Vie I~
fort < 1toT
do
Train the classifier h; : Y — {—1, 1} under class weights w;" and w;”
Compute the weighted class error:
e = 2 De(@) - Ly
ielt

e = > Di(d) - Liny(s)2us)

i€l

L
N
L
N

W N =

1 1—€f
Compute oy = max {0, 5 1n EJ }
t
Update class weights:
w;_jrl = w{ exp(ez_r)
Wiy = Wy exp(€; )
7 Update sample weights:
: Di(i —auyihe (2 :
Dy (i) = t(l)eXP(Z;ty t@)) i e It
: Dy(i —awyihe(zi Lo
D (i) = t(l)eXP(Z?ty t@)) e
where Z;" = Y7 Dy(i) exp(—azyihe(;)),
ielt
and Z; = > Dy(i) exp(—azyihe(zi))

i€l~

T
8 Final prediction: H(x) = sign (Z atht(x)>
=1

The classifier h; maps an element in the feature space y to a label. Z;“ and Z, are chosen such that

ST Dyy1(i) = 1, and >, Dyyq(i) = 1, and therefore Dyy1(i),7 € I will be a distribution, and
ielt iel~

Dy41(i),i € I~ will be a distribution. This is the invariant of the algorithm, as it holds from initialization
until the algorithm terminates.

Although the algorithm seems to operate symmetrically on both the rare class and the main class, it
actually boosts the performance of the rare class more than the main class. This is due to the fact that
Nt <« N7, and therefore Dy() takes larger values for i € I than for i € ™. Initially, the main class is
doing well due to the large number of examples, so we have €™ > ¢ after the first iteration, and then w™
becomes larger than w™. The algorithm starts to behave in favor of the rare class.

This boosting algorithm has the property that as the iteration number 7" increases, the training error for
the rare class monotonically decreases. We outline the proof in the following. The training error of the rare
class is given by ﬁ > Y () ~y:)

ielt

THEOREM 1. ﬁ -§+ Y(H(2;)#y;) asymptotically converges to zero as T' — oc.
1

The proof of Theorem |l]is straightforward from Lemma|[I]and Lemma
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159

160
161

162
163
164

165
166

167

He et al. Weighting Methods for Imbalanced Datasets

LEMMA 1. The training error of the rare class has the following bound:

1 T
N+ Z L @2y < I_IZt+

iclt t=1

T
Proof: Let f(z) = ) aihi(x), i.e., the final prediction H(x) = sign(f(z)). From the update rule of
=1

Dy41(7), and using telescoping, we have that Vi € I,

Dr1(i)
_ Dy(i)- exp(—a;;g:hT(xi))
T
~exp(—aqy;hi(x; exp(—ary;hr(x;
R e

T
exp(—yi Y athy(z;))
1 =1

’ T
NT Ht:1 Zt+
1 exp(—yif(xi))
o T
N Ht=1 Zt+

Next, we show that the training error of the rare class is bounded from above by Hthl Z7.

Recall that H(x;) = sign(f(z;)).

e If y; and f(x;) have the same sign, then LH(z)#y) = 0, and 0 < exp(—yif(x;)) < 1, thus
Lt (i) ys) < exp(—yif ().

o If y; and f(z;) have different signs, 1 (g (z,)2y) = 1, and exp(—yif(zi)) > 1, thus 1 (g, 2y <
exp(—y; f(x;)) still holds.

Combining both cases, we have

1 1
N+ Z Lt (@) = N+ Z exp(—yif(r;))

el t el t
T
=> Dra() ][ 2
ielt t=1
T
(@) H zZt
t=1
(a)is due to that > Dp.q(i) = 1, which is the invariant of the algorithm. O

ielt+

Frontiers 7
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168 LEMMA 2. Hle ZL?L decreases monotonically as the iteration number [ increases.

Proof:

7 = Z Dy (i) exp(—aryihe(x;))

ielt
= Z Dy(i) exp(—auyihe(w;)) + Z Dy (i) exp(—azyihe(z;))
i€l by () =y; i€It hy () Ay
=e ™ Y Dii)+e™ > Di(i)
ielt h(z;)=y; i€l hy () Ay
=e (1 —¢)+eYef

B
169  Plugging in oy = max {0, % In 16? }, we have the following,
t

+_1 1 1=
170 e When € < 9, 0 = §ln Tf,
+ +
+ € + 1—e +
171 Zy =\ = (1—¢")+ ¢ <1

t €t

172 o When ¢ > %, at = 0 (i.e., this iteration has no contribution to the final prediction), and Z;" = 1.

173 Therefore Zt+ < 1,Vt. Thus, Hthl Z;“ decreases monotonically with 7. U

174  The following analysis shows that Zt+ = 1 1s only a transient state and the algorithm will quickly pass
175 this state and enter into an exponential decrease state.

176 e The applicable scenario for the weighting algorithm is when data is extremely imbalanced and the rare

177 class has very few data points. Under this condition, it is reasonable to assume that the initial weighted
178 class error €, > ¢, . During the iteration, ¢, will decrease, and we can stop the iteration if €, < ¢,
179 has been achieved in less than 7" iterations.
180 e Whene™ > %, ar = 0, Dy11(3) = Dy(1) is unchanged, w;LH and w,_ ; both increase, however w;fH
181 increases faster since €; > ¢, . Therefore, in the next iterations €, '+, will be decreasing. It continues to
182 decrease until eventually ef becomes less than %, so that the upper bound starts to decrease again.
2

183 e Whene™ < %, Z;r = 2\/62_(1 — ezr) Let v = % — ezr, we have Z;’ = 4/1 —4%2 < e 2% and

L 2E _ ,
184 [, Z <e = .lInthis case, the upper bound decreases exponentially.

185  Since the upper bound of % Y oicrt 1(H(x;)#y;) decreases monotonically with 7', and Z;r =1lisa
186 transient state and will eventually transform to Z;r < 1, we conclude that the training error of the rare class
187 asymptotically converges to zero as 7' — oo.

188  Figure|l|shows the upper bound of the training error and the actual training error vs. the iteration number
189 by using DiffBoost. Three algorithms, Logistic Regression (LR), Random Forest (RF) and Support Vector
190 Machine (SVM) are tested on two datasets. The Spam dataset is from UCI machine learning repository
191 [15]. The simulated data are generated using a function. We generate a total of 1,832 examples with
192 three predictors X, X5 and X3. Each predictor variable follows a Gaussian distribution, X; ~ N(0, 1),

This is a provisional file, not the final typeset article 8
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Xy ~ N(1,2) and X3 ~ N(—2,1.5). The target function is f(X1, Xo, X3) = X1 + Xo + X3 — 5(X2 +
X2+ X3) + X} + X3 + X3. The response variable Y = (X1, Xa, X3) + e, with error term e ~ N(0, 3).
Binary labels are assigned as y; = 1 if y; > 0 and y; = —1 otherwise.

The theory and simulation both show that DiffBoost has excellent converging property. However, it still
has one issue — it takes as many iterations to predict a new response as it takes to train the classifier. This
problem is inherent to the boosting style algorithms. AdaBoost [[16] has the same issue. The parameters

T
learned from each iteration as well as oy must be saved, as the final prediction H (x) = sign (Z atht(a:)>
=1

requires oy and all the parameters used by h;(z) for ¢ = 1,...,T. In the next section, we propose an
algorithm that takes only one shot to predict. Training may take many iterations, and can take place off-line,
but once we have learned the class weights, prediction takes only one shot. This algorithm will be suitable
for real-time applications.

3.2 Adaptively Computing Class Weights

ALGORITHM ADACLASSWEIGHT
Input: {(z,v:),i=1,....,N},z; € x,y; € {—1,1}
Initialization: w;“ =w, =1fort=1
1 fort+ 1toT
2 do
3 Train the classifier b : Y — {—1, 1} under w;" and w;”
4

Compute the unweighted class error rates:

G;r = % > 1(ht(xi)7éyi)
iclt

& == 2 Lina)w)

el~
5 Update class weights:
_|_
wttd = wy" exp(e])

Wy = wy exp(€; )
6 Final prediction: H(z) = hp(z)

The algorithm, called AdaClassWeight, starts with an unweighted classifier and adaptively increases
the weight of the rare class until a stopping criterion is met. Unlike the DiffBoost algorithm, the
AdaClassWeight algorithm only uses the parameters of the classifier learned in the final iteration to
make a new prediction. DiffBoost would require all the learned parameters in the past 7" iterations in order
to make a new prediction. AdaClassWeight also differs from DiffBoost in the way that the class error
rates €, and ¢, are updated. DiffBoost uses the weighted class error rates while AdaClassWeight uses the
unweighted class error rates. If there is misclassification within a class, the unweighted class error rate
satisfies 0 < € < 1, so the class weight will increase in the next iteration. However, the class with a larger
error rate will increase more, thus to get better classification results in the next iteration.

Remark: For the implementation of AdaClassWeight and DiffBoost, we can inject a stopping criterion
during the iteration to avoid unnecessary large number of iterations. We can stop whenever the desired
error rate for the rare class has been achieved, i.e., we can stop when e?’ < €, , or when an absolute error
threshold has reached, e.g., ezr < 0.001.

Frontiers 9
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4 INCORPORATING CLASS WEIGHTS INTO CLASSIFICATION ALGORITHMS

We show how the class weights w™ and w™ computed from DiffBoost and AdaClassWeight are used with
Logistic Regression, Random Forest, and Support Vector Machine.

Weighted Logistic Regression

Logistic Regression models are usually fit by the maximum likelihood method [[17,/18]]. The log-likelihood
for IV observations is given by:

L(B) =) log(p) + Y _ log(1 — p;), (7)

ielt iel—

where L is the log-likelihood function, 3 is the vector of parameters, which is estimated by maximizing the
log likelihood, and p; is the probability of the i-th example being in the rare class. To assign a class weight
to each class, we modify L([) as follows:

L(B) =w" Z log(pi) +w™ Z log(1 — pi), (8)
ielt i€el~
where w™ and w™ are class weights assigned to the positive class and the negative class, respectively.

Weighted Random Forest

Random Forest uses decision trees as building blocks [19]. At each split, a predictor x; and its
corresponding cut point are chosen to minimize the misclassification error, which in practice is replaced by
the Gini index [|18]].

2 2
Giniindex =1 — ( - ) , 9)
=LA ng
j=1

where n; is the number of training observations of class ¢ in the node under consideration.

To incorporate class weights into Random Forest, the weighted Gini index is given as follows:

9 2
Weighted Gini index =1~ (2“)’—’“) , (10)

=AY wing
j=1

where w; is the weight for class ¢, and ¢ € {1, 2}.

Weighted Support Vector Machine

Support vector classifier is a maximum-margin classifier. The classification problem can be expressed as
the following optimization problem [18]:

This is a provisional file, not the final typeset article 10
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N

win {0 > (1= s +3 1512 }. ay
’ i=1

where y; is the i-th observation, and f(z;) is the classification result for the i-th data point x;. The
classifier f() is a function of parameters 5 and fy. Let ¢(x;) be the transformed feature vector for x;, then
f(z;) = BT p(x;) + Bo. Function ¢() can be the identity function for linear classification problems. The
parameters [ and [y are estimated by solving the optimization problem in (11)). Since both y; and f(x;)
take values in {—1,+1}, y;f(z;) = —1 only when there is a classification error. Classification error is
penalized by using the same weight w on both the positive class and the negative class. To incorporate class
weights into SVM, we assign different weights to different classes as follows [20} 21]:

min {wt > (1= yif(@)+ 0™ D (1= pif () + % 1817 }. (12)

bo,B iel+ iel-

where w™ and w™ are weights applied to the positive class and the negative class, respectively. Chang et al.
[22] used a different formulation for the optimization problem, but the two formulations are equivalent.
The equivalence of the two formulations can be found in [[18].

5 EXPERIMENTS

Through experiments on real datasets, we show the excellent performance of the proposed algorithms,

and compare them with other algorithms: AdaBoost [16], a simple weighting method that uses the
ratio of positive cases and negative cases in the sample to compute weights, i.e., Z—J_r = % and the
unweighted method. We compare the algorithms in three aspects: 1) testing error, 2) the Receiver Operating
Characteristic (ROC) curve, and 3) sensitivity to noise. All classifiers are given the same input. Finally, we
compare the rare class performance of our algorithms with the group of algorithms that were developed

from AdaBoost.

5.1 Testing Error

Training classifiers under differentiated weights significantly reduces the training error of the rare class.
Will this also translate to a reduced error on the testing data? In this experiment we test if reducing training
error on the rare class leads to overfitting, which means we will get an increased testing error. Figure
2 shows an overall trend of decreasing for both testing error and training error, so the improvement on
training error on the rare class is also an improvement on the testing error. The algorithms start with
an unweighted algorithm (w™ = w™ = 1 at initialization), and then through iterations as the training
error decreases, the testing error also decreases. Results in Figure 2 are obtained from running Logistic
Regression on the IEEE 39-bus dataset and the Spam dataset. Other classifiers show similar results.

Comparison with other methods on testing error are shown in Table 3} We consider three classifiers: LR,
RF and SVM. When we train a weak classifier under weights, LR can take both individual weights and
class weights, but RF and SVM can only take class weights. Since AdaBoost produces one weight per
example and does not give class weights, we can only obtain results for AdaBoost when using LR as the
weak classifier. This experiment demonstrates that DiffBoost and AdaClassWeight both outperform existing
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methods in improving the rare class performance. The improvement for SVM is the most significant as the
error rate is improved from 0.674 to 0.025.

Table 3. Testing error ez; < for the 39-bus power system data.

‘ Methods FEQ]SEI%F@%YM

| AdaBoost | 0186 | — | — |
| vt = N 0097 | 02 |0.139 ]
s 0,132 | 0.289 | 0.674 |
| DiffBoost | 0.067 | 0.089 | 0.025 |

| AdaClassWeight | 0.09 | 0.133 | 0.118 |

5.2 Receiver Operating Characteristic (ROC)

It is reasonable to expect that the weighting algorithm will improve the prediction accuracy of the rare
class at the expense of the main class. In this experiment, we will find out how much tradeoff exists between
the rare class and the main class. We evaluate the performance of DiffBoost and AdaClassWeight in terms
of the true positive rate and the false positive rate, and we compare them with 1) the simple weighting
algorithm that uses the ratio to decide weight, i.e., %—J_r = %, 2) the classical boosting algorithm AdaBoost,
and 3) the unweighted algorithm (labeled as 1:1 in figures). AdaBoost is not designed to address the data
imbalance problem, but it does use boosting to improve prediction performance without distinction of
classes. We would like to see how differentiated boosting performs in terms of ROC compared to AdaBoost
and others.

The ROC curve is the plot of true positive rate versus false positive rate for different cut-off points of a
parameter. If increased true positive rate is at the cost of the increased false positive rate, the curve would
go along the 45 degree line (the gray line in Figure[3). Otherwise, if the false positive rate does not go up
proportionally, it would stay above the 45 degree line. On the ROC plot, the area under the curve is used to
compare algorithms. The one with the largest area under the curve is considered the best.

Results from using IEEE 39-bus system data (Figure [3) show that the areas under the curves for the two
proposed algorithms are the two largest compared to all other algorithms. This means the false positive rate
did not go up proportionally. This is because there are a large number of examples in the main class, and
adding appropriate weight on the rare class does not affect the performance of the main class too much.

5.3 Sensitivity to Noise

We care about sensitivity to noise because added weight will also amplify noise if noise happens to be
on the rare class. In this section we test if the weighting algorithms DiffBoost and AdaClassWeight are
sensitive to noise. We test the algorithms on the IEEE 39-bus dataset and present the results from using
Logistic Regression. Results from using the other two classifiers are similar.

Noise is added into data as class noise, i.e., we flip a certain percentage of labels in each class. We define
the percentage of flipped labels as the noise level, which takes values in [0%, 1%, 2%, 5%, 10%, 15%).
The results show that DiffBoost and AdaClassWeight can perform better than the ratio-based weighting
algorithm, better than the AdaBoost algorithm, and much better than the unweighted algorithm (see Figure
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H). The superiority of the two proposed algorithms is more evidenced as the noise level increases. Although
the performance of DiffBoost and AdaClassWeight is also impacted by noise, the impact is smaller than
other algorithms since the performance drop is not very steep.

5.4 Comparison with the Boosting Algorithms

The boosting algorithms AdaC1l, AdaC2, AdaC3, and Adacost mentioned in Sectionare developed from
AdaBoost and all have similar ROC curves as AdaBoost (see Figure[3). Next we show another aspect of
these algorithms: all methods require a preset cost C';, Vi, and the classification performance is extremely
sensitive to this hyper-parameter. We use the Spam data to demonstrate. The Spam data has a total of 4597
examples with 2785 non-spam emails and 1812 spam emails. We randomly select 1506 examples from the
original dataset. The ratio between non-spam examples and spam examples is 12 : 1, and 50% - 50% split
is used for training and test within each class.

To see the effects of different cost settings on classifiers, we compare the results of Adacost, AdaCl,
AdaC2 and AdaC3 based on different cost ratios C'; : C_, and report the results on the test data (see Table
H). First of all, the highest recalls of the four algorithms occur at very different locations even for the same
dataset. This indicates it is not a simple task to assign cost ratios. In Table 4] the highest recall is highlighted
for each algorithm and the precision under the same cost ratio is also reported. Although these recalls are
very impressive, the precisions are extremely low. If an algorithm simply predicts all cases as the rare class,
it can achieve recall 1.0, but the precision is close to zero. This is observed with these boosting algorithms.
In comparison, AdaClassWeight has the highest precision while achieving a high recall. It is also observed
that the sum of recall and precision is the highest by the two proposed algorithms.

The proposed algorithms also outperform the boosting algorithms in algorithm complexity. For the
boosting algorithms, the cost ratio is a hyper-parameter. The optimal value for the hyper-parameter is
obtained by a grid search. In the experiment, we performed a grid search for the cost ratio C'y /C_ € [1, 10]
with step size 0.5. The training time would be much longer had we used a finer grid. In comparison,
the proposed algorithms adaptively find the weights without a preset hyper-parameter. DiffBoost and
AdaClassWeight terminate after 7' iterations, or before 7' iterations if a desired tradeoff between the
positive class and the negative class have been found, so the algorithms are bounded to 7" iterations. The
proposed algorithms have lower complexity as shown in Table

Table 4. Spam data. From left to right: the recall on test data under various cost ratios, the precision
corresponding to the highest recall , training time, and test time.

Recall with different cost ratios Cy : C_ . . ' .
} T ] (lef:Sa:lle 2:11 Trezr.lszclos‘ r%}?s ‘ *7.5 R } Precision | Training Time(s) | Test Time(s) |

| Adacost | 0.633 | 0.669 | 0.698 | 0.878 | 0.698 | 0.92 | 0.775| 0.1 | 1.41 | 0.004 |
| AdaCl | 0.633 | 0.824 | 0.885 | 0.896 | 0.917 | 0.99 | 099 | 0.076 | 3.51 | 0.004 |
| AdaC2 10633 09 | 092 | 0.96 | 0.98 | 0.99 | 099 | 0.076 | 273 | 0.005 |
| AdaC3 | 0.594 | 0.881 | 0.94 | 0.824 | 0.824 | 0.775| 091 | 033 | 2.1 | 0.004 |
| DiffBoost | 0.931 | 0392 | 135 | 0003 |
| AdaClassWeight | 0.92 | 0403 | 0.74 | 0003 |
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6 CONCLUSION AND OUTLOOK

We have studied the problem of classifying rare events in imbalanced datasets, in which the rare class
examples are significantly fewer than the main class examples. We focused on designing weighting
algorithms to compute class weights during the training phase. DiffBoost and AdaClassWeight are general
weighting algorithms and can be used in junction with any classifier. It has been tested with Logistic
Regression, Random Forest, and Support Vector Machine, and has been applied to several datasets. The
experimental results show that they improve the prediction accuracy of the rare class with a controlled
tradeoff in the main class. The ROC curves of the proposed algorithms have larger “area under the curve’
than the simple ratio-based algorithm, the original unweighted algorithm, and the AdaBoost algorithm
as well as other boosting algorithms based on AdaBoost. It also has the advantage of being able to focus
on the rare class, giving it a much higher accuracy in case we need to prioritize the rare class, with a
controllable tradeoff. Multiclass classification for more than two classes using differential class weights is
an easy extension from this work, which will be addressed in the future work.
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Figure 1. The convergence of the DiffBoost algorithm. Training error of the rare class asymptotically
converges to zero as its upper bound decreases monotonically.
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Figure 3. ROC on training data (left) and testing data (right). Tests are done on the IEEE 39-bus power
system data. DiffBoost and AdaClassWeight both have a larger area under the curve than other algorithms.
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