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ABSTRACT2

In machine learning, we often face the situation where the event we are interested in has very3
few data points buried in a massive amount of data. This is typical in network monitoring, where4
data are streamed from sensing or measuring units continuously but most data are not for events.5
With imbalanced datasets, the classifiers tend to be biased in favor of the main class. Rare6
event detection has received much attention in machine learning, and yet it is still a challenging7
problem. In this paper, we propose a remedy for the standing problem. Weighting and sampling8
are two fundamental approaches to address the problem. We focus on the weighting method9
in this paper. We first propose a boosting-style algorithm to compute class weights, which is10
proved to have excellent theoretical property. Then we propose an adaptive algorithm, which is11
suitable for real-time applications. The adaptive nature of the two algorithms allows a controlled12
tradeoff between true positive rate and false positive rate and avoids excessive weight on the13
rare class, which leads to poor performance on the main class. Experiments on power grid data14
and some public datasets show that the proposed algorithms outperform the existing weighting15
and boosting methods, and that their superiority is more noticeable with noisy data.16

Keywords: Imbalanced Dataset, Bias, Classification, Machine Learning, Rare Event17

1 INTRODUCTION

In this paper, we study the problem of learning with an imbalanced dataset. In classification, this is also18
called rare events problem, in which there are thousands of times fewer yes cases than no cases. The19
yes cases are called events. Usually the events are what we are interested in, which may have very few20
occurrences while the nonevent cases are abundant. This is typical in network monitoring applications,21
where data representing events are only a tiny portion of the entire dataset. For instance, we may have a22
fault or anomaly observed in one month’s worth of data while all other observations are nonevents. Using23
machine learning approach for event detection and identification would require training a machine learning24
algorithm with these data, but the scarce representation of events in the dataset makes learning the rare25
event difficult.26

It has been reported in the statistics literature that rare events are difficult to predict (see [1] and others).27
In [2], it is pointed out that with imbalanced datasets, the learning algorithms are biased in favor of the class28
priors. The statistical procedure to predict the event, such as Logistic Regression, often underestimates29
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the probability of the rare events. Such procedures will have a high overall prediction accuracy mainly30
due to the correct predictions on the large number of nonevent cases, but the recall metrics, defined as the31
fraction of true positives that have been successfully predicted, is extremely low. Such performance does32
not serve the purpose of event detection, since what we are interested in is the event. For event detection33
in a networked system, having a missed detection on important events has more detrimental effect than34
having a false alarm. Oftentimes we are willing to improve the detection rate even if it will generate more35
false positives. However, using the standard classifiers, the cost associated with misclassification on either36
class has the same contribution in the cost function.37

To address the problem, we need to give more importance to the rare class in the cost function. This38
can be done either by directly changing the number of examples in each class in the training set, i.e.,39
by sampling [3], or by changing the weights of the classes, which also changes the distribution of the40
classes. A review article [5] provided an in-depth study of data sampling strategies and weight-modification41
strategies from the Bayesian classification point of view. In addition, the number of classes is also not42
limited to two classes. It can be extended to multiple-classes [4].43

Sampling has the merit of simplicity but it also has limitations. First, there are two forms of rarity as44
pointed out in [2]: absolute rarity and relative rarity. While relative rarity can be corrected by under-45
sampling the main class, absolute rarity can only resort to oversampling the rare class. However there is46
an issue with this approach— in case there are outliers in the data, the oversampled outliers will ruin the47
prediction performance. Moreover, under-sampling may also cause loss of information. It is necessary to48
consider an alternative way to address the rarity issue.49

In this paper, we focus on weighting methods. Unlike the previous weighting methods that use the50
population information or the relative rarity in the sample to decide the weights, we develop algorithms to51
compute the weights during the training process. The weighting algorithms can work with any classifier.52
In this paper, we use Logistic Regression, Random Forest, and Support Vector Machine to demonstrate53
its effectiveness. The proposed algorithms have the advantages of not relying on unknown population54
information, and being able to improve the prediction performance of the rare class with a controllable55
tradeoff with the main class. Most importantly, this is the best approach to deal with absolute rarity, which56
poses great challenges to other methods.57

In practice, a user does not have to choose between a weighting method and a sampling method. An58
ensemble approach that combines sampling techniques and weighting techniques can achieve the best of59
the two worlds. For instance, [6] combines generating synthetic data and boosting procedures to improve60
the predictive accuracies of both the majority and minority classes. An improvement on the weighing61
method also contributes to the ensemble techniques.62

The rest of the paper is organized as follows: in Section 2, we cover the preliminaries for classification with63
imbalanced dataset; in Section 3, we propose two weighting algorithms, DiffBoost and AdaClassWeight.64
They can address both forms of rarity by adaptively adding weights and combining weighting with boosting;65
and subsequently in Section 4, we explain how to train a classifier under the computed weights; in Section66
5, we provide performance results for the proposed algorithm, along with comparison with related methods;67
and in Section 6, we conclude the paper with outlook for future work.68

2 CLASSIFICATION WITH IMBALANCED DATASETS

Among many others [7, 8, 9], using weights is a fundamental approach to address the data imbalance69
problem in classification. We focus on the use of class weights in this paper, in which we add class weights70
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to the loss function, making it more expensive to have a classification error in the rare class. This is71
done by assigning the rare class a larger weight and the main class a smaller weight. Weighting is also72
considered a type of cost-sensitive learning method [10]. In cost-sensitive learning, the cost associated73
with misclassifying a rare class outweighs the cost of correctly classifying the main class. In [1], weights74
are decided based on sample distribution in the population: the rare class weight w+ = ⌧/ȳ and the main75
class weight w� = (1� ⌧)/(1� ȳ), where ⌧ is the fraction of the rare class in the population, and ȳ is the76
fraction in the sample, respectively. In some applications, population information may be straightforward77
to know, such as in political activities [1]. However, in most other applications, we do not know the class78
distribution in the population. For convenience, many resort to using the sample information, i.e., in the79
training set if there are N

+ examples in the rare class, and N
� examples in the main class, the weight80

would be N�
/N

+ for the rare class and 1 for the main class. This method, as we will see later in this paper,81
has the disadvantage of not considering the absolute rarity, and also not having control over the trade off82
between the false positive rate and the false negative rate. In case we need to prioritize the rare class, we83
cannot improve the performance on the rare class further since the fixed weights only reflect the ratio of the84
examples in the sample.85

Similar to the class-weighted methods, there are previous work that use individual weights in the86
classification algorithms. We briefly review some existing work that are developed based on the idea of87
introducing a cost for each individual example. The weight update rule was first introduced in AdaBoost88
[11] to force the classifier to be biased towards the minority class.89

Given the number of iterations T , and training data {(xi, yi) , i = 1, . . . , N}, the AdaBoost algorithm90
computes the sample weight distribution Dt at the t-th iteration. ht is the classifier trained under weight91
distribution Dt. The weight update rule in AdaBoost is given by92

Dt+1(i) =
Dt(i) exp (�↵tht (xi) yi)

Zt

, (1)

where ↵t is a weight update parameter that needs to be computed in each iteration. Zt is normalization93
factor defined as94

Zt =
X

i

Dt(i) exp (�↵tht (xi) yi) . (2)

Based on the weight update rule of AdaBoost, later works AdaC1, AdaC2, and AdaC3 from [12], CSB195
and CSB2 from [13], and Adacost from [14] were developed by associating a cost Ci � 0 with individual96
examples in equation (1). Examples from the minority class are associated with larger costs than those97
from the majority class.98

• AdaC1 modifies eq. (1) by introducing Ci inside the exponent,99

Dt+1(i) =
Dt(i) exp (�↵tCiht (xi) yi)

Zt

. (3)

• AdaC2 adds a cost Ci outside the exponent of eq. (1),100

Dt+1(i) =
CiDt(i) exp (�↵tht (xi) yi)

Zt

. (4)
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• AdaC3 can be considered as a combination of AdaC1 and AdaC2, in which Ci is included both inside101
and outside the exponent,102

Dt+1(i) =
CiDt(i) exp (�↵tCiht (xi) yi)

Zt

. (5)

• AdaCost also uses a cost inside the exponent of eq. (1), however, instead of directly using cost item103
Ci, it defines a cost adjustment function �

(ht(xi),yi)
based on Ci,104

Dt+1(i) =
Dt(i) exp

⇣
�↵t� (ht(xi),yi)

ht (xi) yi
⌘

Zt

, (6)

where �
(ht(xi),yi)

can be set as �+ = �0.5Ci+0.5 if classified correctly, and �� = 0.5Ci+0.5 otherwise.105

All the aforementioned methods involve using a cost. A common drawback of them is that one must106
manually determine the “optimal” cost, which is predetermined. Arbitrarily selected costs can result in poor107
classification performance as shown in Section 5. However, there is no better algorithm than exhaustive108
search to decide the costs. This motivates an algorithm that computes the weights solely from the data and109
does not depend on any hyper-parameter.110

3 THE PROPOSED WEIGHTING METHODS

Throughout this paper, we assume the rare class is the positive class. Let N+ be the number of examples in111
the rare class, and N

� the number of examples in the main class, and N
+ ⌧ N

�. The class weights are112
denoted as w+ for the rare class and w

� for the main class.113

Through numerous tests, it is observed that what makes it difficult to learn from an imbalanced dataset114
is not the relative ratio of the rare class to the main class, rather it is the small number of examples115
in the rare class. In other words, the absolute rarity matters much more than the relative rarity. This116
is especially true for Logistic Regression, as the logistic model is often estimated by using maximum117
likelihood estimation and inherently has the “small-sample bias” issue [1]. The simple ratio-based algorithm118
that uses w

+
/w

� = N
�
/N

+ will only use the ratio information regardless of the sample size and is119
deemed unable to find the optimal weights. For a dataset with (N+

, N
�) = (200, 2000), a weight ratio of120

w
+
/w

� = 10 gives too much weight to the rare class, leading to overfitting the rare class; and for a dataset121
with (N+

, N
�) = (2, 10), using a weight ratio of w+

/w
� = 5 is not enough.122

We use two experiments on the Spam data to demonstrate the effect of the absolute rarity. In the first123
experiment, the training set has a total of 2200 examples, with

�
N

+
, N

�� = (200, 2000). We compare124
results using a sequence of weights: w+

/w
� 2 {2, 5, 7.5, 10}. Table 1 shows the results. It is noted that125

for the simple ratio-based algorithm using w
+
/w

� = 10, while the recall is the highest, the precision is the126
lowest for both training and test, and the sum of recall and precision is the lowest. Therefore, the results127
support the claim that w+

/w
� = 10 leads to overfitting on the rare class. On the other hand, the algorithm128

with w
+
/w

� = 5 has competitive performance, with a close-to-the-highest recall and the highest sum of129
recall and precision, indicating that w+

/w
� = 5 is the best among the four options.130

For the second experiment, the training set has a total of 12 examples, with
�
N

+
, N

�� = (2, 10). We131
used a sequence of weights: w+

/w
� 2 {5, 7.5, 10, 12}, and the results are shown in Table 2. It is noted132

that simply setting w
+
/w

� = 5 according to the ratio of the examples in the training set is not enough133
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Table 1. Spam Data. The number of examples in the training set is
�
N

+
, N

�� = (200, 2000).

Training Test
Recall Precision Recall Precision

w
+
/w

� = 2 0.819 0.804 0.776 0.752

w
+
/w

� = 5 0.910 0.716 0.870 0.676

w
+
/w

� = 7.5 0.92 0.668 0.887 0.627

w
+
/w

� = 10 0.924 0.491 0.897 0.440

to have a high recall. The algorithm with w
+
/w

� = 12 has the highest recall, and the algorithm with134
w
+
/w

� = 10 has a close-to-the-highest recall and the highest sum for recall and precision.135

Table 2. Spam Data. The number of examples in the training set is
�
N

+
, N

�� = (2, 10).

Training Test
Recall Precision Recall Precision

w
+
/w

� = 5 0.800 0.559 0.580 0.239

w
+
/w

� = 7.5 0.950 0.388 0.620 0.223

w
+
/w

� = 10 1.000 0.382 0.640 0.206

w
+
/w

� = 12 1.000 0.382 0.660 0.183

The experiments verified that it is the number of examples in the rare class that determines the error.136
Therefore, it is necessary to look beyond the ratio and develop an algorithm to find the class weights. We137
present two algorithms, Differentiated Boosting (DiffBoost) and Adaptive Class Weights (AdaClassWeight).138

3.1 A Boosting Style Weighting Method: DiffBoost139

We define two index sets I+ = {i : yi = 1}, and I
� = {i : yi = �1}. We use + to denote the rare class140

and � to denote the main class. In the algorithm DiffBoost, we compute the weights iteratively under an141
overarching boosting framework.142
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ALGORITHM DIFFBOOST143

Input: {(xi, yi) , i = 1, . . . , N}, xi 2 �, yi 2 {�1, 1}
Initialization: for t = 1,

w
+
t
= w

�
t
= 1

Dt(i) =
1

N+ , 8i 2 I
+

Dt(i) =
1

N� , 8i 2 I
�

1 for t 1 to T
2 do
3 Train the classifier ht : �! {�1, 1} under class weights w+

t
and w

�
t

4 Compute the weighted class error:
✏
+
t
=
P

i2I+
Dt(i) · 1(ht(xi) 6=yi)

✏
�
t
=
P

i2I�
Dt(i) · 1(ht(xi) 6=yi)

5 Compute ↵t = max
n
0, 12 ln

1�✏
+
t

✏
+
t

o

6 Update class weights:
w
+
t+1 = w

+
t
exp(✏+

t
)

w
�
t+1 = w

�
t
exp(✏�

t
)

7 Update sample weights:
Dt+1(i) =

Dt(i) exp(�↵tyiht(xi))

Z
+
t

, 8i 2 I
+

Dt+1(i) =
Dt(i) exp(�↵tyiht(xi))

Z
�
t

, 8i 2 I
�

where Z
+
t
=
P

i2I+
Dt(i) exp(�↵tyiht(xi)),

and Z
�
t
=
P

i2I�
Dt(i) exp(�↵tyiht(xi))

8 Final prediction: H(x) = sign
✓

TP
t=1

↵tht(x)

◆

144

The classifier ht maps an element in the feature space � to a label. Z+
t

and Z
�
t

are chosen such that145 P

i2I+
Dt+1(i) = 1, and

P

i2I�
Dt+1(i) = 1, and therefore Dt+1(i), i 2 I

+ will be a distribution, and146

Dt+1(i), i 2 I
� will be a distribution. This is the invariant of the algorithm, as it holds from initialization147

until the algorithm terminates.148

Although the algorithm seems to operate symmetrically on both the rare class and the main class, it149
actually boosts the performance of the rare class more than the main class. This is due to the fact that150
N

+ ⌧ N
�, and therefore Dt(i) takes larger values for i 2 I

+ than for i 2 I
�. Initially, the main class is151

doing well due to the large number of examples, so we have ✏
+
> ✏

� after the first iteration, and then w
+152

becomes larger than w
�. The algorithm starts to behave in favor of the rare class.153

This boosting algorithm has the property that as the iteration number T increases, the training error for154
the rare class monotonically decreases. We outline the proof in the following. The training error of the rare155
class is given by 1

N+

P

i2I+
1(H(xi) 6=yi).156

THEOREM 1. 1
N+

P

i2I+
1(H(xi) 6=yi) asymptotically converges to zero as T !1.157

The proof of Theorem 1 is straightforward from Lemma 1 and Lemma 2.158
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LEMMA 1. The training error of the rare class has the following bound:159

1

N+

X

i2I+
1(H(xi) 6=yi) 

TY

t=1

Z
+
t
.

Proof: Let f(x) =
TP
t=1

↵tht(x), i.e., the final prediction H(x) = sign(f(x)). From the update rule of

Dt+1(i), and using telescoping, we have that 8i 2 I
+,

DT+1(i)

= DT (i) ·
exp(�↵T yihT (xi))

Z
+
T

= D1(i) ·
exp(�↵1yih1(xi))

Z
+
1

. . .
exp(�↵T yihT (xi))

Z
+
T

=
1

N+ ·
exp(�yi

TP
t=1

↵tht(xi))

Q
T

t=1 Z
+
t

=
1

N+ · exp(�yif(xi))Q
T

t=1 Z
+
t

Next, we show that the training error of the rare class is bounded from above by
Q

T

t=1 Z
+
t

.160

Recall that H(xi) = sign(f(xi)).161

• If yi and f(xi) have the same sign, then 1(H(xi) 6=yi) = 0, and 0 < exp(�yif(xi)) < 1, thus162
1(H(xi) 6=yi)  exp(�yif(xi)).163

164

• If yi and f(xi) have different signs, 1(H(xi) 6=yi) = 1, and exp(�yif(xi)) > 1, thus 1(H(xi) 6=yi) 165
exp(�yif(xi)) still holds.166

Combining both cases, we have

1

N+

X

i2I+
1(H(xi) 6=yi) 

1

N+

X

i2I+
exp(�yif(xi))

=
X

i2I+
DT+1(i)

TY

t=1

Z
+
t

(a)
=

TY

t=1

Z
+
t

(a) is due to that
P

i2I+
DT+1(i) = 1, which is the invariant of the algorithm. ⇤167
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LEMMA 2.
Q

T

t=1 Z
+
t

decreases monotonically as the iteration number T increases.168

Proof:

Z
+
t
=
X

i2I+
Dt(i) exp(�↵tyiht(xi))

=
X

i2I+,ht(xi)=yi

Dt(i) exp(�↵tyiht(xi)) +
X

i2I+,ht(xi) 6=yi

Dt(i) exp(�↵tyiht(xi))

= e
�↵t

X

i2I+,ht(xi)=yi

Dt(i) + e
↵t

X

i2I+,ht(xi) 6=yi

Dt(i)

= e
�↵t(1� ✏

+
t
) + e

↵t✏
+
t

Plugging in ↵t = max
n
0, 12 ln

1�✏
+
t

✏
+
t

o
, we have the following,169

• When ✏
+
t
<

1
2 , ↵t =

1
2 ln

1�✏
+
t

✏
+
t

,170

Z
+
t
=

r
✏
+
t

1�✏
+
t
(1� ✏

+
t
) +

r
1�✏

+
t

✏
+
t

✏
+
t
< 1.171

• When ✏
+
t
� 1

2 , ↵t = 0 (i.e., this iteration has no contribution to the final prediction), and Z
+
t
= 1.172

Therefore Z
+
t
 1, 8t. Thus,

Q
T

t=1 Z
+
t

decreases monotonically with T . ⇤173

The following analysis shows that Z+
t
= 1 is only a transient state and the algorithm will quickly pass174

this state and enter into an exponential decrease state.175

• The applicable scenario for the weighting algorithm is when data is extremely imbalanced and the rare176
class has very few data points. Under this condition, it is reasonable to assume that the initial weighted177
class error ✏+

t
> ✏

�
t

. During the iteration, ✏+
t

will decrease, and we can stop the iteration if ✏+
t
< ✏

�
t

178
has been achieved in less than T iterations.179

• When ✏
+ � 1

2 , ↵t = 0, Dt+1(i) = Dt(i) is unchanged, w+
t+1 and w

�
t+1 both increase, however w+

t+1180
increases faster since ✏+

t
> ✏

�
t

. Therefore, in the next iterations ✏+
t+1 will be decreasing. It continues to181

decrease until eventually ✏
+
t

becomes less than 1
2 , so that the upper bound starts to decrease again.182

• When ✏
+

<
1
2 , Z+

t
= 2

q
✏
+
t
(1� ✏

+
t
). Let �t = 1

2 � ✏
+
t

, we have Z
+
t

=
p
1� 4�2

t
 e

�2�2t , and183

Q
t
Z
+
t
 e

�2
P
t
�
2
t
. In this case, the upper bound decreases exponentially.184

Since the upper bound of 1
N+

P
i2I+ 1(H(xi) 6=yi) decreases monotonically with T , and Z

+
t

= 1 is a185
transient state and will eventually transform to Z

+
t
< 1, we conclude that the training error of the rare class186

asymptotically converges to zero as T !1.187

Figure 1 shows the upper bound of the training error and the actual training error vs. the iteration number188
by using DiffBoost. Three algorithms, Logistic Regression (LR), Random Forest (RF) and Support Vector189
Machine (SVM) are tested on two datasets. The Spam dataset is from UCI machine learning repository190
[15]. The simulated data are generated using a function. We generate a total of 1,832 examples with191
three predictors X1, X2 and X3. Each predictor variable follows a Gaussian distribution, X1 ⇠ N(0, 1),192

This is a provisional file, not the final typeset article 8



He et al. Weighting Methods for Imbalanced Datasets

X2 ⇠ N(1, 2) and X3 ⇠ N(�2, 1.5). The target function is f(X1, X2, X3) = X1 +X2 +X3 � 5(X2
1 +193

X
2
2 +X

2
3 ) +X

3
1 +X

3
2 +X

3
3 . The response variable Y = f(X1, X2, X3) + e, with error term e ⇠ N(0, 3).194

Binary labels are assigned as yi = 1 if yi � 0 and yi = �1 otherwise.195

The theory and simulation both show that DiffBoost has excellent converging property. However, it still196
has one issue — it takes as many iterations to predict a new response as it takes to train the classifier. This197
problem is inherent to the boosting style algorithms. AdaBoost [16] has the same issue. The parameters198

learned from each iteration as well as ↵t must be saved, as the final prediction H(x) = sign
✓

TP
t=1

↵tht(x)

◆
199

requires ↵t and all the parameters used by ht(x) for t = 1, . . . , T . In the next section, we propose an200
algorithm that takes only one shot to predict. Training may take many iterations, and can take place off-line,201
but once we have learned the class weights, prediction takes only one shot. This algorithm will be suitable202
for real-time applications.203

3.2 Adaptively Computing Class Weights204

ALGORITHM ADACLASSWEIGHT205

Input: {(xi, yi) , i = 1, . . . , N}, xi 2 �, yi 2 {�1, 1}
Initialization: w+

t
= w

�
t
= 1 for t = 1

1 for t 1 to T
2 do
3 Train the classifier ht : �! {�1, 1} under w+

t
and w

�
t

4 Compute the unweighted class error rates:
✏
+
t
= 1

N+

P

i2I+
1(ht(xi) 6=yi)

✏
�
t
= 1

N�
P

i2I�
1(ht(xi) 6=yi)

5 Update class weights:
w
+
t+1 = w

+
t
exp(✏+

t
)

w
�
t+1 = w

�
t
exp(✏�

t
)

6 Final prediction: H(x) = hT (x)

206

The algorithm, called AdaClassWeight, starts with an unweighted classifier and adaptively increases207
the weight of the rare class until a stopping criterion is met. Unlike the DiffBoost algorithm, the208
AdaClassWeight algorithm only uses the parameters of the classifier learned in the final iteration to209
make a new prediction. DiffBoost would require all the learned parameters in the past T iterations in order210
to make a new prediction. AdaClassWeight also differs from DiffBoost in the way that the class error211
rates ✏+

t
and ✏

�
t

are updated. DiffBoost uses the weighted class error rates while AdaClassWeight uses the212
unweighted class error rates. If there is misclassification within a class, the unweighted class error rate213
satisfies 0 < ✏t  1, so the class weight will increase in the next iteration. However, the class with a larger214
error rate will increase more, thus to get better classification results in the next iteration.215

Remark: For the implementation of AdaClassWeight and DiffBoost, we can inject a stopping criterion216
during the iteration to avoid unnecessary large number of iterations. We can stop whenever the desired217
error rate for the rare class has been achieved, i.e., we can stop when ✏

+
t
< ✏

�
t

, or when an absolute error218
threshold has reached, e.g., ✏+

t
< 0.001.219
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4 INCORPORATING CLASS WEIGHTS INTO CLASSIFICATION ALGORITHMS

We show how the class weights w+ and w
� computed from DiffBoost and AdaClassWeight are used with220

Logistic Regression, Random Forest, and Support Vector Machine.221

Weighted Logistic Regression222

Logistic Regression models are usually fit by the maximum likelihood method [17, 18]. The log-likelihood223
for N observations is given by:224

L(�) =
X

i2I+
log(pi) +

X

i2I�
log(1� pi), (7)

where L is the log-likelihood function, � is the vector of parameters, which is estimated by maximizing the225
log likelihood, and pi is the probability of the i-th example being in the rare class. To assign a class weight226
to each class, we modify L(�) as follows:227

L(�) = w
+
X

i2I+
log(pi) + w

�
X

i2I�
log(1� pi), (8)

where w
+ and w

� are class weights assigned to the positive class and the negative class, respectively.228

Weighted Random Forest229

Random Forest uses decision trees as building blocks [19]. At each split, a predictor xj and its230
corresponding cut point are chosen to minimize the misclassification error, which in practice is replaced by231
the Gini index [18].232

Gini index = 1�
2X

i=1

 
ni

2P
j=1

nj

!2

, (9)

where ni is the number of training observations of class i in the node under consideration.233

To incorporate class weights into Random Forest, the weighted Gini index is given as follows:234

Weighted Gini index = 1�
2X

i=1

 
wini

2P
j=1

wjnj

!2

, (10)

where wi is the weight for class i, and i 2 {1, 2}.235

Weighted Support Vector Machine236

Support vector classifier is a maximum-margin classifier. The classification problem can be expressed as237
the following optimization problem [18]:238
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min
�0,�

n
w

NX

i=1

(1� yif(xi)) +
1

2
k � k2

o
, (11)

where yi is the i-th observation, and f(xi) is the classification result for the i-th data point xi. The239
classifier f() is a function of parameters � and �0. Let �(xi) be the transformed feature vector for xi, then240
f(xi) = �

T
�(xi) + �0. Function �() can be the identity function for linear classification problems. The241

parameters � and �0 are estimated by solving the optimization problem in (11). Since both yi and f(xi)242
take values in {�1,+1}, yif(xi) = �1 only when there is a classification error. Classification error is243
penalized by using the same weight w on both the positive class and the negative class. To incorporate class244
weights into SVM, we assign different weights to different classes as follows [20, 21]:245

min
�0,�

n
w
+
X

i2I+
(1� yif(xi))+ w

�
X

i2I�
(1� yif(xi)) +

1

2
k � k2

o
, (12)

where w+ and w
� are weights applied to the positive class and the negative class, respectively. Chang et al.246

[22] used a different formulation for the optimization problem, but the two formulations are equivalent.247
The equivalence of the two formulations can be found in [18].248

5 EXPERIMENTS

Through experiments on real datasets, we show the excellent performance of the proposed algorithms,249
and compare them with other algorithms: AdaBoost [16], a simple weighting method that uses the250

ratio of positive cases and negative cases in the sample to compute weights, i.e., w
+

w� = N
�

N+ , and the251
unweighted method. We compare the algorithms in three aspects: 1) testing error, 2) the Receiver Operating252
Characteristic (ROC) curve, and 3) sensitivity to noise. All classifiers are given the same input. Finally, we253
compare the rare class performance of our algorithms with the group of algorithms that were developed254
from AdaBoost.255

5.1 Testing Error256

Training classifiers under differentiated weights significantly reduces the training error of the rare class.257
Will this also translate to a reduced error on the testing data? In this experiment we test if reducing training258
error on the rare class leads to overfitting, which means we will get an increased testing error. Figure259
2 shows an overall trend of decreasing for both testing error and training error, so the improvement on260
training error on the rare class is also an improvement on the testing error. The algorithms start with261
an unweighted algorithm (w+ = w

� = 1 at initialization), and then through iterations as the training262
error decreases, the testing error also decreases. Results in Figure 2 are obtained from running Logistic263
Regression on the IEEE 39-bus dataset and the Spam dataset. Other classifiers show similar results.264

Comparison with other methods on testing error are shown in Table 3. We consider three classifiers: LR,265
RF and SVM. When we train a weak classifier under weights, LR can take both individual weights and266
class weights, but RF and SVM can only take class weights. Since AdaBoost produces one weight per267
example and does not give class weights, we can only obtain results for AdaBoost when using LR as the268
weak classifier. This experiment demonstrates that DiffBoost and AdaClassWeight both outperform existing269

Frontiers 11



He et al. Weighting Methods for Imbalanced Datasets

methods in improving the rare class performance. The improvement for SVM is the most significant as the270
error rate is improved from 0.674 to 0.025.271

Table 3. Testing error ✏+
test

for the 39-bus power system data.

Methods Testing Error
LR RF SVM

AdaBoost 0.186 — —
w
+

w� = N
�

N+ 0.097 0.2 0.139
w
+

w� = 1 0.132 0.289 0.674

DiffBoost 0.067 0.089 0.025
AdaClassWeight 0.09 0.133 0.118

5.2 Receiver Operating Characteristic (ROC)272

It is reasonable to expect that the weighting algorithm will improve the prediction accuracy of the rare273
class at the expense of the main class. In this experiment, we will find out how much tradeoff exists between274
the rare class and the main class. We evaluate the performance of DiffBoost and AdaClassWeight in terms275
of the true positive rate and the false positive rate, and we compare them with 1) the simple weighting276

algorithm that uses the ratio to decide weight, i.e., w
+

w� = N
�

N+ , 2) the classical boosting algorithm AdaBoost,277
and 3) the unweighted algorithm (labeled as 1:1 in figures). AdaBoost is not designed to address the data278
imbalance problem, but it does use boosting to improve prediction performance without distinction of279
classes. We would like to see how differentiated boosting performs in terms of ROC compared to AdaBoost280
and others.281

The ROC curve is the plot of true positive rate versus false positive rate for different cut-off points of a282
parameter. If increased true positive rate is at the cost of the increased false positive rate, the curve would283
go along the 45 degree line (the gray line in Figure 3). Otherwise, if the false positive rate does not go up284
proportionally, it would stay above the 45 degree line. On the ROC plot, the area under the curve is used to285
compare algorithms. The one with the largest area under the curve is considered the best.286

Results from using IEEE 39-bus system data (Figure 3) show that the areas under the curves for the two287
proposed algorithms are the two largest compared to all other algorithms. This means the false positive rate288
did not go up proportionally. This is because there are a large number of examples in the main class, and289
adding appropriate weight on the rare class does not affect the performance of the main class too much.290

5.3 Sensitivity to Noise291

We care about sensitivity to noise because added weight will also amplify noise if noise happens to be292
on the rare class. In this section we test if the weighting algorithms DiffBoost and AdaClassWeight are293
sensitive to noise. We test the algorithms on the IEEE 39-bus dataset and present the results from using294
Logistic Regression. Results from using the other two classifiers are similar.295

Noise is added into data as class noise, i.e., we flip a certain percentage of labels in each class. We define296
the percentage of flipped labels as the noise level, which takes values in [0%, 1%, 2%, 5%, 10%, 15%].297
The results show that DiffBoost and AdaClassWeight can perform better than the ratio-based weighting298
algorithm, better than the AdaBoost algorithm, and much better than the unweighted algorithm (see Figure299
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4). The superiority of the two proposed algorithms is more evidenced as the noise level increases. Although300
the performance of DiffBoost and AdaClassWeight is also impacted by noise, the impact is smaller than301
other algorithms since the performance drop is not very steep.302

5.4 Comparison with the Boosting Algorithms303

The boosting algorithms AdaC1, AdaC2, AdaC3, and Adacost mentioned in Section 2 are developed from304
AdaBoost and all have similar ROC curves as AdaBoost (see Figure 3). Next we show another aspect of305
these algorithms: all methods require a preset cost Ci, 8i, and the classification performance is extremely306
sensitive to this hyper-parameter. We use the Spam data to demonstrate. The Spam data has a total of 4597307
examples with 2785 non-spam emails and 1812 spam emails. We randomly select 1506 examples from the308
original dataset. The ratio between non-spam examples and spam examples is 12 : 1, and 50% - 50% split309
is used for training and test within each class.310

To see the effects of different cost settings on classifiers, we compare the results of Adacost, AdaC1,311
AdaC2 and AdaC3 based on different cost ratios C+ : C�, and report the results on the test data (see Table312
4). First of all, the highest recalls of the four algorithms occur at very different locations even for the same313
dataset. This indicates it is not a simple task to assign cost ratios. In Table 4 the highest recall is highlighted314
for each algorithm and the precision under the same cost ratio is also reported. Although these recalls are315
very impressive, the precisions are extremely low. If an algorithm simply predicts all cases as the rare class,316
it can achieve recall 1.0, but the precision is close to zero. This is observed with these boosting algorithms.317
In comparison, AdaClassWeight has the highest precision while achieving a high recall. It is also observed318
that the sum of recall and precision is the highest by the two proposed algorithms.319

The proposed algorithms also outperform the boosting algorithms in algorithm complexity. For the320
boosting algorithms, the cost ratio is a hyper-parameter. The optimal value for the hyper-parameter is321
obtained by a grid search. In the experiment, we performed a grid search for the cost ratio C+/C� 2 [1, 10]322
with step size 0.5. The training time would be much longer had we used a finer grid. In comparison,323
the proposed algorithms adaptively find the weights without a preset hyper-parameter. DiffBoost and324
AdaClassWeight terminate after T iterations, or before T iterations if a desired tradeoff between the325
positive class and the negative class have been found, so the algorithms are bounded to T iterations. The326
proposed algorithms have lower complexity as shown in Table 4.327

Table 4. Spam data. From left to right: the recall on test data under various cost ratios, the precision
corresponding to the highest recall , training time, and test time.

Recall with different cost ratios C+ : C� Precision Training Time(s) Test Time(s)1:1 1.5:1 2:1 2.5:1 5:1 7.5 10:1
Adacost 0.633 0.669 0.698 0.878 0.698 0.92 0.775 0.1 1.41 0.004
AdaC1 0.633 0.824 0.885 0.896 0.917 0.99 0.99 0.076 3.51 0.004
AdaC2 0.633 0.9 0.92 0.96 0.98 0.99 0.99 0.076 2.73 0.005
AdaC3 0.594 0.881 0.94 0.824 0.824 0.775 0.91 0.33 2.1 0.004
DiffBoost 0.931 0.392 1.35 0.003
AdaClassWeight 0.92 0.403 0.74 0.003
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6 CONCLUSION AND OUTLOOK

We have studied the problem of classifying rare events in imbalanced datasets, in which the rare class328
examples are significantly fewer than the main class examples. We focused on designing weighting329
algorithms to compute class weights during the training phase. DiffBoost and AdaClassWeight are general330
weighting algorithms and can be used in junction with any classifier. It has been tested with Logistic331
Regression, Random Forest, and Support Vector Machine, and has been applied to several datasets. The332
experimental results show that they improve the prediction accuracy of the rare class with a controlled333
tradeoff in the main class. The ROC curves of the proposed algorithms have larger “area under the curve”334
than the simple ratio-based algorithm, the original unweighted algorithm, and the AdaBoost algorithm335
as well as other boosting algorithms based on AdaBoost. It also has the advantage of being able to focus336
on the rare class, giving it a much higher accuracy in case we need to prioritize the rare class, with a337
controllable tradeoff. Multiclass classification for more than two classes using differential class weights is338
an easy extension from this work, which will be addressed in the future work.339
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Figure 1. The convergence of the DiffBoost algorithm. Training error of the rare class asymptotically
converges to zero as its upper bound decreases monotonically.
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Figure 2. Testing error of the rare class decreases along with training error. In (a) and (b), IEEE 39-bus
power system data is used; In (c) and (d), Spam data is used.
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Figure 3. ROC on training data (left) and testing data (right). Tests are done on the IEEE 39-bus power
system data. DiffBoost and AdaClassWeight both have a larger area under the curve than other algorithms.
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Figure 4. Sensitivity to noise for both training data and testing data. Test is done on the IEEE 39-bus
power system data. While all algorithms are impacted by noise, the proposed algorithms perform better.
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