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Abstract—In this paper, we consider the power line outage
identification problem as a graph signal classification problem,
where the signal at each vertex is given as a time series. We
propose graph convolutional networks (GCNs) for the task of
classifying signals supported on graphs. An important element
of the GCN design is filter design. We consider filtering signals
in either the vertex (spatial) domain, or the frequency (spectral)
domain. Two basic architectures are proposed. In the spatial GCN
architecture, the GCN uses a graph shift operator as the basic
building block to incorporate the underlying graph structure into
the convolution layer. The spatial filter directly utilizes the graph
connectivity information. It defines the filter to be a polynomial
in the graph shift operator to obtain the convolved features
that aggregate neighborhood information of each node. In the
spectral GCN architecture, a frequency filter is used instead.
A graph Fourier transform operator first transforms the raw
graph signal from the vertex domain to the frequency domain,
and then a filter is defined using the graph’s spectral param-
eters. The spectral GCN then uses the output from the graph
Fourier transform to compute the convolved features. There are
additional challenges to classify the time-evolving graph signal
as the signal value at each vertex changes over time. The GCNs
are designed to recognize different spatiotemporal patterns from
high-dimensional data defined on a graph. The application of
the proposed methods to power line outage identification shows
that these GCN architectures can successfully classify abnormal
signal patterns and identify the outage location.

Index Terms—Graph Convolutional Neural Network, Spatial
Domain, Spectral Domain, Graph Fourier Transform

I. INTRODUCTION

In this paper we provide a data-driven approach to power
line outage identification from measurement data. Measure-
ment data are collected from buses in the power system and
presented as times series. To discover the unique spatiotem-
poral pattern that characterizes a power line outage, we need
a new technique for mining high-dimensional time series data
defined on a graph.

Although convolutional neural networks (CNNs) are widely
used in image processing, the convolution operation that is
designed for image data cannot be readily applied to a graph
structure. This is because in image processing, data are laid
on a regular structure such as a two-dimensional array or a
matrix, and a convolution operation is an element-wise matrix
multiplication operation between the matrix representing the
input image and a convolutional matrix, also called a kernel
or a filter. In a typical convolution layer, a filter, typical
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of much smaller size than the input, is used to slide over
the grid to learn new features. The convolution product is
expected to extract the spatial feature hidden in the image.
Such a convolution operation is based on the fact that adjacent
signal supports are also adjacent in the matrix. However this
foundation is shaken when we consider a graph signal. A graph
signal is a discrete time signal defined on a graph, where each
component is assigned to a vertex of the graph. Although we
can represent it as an array, adjacent vertices on a graph may
not be neighbors to each other in the array, and vice versa. This
motivates the design of graph convolutional network models
that are particularly designed for learning on graphs. It is a
generalization of convolutional neural networks from regular
grid data to irregular graph data.

The major building block of a GCN is the convolution
layer. Graph convolution is realized through a graph filter,
the counterpart of the filter used in CNN. The graph filter
incorporates the graph structure by using a shift operator to
effectively extracts high level features from signals defined
on a graph. A shift operator for graph signals is a matrix
associated with the graph. Common choices for the matrix
include adjacency matrix, Laplacian matrix, or normalized
versions of these matrices [1]. Different choices represent
different trade-offs [2].

In designing the GCN, we use the convolution layer to roll
out the signal on a graph structure. A given graph signal is
filtered using one of the two methods: filtering in a graph’s
spatial domain or spectral domain. The construction of the
convolution layer from spatial domain focuses on the graph
connectivity information. The spatial filter is a polynomial of
the shift operator. The degree H of the polynomial indicates
that signal values from neighbors that are within H hops of
a node are collected to contribute to the new feature at this
node. On the other hand, convolution from the spectral domain
focuses on the graph’s frequency property. We first convert a
graph signal into the frequency domain through graph Fourier
transform to obtain its frequency representation. The spectral
coefficients are then used as input for the convolution layer.
The filters are multipliers of the graph frequencies, and the
convolution layer is learned in the graph’s Fourier space.

The proposed GCN models are applied to the spatiotemporal
data from the power grid to identify line outages. Previous
works for line outage identification mostly rely on load-flow



analysis or state estimation ( [3] , [4] , [5]). The proposed
methods are data-driven and do not require knowledge of the
models and parameters of the power system.

The rest of the paper is organized as follows. In sections
IT and III, we illustrate the construction of convolution layers
from the spatial domain and the spectral domain, respectively,
in particular, section III-A introduces graph Fourier transform
(GFT) and related concepts such as interpretation of graph
frequencies. Section IV illustrates the connection between
spectral GCN and spatial GCN. In section V we show the
application of the proposed GCN architectures to power line
outage identification. Section VI summarizes the most related
work, and section VII concludes the paper.

II. GRAPH CONVOLUTIONAL NETWORK USING SPATIAL
DOMAIN CONVOLUTION

A. Spatial Convolution

Consider a graph G = (N, &) with N nodes. Let ¢ € RV
be a snapshot of the graph signal, where each element of x
corresponds to a nodal feature.

‘We consider to use fl, the normalized adjacency matrix, as
the shift operator to get convolution outputs.

A _ D71/2AD71/2,

where A is the adjacency matrix of the graph, D = diag(d)
isan N x N diagonal matrix, and d(¢) is the degree of node

i, ie., d(i) = ZAWA ,N.

If we only want the information from a node itself and its
one-hop neighbors, we have

y = wox + (w A)x (1)

wo and wy are two scalars denoting the filter parameters. The
output y is also a signal defined on the same graph. We write
the convolution layer as a linear combination of product of Ai
and x to emphasize how the shift operator is used to gather
information propagated from one-hop neighbors.

We now generalize this idea to H-hops, and understand the
filter as a polynomial in A by rewriting equation (1) as

H
y= Z(wiAi)m @)

and define w(A) =

Equation (2) shows filtering in the vertex domain for a
snapshot of a graph signal, x € RY. We can generalize
this to cases where we have K input features, i.e., X =

Z w; A" as the vertex domain filter.

[€1, -+ ,zK] € RN*K. Now instead of having H + 1
scaler filter parameters, we have H + 1 column vectors
w; = [w},--- ,wK]T € REi =0,...,H, and the output

feature can be obtained as

y:X'wo—l—(le)wl—F —l—(leX)wH

We can interpret each element of y as a linear combination
of the input features at that node and its neighbors within
H-hops.

If we want to extract more than one output features from
the input X € RV*K we define matrices of filter parameters
W; = [w},...,wf] € REXC i =0,...,H. Here G is the
number of output features, and w? € RXE corresponds to the
filter parameters to produce the gth output feature. The output

Y is now a N x G matrix with

V=g y% = XWo + (AX)W + ...+ (AT X)Wy

3)
y9 is the gth convolved feature. The number of learnable
parameters for the convolution layer is O(KG) for K input
features and G output features. To complete the convolution
layer, a point-wise nonlinear activation function o (-) is applied

toY.

B. Spatial Convolution with Frequency Features

In Section II-A, we consider the K features at each node
as a discrete time series of length K, and we have N such
time series from N nodes. Such datasets are used in many
applications. However in some applications, the magnitudes
of the signal values reveal less about the status of the system
than the changes of the values. Directly using the measurement
can lead to large false positive and false negative rates. For
the application we will discuss in this paper, i.e, power line
outage identification, it is the change of phasor angles rather
than the value itself that indicates the status of the power line.

One way to deal with the problem is to consider a discrete
Fourier transform of the signal at each node. We preprocess
X by first taking DFT of N time series sequence. Recall that
for a discrete time signal s = [sgs;---sy_1]" € CV, where
each element denotes a sample at time n, the DFT output
8= [5051--5n_1]" € CN is computed as

1 =
Sp = —— Spe” -, N -1 4
L=y z::o @)
In (5), si are Fourier coefficients correspond to frequency
fo = %5z = \F[l e iRk . et REIN-1)] are the
spectral components corresponds to each k. The magnitude of
Fourier coefficient, |5j| qualifies the energy distribution of the
input signal at different frequencies.

Applying DFT to each row of X returns its frequency
domain representation X, which is then used as input for the
convolution layer (see Fig. 1). We denote this architecture as
Spatial+DFT, and denote the previous one (in Section II-A)
without DFT preprocessing simply as Spatial.

III. GRAPH CONVOLUTIONAL NETWORK USING
SPECTRAL DOMAIN CONVOLUTION

The convolution layer of the spatial GCNs in Section II
operates on the vertex domain of the graph. A different concept
is to operate on the spectral domain of the graph. We will study
the eigenvalues and eigenvectors of the matrices associated
with the graph. Each graph topology corresponds to a set
of frequency components given by the eigenvectors of the
matrix. These frequency components are used to convert the
graph signal into its frequency domain. This can be done by
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Fig. 1. The architecture for Spatial GCN with DFT preprocessing. Temporal

DFT is first applied to the time series at each node. The Fourier coefficients at
all nodes corresponding to the same frequencies define a new graph signal Z.
Next, Z is convolved by using the spatial filter defined as a linear combination
of the shift operator. The convolved features y9,9g = 1,--- ,G, are then
flattened to build a fully-connected layer. The last layer uses softmax for
classification.

a Fourier transform on the graph signal. Similar to discrete
Fourier transform of signals defined on a linear structure, such
as a time series, we can analogously define Fourier transform
of signals defined on a non-linear graph structure.

A. Graph Fourier Transform

Graph Fourier transform extends the idea of discrete Fourier
transform to vectors defined on a graph. We first provide a
graph interpretation of DFT and show how it can be extended
to GFT.

The discrete Fourier transform of a vector s can be written
as a matrix-vector multiplication:

s=DFTs &)

where the element of S is obtained by:

Let w = ¢~ *7/N_ The DFT matrix can then be defined as
follows:

1 1 1
1 w whN-1
1 : :
DFT = ﬁ 1 Wk k(N—1)
1 wf\}*l W(fo)(zvfl)
The row vectors of DFT are
[1, w" WEN=D]" k= 0,--- N — 1, which are

t(spectral components.

To give DFT operation a graph interpretation, we can
consider vector s as a signal defined on a directed cycle graph
0—=1—...n—1—= 0 ([2], [6]). The adjacency matrix of
the cycle graph, in which element A;; represents the edge
from j to 4, is the following matrix,

oo o0 --- 0 1
1 0 0 0 O
o1 0 --- 0 O
A=
e
o0 -~ 1 0 O
L0 0 -~ 0 1 0|
The eigen-decomposition of A, gives
A, =VAV!
e~ i50
6
=DFT ' prr
_;2m(N=1)
e N

Columns of V are eigenvectors of A., and A is a diagonal
matrix of the eigenvalues of A.. Since the frequencies %
of a DFT operation correspond to the eigenvalues of A ., we
can view the eigenvalues as a representation of frequencies.
Analogously, V1 is considered playing the role of the DFT
matrix in the context of Fourier transform of graph signals.

The connection between DFT and circulant adjacency ma-
trix of time signal leads to the natural definition of Fourier
transform operated on graph signals. We now extend from the
directed cycle graph to general graphs, which only requires to
replace A, with the normalized adjacency matrix A:

A=VAV! (7

Here A = diag [Ag -+ Any—_1] is a complete set of eigenvalues.
V = [vg,v1, -+ ,vn_1] is an N X N matrix with v; denoting
the eigenvector corresponding to \;. The eigenvectors are the
graph spectral components.

We define matrix GFT = VL Analogous to DFT in (5),
the graph Fourier transformation of a vector s is also given as

a matrix-vector multiplication:
§=GFTs=V ls=1[5,5, ,5nv_1]" (8)

where 3y, is the Fourier coefficient corresponds to A.



The remaining question is how to understand the notion
of frequency on graphs. In DFT this is straightforward, as
frequency fr = %, which is interpreted as k cycles per
N samples. Large frequency corresponds to highly variated
spectral components. Similarly, we can define high graph
frequencies as those whose spectral components have a high
variation, i.e., magnitudes of neighboring nodes are highly
variated. It is proved in [7] that for adjacency matrix, smaller
eigenvalues corresponds to higher variated eigenvectors, thus
represents higher frequencies.

B. Spectral Convolution in GCN

For our application, the graph under consideration is undi-
rected. Since the normalized adjacency matrix Ais symmetric,
we have GFT = V! = VT ¢ RN*N,

To derive output features from the convolution layer, we
first define the frequency filter as a degree H polynomial in
matrix A to consider information from nodes within H hops.

H
w(A) = Z wp A" 9)
h=0

The convolutional output is then given by

U =w(A)Z = wo@ + wAZ + ... +wg A"z, (10)

where w;,i = 0,1,..., H, are trainable weights, and £ =
VTx. Elements of Z are the spectral coefficients of z. In
spectral convolution, we take Z as input features for the
convolution layer.

The generalization of the above operation to a middle layer
in the GCN, where there are G output features and K input
features, is achieved by using a simple summation,

K
7’ = Zw’“’g(A)ik (1)
k=1

where each parameter w*9(A) is used to connect the kth input
feature Z° to the gth output feature 7Y. Same as convolution
in spatial domain, the number of learnable weights is O(KG).

The input to the GCN is a graph signal {x;,t =1,...,T},
with each ¢y € RY. The GFT operation is first applied to each
¢ to get T;, and then the convolved features are obtained
using (11). To complete the convolution layer, a point-wise
nonlinear activation function is applied to each component of
y. The corresponding architecture is shown in Figure 2. We
denote this architecture as Spectral.

IV. DISCUSSION ON CONVOLUTION IN SPATIAL AND
SPECTRAL DOMAIN

In this part, we exploit the relation between the spectral
representation and the spatial representation of the signal and
the implication of it to the GCN design. It is shown in [1] that
the convolution in the spatial domain is equivalent to multi-
plication in spectral domain. We show that this equivalence
relation can be achieved in the GCN design.
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Fig. 2. Spectral GCN model architecture. GFT is first applied to x¢ to
obtain graph frequency representation Z; of the signals. Then convolution
in frequency domain is carried out by defining filters as a linear combination
of graph frequencies matrix A. The operation after convolution layer is the
same as in the GCN from spatial domain.

We first look at a GCN design with some modification from
the proposed spectral method in Section III-B. We denote this
new architecture as Spectral-B.

Spectral-B is similar to Fig. 2 in the sense that the con-
volution layer is developed in the graph frequency domain,
however, different from Fig. 2, the operation in equation (10) is
further followed by an inverse Fourier transform to convert the
output back into the graph spatial domain. For that purpose, we
first introduce the inverse graph Fourier transform, or inverse
GFT, which is defined as follows

GFT '=V
Then, we can define the convolution layer as
y=GFT '(w(A)z) = V(w(A)Z) (12)

It is worth noticing the following relationship of the outputs
between equations (10) and (12)

Viy=wA)z =79 (13)

That is to say, after filtering the signal in the frequency do-
main, instead of using the frequency information of the filtered
signal as in equation (10), we use its spatial information for
model training. The operation concerning multiple input and
output features is carried out similarly to equation (11), i.e.,
the gth convolved feature is

K
Y =V (> wh(A)z")
k=1

(14)



followed by a nonlinear activation o (y9).
Recall that in GCN Spatial (Section II-A), the convolution

is given by y = w(A)x. This can be successively carried out
as:

y=w(A)x
=w(VAVT )z
=Vw(A) V'

zv(w(A)a)

This is exactly the convolution done in GCN Spectral-B, as in

equation (12). Furthermore, it provides another interpretation
of filtering a graph signal in spatial domain. The convolution
process is decomposed by first taking the GFT of x to get
V7T, then filtering the signal in the frequency domain via
multiplying the spectrum of graph signal by frequency filter
w(A). The last step is to perform inverse GFT to transform
the filtered results back to spatial domain. Experiment results
in section V further verified the performance of the two neural
nets have the same discriminant power.

5)

V. EXPERIMENT
A. Power Line Outage Identification Problem

We study the potential of GCN models on power line outage
identification. Given a set of spatial-temporal structured data
collected from a power system, we build a model to identify
the power lines where outages have occurred. It is possible
that multiple outages occur simultaneously. Our GCN models
are built to predict the probability of outage for each power
line, therefore multiple line outages do not incur additional
computational complexity or cost.

We test the GCN models on IEEE 39-bus and 118-bus
systems. First we simulate line outage cases through Power
System Analysis Toolbox (PSAT) [8] and collect phasor angle
0 at each bus node provided by Phasor Measurement Units
(PMUs), a device that provides real time power system mea-
surement data. Simulations last for a total of 200s, and the
line outage is fixed at 100s. We collect the data at the interval
of 1/8 second (i.e., 8 data points per second), and obtain m-
dimensional spatial-temporal data {0}, where 6, € R™, is a
snapshot of the graph signal, m is the number of nodes in a
power system and ¢t = 1...n is the ticks in time series. For
each system, we simulate 20 outage cases, with each having a
different line outage location randomly chosen from all power
lines. The dataset for the 39-bus system has 460 inputs, among
which 180 inputs are labeled / denoting a line outage case;
others are labeled 0 denoting a non-outage case. For the 118-
bus system, there are 1120 inputs with 100 line outage cases.

The power line outage problem is formulated as a binary
classification problem. A GCN model has multiple output
nodes with each answering whether outage has occurred on
a particular power line.

B. Feature Extraction

To extract features that are highly correlated with power
line topology from the collected measurements, we consider
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Fig. 3. Upper row: 9; and 9; against time regarding different line outages.
Lower row: the magnitudes of DFT spectral coefficients corresponding to
angles in the upper row. The left column is when line(1,2) is out, the
right column is when line(3,4) is out. The DFT magnitude of the signal is
symmetric, so only the first half is shown.

the power transfer between two nodes. Let P;; be the real
power transfer from node ¢ to node j, we have

Pij = [Vil|V;| (Gij cos (65 — 0;) + Bij sin (6; — 0;))

where |V;| is the voltage magnitude at bus i. G;; and B;;
are line parameters between bus ¢ and bus j. It has been
shown in [9] that the the real part of admittance matrix
Gi; — 0, |V;],7 € N is close to 1 in per unit system, and we
can use (6; —6;) to approximate sin (#; — 6;). Thus under
normal operation the power flow between two nodes ¢ and
j is loosely proportional to the angle difference (6; — 6;).
When line outage occurs at two connected nodes, the power
flow between them will be disrupted, and we expect an abrupt
change in (6; — 6;). Thus, we use the angle difference between
connected node to capture the dynamic change caused by an
outage. Moreover, since including (6; — 6;) of every line(¢, 5)
as input variables leads to a high dimensional problem in large
networks, for each node ¢ we sum up the line information in
its neighborhood for the purpose of dimension reduction, thus
we define 0, = > (ijyee (0i —0;), and use 6} as the input
graph signal for classification.

Method Spatial uses ¢/ directly in the convolution operation,
and method Spatial+DFT first performs a DFT on the time
series at each node. Fig. 3 shows 9/1 and 0,2 against time and
the resulting DFT magnitudes against frequency when a line
outage occurs. The left column are when line(1,2) is out, 9/1
and 9/2 show a sharp change. The picture in Fig. 3(c) shows
the corresponding high frequency caused by the oscillation.
The right column serves as a comparison that when line(3, 4)
is out bus 1, 2 are only slightly affected, thus the energy of the
signal are mostly concentrated in low frequencies, as shown
in Fig. 3(d).

Methods Spectral and Spectral-B both use a graph Fourier
transform on input signal 6} before the convolution operation.
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Fig. 4. Upper row: the phasor angle 6/ from a subgraph. The color at each
node reflects its value according to the scale on the right. Lower row: the
magnitudes of graph spectral coefficients corresponding to the upper row.

Fig. 4 shows angles {6/} from a subgraph of the power system.
Fig. 4(a) is before line(1,2) is out, and (b) is right after
line(1,2) is out. We observed that under normal operation, the
angles vary slowly among local neighborhood, but the outage
at line(1,2) causes high variation between nodes 1 and 2. The
lower row shows the magnitudes of graph spectral coefficients
resulting from the graph Fourier transform of the signal in the
upper row. The eigenvalues of A give a notion of frequency
in the sense that the lowest eigenvalue corresponds to the
highest frequency. Under normal operation, the energy of the
signal is mostly distributed on low frequencies (see Fig. 4(c)).
When line outage happens, we see that line outage causes high
variation in nodes 1 and 2, which is reflected by the presence
of energy in high frequencies in Fig. 4(d).

C. Model Parameters Setting

All the methods have a convolution layer, followed by a
readout layer, a fully-connected layer and a softmax activation
function for classification. Since we formulated the problem
as a binary classification problem, a separate binary classifier
is trained for each line outage identification. The softmax
function outputs the predicted probability of line [ being out.
The response variable Y; is a binary variable: Y; = 1 if the
input example has the [th line out and Y; = 0 if not.

The parameters are set as follows. The dataset follows a
60%-20%-20% random split for training, validation, and test-
ing, respectively. Adam optimizer is used for optimization, and
exponential decay applied to the learning rate, with starting
rate 0.001 and decay rate 0.9. Cross entropy is used for loss
function. The number of epochs during training is 50 with 80
examples per batch.

D. Results

This section evaluates the performances of the proposed
methods. For GCN from the spatial domain, we consider two
versions: method Spatial that directly uses the graph signal
as input, which is a m x n matrix for a graph with m nodes
and time series of length n; method Spatial+DFT that first
transforms the input graph signal by DFT before feeding into
the convolution layer (see Fig. 1).

For GCN from the spectral domain, we also consider two
versions: method Spectral as shown in Fig. 2, and Spectral-B,
which is considered equivalent to method Spatial.

Table I shows the averaged results of 10 runs per line.
Dataset are randomly split into training, validation, and testing
sets in each run. To evaluate the model performance, we use
recall and precision as in this problem a high recall (i.e.,
detection rate) is more important than the overall accuracy.

TABLE 1
TEST RESULTS OF PROPOSED MODELS ON POWER SYSTEM LINE OUTAGE
IDENTIFICATION
, H=1 H=0

Method System Recall | Precision | Recall | Precision
. 39 0.99 0.97 0.81 0.85
SpatiadtDFT —1re——605 097 [ 091 0.74
Spatial 39 0.95 0.91 0.92 0.88
P 118 0.94 0.83 0.91 0.66
Spectral 39 0.99 0.98 0.98 0.94
P 118 0.99 0.98 0.98 0.92
Spectral-B 39 0.95 0.91 0.92 0.88
P 118 0.93 0.85 0.91 0.66

Remarks on Table I

o Results show that using signal values from one-hop
neighborhood (H = 1) is an improvement over using
the signal value from a node itself only (H = 0), and
one-hop is sufficient to reach a satisfying performance as
all methods can achieve at least 93% detection rate. This
means convolution in both spatial domain and spectral
domain can extract the important features that can be
used to classify line status.

e GCN in the spectral domain (highlighted) significantly
outperforms others on both small and large systems.
This indicates filtering the signals in frequency domain
and deriving high level features based on their spectral
information is most effective in line outage identification.

o The performance of Spatial and Spectral-B are overall
consistent. This further proved the equivalency of convo-
lution in vertex domain and spectral domain. The small
difference is caused by random initialization of weights,
and numerical truncating error in the computation of
Fourier transform and inverse Fourier transform.

Figure 5 shows the recall and precision of each method
during the training stage. Notice that the recall and precision
of the training and validation sets during the training stage
increases. This indicates that the models can efficiently learn
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Fig. 5. Recall and precision during the training stage for line(1,2) outage
identification in the 118-bus system. All the architectures have competitive
performance, the recall and precision reach 100% within 60 epochs.

from the features. We also observed that although the models
may start with a low recall or precision, they effectively
increase these values within a short amount of epochs.

E. Robustness to Noisy Inputs

The input signal we have considered up to now is noise-free
in the sense that the changes in the signal are only related to
line outages, therefore it only suffers a significant oscillation
when a line outage occurs, and it is relatively steady before
the outage. In real life, the measurements can include small
oscillations even under normal operation. This can be caused
by dynamic loads at buses. The signal change caused by
dynamic loads introduces noise in identifying the line outage,
as shown in Fig. 6. To test the model robustness to such noisy
input, we consider line outage cases when loads at buses vary.
We use IEEE 39-bus and 118-bus systems as examples. We
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Fig. 6. Measurements 0/1 and 0; when line(1,2) is out in the 39-bus system.
X-axis: time; Y-axis: measurements. The major oscillation is caused by line
outage, and small oscillation before the outage is caused by dynamic loads.

set H = 1, and the other settings are the same as that used
for Table I. The results are shown in Table II.

TABLE I
TEST RESULTS OF THE PROPOSED MODELS WITH NOISY INPUT. THE
LOWER HALF SHOWS THE RESULTS FROM OTHER BASELINE METHODS.

| Method | System | Recall | Precision |
Spatial+DFT 13198 8:3@ 8:23
Spatial oz ot
Spectral 39 0.99 0.98
118 0.98 0.98
Spectral-B ]3198 8:2451 (8%;92
Conventional CNN 13198 8?% (;) '561
ERET
OMP i ow o3

Table II shows that when considering input signals with
noises caused by dynamic loads, Spectral is the most robust to
perturbation and is still able to extract meaningful information.
The performance of Spatial+DFT is degraded regardless of the
size of the network. Spatial and Spectral-B remain stable for
small systems, but are noticeably affected when the network
becomes large. The winner of all is still method Spectral,
which is robust to noise even for large networks. This again
confirms its efficacy in extracting convolved features.

For comparison purpose, we added in Table II the results of
three other methods: the conventional CNN, Long Short Term
Memory network (LSTM), and Orthogonal Matching Pursuit
(OMP) that is used in [3].

e OMP uses two sets of the measurements data, taken
before and after the line outage, respectively. CNN and
LSTM use time series of voltage phasor angles as input,
same as the proposed GCNs.

o The architecture for conventional CNN is a convolutional
layer with filter size 3 x 3, followed by a max-pooling
layer with filter size 2 x 2, a fully connected layer and
an output layer.



o The architecture for the LSTM model is an LSTM layer
followed by a dropout layer, a fully connected layer and
an output layer. For each node we use the measurements
from its one hop neighbors, and classify which line is out
from all of its connected lines.

While GCNs achieve comparable performance with OMP
in a noise-free setting, they are more effective than OMP
in a noisy environment. The GCNs are much more effective
than CNN and LSTM since these methods are not suitable
for capturing the network-wide spatial feature. The proposed
GCNs, especially the spectral GCN, are most effective to
capture the features in spatiotemporal data defined on graphs.

VI. RELATED WORK

Recently machine learning algorithms have been studied
widely for power line outage identification problem. [10]
developed a binary classifier by building neural networks
using data collected from power grids, in which a classifier
is trained to return the Maximum a Posteriori probability that
indicates the line status. [11] also employs neural networks for
outage identifications. However, rather than extracting features
directly from PMU data, it trains the neural network using an
AC model. Other machine learning classifiers include support
vector machine [12], random forest and logistic regression [9].

GCNs are built upon the success of graph signal processing
( [11, [2], [6], [7], [13]) and spectral graph theory ( [2], [14]-
[17]). In [1], the authors gave a tutorial overview of methods
that generalized fundamental signal processing operations such
as filtering, translation, downsampling, etc. Our work is based
on these fundamental operations. Among many others, [18]
is a representative work that uses graph signal processing for
machine learning, which developed two graph convolutional
architectures based on convolution in the vertex domain.
The first method, selection graph neural network, generalizes
conventional CNN by replacing linear shift invariant filter
with graph shift invariant filter. The second method, aggregate
graph neural network, aims to create a sequence of signals
through successive applications of the shift operator to the
original signal, then the conventional CNN can be used on the
sequence of signals as on regular grid data. [15] generalizes
the convolution layer by first performing multi-scale clustering
of the graph, then defines the convolution for every locally
connected network. Our method, to our knowledge, is by
far the first work that uses spectral information to develop
a convolution layer.

VII. CONCLUSIONS

We develop two fundamental convolutional architectures to
process signals supported on graphs. In the spatial GCN the
convolution filter is defined as a degree H polynomial of the
graph shift operator matrix, thus the convolved feature at a
node incorporates the signal value of every node within its
H-hop neighborhood. In the spectral GCN the convolution
filter is defined as a polynomial of the graph frequencies. This
allows us to filter the signal in the frequency domain.

The models have been tested on the problem of line outage
identification in IEEE 39-bus and 118-bus systems. The results
show that all the methods perform well for the purpose of
line outage identification, among which the method Spectral
outperforms the other methods and is also the most robust to
noisy inputs. GCNs use only measurement data but produce
results comparable to those that use deep knowledge of power
system models and parameters and significantly outperform
other neural network models such as CNN and LSTM.
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