
Characterizing the E�ciency of Graph Neural Network

Frameworks with a Magnifying Glass

Xin Huang1 Jongryool Kim2 Bradley Rees3 Chul-Ho Lee1

1Texas State University
2SK hynix America

3NVIDIA

Abstract

Graph neural networks (GNNs) have received great at-
tention due to their success in various graph-related learning
tasks. Several GNN frameworks have then been developed
for fast and easy implementation of GNN models. Despite
their popularity, they are not well documented, and their
implementations and system performance have not been
well understood. In particular, unlike the traditional GNNs
that are trained based on the entire graph in a full-batch
manner, recent GNNs have been developed with di�erent graph
sampling techniques for mini-batch training of GNNs on large
graphs. While they improve the scalability, their training times
still depend on the implementations in the frameworks as
sampling and its associated operations can introduce non-
negligible overhead and computational cost. In addition, it is
unknown how much the frameworks are ‘eco-friendly’ from a
green computing perspective. In this paper, we provide an in-
depth study of two mainstream GNN frameworks along with
three state-of-the-art GNNs to analyze their performance in
terms of runtime and power/energy consumption. We conduct
extensive benchmark experiments at several di�erent levels
and present detailed analysis results and observations, which
could be helpful for further improvement and optimization.

1. Introduction

Graphs are everywhere, from social networks to trans-
portation networks to biological networks. It is of vital im-
portance to mining graph-structured data [25, 26] and learn-
ing on graphs [20, 28] since they contain rich underlying
information and can be used for a wide range of applications.
In particular, graph neural networks (GNNs) have attracted
a lot of attention in recent years. Unlike the conventional
machine learning (ML) algorithms, which assume data
samples are independent and identically distributed, GNNs
take graph-structured data as input for downstream tasks
and capture the correlation between data samples (nodes
in the graph) according to their connections (edges in the
graph). GNNs have been shown to be e�ective for many
tasks, such as representation learning, node classi�cation,
and link prediction.

Early GNN studies mainly reply on general deep
learning (DL) frameworks, such as TensorFlow [1] and
PyTorch [31]. It is, however, non-trivial to implement a
GNN model using the DL frameworks. While they are

designed and optimized for regular yet often dense data,
real-world graphs often exhibit irregularity and sparsity,
thereby making them ine�cient for GNNs. Thus motivated,
several GNN frameworks have been developed to speed
up the computation and to simplify GNN implementation.
The examples include Graph Nets [4], Deep Graph Library
(DGL) [35], PyTorch Geometric (PyG) [16], StellarGraph [10],
Spektral [17], TF-Geometric [21], and CogDL [6].

DGL and PyG are two most popular ones among them,
thanks to their user-friendly designs, rich functionalities,
and easy-to-follow tutorials. Inspired by NetworkX [18],
DGL uses a graph-centric programming abstraction, making
it easy for NetworkX users to use. It de�nes a ‘DGLGraph’
object as its key data structure for computations with
graph-structured data and GNN operations. DGL also
realizes the message passing operations of GNNs with
generalized sparse-dense matrix multiplication (g-SpMM)
and generalized sampled dense-dense matrix multiplication
(g-SDDMM). Furthermore, it develops highly tuned CPU
and GPU kernels for GNN operations and supports a wide
range of applications for general-purpose graph learning. In
addition, PyG is an extension library of PyTorch for deep
learning on graph-structured data. It provides a simple
‘MessagePassing’ interface for the message passing opera-
tions based on a gather-and-scatter paradigm, which is built
on top of its own PyTorch Scatter1 and PyTorch Sparse2

that provide dedicated kernels for relevant computations.
It also provides a large number of o�-the-shelf examples
along with a lot of commonly used benchmark datasets for
users to easily use and test. Both DGL and PyG have been
updated and optimized signi�cantly compared with their
initial versions. However, their current implementations
and system performance are not well understood.

On the other hand, ‘sustainability’ becomes an important
factor in both industry and academia due to climate change.
Energy and power consumption ought to be critical metrics
in ML/DL since training advanced models are often energy
and resource hungry. Early studies in ML/DL have, however,
mainly focused on improving their model accuracy to
achieve state-of-the-art performance. Schwartz et al. [32]
recently urge researchers to provide not only the accuracy,
but also the e�ciency in terms of carbon emission, energy

1. https://github.com/rusty1s/pytorch_scatter.
2. https://github.com/rusty1s/pytorch_sparse.



consumption, runtime, to name a few. Strubell et al. [33]
bring power and energy concerns in ML/DL research by
estimating the �nancial and environmental costs of building
well-trained state-of-the-art natural language processing
models. There is then a movement, albeit slowly, in recent
studies that take power and energy consumption into
consideration [32]. Nonetheless, there is no prior work
to quantify the power and energy consumption of GNN
models and frameworks.

In this paper, we study the two mainstream GNN
frameworks – DGL and PyG, by evaluating their e�ciency
in terms of runtime (not only at the level of each key
function but also at the level of the entire model), and
power and energy consumption.3 We benchmark their per-
formance via functional testing on each main component of
GNNs and three state-of-the-art GNNs, namely GraphSAGE,
ClusterGCN, and GraphSAINT, which adopt graph sampling
for mini-batch training. We further provide case studies on
di�erent implementation strategies, GPU-based sampling,
and full-batch training. We provide detailed and comprehen-
sive analysis to fully understand their performance and �nd
opportunities for further improvement and optimization.
We summarize our contributions as follows:
• First, we present the results of functional testing on

each key component of building a GNN model in DGL
and PyG, including data loader, sampler, and graph
convolutional layers. We �nd that DGL is more e�cient
for sampling and GNN operations, especially when it
comes to large graphs.

• Second, we evaluate the e�ciency of sampling and GNN
operations on di�erent hardware devices (CPU vs. GPU).

• Third, we provide runtime breakdown of three state-of-
the-art GNNs in both frameworks. Our results indicate
that there is still a room for further improvement,
especially for sampling and data movement.

• Finally, we quantify the power and energy consump-
tion of GNN models and frameworks. To the best of
our knowledge, we are the �rst to analyze the GNN
performance from such a green computing perspective.

2. Background and Related Work

2.1. Graph Neural Networks

GNNs have emerged as an e�ective means for learning
on graph-structured data. They commonly rely on a ‘feature
aggregation’ mechanism, which can be written as

H(l+1) = f (GH(l)W(l)),

where f (·) is a non-linear activation function that is applied
element-wise, G is a graph matrix representing the graph
structure, e.g., the adjacency or (normalized) Laplacian
marix of the input graph, and H(l) and W(l) are the

3. Here we do not report the accuracy results of GNN models as they
mainly depend on their underlying GNN methods, not the software
frameworks. It has also been shown that there is no clear di�erence
between two frameworks when it comes to the accuracy of each GNN
model [31, 35, 37].

B CA D E G HF I

B CA D E G HF I

B CA D E G HF I

Input Graph Full GNN

B

C

A

D

E

G

H

FI

J J

J

J

(a) Full-batch training

B CA D E G HF I

B CA D E G HF I

B CA D E G HF I

Input Graph Mini-batch GNN

B

C

A

D

E

G

H

FI

J J

J

J

(b) Mini-batch training

Figure 1: Two training methods for GNNs.

node feature/embedding matrix and the weight matrix of
neural networks at l-th layer, respectively. In other words,
it is the neighborhood aggregation or message passing as
each node in the graph updates its current feature vector
by aggregating the feature vectors (messages) from its
neighbors.

Due to the feature aggregation mechanism or the
interdependence of the nodes (samples), traditional GNNs
such as GCN [24] and GAT [34] were trained using the
full-batch gradient descent, as shown in Figure 1(a). In other
words, they require the entire graph and node features to
be maintained in memory, leading to a scalability issue
with large graphs. To cope with the scalability issue, recent
GNNs have then adopted ‘sampling’ techniques to construct
mini-batches based on the graph structure to train GNNs
on large graphs, as mini-batch gradient descent is used for
deep neural networks. See Figure 1(b) for illustration.

Hamilton et al. [19] proposed GraphSAGE, which is the
�rst work that introduces the use of sampling in training
GNNs to improve the scalability. It combines neighborhood
sampling, which samples k-hop neighbors with a �xed
sampling size for feature aggregation, with mini-batch
training. However, its resulting computation graph can
be still explosive and thus cause an out-of-memory issue
for large graphs. To alleviate this issue, Chen et al. [7]
developed FastGCN, which samples a �xed number of nodes
in each GNN layer independently based on a pre-computed
probability distribution. Nonetheless, it can generate isolated
nodes, thereby leading to an accuracy drop. Zou et al. [40]
proposed a layer-dependent importance sampling algorithm
called LADIES to resolve the sparsity issue in FastGCN,
while it introduces additional computational cost and non-
negligible overhead in the sampling process.

In addition, Chiang et al. [9] proposed ClusterGCN,
which partitions the input graph into many small clusters,
some of which are then randomly selected to form a
subgraph – or, more precisely, mini-batch, during training.
It highly improves the scalability of GNNs, although it



TABLE 1: Dataset statistics

Dataset Description # Nodes # Edges # Features # Classes Train / Val / Test

PPI Protein-Protein Interactions 14,755 225,270 50 121 0.66 / 0.12 / 0.22
Flickr Images Sharing Common Properties 89,250 899,756 500 7 0.50 / 0.25 / 0.25

ogbn-Arxiv Citation Network of arXiv CS papers 169,343 1,166,243 128 40 0.54 / 0.29 / 0.17
Reddit Online Communities 232,965 114,615,892 602 41 0.66 / 0.10 / 0.24
Yelp Businesses and Reviews 716,847 13,954,819 300 100 0.75 / 0.10 / 0.15

ogbn-Products Amazon Product Co-purchasing Network 2,449,029 61,859,140 100 47 0.08 / 0.02 / 0.90

can lead to data imbalance and information loss issues.
Zeng et al. [38] proposed GraphSAINT, which constructs
training batches by sampling subgraphs of the input graph.
They leveraged graph sampling techniques, such as node
sampling, edge sampling, and random walk-based sampling,
to obtain subgraphs.

2.2. Related Work

There are a few GNN benchmark studies in the literature.
Dwivedi et al. [15] introduced a benchmark framework
along with a set of medium-scale graph datasets for a large
collection of GNN models. They developed the benchmark
framework on top of PyG and DGL and presented the
results in accuracy and training time, yet without any
detailed component analysis. Duan et al. [14] used a greedy
hyperparameter search method to tune up the performance
of several GNN models and reported the resulting accuracy
of each model and its corresponding time and space
complexity. Zhang et al. [39] provided a detailed workload
analysis on the inference of GNNs. Lin et al. [27] focused
on the distributed training benchmark of three GNN models
implemented in PyG. The studies in [3, 22, 30] presented
new datasets for GNN benchmarking.

The work by Wu et al. [37] is most relevant to our work
as it is also concerned about the performance analysis of
DGL and PyG. It was, however, based only on �ve datasets
of small-size graphs with six GNN models, which are mostly
traditional ones. Three datasets are for ‘graph’ classi�cation
as a downstream task. The smallest one has 600 graphs,
each with about 30 nodes and 60 edges on average, while
the largest one has 80K graphs, each with about 70 nodes
and 500 edges on average. The other datasets are two small
graphs (the larger one has about 20K nodes and 40K edges)
for ‘node’ classi�cation. For this downstream task, they
focused on the full-batch training, not to mention lack of
any detailed component analysis.

We can summarize the di�erences between our work
and the GNN benchmark literature as follows. First, we
provide a detailed and comprehensive analysis of DGL and
PyG not only at the level of the e�ciency (total training
time) but also at the level of the runtime of each key
component of GNN models. Second, our benchmark of the
frameworks is done based on a wide range of graphs, having
the largest one with about 2.4M nodes and 61M edges, and
three representative GNNs that support mini-batch training
for scalability. Finally, we present the energy and power
e�ciency of GNN models and frameworks.

3. Methodology

3.1. GNN Models

To evaluate the performance of two popular GNN
frameworks – DGL [35] and PyG [16], we �rst consider
several convolutional layers, which are key components
of GNNs. We then consider three representative sampling-
based GNNs, namely GraphSAGE [19], ClusterGCN [9], and
GraphSAINT [38], implemented in DGL and PyG.

3.2. Datasets

We focus on supervised node classi�cation tasks in
this work. To this end, we consider six popular real-world
graph datsets, each of whose description and statistics are
provided in Table 1. See [38] and [22] for more details on
the datasets. As for how to split each dataset for training,
validation, and testing, we follow the common way in the
GNN benchmark literature, which is to use ‘�xed partitions’
given by the original authors. The details are reported in
the ‘Train/Val/Test’ column of Table 1.

3.3. Hardware and Software Con�guration

For hardware, all experiments are conducted on a Linux
server equipped with Dual Intel Xeon Silver 4114 CPUs @
2.2GHz with 64GB RAM, and an NVIDIA Quadro RTX 8000
GPU with 48GB memory.

For software, we use Python 3.8, PyTorch v1.11.0, DGL
v0.8.2, and PyG v2.0.4. All GNN models were implemented
based on the o�cial examples provided by DGL with
PyTorch backend and PyG. To match the implementations
in both frameworks for a fair comparison, we set the same
values of the hyperparameters of samplers, convolutional
layers, and other components of GNN models as long as
both frameworks provide the same functional APIs. We
use the default settings as provided by the frameworks
otherwise. Our code is available on GitHub.4

Our main focus in this work is to evaluate the e�ciency
of the GNN frameworks in runtime and energy/power con-
sumption. Note that we here do not consider the accuracy
of each GNN model as there is no clear di�erence between
the frameworks [16, 35, 37]. We use pyinstrument5 to
measure the runtime of each key function of GNNs and
that of each GNN model along with its breakdown results. In
addition, we use CodeCarbon6 to measure power and energy

4. https://github.com/xhuang2016/GNN-Benchmark.
5. https://github.com/joerick/pyinstrument.
6. https://github.com/mlco2/codecarbon.



Data 
Loader

CPU GPU

Sampler Model Training

Copy Sampled 
Subgraph and 
its Features to 

GPU

Storage

B

C

A
D

E

G

H

FI

J
Input Graph

Features
B

C

A
D

E

G

H

FI

J
Sampled Subgraph

Features of Subgraph

B CA D E G HF I

B CA D E G HF I

B CA D E G HF I

J

J

J

Update 
Model 

Weights

Backward 
Propagation

Forward 
Propagation

Figure 2: Work�ow of sampling-based GNN training.

consumption, which is a Python package for tracking carbon
emissions produced by algorithms and programs.7 We use
the sampling interval of 0.1 seconds in this tool instead of
its default setting, which is 15 seconds. Considering the fact
that it is a software tool, we admit possible discrepancies
between measured values and actual ones. Nonetheless, we
emphasize that relative comparisons remain meaningful and
informative regardless, not to mention that we are the �rst
work to evaluate the power and energy consumption of
GNNs and GNN frameworks.

4. Results and Discussion

In this section, we provide and discuss the detailed
benchmark results on the e�ciency of DGL and PyG.

4.1. Functional Testing

Figure 2 illustrates the end-to-end work�ow of training
a sampling-based GNN with mini-batch training. It can
be divided into the following three main processes: data
loading, graph sampling, and model training. We thus con-
duct ‘functional testing’ on each main process to evaluate
the performance of DGL and PyG. Note that for the entire
training process, data loading is a one-time operation while
the other two process, i.e., graph sampling and model
training, are performed repeatedly and periodically for
each training batch. Note also that we do not consider
the inference of each model in this paper. We repeat the
experiments for each functional test for ten times and report
the average values. In addition, for the functional tests, we
do not include the power/energy consumption results since
the runtime of some functions are too small, e.g., a few
milliseconds, which can lead to incorrect power/energy
measurement.
Data loader. We �rst compare the data loader of DGL and
PyG, which is used to load the input graph and its associated
node features from storage and to create a library-speci�c

7. This pro�ling tool is a Python wrapper of Intel running average power
limit (RAPL) interface and NVIDIA ‘pynvml’ library. For CPUs, it measures
energy consumption by reading the Intel RAPL �les and computes the
power by dividing energy by time duration. For GPUs, it reads the instant
power recorded by pynvml and computes the energy by multiplying power
by time duration between two consecutive measurements.

20

23.377

PPI Flickr Arxiv Reddit Yelp Products0

1

2

3

4

Ru
nt

im
e 

[s
]

0.368
0.569 0.648

1.970

3.355

0.016 0.136
0.373

1.489

0.859

1.739

DGL
PyG

Figure 3: Runtime of data loader.

PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

50

60

70

Ru
nt

im
e 

[s
]

0.125 1.619 1.447

13.127 15.205

9.040

0.365 2.228
4.534

46.682

36.600

73.681

DGL
PyG

(a) Neighborhood sampler

20 18.807

PPI Flickr Arxiv Reddit Yelp Products0

0.5

1

1.5

2

2.5

3

Ru
nt

im
e 

[s
]

0.011 0.060 0.135

1.817

1.014

0.474

0.010 0.056 0.144

2.705

1.342

DGL
PyG

(b) GraphSAINT sampler

PPI Flickr Arxiv Reddit Yelp Products0

50

100

150

200

250

Ru
nt

im
e 

[s
]

0.545 1.385 2.111

110.906

16.013

91.759

1.909 7.258 7.739

270.768

43.599

165.789

DGL
PyG

(c) ClusterGCN sampler: METIS
PPI Flickr Arxiv Reddit Yelp Products0

5

10

15

20

Ru
nt

im
e 

[s
]

0.075 0.089 0.131
1.525

0.641

4.267

0.381 0.389 0.682

14.409

2.589

22.561

DGL
PyG

(d) ClusterGCN sampler: Combining

Figure 4: Runtime comparison of graph samplers. Note that

the range of y-axis is di�erent across di�erent �gures.

graph object for the next process of graph sampling and
model training. We present the runtime results in Figure 3.
Observation 1: PyG’s data loader is more e�cient and user-
friendly than DGL’s data loader.

There are two main reasons. First, while both frame-
works provide an easy-to-use interface to create and process
the datasets, PyG integrates more datasets (around 80) into
its library as compared with DGL (around 40). Speci�cally,
�ve out of six datasets used in this work can be directly
accessed from PyG’s ‘dataset’ module while three datasets
are already included in DGL. Note that, for the datasets
that are not included in the libraries, we follow the o�cial
instructions to process the raw datasets and to create
their corresponding graph objects. Second, DGL uses a
graph-centric programming abstraction, which makes rich
information of the input graph accessible and enables full
control of manipulating the input graph. As a consequence,
the workload of creating a ‘DGLGraph’ object is relatively
higher than its counterpart in PyG.
Sampler. We then compare the performance of three
di�erent graph samplers provided by DGL and PyG, namely
neighborhood sampler in GraphSAGE [19], graph clustering-
based sampler in ClusterGCN [9], and random walk-based
sampler in GraphSAINT [38].

For GraphSAGE sampler, we follow the settings in [19],
which sample 25 and 10 neighbors per node in its �rst-hop
and second-hop neighborhoods, respectively, with a batch
size of 512. Note that each mini-batch is composed of 512
subgraphs. For ClusterCGN sampler, there are two steps,
which are (1) graph partitioning with METIS algorithm



PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.007 0.151 0.142
2.447

0.989
2.827

0.072 0.280 0.479

21.452

3.145

37.037DGL
PyG

(a) GCNConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0

Ru
nt

im
e 

[s
]

0.002 0.006 0.006
0.098

0.045
0.144

0.002 0.006 0.010

0.336

0.062

0.529

DGL
PyG

(b) GCNConv-GPU
PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.003 0.312 0.125

7.151

1.543 2.581
0.009 0.306 0.281

10.441

1.589

11.954

DGL
PyG

(c) GCN2Conv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.001 0.013 0.006

0.275

0.074
0.145

0.001 0.012 0.008

0.645

0.076

0.249

DGL
PyG

(d) GCN2Conv-GPU

PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.023 0.249 0.277

12.453

1.774

26.549

0.276 0.772 1.594
OOM

8.804

OOM

DGL
PyG

(e) GATConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.003 0.008 0.013

0.181

0.061

0.417

0.005 0.014 0.029 OOM OOM OOM

DGL
PyG

(f) GATConv-GPU
PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.251 0.767 1.379
OOM OOM OOM0.809 1.956

4.447

OOM OOM OOM

DGL
PyG

(g) GATv2Conv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.008 0.023 0.049
OOM OOM OOM0.013 0.031 0.071

OOM OOM OOM

DGL
PyG

(h) GATv2Conv-GPU

PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.006 0.158 0.174
2.651

1.325
3.125

0.007 0.288 0.273

8.571

1.426

10.662

DGL
PyG

(i) SAGEConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.001 0.007 0.006
0.103

0.054

0.161

0.001 0.010 0.007

0.578

0.068

0.226

DGL
PyG

(j) SAGEConv-GPU
PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.005 0.371 0.194

7.204

1.785
3.099

0.072 1.135 1.071 OOM

10.706

OOM

DGL
PyG

(k) ChebConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.002 0.014 0.008

0.278

0.086
0.173

0.002 0.032
0.075

OOM OOM OOM

DGL
PyG

(l) ChebConv-GPU

PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.007 0.462 0.224

13.035

2.578
4.808

0.018 0.547 0.430

16.891

2.728

21.738

DGL
PyG

(m) TAGConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.002 0.019 0.010

0.530

0.133

0.291

0.001 0.017 0.013

1.254

0.139

0.471

DGL
PyG

(n) TAGConv-GPU
PPI Flickr Arxiv Reddit Yelp Products0

10

20

30

40

Ru
nt

im
e 

[s
]

0.004 0.167 0.093

6.613

1.088
2.375

0.008 0.242 0.259

10.151

1.324

12.222

DGL
PyG

(o) SGConv-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e 

[s
]

0.001 0.008 0.005

0.258

0.056
0.138

0.001 0.008 0.007

0.630

0.061

0.236

DGL
PyG

(p) SGConv-GPU

Figure 5: Runtime of eight Conv layers. Note that the range of y-axis is di�erent for CPU and GPU cases.

and (2) cluster aggregation. The former partitions the input
graph into a given number of small clusters with METIS
algorithm, while the latter is to randomly select a few of
them to form a subgraph for a training batch. Note that
the former is done only once, but the latter is repeated
to obtain di�erent mini-batches. In this experiment, we
partition the input graph into 2000 clusters and combine
50 of them for each mini-batch. For GraphSAINT sampler,
we use the random walk sampling method with 3000 roots
and a walk length of two steps to construct subgraphs from
the input graph for mini-batch training. While there are
two other sampling methods, namely node sampling and
edge sampling, in GraphSAINT, we here do not consider
them as they are shown to be inferior to the random walk
sampling [38]. We measure the runtime of each sampler
for one training epoch, i.e., one pass over the entire graph,
and report the results in Figure 4.

Observation 2: All three samplers provided by DGL are
more e�cient than the ones in PyG. The performance gap is
relatively small for GraphSAINT sampler since it is computa-
tionally cheaper than the other two samplers.

We observe that DGL implements its samplers in C++
with OpenMP, thus leading to superior performance to the
ones of PyG, which are developed in Python. In addition,
although the choices of hyperparameters can a�ect the sam-
pling performance, GraphSAINT sampler is generally faster
than GraphSAGE’s neighborhood sampler and ClusterGCN

sampler. It is also worth noting that the neighborhood
sampler can lead to a very large computational graph
for each node, while the ClusterGCN sampler can lead
to information loss and data imbalance. Thus, we expect
that the GraphSAINT sampler is a preferable choice in
practice. Furthermore, we observe that PyG requires data
format conversion to the compressed sparse column (CSC)
format, e.g., if it was in the compressed sparse row (CSR)
format, which turns out to be quite slow on large datasets.
Finally, while all three samplers in both DGL and PyG
run on CPU, DGL also provides GPU support and CUDA-
Uni�ed Virtual Addressing (UVA) support for GraphSAGE,
but not for other GNN models. We shall discuss them in
Section 4.3.
Graph convolutional layer. A convolutional (Conv) layer
is a key and dominant component of GNNs, and its runtime
performance can often re�ect the overall performance. We
thus conduct functional testing on a collection of Conv
layers available in DGL and PyG. Both frameworks provide
an ‘nn’ module that contains the implementations of popular
Conv layers. We notice that PyG covers more than 50 Conv
layers and DGL has about 30 of them. We here select eight
commonly used Conv layers for functional testing. They
are GCNConv [24], GCN2Conv [8], ChebConv [11], SAGE-
Conv [19], GATConv [34], GATv2Conv [5], TAGConv [13],
and SGConv [36].

We measure the runtime of executing each Conv layer
on CPU and GPU. In other words, the reported runtime is



PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(a) DGL-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(b) DGL-CPUGPU

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(c) PyG-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
ti

on

Data Loading
Sampling

Data Movement
Model Training

(d) PyG-CPUGPU

Figure 6: Runtime breakdown of GraphSAGE.

equivalent to the time of running one forward propagation
over a single Conv layer with the entire input graph. We
manually set the hyperparameters to be the same across
the frameworks for each Conv layer. The output dimension
is �xed to be 256 for all test cases. The results are presented
in Figure 5.
Observation 3: All eight Conv layers in DGL run faster
than the ones of PyG on CPU. The ones in DGL also run
faster than their PyG counterparts on GPU in most cases,
while PyG only outperforms DGL for few cases with small
graphs. Furthermore, graph convolutional operations on GPU
show up to 70x speedup over them on CPU.

The main reason for the performance on GPU is that
DGL adopts an improved CPU message passing kernel
developed by [29] to boost the performance, while PyG
relies on the CPU kernels included in its own PyTorch
Sparse and PyTorch Scatter, where some ‘scatter’ operations
are not well optimized on CPU. As for the performance
on GPU, it is worth noting that our observation does not
con�ict but match with the observation in [37], which shows
that PyG is more e�cient than DGL, yet for small graphs.
Our observation also con�rms the claim in [35]. Although
DGL is a bit slower on small graphs due to its framework
overhead, it is generally more e�cient than PyG, especially
on large graphs, thanks to its highly tuned kernels. We also
�nd that SAGEConv is relatively computationally cheaper
than the other Conv layers, due to its simple aggregation
operation.

In addition, we observe that both frameworks provide
fused kernels to improve their e�ciency and scalability,
where two separate message-passing and aggregation oper-
ations are merged as a single message aggregation operation.
DGL uses ‘g.update_all()’ function to invoke its g-SpMM
and g-SDDMM kernels, while PyG simply calls ‘matmul()’
function in PyTorch Sparse. It is worth noting that PyG
does not provide such fused kernel support for ChebConv,
GATConv, and GATv2Conv layers. As a result, all three

PPI Flickr Arxiv0

10

20

30

40

50

60

70

80

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

200

400

600

800

1000

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 7: Total runtime time of GraphSAGE.

PPI Flickr Arxiv0

20

40

60

80

100

120

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

20

40

60

80

100

120

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 8: Average power consumption of GraphSAGE.

PPI Flickr Arxiv0

1000

2000

3000

4000

5000

6000

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

10000

20000

30000

40000

50000

60000

70000

80000

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 9: Energy consumption of GraphSAGE.

layers of PyG su�er from an out-of-memory issue on large
graphs.

4.2. Performance Evaluation of GNNs

We evaluate three representative sampling-based GNNs,
namely GraphSAGE, ClusterGCN, and GraphSAINT on CPU
and GPU separately. We use ‘DGL-CPU’ and ‘PyG-CPU’ to
indicate when both sampling and training are done on CPU
and use ‘DGL-CPUGPU’ and ‘PyG-CPUGPU’ to indicate
when sampling is done on CPU while training is done on
GPU. We present their runtime breakdown, total runtime,
average power consumption, and energy consumption in
Figures 6–17. Note that, for all three GNNs, we use the
same hyperparameters of their samplers as used in the
above functional testing. We use two convolutional layers
for all three models and the hyperparameters of each GNN
model are set to be the same across DGL and PyG for a fair
comparison. The reported results are based on the models
trained by 10 epochs. We repeated the same experiments
multiple times and observed more or less the same results.

As shown in Figure 6, Figure 10, and Figure 14, we break
the runtime of each GNN into four parts, which are data
loading, sampling, data movement, and model training. Data
loading is done by ‘data loader’ to load the input graph and
its associated node features from storage to CPU memory.
Sampling is done by ‘sampler’ to extract subgraphs and
fetch the node features of the sampled subgraphs from
the entire feature matrix for mini-batch training. Data



PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(a) DGL-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(b) DGL-CPUGPU

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(c) PyG-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
ti

on

Data Loading
Sampling

Data Movement
Model Training

(d) PyG-CPUGPU

Figure 10: Runtime breakdown of ClusterGCN.

PPI Flickr Arxiv0

5

10

15

20

25

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

500

1000

1500

2000

2500

3000

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 11: Total runtime of ClusterGCN.

PPI Flickr Arxiv0

20

40

60

80

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

20

40

60

80

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 12: Average power consumption of ClusterGCN.

PPI Flickr Arxiv0

200

400

600

800

1000

1200

1400

1600

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

50000

100000

150000

200000

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 13: Energy consumption of ClusterGCN.

movement is to copy the initial weight matrices of a GNN
model, each subgraph matrix, and its corresponding node
features from CPU to GPU. Note that there is no data
movement (from CPU to GPU) for DGL-CPU and PyG-CPU.
Model training includes forward propagation, backward
propagation, and update of model weights. Note that as
the number of training epochs increases, the fraction of

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(a) DGL-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(b) DGL-CPUGPU

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(c) PyG-CPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(d) PyG-CPUGPU

Figure 14: Runtime breakdown of GraphSAINT.

PPI Flickr Arxiv0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

20

40

60

80

100

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 15: Total runtime of GraphSAINT.

PPI Flickr Arxiv0

20

40

60

80

100

120

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

20

40

60

80

100

120

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 16: Average power consumption of GraphSAINT.

PPI Flickr Arxiv0

25

50

75

100

125

150

175

200

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Reddit Yelp Products0

1000

2000

3000

4000

5000

6000

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-CPUGPU
PyG-CPU
PyG-CPUGPU

Figure 17: Energy consumption of GraphSAINT.

data loading in total runtime will decrease since it is a
one-time operation. However, sampling, data movement,
and model training are performed repeatedly for di�erent
mini-batches.
Observation 4: Sampling is slow for all three GNNs and
can take up to 90% of total runtime.



This observation indicates that there is a need to opti-
mize sampling and its associated operations. In particular,
for PyG, its CPU kernel could be improved for not only
sampling but also model training on CPU. In addition, we
observe that data movement can also take a large portion
of total runtime in both frameworks. As shall be shown
in Section 4.3, data pre-loading in the frameworks can be
used to mitigate this issue.
Observation 5: DGL is generally more e�cient than PyG
on both CPU and GPU in terms of runtime and energy
consumption, especially for large graphs.

We observe that PyG is more e�cient than DGL for
small graphs when CPU is used for sampling and GPU is
used for training, while DGL is generally more e�cient for
the other cases. In particular, PyG-CPUGPU is generally
more e�cient than DGL-CPUGPU for GraphSAINT. This
behavior can be explained as follows. With mini-batch train-
ing, a GNN model is trained based on sampled subgraphs,
which are much smaller than the input graph. We observe
that each sampled subgraph (corresponding to a mini-batch)
by GraphSAINT sampler is relatively smaller than the ones
by GraphSAGE’s neighborhood sampler and ClusterGCN
sampler. Here the one with GraphSAGE’s neighborhood
sampler has multiple subgraphs for a mini-batch. Also,
recall that the performance gap of the GraphSAINT sampler
between DGL and PyG is insigni�cant, as shown in Figure 4.
Since PyG is more e�cient in model training with small
graphs, PyG becomes more e�cient even for medium-size
graphs with GraphSAINT, as shown in Figure 15.

In addition, we �nd that there is no clear winner
between DGL and PyG regarding average power consump-
tion, which indicates that energy consumption mainly
depends on overall runtime. We observe that GraphSAINT
is more e�cient in both runtime and energy consumption
compared with the GraphSAGE and ClusterGCN, thanks
to its light-weight sampling and GNN operations. Note
that they are trained for the same number of epochs in
our experiments. Nonetheless, we emphasize that di�erent
choices of the hyperparameters for each GNN in optimizing
its accuracy would a�ect the e�ciency in runtime and
energy consumption di�erently.

4.3. Case Studies

We next turn out attention to three case studies to
further evaluate the performance of two GNN frameworks,
regarding data pre-loading, GPU-based sampler, and full-
batch model training. We focus on GraphSAGE for the case
studies.
Pre-loading entire graph and node features into GPU.

As shown in Section 4.2, data movement can be a problem
when we use CPU for sampling and GPU for model training.
We here change the implementation strategy so as to pre-
load the entire graph and its associated node features into
the GPU upfront, which can avoid the overhead of repeated
data movement, i.e., the movement of the features of nodes
chosen in each mini-batch. Both frameworks provide such a
pre-loading option. With this option, the adjacency matrices

PPI Flickr Arxiv Reddit Yelp Products01

5

10

15

20

Sp
ee

du
p

DGL-CPUGPU
PyG-CPUGPU

(a) Speedup of data movement
PPI Flickr Arxiv Reddit Yelp Products0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

DGL-CPUGPU
PyG-CPUGPU

(b) Speedup of total runtime

Figure 18: Speedup of GraphSAGE when pre-loading the

input graph and node features into GPU.

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(a) DGL-CPUGPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(b) PyG-CPUGPU

Figure 19: Runtime breakdown of GraphSAGE with data

pre-loading.

of sampled subgraphs only need to be copied from CPU
to GPU for each mini-batch periodically. Note that a mini-
batch is composed of a number of sampled subgraphs in
GraphSAGE, where the number of sampled subgraphs is
the mini-batch size. We present the resulting performance
of DGL and PyG with GraphSAGE in Figure 19 for runtime
breakdown and in Figure 18 for speedup results.
Observation 6: The data pre-loading can signi�cantly reduce
overall data movement time in both frameworks.

As expected, the pre-loading strategy saves up to 20x
data movement time, thereby leading to about 2x overall
speedup. Nonetheless, it is only feasible when the GPU
memory is large enough to hold the entire graph and its
associated node features as well as the weight matrix of a
GNN model. It is often not the case in practice, especially
for large graphs. An alternative yet e�ective strategy would
be to cache the features of nodes that are most frequently
used for model training, i.e., partial information of the
graph, into GPU memory upfront, to reduce overall data
movement time [12].

It is worth noting that DGL further provides an ad-
vanced feature called ‘pre-fetching’ for asynchronous data
movement and model computation. We observed that the
performance of DGL can be further improved, albeit a little
bit, with this feature. We omit the results here for brevity.
GPU-based sampler. As mentioned before, the GPU-based
neighborhood sampler, i.e., the sampler in GraphSAGE,
is available in DGL to accelerate its sampling operation
and eliminate the need of moving sampled subgraphs
from CPU to GPU for each mini-batch. If the GPU-based
sampler is used together with the pre-loading option, it can
also eliminate the repeated data transfer of node features,
corresponding to sampled subgraphs for each mini-batch.
This combination is, however, infeasible for the cases with



PPI Flickr Arxiv Reddit Yelp Products0

1

2

3

4

5

6
Sp

ee
du

p
DGL-GPU
DGL-UVAGPU

(a) Speedup over DGL-CPUGPU
PPI Flickr Arxiv Reddit Yelp Products0

1

2

3

4

5

6

Po
w
er
up

DGL-GPU
DGL-UVAGPU

(b) Powerup over DGL-CPUGPU
PPI Flickr Arxiv Reddit Yelp Products0

1

2

3

4

5

6

G
re
en

up

DGL-GPU
DGL-UVAGPU

(c) Greenup over DGL-CPUGPU

Figure 20: GPS-UP metrics of GraphSAGE with DGL’s GPU-based sampler and UVA-based sampler.

PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(a) DGL-GPU
PPI Flickr Arxiv Reddit Yelp Products0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

Data Loading
Sampling

Data Movement
Model Training

(b) DGL-UVAGPU

Figure 21: Runtime breakdown of GraphSAGE with DGL’s

GPU-based sampler and UVA-based sampler.

large graphs and/or high-dimensional feature data that do
not �t into GPU memory.

In addition, DGL supports another sampler for
GrapeSAGE, which is the CUDA-Uni�ed Virtual Addressing
(UVA)-based sampler. It uses GPU to perform the sampling
operation on the input graph and node features pinned
on CPU memory via zero-copy access. This UVA support
allows DGL to deal with much larger graphs with the
bene�ts of using GPU for sampling and model training.
Note that both UVA-based sampler and GPU-based sampler
are currently only available for GraphSAGE in DGL.

We evaluate the performance of the GPU-based sampler
(‘DGL-GPU’) and UVA-based sampler (‘DGL-UVAGPU’) to
see how much improvement they can achieve. For the
former, we also use the data pre-loading option. Their
runtime-breakdown results are reported in Figure 21. Here
the data movement for DGL-GPU contains two parts, which
are (1) copying the input graph and node features to GPU
for sampling and (2) moving the initial GNN model from
CPU to GPU for training. For DGL-UVAGPU, the data
movement is only for the initial model.
Observation 7: The portion of the sampling operation in
total runtime becomes smaller compared with the one with
DGL-CPUGPU. However, even with GPU for sampling, it can
still take up to 40% of total runtime for DGL-GPU and 60%
for DGL-UVAGPU. This indicates the non-trivial overhead of
the sampling operation and the potential bene�t of further
accelerating the sampler.

We next use GPS-UP (Speedup, Greenup, and Powerup)
metrics introduced in [2] for further e�ciency analysis.
The metrics are designed for comparing two di�erent
implementations. One of them is an non-optimized version
(i.e. baseline) and the other is an optimized version for

better performance. Speci�cally, they are de�ned as

Speedup =
Tφ
To

, Greenup =
Eφ

Eo
,

Powerup =
Po
Pφ

=
Eo/To
Eφ/Tφ

=
Speedup
Greenup

,

where Tφ, Eφ, and Pφ are the runtime, energy consumption,
and average power of the non-optimized version, respec-
tively, and To, Eo, and Po are the corresponding values of
the optimized one, respectively. We here use DGL-CPUGPU
as baseline and report Speedup, Greenup, and Powerup
results achieved by DGL-GPU and DGL-UVAGPU over DGL-
CPUGPU in Figure 20.
Observation 8: The use of GPU for sampling saves both
time and power in most cases, leading to signi�cant energy
saving.

As can be seen from Figure 20(a), DGL-GPU achieves
up to 5.5x speedup over DGL-CPUGPU. DGL-UVAGPU is
sightly slower than DGL-GPU, because the former uses zero-
copy access to CPU memory, which is generally slower than
having access to GPU onboard memory. From Figure 20(b),
we also observe that Powerup is not always above one,
which implies that the power consumption of using GPU
for the sampler can be higher than the CPU counterpart. It
happens, especially when there are a large number of edges
for each node, e.g., the case of Reddit, making the sampling
computation on GPU heavier. Nonetheless, as shown in
Figure 20(c), we observe that Greenup is always above one.
In other words, it is more energy-e�cient using GPU for
the sampler. While GPU can consume more power than
CPU for the sampling operation, it signi�cantly reduces the
total runtime, which translates into smaller overall energy
consumption.

Our observations indicate the bene�ts of using GPU
for the sampler of GNNs. Nonetheless, this GPU support
is currently only limited to GraphSAGE in DGL, and there
is no such support in PyG. Note that there is a recent
study [23] that leverages GPUs to accelerate graph sampling
for GNNs.
Full-batch training. We have focused on three sampling-
based GNNs with mini-batch training to evaluate the perfor-
mance of the frameworks. For a comprehensive evaluation,
we here consider full-batch training to train a GraphSAGE
model, which is done based on the entire graph without
neighborhood sampling. Speci�cally, we use a GraphSAGE



PPI Flickr Arxiv0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Reddit Yelp Products0

10

20

30

40

50

60

70

Ru
nt

im
e 

[s
]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Figure 22: One epoch training time of full-batch Graph-

SAGE.

PPI Flickr Arxiv0

25

50

75

100

125

150

175

200

225

250

275

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Reddit Yelp Products0

25

50

75

100

125

150

175

200

225

250

275

Av
er

ag
e 

Po
w

er
 [

W
at

t]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Figure 23: Average power consumption of full-batch Graph-

SAGE while training.

PPI Flickr Arxiv0

10

20

30

40

50

60

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Reddit Yelp Products0

500

1000

1500

2000

2500

3000

En
er

gy
 C

on
su

m
pt

io
n 

[J
ou

le
]

DGL-CPU
DGL-GPU
PyG-CPU
PyG-GPU

Figure 24: One epoch energy consumption of full-batch

GraphSAGE.

model with two layers having mean-aggregator and train
the model on CPU and GPU using DGL and PyG separately.
We present the experiment results, which are the average
results of 100 runs for one training epoch, in runtime, power
consumption, and energy consumption in Figures 22–24,
respectively.

We observe that DGL-CPU is much faster than PyG-CPU
for full-bath model training. DGL-GPU training is slower
than its PyG counterpart on the smallest graph PPI, while it
is faster for the other �ve datasets. The results are consistent
with our functional test results as reported above. We also
observe that there is no clear di�erence in the average
power consumption between the frameworks for model
training. That is, the di�erences in energy consumption
between the frameworks mainly come from their di�erences
in training time.

5. Conclusion

We have characterized the e�ciency of two mainstream
GNN frameworks with three state-of-the-art sampling-based
GNNs and six real-world graph datasets, which cover a
wide range of graph sizes. We have conducted extensive
experiments to evaluate the performance of each key
component of GNN models and frameworks as well as each

GNN’s model performance from the e�ciency perspective
in runtime and power/energy consumption. We expect that
our observations at many di�erent levels would be useful
for further improvement and optimization of GNN models
and frameworks.

Acknowledgments

This work was supported in part by a grant from SK
hynix America and an equipment gift from NVIDIA. This
work was also supported in part by the National Science
Foundation under Grant IIS-2209921.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015.

[2] S. Abdulsalam, Z. Zong, Q. Gu, and M. Qiu, “Using the Greenup,
Powerup, and Speedup metrics to evaluate software energy e�ciency,”
in 6th International Green and Sustainable Computing Conference
(IGSC). IEEE, 2015, pp. 1–8.

[3] T. Baruah, K. Shivdikar, S. Dong, Y. Sun, S. A. Mojumder, K. Jung,
J. L. Abellán, Y. Ukidave, A. Joshi, J. Kim, and D. Kaeli, “GNNMark:
A benchmark suite to characterize graph neural network training
on GPUs,” in IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 2021, pp. 13–23.

[4] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. E. Dahl,
A. Vaswani, K. Allen, C. Nash, V. J. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational inductive biases, deep learning, and graph networks,” arXiv
preprint arXiv:1806.01261, 2018.

[5] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations,
2022.

[6] Y. Cen, Z. Hou, Y. Wang, Q. Chen, Y. Luo, Z. Yu, H. Zhang, X. Yao,
A. Zeng, S. Guo, Y. Dong, Y. Yang, P. Zhang, G. Dai, Y. Wang, C. Zhou,
H. Yang, and J. Tang, “CogDL: A toolkit for deep learning on graphs,”
arXiv preprint arXiv:2103.00959, 2021.

[7] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in International
Conference on Learning Representations, 2018.

[8] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep
graph convolutional networks,” in International Conference on Machine
Learning. PMLR, 2020, pp. 1725–1735.

[9] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-GCN: An e�cient algorithm for training deep and large
graph convolutional networks,” in 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.

[10] CSIRO’s Data61, “StellarGraph machine learning library,” https://
github.com/stellargraph/stellargraph, 2018.

[11] M. De�errard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral �ltering,”
Advances in Neural Information Processing Systems, vol. 29, 2016.

[12] J. Dong, D. Zheng, L. F. Yang, and G. Karypis, “Global neighbor
sampling for mixed CPU-GPU training on giant graphs,” in 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 289–299.



[13] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.

[14] K. Duan, Z. Liu, W. Zheng, P. Wang, K. Zhou, T. Chen, Z. Wang, and
X. Hu, “Benchmarking large-scale graph training over e�ectiveness
and e�ciency,” in Workshop on Graph Learning Benchmarks, 2022.

[15] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bres-
son, “Benchmarking graph neural networks,” arXiv preprint
arXiv:2003.00982, 2020.

[16] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[17] D. Grattarola and C. Alippi, “Graph neural networks in TensorFlow
and Keras with Spektral [application notes],” IEEE Computational
Intelligence Magazine, vol. 16, no. 1, pp. 99–106, 2021.

[18] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,
dynamics, and function using NetworkX,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[20] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures
on Arti�cal Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159,
2020.

[21] J. Hu, S. Qian, Q. Fang, Y. Wang, Q. Zhao, H. Zhang, and C. Xu,
“E�cient graph deep learning in TensorFlow with tf_geometric,” in
29th ACM International Conference on Multimedia, 2021, pp. 3775–
3778.

[22] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” Advances in Neural Information Processing Systems, vol. 33,
pp. 22 118–22 133, 2020.

[23] A. Jangda, S. Polisetty, A. Guha, and M. Sera�ni, “Accelerating graph
sampling for graph machine learning using GPUs,” in 16th European
Conference on Computer Systems, 2021, pp. 311–326.

[24] T. N. Kipf and M. Welling, “Semi-supervised classi�cation with graph
convolutional networks,” in International Conference on Learning
Representations, 2017.

[25] S. Li, X. Huang, and C.-H. Lee, “An e�cient and scalable algorithm
for estimating Kemeny’s constant of a Markov chain on large graphs,”
in 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 964–974.

[26] ——, “Estimating distributions of large graphs from incomplete
sampled data,” in IFIP Networking Conference. IEEE, 2021, pp. 1–9.

[27] H. Lin, M. Yan, X. Yang, M. Zou, W. Li, X. Ye, and D. Fan,
“Characterizing and understanding distributed GNN training on GPUs,”
IEEE Computer Architecture Letters, vol. 21, no. 1, pp. 21–24, 2022.

[28] Y. Ma and J. Tang, Deep learning on graphs. Cambridge University
Press, 2021.

[29] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke,
D. Kalamkar, N. K. Ahmed, and S. Avancha, “DistGNN: Scalable
distributed training for large-scale graph neural networks,” in In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–14.

[30] P. Mernyei and C. Cangea, “Wiki-CS: A wikipedia-based benchmark
for graph neural networks,” arXiv preprint arXiv:2007.02901, 2020.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[32] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[33] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” in 57th Annual Meeting of
the Association for Computational Linguistics, 2019, pp. 3645–3650.

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018.

[35] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
Graph Library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[36] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Sim-
plifying graph convolutional networks,” in International Conference
on Machine Learning. PMLR, 2019, pp. 6861–6871.

[37] J. Wu, J. Sun, H. Sun, and G. Sun, “Performance analysis of graph
neural network frameworks,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2021,
pp. 118–127.

[38] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“GraphSAINT: Graph sampling based inductive learning method,”
in International Conference on Learning Representations, 2020.

[39] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implications of graph neural networks,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 59–62, 2020.

[40] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional
networks,” Advances in Neural Information Processing Systems, vol. 32,
2019.


