

1
2
3
4 **Bacteria elicit a phage tolerance response subsequent to infection of their**
5 **neighbors**
6
7
8
9

10 Elhanan Tzipilevich^{1,2*}, Osher Pollak-Fiyaksel^{1*} Bushra Shraiteh¹, Sigal Ben-Yehuda^{1,3}

11
12 ¹Department of Microbiology and Molecular Genetics
13 Institute for Medical Research Israel-Canada (IMRIC)
14 The Hebrew University-Hadassah Medical School, POB 12272
15 The Hebrew University of Jerusalem, 91120
16 Jerusalem, Israel.

17
18 ² Current address: Department of Biology and Howard Hughes Medical Institute, Duke
19 University, Durham, North Carolina, USA

20
21 ³To whom correspondence should be addressed. E-mail: sigalb@ekmd.huji.ac.il (S. B-Y)

22
23 * These authors contributed equally to this work

24

25

26

1 **Abstract**

2 Plaque occurrence on a bacterial lawn manifests successive rounds of bacteriophage infection.
3 Yet, mechanisms evolved by bacteria to limit plaque spread have been hardly explored. Here
4 we investigated the dynamics of plaque development by lytic phages infecting the bacterium
5 *Bacillus subtilis*. We report that plaque expansion is followed by a constriction phase owing to
6 bacterial growth into the plaque zone. This phenomenon exposed an adaptive process, herein
7 termed "phage tolerance response", elicited by non-infected bacteria upon sensing infection of
8 their neighbors. The temporary phage-tolerance is executed by the stress response RNA
9 polymerase sigma factor σ^X (SigX). Artificial expression of SigX prior to phage attack largely
10 eliminates infection. SigX tolerance is primarily conferred by activation of the *dlt* operon,
11 encoding enzymes that catalyze D-alanylation of cell wall teichoic acid polymers, the major
12 attachment sites for phages infecting Gram-positive bacteria. D-alanylation impedes phage
13 binding and hence infection, thus enabling the uninfected bacteria to form a protective shield
14 opposing phage spread.

15

16

17 **Key words:** Bacteriophage, *Bacillus subtilis*, *dlt* operon, cell wall teichoic acid, plaque
18 formation

19

1 **Introduction**

2 Plaques, reporting bacterial clearance, are the hallmark of bacteriophage (phage) infection
3 since the pioneering discoveries made by Twort and d'Herelle at the beginning of the 20th
4 century (Chanishvili, 2012, d'Hérelles, 1917, Twort, 1914). Plaques are basically visible holes,
5 formed on a lawn of bacteria grown on a solid surface, that report bacterial clearance following
6 successive cycles of infection, including phage adsorption, replication and spread to nearby
7 hosts. Intriguingly, plaques exhibit a considerable variation in shape according to the host and
8 the infecting phage, and are predominantly restricted in size (Abedon & Yin, 2009). It has been
9 proposed that such size limitation is achieved, at least in part, by the entry of bacteria into
10 stationary phase, which frequently restrains phage replication (Abedon & Yin, 2009).
11 However, although plaque employment as a method for monitoring phage infection began
12 decades ago, relatively little is known about the kinetics of plaque development. Furthermore,
13 factors limiting plaque size and expansion are mostly unrevealed.

14 In this study, we investigated the dynamics of plaque formation, utilizing the Gram-
15 positive soil bacterium *Bacillus subtilis* (*B. subtilis*) and its lytic phages SPP1 and Phi29.
16 Binding of phages to *B. subtilis* is commonly mediated by wall teichoic acid (WTA) polymers,
17 a diverse family of cell surface glycopolymers containing phosphodiester-linked glycerol
18 repeat units poly(Gro-P), decorated by glucose and D-alanine moieties, and anchored to
19 peptidoglycan (PG) through an N-acetylmannosaminyl (Brown et al., 2013). WTA polymers
20 were found to be crucial surface components, required for invasion by manifold phages into
21 Gram-positive bacteria such as *Bacilli*, *Listeria*, and *Staphylococci* (Habusha et al., 2019,
22 Ingmer et al., 2019, Lindberg, 1973, Sumrall et al., 2020). SPP1, a double-stranded DNA
23 (dsDNA) phage (44 kb) and a member of the Siphoviridae family, characterized by a long
24 noncontractile tail (Alonso et al., 1997), initiates infection by reversible binding of the tail tip
25 to poly-glycosylated WTA (gWTA). Subsequently, SPP1 binds irreversibly to its membrane

1 receptor protein YueB, resulting in DNA injection into the bacterium cytoplasm (Baptista et
2 al., 2008, Sao-Jose et al., 2004). Phi29 phage, which is significantly smaller (19.3 kb) and
3 belongs to the Podoviridae family, harboring a short noncontractile tail (Salas, 2012), was
4 shown to entirely rely on intact gWTA for infection (Young, 1967). The fact that phages
5 assigned to distinct families utilize gWTA to invade the host strengthens the vital role of these
6 polymers in host recognition by phages and implicates them as major elements for host cell
7 vulnerability. Consistent with this notion, we have shown that a mutant bacteriophage capable
8 of bypassing the need for binding the glucosyl residues, decorating the WTA polymers, gained
9 a broader host range, as it could infect non-host bacterial species presenting dissimilar
10 glycosylation patterns (Habusha et al., 2019).

11 Previously, we demonstrated that phages could occasionally invade resistant cells that
12 acquire phage receptors from their sensitive neighbors, highlighting the importance of
13 understanding infection dynamics in a temporal and spatial fashion (Tzipilevich et al., 2017).
14 Here, we visualized plaques formed on a lawn of *B. subtilis* bacteria. We revealed that plaque
15 spreading is followed by a phase of constriction mediated by bacterial regrowth into the plaque
16 zone. Characterization of the plaque constriction phase uncovered a temporary immunity
17 mechanism, propelled by a programmed transcriptional response, enabling bacteria to tolerate
18 infection by remodeling WTA polymers. This modification reduces phage binding and restricts
19 phage spread. Unlike other mechanisms affording long-term bacterial immunity to phages,
20 namely restriction enzymes and CRISPR (Labrie et al., 2010), this tolerance mechanism
21 confers a transient adaptive response, providing protection to the uninfected bacterial
22 population subsequent to infection of their neighbors.

23

1 **Results**

2 **Plaque expansion is followed by a phase of plaque constriction**

3 To explore the bacterial population dynamic during phage attack on solid surfaces, we followed
4 the process of plaque formation by SPP1 on a lawn of mCherry-labeled *B. subtilis* cells at high
5 resolution, using time lapse confocal microscopy. Maximal SPP1 plaque size was detected
6 approximately eight hours post infection, but remarkably the spread was counteracted by
7 bacteria growing into the plaque area, limiting plaque expansion (Fig 1A; Movie EV1).
8 Consequently, the final plaque diameter measured after overnight incubation was significantly
9 smaller than the maximal size reached during plaque development (Fig 1A). To further explore
10 this phenomenon, we followed the kinetics of plaque formation on agar plates, the typical
11 methodology used over the years for estimation of plaque forming units (PFU) [e.g. (Abedon
12 & Yin, 2009, Ellis & Delbruck, 1939)]. Consistent with the confocal microscopy results, plate
13 monitoring revealed a steep expansion phase that was proceeded by a gradual decrease in
14 plaque size, with the final zone being approximately 50% of the maximal plaque area measured
15 during the process (Fig 1B-1C; Movie EV2). This plaque constriction occurrence was also
16 evident when bacteria were infected with the distinct lytic phage Phi29 (Fig 1D), suggesting
17 that such a kinetic pattern is widespread.

18 To concomitantly track plaque development and phage localization, we followed
19 plaque formation by SPP1 harboring its lysin gene (*gp51*) fused to a yellow fluorescent protein
20 (YFP) as a sole copy (SPP1-*lysin-yfp*), as a marker of active infection (Tzipilevich et al., 2017).
21 Fluorescence from YFP demarcated the plaque periphery even during the constriction phase,
22 signifying the presence of actively infected cells that release phage particles (Fig EV1A-EV1C;
23 Movie EV3). This observation implies that bacteria at the rim could withstand the presence of
24 phages. Isolating bacteria from the edge of 30 different plaques subsequent to the constriction
25 phase and re-plating them over plate-containing phages revealed all tested bacteria to remain

1 phage sensitive (Fig EV1D). We refer to the phenomenon of phage sensitive bacteria that can
2 confront phages at the plaque circumference as "phage tolerance".

3 **SigX is necessary for plaque constriction**

4 The phenomenon of plaque constriction directed by phage sensitive bacteria prompted us to
5 postulate that bacteria residing at the plaque periphery could mount a transient phage tolerance
6 response. We further reasoned that such a response could be orchestrated by one of the *B.*
7 *subtilis* extra-cytoplasmic function (ECF) RNA polymerase sigma (σ) factors. These factors
8 are activated in response to stress imposed on the cell envelope (Helmann, 2016) that could
9 stem from remains of surrounding lysed cells. To examine this premise, we deleted each of the
10 seven known ECF sigma factors of *B. subtilis* and assayed their impact on the final plaque size.
11 Intriguingly, $\Delta sigX$ strain exhibited significantly larger plaques in comparison to wild type
12 (WT) when challenged with SPP1 or Phi29 phages (Fig 2A; Appendix Figure S1A).
13 Furthermore, monitoring plaque dynamics revealed that this size difference is due to the
14 substantial attenuation of the plaque constriction phase (Fig 2B-2C). Importantly, when grown
15 in liquid cultures, $\Delta sigX$ cells propagated with kinetics similar to that of WT cells (Appendix
16 Figure S1B), indicating that the observed phenotype was not due to growth perturbation. To
17 further elucidate the role of SigX in counteracting phage spread, we challenged $\Delta sigX$ cells
18 with SPP1 or Phi29 phages in liquid cultures. No difference in lysis kinetics was observed
19 when bacteria were infected at 1:1 (phage:bacteria) multiplicity of infection (MOI). However,
20 while infected with low MOI (phage:bacteria 1:20), $\Delta sigX$ cells lysed significantly faster than
21 WT cells (Fig 2D; Appendix Figure S1C), a phenotype that could be reversed by ectopic
22 expression of *sigX* (Appendix Figure S1D). The low MOI might be equivalent to the
23 bacterial:phage ratio reached during the phase of plaque constriction. These results are
24 consistent with the view that uninfected bacteria induce a SigX-regulated defense response,
25 capable of tempering future phage infections.

1 To compare the response to phage attack of WT and $\Delta sigX$ cells in real time, we mixed
2 mCherry-labeled WT cells with GFP-labeled $\Delta sigX$ cells and monitored plaque dynamics
3 following infection with SPP1, utilizing time lapse confocal microscopy. At the initial stages
4 of phage spreading, both strains appeared to be infected and to be lysed equally (Fig 2E, t= 5,
5 9 hrs; Appendix Figure S2A; Movie EV4). However, during the constriction phase, when the
6 bacteria re-grew into the plaque zone, WT cells outcompeted the $\Delta sigX$ cells, as signified by
7 the dominant colonization of the mCherry-labeled WT cells at the plaque rim (Fig 2E, t=12, 16
8 hrs; Fig EV2; Appendix Figure S2A, Movie EV4). When GFP- and mCherry- labeled WT cells
9 were mixed as a control, both strains were evenly distributed at the plaque edge even 16 hours
10 post infection (Fig EV2). Moreover, WT and $\Delta sigX$ cells equally occupied regions located
11 remotely from visible plaque sites (Fig EV2), and, in accord, the growth rate of $\Delta sigX$ cells
12 was not significantly affected by the presence of WT cells in a co-culture (Appendix Figure
13 S2C). Consistent with these results, fusion of the *sigX* promoter to *gfp* ($P_{sigX}\text{-}gfp$) specified that
14 cells located at the plaque rim produced GFP chiefly during the constriction phase (Fig 2F;
15 Appendix Figure S2B). Interestingly, infection at 48°C, a temperature shown to activate *sigX*
16 expression (Huang et al., 1997), led to a significant reduction in plaque size in a *sigX*-dependent
17 manner (Fig EV3A). Of note, although no measurable difference between $\Delta sigX$ and WT
18 growth kinetics was seen at 48°C (EV3B), phage manufacture could be alleviated at high
19 temperatures (Schachtele et al., 1970). In sum, we conclude that $\Delta sigX$ cells are deficient in
20 inducing a defense mechanism that enables bacteria to tolerate the presence of phages and
21 invade into the plaque zone.

22 **SigX is activated in non-infected bacteria following infection of their neighbors**

23 The results so far raised the prospect that bacteria could sense a danger signal, emanating from
24 nearby infected bacteria, and in turn activate SigX-dependent phage tolerance response. To
25 assay *sigX* induction in uninfected bacteria, SPP1 was added to WT cells that were co-cultured

1 with SPP1 resistant bacteria, lacking the phage receptor (*ΔyueB*), and harboring the $P_{sigX-gfp}$
2 reporter. Indeed, monitoring GFP fluorescence showed a continuous increase in *sigX*
3 expression that reached the maximal level approximately 35 min post infection and started to
4 decline at t=60 min (Fig 3A; Fig EV3C-EV3D). A similar fluorescence profile was obtained
5 when the two strains were separated by a membrane that allows the passage of small molecules
6 while compartmentalizing the cells (Fig 3B), suggesting that the *sigX*-inducing factor is
7 secreted into the shared medium. To further substantiate the ability of bacteria to activate SigX
8 in response to nearby infected cells, we followed the production and localization of SigX
9 protein during infection at the cellular level. In the absence of phages, a functional SigX-GFP
10 fusion ($P_{sigX-sigX-gfp}$) mainly localized onto the membrane, frequently forming focal assemblies
11 in proximity to the cell circumference and at septal positions (Fig 3C; Appendix Figure S1E).
12 This localization pattern is consistent with previous reports showing that SigX is sequestered
13 to the plasma membrane by its anti-sigma factor as a way to halt its action (Ho & Ellermeier,
14 2012). To assay SigX activity in uninfected bacteria, we added SPP1 phage to mCherry-labeled
15 WT bacteria mixed with *ΔyueB* phage resistant bacteria, harboring *sigX-gfp*. Time-lapse
16 microscopy revealed repositioning of SigX-GFP from membrane and foci locations to massive
17 nucleoid deployment in the resistant bacteria (Fig 3D; t=35 min), indicating a switch from an
18 inactive to an active mode. Noticeably, this shift in localization occurred prior to lysis of nearby
19 infected sensitive bacteria and corresponded to the increase in P_{sigX} -GFP signal observed (Fig
20 3A-3B). SigX-GFP level was dropped and its localization into foci was largely restored in the
21 resistant bacteria 95 min post infection (Fig 3D), in line with the decline in *sigX* expression
22 (Fig 3A-3B), presumably corresponding to conclusion of the phage sensing response. Taken
23 together, SigX appears to be activated in phage resistant bacteria upon sensing a danger signal
24 from nearby infected sensitive cells. Notably, infecting *sigX-gfp* sensitive cells with SPP1

1 showed that SigX-GFP largely displaces its position from the membrane to the nucleoid in the
2 course of infection (Fig EV3E), denoting that also infected cells activate the SigX response.

3 **Expression of SigX protects from phage infection**

4 The impact of SigX on phage infection was further explored by constructing bacteria artificially
5 expressing SigX under an IPTG-inducible promoter. Remarkably, expressing *sigX* prior to
6 phage addition markedly attenuated both SPP1 and Phi29 infections, with the cells being
7 capable of extending the infection process (Fig 4A). Next, mCherry-labeled cells, over-
8 expressing SigX ($P_{IPTG}\text{-}sigX$), were incubated with non-labeled WT cells, and the mixture was
9 infected with SPP1-*lysin-yfp*. Consistent with the above observations, WT cells were rapidly
10 infected and lysed, while cells over-expressing SigX appeared to be infected at slower kinetics
11 and to a lesser extent (Fig 4B-4C), a phenomenon that was also observed during infection with
12 Phi29 (Fig EV4A).

13 To define the specific stage at which phage infection was interrupted by SigX activity,
14 we followed the adsorption of phages to cells over-expressing *sigX*. A standard adsorption
15 assay yielded no significant difference in SPP1 adsorption rate between WT and SigX
16 expressing cells (Fig 4D). Nonetheless, since SPP1 phage exhibits two modes of cell surface
17 binding, reversible, in which it associates with gWTA polymers, and irreversible, through
18 interaction with the YueB receptor (Baptista et al., 2008), it was still conceivable that the
19 irreversible mode of binding was impaired. To inspect this possibility, cells were diluted after
20 an initial phage adsorption period to enable reversibly adsorbed phages to detach from the host
21 (Baptista et al., 2008). Indeed, a large fraction of phages, adsorbed to *sigX* over-expressing
22 cells, were liberated after dilution, whereas no significant release of WT-attached phages was
23 detected (Fig 4D), indicating that SigX expression delays SPP1 irreversible binding. To
24 corroborate this finding, we investigated whether phage DNA injection is consequently delayed
25 by induced expression of SigX. To monitor phage DNA injection, we utilized SPP1-*delX110lacO64*

1 phage, which contains 64 repeats of *lacO* (Jakutyte et al., 2012), and infected bacteria
2 chromosomally expressing *lacI-cfp*. The presence of phage DNA within the host cytoplasm
3 was visualized subsequent to injection by the formation of LacI-CFP foci (Fernandes et al.,
4 2016, Tzipilevich et al., 2017). Infection of WT cells resulted in foci appearance within 10
5 minutes after infection, while no foci were observed in *sigX* over-expressing cells at the same
6 time point (Fig 4E-4F), indicating a delay in phage DNA penetration into the latter cell
7 population. Consistent with this possibility, a significant decrease in SPP1-mediated plasmid
8 transduction rate into *SigX* producing cells was monitored (Fig EV4B). Thus, we surmise that
9 *sigX* expression interferes with SPP1 irreversible binding and consequently delays phage DNA
10 injection.

11 **The *dlt* operon mediates the *SigX* tolerance response to phage infection**

12 To identify the gene(s) required for *SigX*-mediated phage tolerance, we mutated known genes
13 in the *SigX* regulon (Huang & Helmann, 1998), and tested their impact on the phage protection
14 phenotypes. Out of the mutants tested, only the disruption of *ywbO*, encoding a predicted
15 disulfide oxidoreductase, and that of the *dlt* operon ($\Delta dltA$), largely countered the tolerance to
16 phage infection conferred by *SigX* over-expression (Fig 5A, and Fig EV5A). The *dlt* operon
17 encodes an enzymatic pathway that is known to ligate D-alanine moieties to TA polymers
18 (Perego et al., 1995), the major phage surface attachment components, and was therefore
19 selected for further investigation. Examination of infected $\Delta dltA$ mutant cells harboring
20 inducible *sigX* by fluorescence microscopy substantiated that they were lysed with kinetics
21 similar to that of WT cells in the presence of the inducer (Fig EV5B). Furthermore, deletion of
22 *dltA* restored the capacity of SPP1 to bind irreversibly to the surface of *sigX* over-expressing
23 cells, and consistently increased the level of SPP1 DNA injection into these cells, as detected
24 by transduction assay (Fig 5B-5C). Lastly, deletion of *dltA*, in an otherwise WT background,

1 resulted in enhanced sensitivity to infection at low MOI, whereas over-expression of the *dlt*
2 operon could increase resistance to phages compared to WT (EV5C-EV5D).

3 To substantiate the role of the *dlt* operon in the phage tolerance response, we examined
4 the phenotype of $\Delta dltA$ during plaque generation. $\Delta dltA$ cells exhibited plaques larger than that
5 of the WT, along with prominent deficiency in plaque constriction phase (Fig 5D-5E), similar
6 phenotypes to those observed for the $\Delta sigX$ cells (Fig 2A-2B). Next, we mixed differentially
7 labeled $\Delta dltA$ and WT cells, and followed plaque formation dynamics by time lapse confocal
8 microscopy. While the two populations were evenly distributed at early stages of plaque
9 generation, WT cells were manifestly dominating the plaque rim during constriction (Fig 5F;
10 Appendix Figure S3A), indicating a clear deficiency of the mutant cells in opposing infection.
11 Monitoring DltA expression by following DltA-YFP showed an enrichment of the fusion
12 protein preferentially at the edge of the constricting plaque (Fig 5G; Appendix Figure S3B),
13 supporting a role in mediating this process. In sum, the majority of the phage protection
14 phenotypes conferred by SigX can be assigned to the *dlt* operon, encoding enzymes that
15 modify the TA surface polymers.

16

1 **Discussion**

2 By following the dynamics of plaque formation on lawns of the soil bacterium *B. subtilis*, we
3 discovered that plaque development includes a phase of constriction, typified by bacterial
4 growth into the plaque zone, counteracting plaque expansion. Examination of bacteria located
5 at the plaque rim subsequent to constriction revealed that they are not genetically resistant to
6 phages, but instead elicit a temporary phage tolerance response, activated by the stress-induced
7 RNA polymerase sigma factor σ^X . We further uncovered that the impact of SigX on tolerance
8 is not restricted to plaques, as uninfected bacteria activated *sigX* expression following infection
9 of their neighbors in a co-culture. Furthermore, pre-expression of *sigX* prior to phage addition
10 was found to protect from phage attack. SigX tolerance is mostly attributed to the action of the
11 *dlt* operon, encoding for WTA modifying enzymes, thereby altering the polymer properties.
12 Based on our results, we propose that uninfected bacteria can sense infection of their neighbors,
13 and in turn trigger a tolerance response, modifying their phage attachment surface components
14 to antagonize phage penetration (Fig 6). As such, the cells at the plaque rim form a protective
15 barrier that locally constrains plaque spread, shielding the non-infected population.

16 This scenario resembles the eukaryotic innate immune response, with the hallmark
17 being interferon released by infected cells and received by neighbors to activate an anti-viral
18 response (Isaacs & Lindenmann, 1957, McNab et al., 2015). In addition, endogenous danger
19 signals, such as extracellular ATP and DNA, released by infected eukaryotic cells, stimulate
20 innate immunity (Gallucci & Matzinger, 2001), a program that could be applicable for
21 activating the phage tolerance response. Importantly, damaged-self recognition stimulated by
22 similar factors exists in plants and even in algae and fungi (Heil & Land, 2014). Interestingly,
23 it has been shown that bacteria possess the cyclic GMP-AMP synthase (cGAS)-STING
24 pathway, a central component of the mammalian innate immune system, as part of an anti-
25 phage defense mechanism (Cohen et al., 2019, Morehouse et al., 2020). The observation that

1 *sigX* expression in non-infected bacteria can be stimulated by compartmentally separated
2 infected cells, suggests that the signaling factor is a small molecule, capable of passing thought
3 a small sized pore. Such molecule might determine a threshold level required for robust and
4 efficient activation of the tolerance response seen during advanced stages of plaque
5 development. The effectiveness of tolerance was also MOI-dependent, suggesting that phage
6 to bacteria ratio at the plaque rim decreases eventually to allow a powerful response. It is thus
7 possible that phages exhibiting large burst size are more adapted to antagonize tolerance.

8 Our data indicate that bacteria acquire phage tolerance chiefly by remodeling their cell
9 surface, decorating WTA polymers with D-alanine residues (Brown et al., 2013). D-alanylation
10 of TA polymers is executed by a series of chemical reactions performed by the Dlt enzymes
11 (Ma et al., 2018, Percy & Grundling, 2014, Perego et al., 1995). It has been shown that TA D-
12 alanylation contributes to resistance against cationic antimicrobial peptides and lysozyme
13 (Kingston et al., 2013, Kovacs et al., 2006), presumably due to changes in the cell surface
14 electric charge or increase in peptidoglycan density (Percy & Grundling, 2014, Saar-Dover et
15 al., 2012). D-alanylation of TA was also shown to enhance host cell adhesion and virulence of
16 Gram positive pathogens such as *Staphylococcus aureus* and *B. anthracis* (Percy & Grundling,
17 2014, Simanski et al., 2013). Since TA glycosylation is known to serve as a pervasive phage
18 binding molecule (Habusha et al., 2019, Young, 1967), it is plausible that WTA-D-alanylation
19 masks WTA glycosylated sites, and/or interferes with bacteriophage access to the membrane.
20 Notably, apart from the *dlt* operon, *ywbO* appears to contribute to phage tolerance. Recently,
21 mutations in *ywbO* promoter region were linked to impediment in TA glycosylation, pointing
22 at an additional path through which phage tolerance by surface modulation might be achieved
23 (Tzipilevich & Benfey, 2021).

24 The induction of the phage tolerance response was shown to be mediated by SigX,
25 belonging to the ECF family that monitors cell wall integrity. SigX is recruited to the

1 membrane by its cognate anti-sigma factor and is liberated to the nucleoid in response to
2 envelope stress to transcribe downstream target genes, with one of the most prominent being
3 the *dlt* operon (Cao & Helmann, 2004, Helmann, 2016). A *sigX* mutant strain was shown to be
4 sensitive to heat and oxidative stress, and to be susceptible to cationic antimicrobial peptide
5 (Cao & Helmann, 2004, Huang et al., 1997). Indeed, we found that elevated growth
6 temperature seems to protect bacteria from phage attack in a SigX-dependent manner, hinting
7 that cross activation of ECF enables bacteria to simultaneously resist multiple stress conditions,
8 similarly to SOS response (Gottesman, 2019, Storz, 2016). Still, the nature of the activating
9 signals and how they are transduced to release the membrane-attached SigX, have yet to be
10 elucidated. Since ECFs are widespread among bacteria (Helmann, 2002), it is tempting to
11 assume that, similarly to *B. subtilis*, many species have the capacity to execute such a defense
12 strategy, following infection of nearby bacteria. We postulate that such phage tolerance might
13 expedite the acquisition of permanent phage resistance mutations in nature, similarly to
14 tolerance to antibiotic stress that facilitates emergence of antibiotic resistance mutants (Liu et
15 al., 2020).

16 Bacteria have evolved numerous remarkable phage resistance strategies to counteract
17 infection, including restriction-modification systems, abortive infection, CRISPR-Cas
18 immunity (Labrie et al., 2010, Salmond & Fineran, 2015), and a plethora of recently identified
19 additional exciting systems [e.g. (Cohen et al., 2019, Doron et al., 2018, Gao et al., 2020,
20 Makarova et al., 2011)]. Still, relatively little is known about the dynamics of the activation of
21 these systems within populations. For instance, it is not entirely understood how activation of
22 the various CRISPR-Cas systems is prompted. There is evidence for constitutive activity of
23 *Cas* genes in some bacteria, and for quorum sensing mediated transcription of *Cas* genes in
24 others (Hampton et al., 2020, Patterson et al., 2017). Consistently, proteomic analysis revealed
25 that phage infection elevates Cas production in *Streptococcus thermophilus* (Young et al.,

1 2012). Knowledge concerning population dynamics of other phage defense systems is even
2 more fragmentary. Here we uncovered a general phage tolerance mechanism that provides only
3 temporary protection by phenotypic modulation of the bacterial cell surface. To the best of our
4 knowledge, this is the first detailed characterization of a phage defense system in space and
5 time.

6

1 **Materials and Methods**

2 **Strains and plasmids**

3 *B. subtilis* strains were derivatives of the wild-type PY79 (Youngman et al., 1984). All bacterial
4 strains and phages are listed in Appendix Table S1. Plasmid constructions were performed in
5 *E. coli* DH5 α using standard methods and are listed in Appendix Table S1. All primers used in
6 this study are listed in Appendix Table S2.

7 **General growth conditions**

8 Bacterial cultures were inoculated at OD_{600nm} 0.05 from an overnight culture and growth was
9 carried out at 37°C, unless indicated otherwise, in LB medium supplemented with 5 mM MgCl₂
10 and 0.5 mM MnCl₂ (MB). Fluorescence measurement experiments in plate reader were
11 conducted in CH (10% casein hydrolysate) medium supplemented with 5 mM MgCl₂ and 0.5
12 mM MnCl₂ (Harwood and Cutting, 1990). For induction, all P_{hyper-spank} controlled genes were
13 induced with Isopropyl- β -D-thiogalactopyranoside (IPTG) at concentration of 0.5 mM.

14 **General phage infection and transduction methodologies**

15 Phage lysate was prepared by adding approximately 10⁹ phages to mid-log cells grown in MB
16 until the culture was completely cleared. Next, the lysate was filtered through 0.45 μ m or 0.22
17 μ m Millipore filter. For lysis dynamic experiments, phages were added to mid-log growing
18 cells at the indicated MOI, and OD_{600nm} was monitored. For SigX-induction experiments, cells
19 were grown for 30 min in the absence of inducer. Subsequently, inducer was added and cells
20 were grown for additional 30 min. Phages were added after overall growth of 60 min and
21 OD_{600nm} was followed by Spark 10M (Tecan) multiwell fluorometer set at 37°C with a constant
22 shaking.

1 For transduction experiments, lysates were prepared from a given donor strain as
2 describe above. All lysates for transduction were treated with DNase I (Sigma Aldrich) 200
3 ng/ml for 20 min at RT. Recipient strains were grown to 1 OD_{600nm}, and cells (1 ml) were mixed
4 with 100 μ l of lysate and 9 ml of MB, and incubated at 37°C without shaking for 20 min.
5 Subsequently, cells were centrifuged and spread on selective plates supplemented with 10 mM
6 sodium citrate. For burst size measurement 1:10⁴ phages:bacteria were added to a mid-log
7 culture, 30 minutes later the culture was lysed with chloroform and the number of phages in
8 the culture was measured.

9 **Phage attachment assay**

10 Indicated bacterial strains were grown in a liquid culture to 0.6 OD_{600nm}, and phage adsorption
11 to the cells was measured at 10 min post infection, by titrating the free phages present in the
12 supernatant as previously described (Ellis & Delbruck, 1939). In brief, logarithmic cells were
13 grown in MB at 37°C till 0.8 OD_{600nm}, then 15 mM CaCl₂ and 50 μ g chloramphenicol/ml were
14 added to the medium and cells were incubated for 10 min. Next, cells were infected with phages
15 (10⁷ PFU/ml), and samples (0.5 ml) were collected at 10 min post infection, centrifuged for 1
16 min, and 50 μ l of the supernatant was diluted, plated, and PFU/ml was determined. To measure
17 reversible attachment, 10 min post infection, cells were diluted 100 fold in fresh MB, incubated
18 for 2 min in 37°C and free phages present in the supernatant were plated and PFU/ml was
19 determined.

20 **Plaque size determination**

21 For final plaque size determination, bacteria from mid-log culture were infected with low
22 concentration of phages (10⁻⁶ PFU/ml) and spread over 1.5% MB agar plates at 37°C or 48°C
23 for 20 hrs. Next, plates were photographed and plaque size was determined by measuring the
24 size of random plaques. Image processing was performed using MetaMorph 7.4 software

1 (Molecular Devices). For analyzing plaque growth dynamics on agarose plates, bacteria were
2 infected as describe above, and 1.5% MB agar plates were incubated at 37°C on top of a scanner
3 and covered with a dark paper cover. An automated scanning program (Levin-Reisman et al.,
4 2010) was utilized for time lapse imaging of the plates. Plaque size was determined by
5 measuring the size of random plaques at intervals of 1 hr. Image processing was performed
6 using MetaMorph 7.4 software (Molecular Devices).

7 **Fluorescence microscopy**

8 For fluorescence microscopy, bacterial cells (0.5 ml, OD_{600nm} 0.5) were centrifuged and
9 suspended in 50 µl of MB. For time lapse microscopy, bacteria were placed over 1.5% MB
10 agarose pad and incubated in a temperature controlled chamber at 37°C. Infection experiments
11 were carried out at 5:1 (phages:bacteria) MOI. Samples were photographed using Axio
12 Observer Z1 (Zeiss) or Eclipse Ti microscope (Nikon, Japan), equipped with CoolSnap HQII
13 camera (Photometrics, Roper Scientific, USA). System control and image processing were
14 performed using MetaMorph 7.4 software (Molecular Devices) or NIS Elements AR 4.3
15 (Nikon, Japan).

16 **Live imaging of developing plaques by confocal microscopy**

17 A custom designed construct (Mamou et al., 2016) was used to monitor bacterial plaques by
18 confocal microscopy. Accordingly, a 40 mm metal ring was filled with 1.5% MB agarose and
19 assembled, and the bacterial cells were infected at low MOI (10⁻⁸ PFU/ml) and spotted over
20 the agarose pad. Plaque growth construct was covered with a 35 mm cultFoil membrane
21 (Pecon) to reduce agar dehydration, and incubated in Lab-Tek S1 heating insert (Pecon) placed
22 inside an incubator XL-LSM 710 S1 (Pecon). Initial plaques could be observed under the
23 microscope at t=4 hr. Developing plaques were visualized and photographed by CLSM
24 LSM700 (Zeiss). Cells expressing GFP or YFP were irradiated using 488 nm laser beam, while

1 mCherry expressing cells were irradiated using 555 nm laser beam. For each experiment, both
2 transmitted and reflected light were collected from 6 consecutive Z positions by 10 μ m steps.
3 System control, image processing, and fluorescence quantifications were carried using Zen
4 software version 5.5 (Zeiss).

5 **Fluorescence intensity measurements by a plate reader**

6 For continuous measurements of fluorescence intensity and OD_{600nm}, cells were grown in CH
7 (due to a low background fluorescence of the medium), at 37°C until 0.2-0.5 OD_{600nm}, and
8 infected with SPP1 or Phi29 phage. Fluorescence intensity (AU) and OD_{600nm} were measured
9 by Spark 10M (Tecan) multiwell fluorometer plate reader every 2/2.5 min at 37°C with
10 constant shaking. A twelve-well Transwell Permeable Supports plates with 12 mm diameter
11 inserts was used for the transwell assay. In transwell experiments, sensitive and resistant cells
12 were separated by a 0.4 μ m polycarbonate membrane. The plate was read either at a setting to
13 read the full well or only the center (insert). OD_{600nm} cannot be faithfully read by Spark 10M
14 in transwells due to light distortion. Thus, for transwell experiments, samples were tested for
15 OD_{600nm} in a spectrophotometer.

16 **Statistical analysis**

17 Unless stated otherwise, bar charts and graphs display a mean \pm SD from at least 3 repeats.
18 Quantifications of CPU, PFU, infected cells were done manually. MS Excel was used for all
19 statistical analysis, data processing, and presentation.

20 **Data availability**

21 There are no public datasets associated to the results presented in this manuscript.

22

1 **Acknowledgements**

2 We thank R. Losick (Harvard University, USA), I. Rosenshine and A. Rouvinski (Hebrew
3 University, Israel), and members of the Ben-Yehuda laboratory for valuable discussions. We
4 thank N. Balaban and her lab members (Hebrew University, Israel) for assistance with the
5 automated plaque scanning procedure. We are grateful to P. Tavers (Gif-sur-Yvette, France),
6 J. Helmann (Cornell University, USA) and D. Rudner (Harvard University, USA) for providing
7 strains. Artwork in Figure 3 and Synopsis was prepared using BioRender (Agreement Number
8 II2338U308, CN2368MHCR). This work was supported by the NSF/BSF-United States-Israel
9 Binational Science Foundation (2017672), and the ERC Synergy grant (810186) awarded to S.
10 B-Y.

11

12 **Author contributions**

13 ET and OPF conception and design, acquisition, analysis, interpretation of data, writing and
14 revising the article; BS: acquisition of data, interpretation and analysis of data, revising the
15 article; SBY: conception and design, analysis and interpretation of data, writing and revising
16 the article, supervision and funding.

17

18 **Conflict of interest**

19 The authors declare that they have no conflict of interest.

1 **References**

2 Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. *Methods Mol Biol* 501:
3 161-74

4 Alonso JC, Luder G, Stiege AC, Chai S, Weise F, Trautner TA (1997) The complete nucleotide
5 sequence and functional organization of *Bacillus subtilis* bacteriophage SPP1. *Gene* 204: 201-
6 12

7 Baptista C, Santos MA, Sao-Jose C (2008) Phage SPP1 reversible adsorption to *Bacillus*
8 *subtilis* cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. *J*
9 *Bacteriol* 190: 4989-96

10 Brown S, Santa Maria JP, Jr., Walker S (2013) Wall teichoic acids of gram-positive bacteria.
11 *Annu Rev Microbiol* 67: 313-36

12 Cao M, Helmann JD (2004) The *Bacillus subtilis* extracytoplasmic-function sigmaX factor
13 regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. *J*
14 *Bacteriol* 186: 1136-46

15 Chanishvili N (2012) Phage therapy-history from Twort and d'Herelle through Soviet
16 experience to current approaches. *Adv Virus Res* 83: 3-40

17 Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S,
18 Amitai G, Sorek R (2019) Cyclic GMP-AMP signalling protects bacteria against viral
19 infection. *Nature* 574: 691-695

20 d'Hérelles F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. *Comptes*
21 *Rendus de l'Académie des Sciences de Paris* 165: 373-375

22 Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018)
23 Systematic discovery of antiphage defense systems in the microbial pangenome. *Science* 359

24 Ellis EL, Delbrück M (1939) The growth of bacteriophage. *J Gen Physiol* 22: 365-84

25 Fernandes S, Labarde A, Baptista C, Jakutyte L, Tavares P, Sao-Jose C (2016) A non-invasive
26 method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1
27 DNA entry in *Bacillus subtilis* cells. *Virology* 495: 79-91

28 Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. *Curr Opin*
29 *Immunol* 13: 114-9

30 Gao L, Altae-Tran H, Bohning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf
31 YI, Koonin EV, Zhang F (2020) Diverse enzymatic activities mediate antiviral immunity in
32 prokaryotes. *Science* 369: 1077-1084

33 Gottesman S (2019) Trouble is coming: Signaling pathways that regulate general stress
34 responses in bacteria. *J Biol Chem* 294: 11685-11700

35 Habusha M, Tzipilevich E, Fiyaksel O, Ben-Yehuda S (2019) A mutant bacteriophage evolved
36 to infect resistant bacteria gained a broader host range. *Mol Microbiol* 111: 1463-1475

37 Hampton HG, Watson BNJ, Fineran PC (2020) The arms race between bacteria and their phage
38 foes. *Nature* 577: 327-336

39 Harwood, C. R. Cutting, S. M. Molecular Biological Methods for *Bacillus* (Wiley, Chichester,
40 New York, 1990)

41 Heil M, Land WG (2014) Danger signals - damaged-self recognition across the tree of life.
42 *Front Plant Sci* 5: 578

43 Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. *Adv Microb Physiol*
44 46: 47-110

1 Helmann JD (2016) *Bacillus subtilis* extracytoplasmic function (ECF) sigma factors and
2 defense of the cell envelope. *Curr Opin Microbiol* 30: 122-132

3 Ho TD, Ellermeier CD (2012) Extra cytoplasmic function sigma factor activation. *Curr Opin*
4 *Microbiol* 15: 182-8

5 Huang X, Decatur A, Sorokin A, Helmann JD (1997) The *Bacillus subtilis* sigma(X) protein is
6 an extracytoplasmic function sigma factor contributing to survival at high temperature. *J*
7 *Bacteriol* 179: 2915-21

8 Huang X, Helmann JD (1998) Identification of target promoters for the *Bacillus subtilis* sigma
9 X factor using a consensus-directed search. *J Mol Biol* 279: 165-73

10 Ingmer H, Gerlach D, Wolz C (2019) Temperate phages of *Staphylococcus aureus*. *Microbiol*
11 *Spectr* 7

12 Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. *Proc R Soc Lond B Biol*
13 *Sci* 147: 258-67

14 Jakutyte L, Lurz R, Baptista C, Carballido-Lopez R, Sao-Jose C, Tavares P, Daugelavicius R
15 (2012) First steps of bacteriophage SPP1 entry into *Bacillus subtilis*. *Virology* 422: 425-34

16 Kingston AW, Liao X, Helmann JD (2013) Contributions of the sigma(W) , sigma(M) and
17 sigma(X) regulons to the lantibiotic resistome of *Bacillus subtilis*. *Mol Microbiol* 90: 502-18

18 Kovacs M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Bruckner
19 R (2006) A functional *dlt* operon, encoding proteins required for incorporation of D-alanine in
20 teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides
21 in *Streptococcus pneumoniae*. *J Bacteriol* 188: 5797-805

22 Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. *Nat Rev*
23 *Microbiol* 8: 317-27

24 Levin-Reisman I, Gefen O, Fridman O, Ronin I, Shwa D, Sheftel H, Balaban NQ (2010)
25 Automated imaging with ScanLag reveals previously undetectable bacterial growth
26 phenotypes. *Nature methods* 7: 737-9

27 Lindberg AA (1973) Bacteriophage receptors. *Annu Rev Microbiol* 27: 205-41

28 Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ (2020) Effect of tolerance on the evolution
29 of antibiotic resistance under drug combinations. *Science* 367: 200-204

30 Ma D, Wang Z, Merrikh CN, Lang KS, Lu P, Li X, Merrikh H, Rao Z, Xu W (2018) Crystal
31 structure of a membrane-bound O-acyltransferase. *Nature* 562: 286-290

32 Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal
33 genomes and prediction of novel defense systems. *J Bacteriol* 193: 6039-56

34 Mamou G, Malli Mohan GB, Rouvinski A, Rosenberg A, Ben-Yehuda S (2016) Early
35 Developmental Program Shapes Colony Morphology in Bacteria. *Cell reports* 14: 1850-7

36 McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A (2015) Type I interferons in infectious
37 disease. *Nat Rev Immunol* 15: 87-103

38 Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, Shao S, Sorek R,
39 Kranzusch PJ (2020) STING cyclic dinucleotide sensing originated in bacteria. *Nature* 586:
40 429-433

41 Patterson AG, Yevstigneyeva MS, Fineran PC (2017) Regulation of CRISPR-Cas adaptive
42 immune systems. *Curr Opin Microbiol* 37: 1-7

43 Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive
44 bacteria. *Annu Rev Microbiol* 68: 81-100

1 Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W (1995) Incorporation of
2 D-alanine into lipoteichoic acid and wall teichoic acid in *Bacillus subtilis*. Identification of
3 genes and regulation. *J Biol Chem* 270: 15598-606

4 Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y
5 (2012) D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B
6 *streptococcus* by increasing the cell wall density. *PLoS Pathog* 8: e1002891

7 Salas M (2012) My life with bacteriophage phi29. *J Biol Chem* 287: 44568-79

8 Salmond GP, Fineran PC (2015) A century of the phage: past, present and future. *Nat Rev
9 Microbiol* 13: 777-86

10 Sao-Jose C, Baptista C, Santos MA (2004) *Bacillus subtilis* operon encoding a membrane
11 receptor for bacteriophage SPP1. *J Bacteriol* 186: 8337-46

12 Schachtele CF, Oman RW, Anderson DL (1970) Effect of elevated temperature on
13 deoxyribonucleic acid synthesis in bacteriophage phi-29-infected *Bacillus amyloliquefaciens*.
14 *J Virol* 6: 430-7

15 Simanski M, Glaser R, Koten B, Meyer-Hoffert U, Wanner S, Weidenmaier C, Peschel A,
16 Harder J (2013) *Staphylococcus aureus* subverts cutaneous defense by D-alanylation of
17 teichoic acids. *Exp Dermatol* 22: 294-6

18 Storz G (2016) New perspectives: Insights into oxidative stress from bacterial studies. *Arch
19 Biochem Biophys* 595: 25-7

20 Sumrall ET, Keller AP, Shen Y, Loessner MJ (2020) Structure and function of *Listeria* teichoic
21 acids and their implications. *Mol Microbiol* 113: 627-637

22 Twort FW (1914) An investigation on the nature of ultra-microscopic viruses. *Lancet* 186:
23 1241-1243

24 Tzipilevich E, Benfey PN (2021) Phage-resistant bacteria reveal a role for potassium in root
25 colonization. *mBio* 12: e0140321

26 Tzipilevich E, Habusha M, Ben-Yehuda S (2017) Acquisition of phage sensitivity by bacteria
27 through exchange of phage receptors. *Cell* 168: 186-199 e12

28 Young FE (1967) Requirement of glucosylated teichoic acid for adsorption of phage in *Bacillus
29 subtilis* 168. *Proc Natl Acad Sci U S A* 58: 2377-84

30 Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, Fremaux C, Horvath P,
31 Barrangou R, Verberkmoes NC (2012) Phage-induced expression of CRISPR-associated
32 proteins is revealed by shotgun proteomics in *Streptococcus thermophilus*. *PLoS One* 7: e38077

33 Youngman P, Perkins JB, Losick R (1984) A novel method for the rapid cloning in *Escherichia
34 coli* of *Bacillus subtilis* chromosomal DNA adjacent to Tn917 insertions. *Molecular & general
35 genetics : MGG* 195: 424-33

36

37

1 **Figure legends**

2 **Figure 1. Plaque formation dynamics reveals phases of expansion and constriction**

3 (A) BDR2637 (P_{veg} -*mCherry*) cells were infected with low concentrations (10^{-8} PFU/ml) of
4 SPP1, placed on an agarose pad and plaque formation was followed by time lapse confocal
5 microscopy. Shown are overlay images from mCherry signal (purple) and phase contrast (grey)
6 of the bacterial lawn captured at the indicated time points (hrs). The plaque is seen as a hole
7 formed on the bacterial lawn. Scale bar 150 μ m. Corresponds to Movie EV1.

8 (B) Plaque formation was monitored by automated scanning (Levin-Reisman et al., 2010) on a
9 lawn of infected PY79 (WT) (10^{-6} PFU/ml) cells spread over an MB agar plate. Shown are
10 images captured at the indicated time points (hrs). Scale bar 2 mm. Corresponds to Movie EV2.

11 (C-D) The dynamic of SPP1 (C) and Phi29 (D) plaque formation following PY79 (WT)
12 infection was monitored as described in (B). Shown is the diameter of individual plaques for
13 each phage ($n \geq 12$), with the average highlighted in red.

14

15 **Figure 2. SigX is required for plaque constriction**

16 (A) The indicated strains were infected with SPP1 (10^{-6} PFU/ml), spread over MB plates, and
17 plaque diameter was monitored after 20 hrs of incubation. Shown is average plaque diameter
18 and SD for each strain ($n \geq 54$).

19 (B-C) Plaque formation dynamic of SPP1 (B) and Phi29 (C) was monitored by automated
20 scanning (Levin-Reisman et al., 2010) on a lawn of infected (10^{-6} PFU/ml) PY79 (WT) or ET19
21 ($\Delta sigX$) cells spread over an MB agar plate. Shown are average values and SD from kinetic of
22 random plaques for each strain ($n \geq 7$).

23 (D) PY79 (WT) and ET19 ($\Delta sigX$) cells were infected with SPP1 at either high (phages:bacteria
24 1:1) or low (1:20) MOI, and OD_{600nm} was followed at 2 min intervals. Shown is a representative
25 experiment out of 6 biological repeats, and the average values and SD of 8 technical repeats.

1 (E) BDR2637 (P_{veg} -*mCherry*) (WT, purple) and ET191 (P_{rrnE} -*gfp*, $\Delta sigX$) ($\Delta sigX$, cyan) cells
2 were mixed, infected with low concentrations (10^{-8} PFU/ml) of SPP1, placed on an agarose
3 pad and plaque formation was followed by time lapse confocal microscopy. Shown are overlay
4 images from mCherry (purple) and GFP (cyan) signals of the bacterial lawn captured at the
5 indicated time points (hrs). The plaque is seen as a hole formed on the bacterial lawn. Scale bar
6 100 μ m. Corresponds to Movie EV4.

7 (F) ET27 (P_{sigX} -*gfp*) cells were infected with low concentrations (10^{-8} PFU/ml) of SPP1, placed
8 on an agarose pad, and plaque formation was followed by time lapse confocal microscopy.
9 Shown are fluorescence from GFP (upper panels) and corresponding phase contrast images
10 (lower panels), captured at the indicated time points (hrs). The plaque is seen as a hole formed
11 on the bacterial lawn. Scale bar 100 μ m.

12

13 **Figure 3. SigX is activated in non-infected cells upon infection of their neighbors**

14 (A) Phage sensitive PY79 (WT) cells were mixed with phage resistant BS12 ($\Delta yueB$, P_{sigX} -*gfp*)
15 cells and the mixture was infected with SPP1, as illustrated. Infection was conducted at 2:1
16 (phages:bacteria) MOI and fluorescence intensity from P_{sigX} -*gfp* (AU) was followed at 2.5 min
17 intervals. Uninfected mixed population served as a control and its fluorescence was subtracted
18 from the overall GFP signal of the infected culture. Shown is a representative experiment out
19 of 3 biological repeats, and the average values and SD of 8 technical repeats.

20 (B) Phage sensitive PY79 (WT) cells were infected with SPP1 at 2:1 (phages:bacteria) MOI,
21 and placed in the outer ring of a transwell, as illustrated. Phage resistant BS12 ($\Delta yueB$, P_{sigX} -
22 *gfp*) were placed in the inner ring. Fluorescence intensity from P_{sigX} -*gfp* (AU) of the inner
23 compartment was followed at 2.5 min intervals. Uninfected population served as a control, and
24 its fluorescence was subtracted from the overall GFP signal of the infected culture. Shown is a

1 representative experiment out of 3 biological repeats, and the average values and SD of 8
2 technical repeats.

3 **(C)** ET26 ($P_{sigX}\text{-}sigX\text{-}gfp$) cells were visualized by fluorescence microscopy. Shown are signal
4 from SigX-GFP (cyan) (left panel), and an overlay image of phase contrast (grey) and signal
5 from SigX-GFP (cyan) (right panel). Scale bar 1 μm .

6 **(D)** BDR2637 ($P_{veg}\text{-}mCherry$) (WT, purple) and ET261 ($\Delta yueB$, $P_{sigX}\text{-}sigX\text{-}gfp$) (cyan) cells
7 were mixed, infected with SPP1 at 5:1 (phages:bacteria) MOI, placed on an agarose pad and
8 followed by time lapse fluorescence microscopy. Shown are overlay images from mCherry
9 (purple), SigX-GFP (cyan), and phase contrast (grey), captured at the indicated time points post
10 infection. Scale bar 1 μm .

11

12 **Figure 4. SigX expression confers phage tolerance**

13 **(A)** PY79 (WT) and ET28 ($P_{IPTG}\text{-}sigX$) cells were infected with SPP1 or Phi29 (t=60 min) at
14 1:20 (phages:bacteria) MOI, and OD_{600nm} was followed at 2 min intervals. IPTG was added 30
15 min before infection (t=30 min). Shown is a representative experiment out of 3 biological
16 repeats, and the average values and SD of 4 technical repeats.

17 **(B)** ET29 ($P_{veg}\text{-}mCherry$, $P_{IPTG}\text{-}sigX$) (purple) cells were grown in the presence of IPTG and
18 mixed with PY79 (WT) cells. The mixture was infected with SPP1-_{lysin-YFP} 5:1 (phages:bacteria)
19 MOI, placed on an IPTG-containing agarose pad, and followed by time lapse fluorescence
20 microscopy. Shown are overlay images of phase contrast (grey), signal from mCherry labeled
21 cells (purple), and signal from Lysin-SPP1-YFP (cyan), captured at the indicated time points post
22 infection (upper panels). Corresponding signal from Lysin-SPP1-YFP (cyan) is shown separately
23 (lower panels). Arrows highlight the delayed infection of ET29 cells. Scale bar 1 μm .

24 **(C)** Quantification of the experiment described in (B). Shown is the percentage of phage
25 infected PY79 (WT) and ET29 ($P_{veg}\text{-}mCherry$, $P_{IPTG}\text{-}sigX$) cells at the indicated time points,

1 scored by the Lysin-SPP1-YFP signal, with average values and SD (n ≥ 200 cells for each time
2 point). Of note, the majority of WT cells were lysed at t=75 min post infection.

3 (D) PY79 (WT) and ET28 (P_{IPTG}-*sigX*) cells, grown in the presence or absence of IPTG, were
4 infected with SPP1 (1:1 MOI) for 10 min. Next, phage adsorption was monitored before and
5 after cell dilution (x100 fold). Percentage of phage adsorption was calculated as follows: (P₀-
6 P₁)x100/P₀, where P₀ is the initial phage input in the lysate (PFU/ml), and P₁ is the titer of free
7 phages (PFU/ml) 10 min after infection. Shown are average values and SD of a representative
8 experiment out of 3 independent experiments.

9 (E) OF83 (P_{pen}-*lacI*₁₁-*cfp*) (WT) and ET40 (P_{pen}-*lacI*₁₁-*cfp*, P_{IPTG}-*sigX*) cells, grown in the
10 presence or absence of IPTG, were infected with SPP1-_{delX110lacO64} at 5:1 (phages:bacteria)
11 MOI. The formation of LacI-CFP foci on phage DNA was monitored 10 min post infection.
12 Non-infected OF83 cells were used for comparison. Shown are overlay images of phase
13 contrast (grey) and signal from LacI-CFP (cyan). Scale bar 1 μm.

14 (F) Quantification of the experiment described in (E). Shown is the percentage of LacI-CFP
15 foci 10 min post infection of OF83 and ET40 cells by SPP1, with average values and SD (n ≥
16 850 cells for each population).

17

18 **Figure 5. The *dlt* operon mediates the SigX-induced phage tolerance response**

19 (A) ET28 (P_{IPTG}-*sigX*) and ET42 (*ΔdltA*, P_{IPTG}-*sigX*) cells, grown in the presence or absence of
20 IPTG, were infected with SPP1 at 1:20 (phages:bacteria) MOI, and OD_{600nm} was followed at 2
21 min intervals. Shown is a representative experiment out of 6 biological repeats, with the
22 average values and SD of 8 technical repeats.

23 (B) PY79 (WT) and ET42 (*ΔdltA*, P_{IPTG}-*sigX*) cells, grown in the presence of IPTG, were
24 infected with SPP1 (1:1 MOI) for 10 min. Next, phage adsorption was monitored before and
25 after cell dilution (x100 fold). Percentage of phage adsorption was calculated as follows: (P₀-

1 $P_1 \times 100/P_0$, where P_0 is the initial phage input in the lysate (PFU/ml), and P_1 is the titer of free
2 phages (PFU/ml) 10 min after infection. Shown are average values and SD of 5 biological
3 repeats.

4 (C) PY79 (WT), ET28 ($P_{IPTG}\text{-}sigX$), and ET42 ($\Delta dltA$, $P_{IPTG}\text{-}sigX$), grown in the presence of
5 IPTG, were transduced with SPP1-pBT163 lysate, and the number of transductants was
6 monitored by plating the cells on selective plates. Transduction unit (TRU) was calculated as
7 the number of transductant colonies /total colony forming unit (CFU). Shown are average
8 values and SD of 3 biological repeats.

9 (D) PY79 (WT) and ET41 ($\Delta dltA$) cells were infected with SPP1 (10^{-6} PFU/ml), spred over an
10 MB agar plate, and plaque diameter was monitored after 20 hrs of incubation. Shown is plaque
11 diameter distributions for each strain ($n \geq 40$).

12 (E) Plaque formation dynamic of SPP1 was monitored by automated scanning (Levin-Reisman
13 et al., 2010) on a lawn of infected (10^{-6} PFU/ml) PY79 (WT) or ET41 ($\Delta dltA$) cells grown on
14 an MB agar plate. Shown are average values and SD from kinetics random plaques for each
15 strain ($n \geq 10$).

16 (F) AR16 ($P_{rrnE}\text{-}gfp$) (WT, cyan) and ET411 ($P_{veg}\text{-}mCherry$, $\Delta dltA$) ($\Delta dltA$, purple) cells were
17 mixed, infected with low concentrations (10^{-8} PFU/ml) of SPP1, placed on an agarose pad, and
18 plaque formation was followed by time lapse confocal microscopy. Shown are overlay images
19 from GFP (cyan) and mCherry (purple) signals of the bacterial lawn captured at the indicated
20 time points (hrs). The plaque is seen as a hole formed on the bacterial lawn. Scale bar 150 μ m.

21 (G) ET43 ($dltA\text{-}yfp$) cells were infected with low concentrations (10^{-8} PFU/ml) of SPP1, placed
22 on an agarose pad, and plaque formation was followed by time lapse confocal microscopy.
23 Shown are fluoresce from DltA-YFP signal (upper panels) and corresponding phase contrast
24 images (lower panels), captured at the indicated time points (hrs). The plaque is seen as a hole
25 formed on the bacterial lawn. Scale bar 100 μ m.

1

2 **Figure 6. A model for eliciting phage tolerance response by uninfected bacteria**

3 Upon phage infection, bacteria (dashed-line cells) generate a yet unidentified "danger signal"
4 (red circles) that is received by uninfected neighboring cells. In turn, the latter cells activate
5 *SigX* that induces the transcription of the *dlt* operon. The produced *Dlt* enzymes modulate the
6 phage receptor WTA polymers to reduce phage binding, providing temporary protection
7 against phage attack and limiting phage spread.

8

1 **EV Figure Legends**

2 **Figure EV1. Evidence for the presence of phages at the plaque periphery during**
3 **constriction**

4 (A) PY79 (WT) cells were infected with low concentrations (10^{-8} PFU/ml) of SPP1-*lysin-yfp*,
5 placed on an agarose pad and plaque formation was followed by time lapse confocal
6 microscopy. Shown are overlay images of phase contrast (grey) and signal from Lysin-SPP1-
7 YFP (cyan) captured at the indicated time points (hrs) post infection (left panels).
8 Corresponding signal from Lysin-SPP1-YFP (cyan) is shown separately (right panels). Scale
9 bars 50 μ m. Corresponds to Movie EV3.

10 (B) Quantification of the SPP1-*lysin-yfp* fluorescence intensity (AU) at the indicated time points.
11 Fluorescence from Z sections that include the plaque region and flanking area was measured.
12 Corresponds to EV1A.

13 (C) Quantification of the diameter of the YFP fluorescence (AU) ring, derived from SPP1-
14 *lysin-yfp*. Corresponds to EV1A.

15 (D) Screening for phage resistant bacteria at the plaque rim. PY79 (WT) cells were infected
16 with SPP1 (MOI 10^{-6}) and plated for plaque formation. At t=18 hrs, similar numbers of bacteria
17 were collected from 30 "non-plaque" and 30 "plaque rim" regions, and bacterial smears were
18 plated over plates with (10^{-4} PFU/ml) or without phages. No phage resistant colonies were
19 detected in both populations.

20

21 **Figure EV2. $\Delta sigX$ cells are excluded from the plaque rim during constriction**

22 (A) BDR2637 ($P_{veg}-mCherry$) (WT) (purple) cells were mixed with AR16 ($P_{rrnE}-gfp$) (WT)
23 (cyan) (1) or with ET191 ($\Delta sigX, P_{rrnE}-gfp$) (cyan) (2-5) cells. The mixtures were infected with
24 low concentrations (10^{-8} PFU/ml) of SPP1, placed on an agarose pad and plaque formation was
25 followed by time lapse confocal microscopy. Shown are overlay images of mCherry (purple)

1 and GFP (cyan) signals captured 16 hrs post infection. (1-3) show plaque regions whereas (4-
2 5) show regions remote from any visible plaque site. Scale bar 100 μ m.

3 **(B)** Quantification of images 1, 3 and 4 presented in EV2A. Fluorescence intensity (AU) of the
4 plaques formed by phages infecting the corresponding cells are shown. Fluorescence from Z
5 sections that include the plaque region and flanking area or control areas was measured.

6

7 **Figure EV3: Monitoring SigX activation during phage infection**

8 **(A)** PY79 (WT) and ET19 (Δ sigX) cells were infected with SPP1 or Phi29 (10^{-6} PFU/ml),
9 spread over MB agar plates, and incubated at either 37°C or 48°C. Plaque diameter was
10 monitored after 20 hrs of incubation ($n \geq 50$). Shown are average values and SD of 3
11 independent repeats.

12 **(B)** PY79 and ET19 were grown in liquid LB medium at 48°C and OD_{600nm} monitored. Shown
13 are average values and SD of 3 biological repeats.

14 **(C)** Corresponds to the experiment presented in Figure 3A. Phage sensitive PY79 (WT) cells
15 were mixed with phage resistant BS12 (Δ yueB, P_{sigX-gfp}) cells and the mixture was infected
16 with SPP1 at 2:1 (phages:bacteria) MOI, and OD_{600nm} was followed at 2.5 min intervals.
17 Uninfected mixed population served as a control (-SPP1). Shown is a representative experiment
18 out of 3 biological repeats, and the average values and SD of $n \geq 3$ technical repeats.

19 **(D)** BS12 (P_{sigX-gfp}, Δ yueB) cells were infected with SPP1 at 2:1 (phages:bacteria) MOI and
20 fluorescence intensity from P_{sigX-gfp} (AU) was followed at 2.5 min intervals. Uninfected BS4
21 (P_{sigX-gfp}) cells served as a control. Shown is a representative experiment out of 3 biological
22 repeats, and the average values and SD of 3 technical repeats.

23 **(E)** ET26 (P_{sigX-sigX-gfp}) cells were infected with SPP1 at 5:1 (phages:bacteria) MOI, placed
24 on an agarose pad and followed by time lapse fluorescence microscopy. Shown are signal from

1 SigX-GFP (upper panels), and corresponding phase contrast images (lower panels), captured
2 at the indicated time points post infection. Scale bar 1 μ m.

3

4 **Figure EV4. SigX over-expression interferes with phage infection**

5 (A) ET9 ($P_{xyt}-gfp-gp8-Phi29$) (WT) and ET44 ($P_{veg}-mCherry$, $P_{IPTG}-sigX$, $P_{xyt}-gfp-gp8-Phi29$)
6 ($P_{IPTG}-sigX$, purple) cells were grown in the presence of IPTG and xylose, mixed, and infected
7 with Phi29 at 5:1 (phages:bacteria) MOI. The mixture was placed on an IPTG and xylose-
8 containing agarose pad and followed by time lapse fluorescence microscopy. Gp8- $Phi29$ is the
9 major Phi29 capsid protein that localizes into discrete foci during Phi29 infection (Tzipilevich
10 et al., 2017). Shown are overlay images of phase contrast (grey) and signal from mCherry
11 (purple) (upper panels), and signal from GFP-Gp8- $Phi29$ (cyan) (lower panels), captured at the
12 indicated time points. Arrows highlight GFP-Gp8- $Phi29$ foci appearance in ET9 cells. Scale bar
13 1 μ m.

14 (B) PY79 (WT) and ET28 ($P_{IPTG}-sigX$), grown in the presence or absence of IPTG, were
15 transduced with SPP1-pBT163 lysate, and the number of transductants was monitored by
16 plating the cells on corresponding selective plates. Transduction unit (TRU) was calculated as
17 the number of transductant colonies /total CFU. Shown are average values and SD of 3
18 biological replicates.

19

20 **Figure EV5. SigX impact on phage tolerance is Dlt-mediated**

21 (A) Bacterial strains harboring $P_{IPTG}-sigX$ as well as the indicated gene deletions were grown
22 in the presence of IPTG. At t=60 min, cells were infected with SPP1 at low (phages:bacteria
23 1:20) MOI, and OD_{600nm} was followed at 2 min intervals. PY79 (WT) was infected in parallel
24 for comparison. Knockout of $ywbO$ and the dlt operon ($\Delta dltA$) largely abolished the tolerance

1 to phage infection conferred by SigX over-expression. Shown is a representative experiment
2 out of 3 independent biological repeats, with average values and SD of 3 technical repeats.

3 **(B)** ET42 ($\Delta dltA$, $P_{IPTG}\text{-}sigX$) cells were grown in the presence of IPTG and mixed with
4 BDR2637 ($P_{\text{veg}}\text{-}mCherry$) (WT, purple) cells. The mixture was infected with SPP1- $lysin\text{-}yfp$ at
5 5:1 (phages:bacteria) MOI, placed on an IPTG-containing agarose pad, and followed by time
6 lapse fluorescence microscopy. Shown are overlay images of phase contrast (grey) and signal
7 from mCherry labeled cells (purple) (upper panels), and the corresponding signal from Lysin-
8 SPP1-YFP (green) (lower panels), captured at the indicated time points. Yellow arrows denote
9 infected WT cells, whereas white arrows highlight infected ET42 cells that lysed rapidly. Scale
10 bar 1 μm .

11 **(C)** PY79 (WT), ET41 ($\Delta dltA$) and ET72 ($P_{\text{xyl}}\text{-}dltABCD$) cells, grown with or without xylose
12 as indicated, were infected with SPP1 at low (1:20) MOI, and $\text{OD}_{600\text{nm}}$ was followed at 2 min
13 intervals. Shown is a representative experiment out of 2 biological repeats, and the average
14 values and SD of 4 technical repeats.

15 **(D)** PY79 (WT) and ET41 ($\Delta dltA$) cells were grown in LB liquid medium and $\text{OD}_{600\text{nm}}$ was
16 followed. Shown are average values and SD of 3 biological repeats.

17

1
2