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Abstract. Robust (fuzzy) extractors are very useful for, e.g., authen-
ticated key exchange from a shared weak secret and remote biomet-
ric authentication against active adversaries. They enable two parties
to extract the same uniform randomness with a “helper” string. More
importantly, they have an authentication mechanism built in that tam-
pering of the “helper” string will be detected. Unfortunately, as shown by
Dodis and Wichs, in the information-theoretic setting, a robust extrac-
tor for an (n, k)-source requires k > n/2, which is in sharp contrast with
randomness extractors which only require k = ω(log n). Existing works
either rely on random oracles or introduce CRS and work only for CRS-
independent sources (even in the computational setting).

In this work, we give a systematic study about robust (fuzzy) extrac-
tors for general CRS dependent sources. We show in the information-
theoretic setting, the same entropy lower bound holds even in the CRS
model; we then show we can have robust extractors in the computa-
tional setting for general CRS-dependent source that is only with mini-
mal entropy. We further extend our construction to robust fuzzy extrac-
tors. Along the way, we propose a new primitive called κ-MAC, which is
unforgeable with a weak key and hides all partial information about the
key (both against auxiliary input); it may be of independent interests.

1 Introduction

Randomness extractors are well-studied tools that enable one to extract uniform
randomness (usually with the help of a short random seed) from a weak random
source with sufficient entropy. Robust (fuzzy) extractors, which are randomness
extractors that can be against an active attacker, are very useful in the settings
of authenticated key exchange (AKE) from shared weak secrets and remote
biometric authentication. Sometimes, a one-message AKE protocol from weak
secrets is directly known as a robust extractor (for close secrets, a robust fuzzy
extractor) [4,7,9,10,19,22]. Informally, a robust extractor consists of a gener-
ation algorithm Gen producing a nearly-uniform string R along with a public
helper string P (message sent in public) from a source W , and a reproduction
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algorithm Rep recovering R from P and W . Besides the normal requirement as
a randomness extractor that the extracted R should be uniform, the robustness
ensures that any manipulation on P by active attackers will be detected. Fur-
thermore, for composition with other applications that will use the extracted
randomness, stronger robustness (called post-application robustness) is usually
required, by allowing adversaries to have R directly, which ensures the security
even after adversaries learning information about R from applications using R.

Robust extractors turn out to be expensive. It is known that information-
theoretic robust extractors require the (min-)entropy k of the source W ∈ {0, 1}n

to be larger than n/2 [10,12], which is in contrast with regular randomness
extractors that only require a minimal entropy ω(log n) from the source. Natu-
rally, leveraging a random oracle as a “super” randomness extractor could cir-
cumvent this entropy lower bound. Indeed, one can directly hash a source (with
a minimal entropy like ω(log n)) for this purpose. Moreover, one can also trans-
form a fuzzy extractor [3,11] into a robust fuzzy extractor [4]. However, it is
always desirable to see whether we can remove this heuristic assumption [6],
particularly in the setting of randomness extraction.

The other approach uses a common reference string (CRS), which could be
generated by a trusted third party once and for all. It enables us to transform a
strong extractor into a robust extractor by using the CRS as the seed. Clearly,
this approach will not require more entropy from the source than the underlying
extractor. It also can be extended to the fuzzy setting [7,19,20,22]. However, as
the seed has to be independent of the source, this approach so far only works
for CRS-independent sources.

In many cases, sources could be dependent on the CRS. For example, for
sources generated from devices such as PUFs, adversaries might manufacture the
devices after seeing the CRS and insert some CRS-dependent backdoor into the
device to gain advantages. More seriously, for all sources, given a CRS-dependent
leakage (which is possible as the leakage function is adversarially chosen after
seeing the CRS), the distribution of the remained secret will be dependent on
the CRS as well. We are interested in the following natural open question:

Can we have a robust (fuzzy) extractor that works for general
CRS-dependent sources with minimal min-entropy (ω(log n))

without relying on an RO?1

Our Results. We systematically investigate this question, in both computa-
tional and information-theoretic settings, for both non-fuzzy and fuzzy cases.
All related results are summarized in Table 1.

1 For the non-fuzzy case, Dodis et al. [9] presented a partial solution in the computa-
tional setting. However, their construction only works for a very special source: the
sample consists of (w, c) where c is a ciphertext that probabilistically encrypts 0s
under w; they further require the source to have any linear fraction of min-entropy.
In comparison, we are aiming for general sources that only have minimal super log-
arithmic entropy. For the fuzzy case, there is no feasibility result at all.
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Table 1. Comparison between known robust (fuzzy) extractors. “Low Entropy-Rate?”
asks whether the scheme works for (n, k)-sources with k = ω(log n); “General Sources?”
asks whether the scheme works for sources without other requirements beyond that on
(n, k) (so CRS-independent ones are all not general). “Naive-RO” denotes the trivial
construction that extracts randomness H(w) using a random oracle H; “Naive-CRS”
denotes a strong extractor using the CRS as the seed.

Fuzzy? Schemes Model CRS-dependent? IT/Computational? Low Entropy Rate? General Sources?

Non Naive-RO RO – Computational
√ √

[10] Plain – IT × √

Naive-CRS CRS × IT
√ ×

[9] CRS
√

Computational × ×
Ours (Sect. 5) CRS

√
Computational

√ √

Fuzzy [4] RO – Computational
√ √

[10,16] Plain – IT × √

[7] CRS × IT
√ ×

[19,20,22] CRS × Computational
√ ×

Ours (Sect. 6) CRS
√

Computational
√ √

Lower-Bound in the Information-Theoretic Setting. We first give a negative
answer in the information-theoretic setting by proving that the lower bound
for plain-model constructions [12] also holds in CRS-dependent constructions.
Namely, if there is a CRS-model information-theoretically-secure (IT-secure) pre-
application robust extractor working for every source W ∈ {0, 1}n that has min-
entropy greater than k even conditioned on the CRS (we refer such a source
an (n, k)-source), it must be that k > n/2. This new lower bound justifies the
necessity of the CRS-independent requirement in existing CRS-model IT-secure
robust (fuzzy) extractors [7].

A Generic Construction of Computational CRS-Model Robust Extractors. We
then consider circumventing our new lower bound in the computational setting.
We present a generic construction of CRS-dependent post-application robust
extractors and thus firmly confirm its existence. This construction is built upon
a conventional randomness extractor and a novel message authentication code
(MAC) termed by key-private auxiliary-input MAC (κ-MAC for short) for which
we give efficient constructions from well-studied assumptions. Our construction
works for any efficiently samplable sources that have sufficient min-entropy (con-
ditional on CRS) just to admit a conventional randomness extractor.

An Extended Construction for Robust Fuzzy Extractors. We further extend our
solution and construct a computational CRS-dependent robust fuzzy extractor
by using a conventional randomness extractor, a secure sketch, and a stronger κ-
MAC that can work in the fuzzy setting. Here, a q-secure sketch is a tool allowing
one to convert a weak secret W ′ to a q-close one W with the help of a small
amount of information about W , which is the core of many fuzzy extractors and
has IT-secure instantiations.

For achieving error tolerance t, (namely, two close secrets W and W ′ whose
distance is within t), our construction requires the source to support a 2t-secure
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sketch2. This requirement indeed matches the requirement made by many exist-
ing CRS-model robust fuzzy extractors [19,20], while our construction is the first
one working for CRS-dependent sources.

Our Techniques. We give a technical overview as follows.

Proving Lower-Bounds for CRS-Model IT-Secure Robust Extractor. Our main
technique for the generalized lower bound is to show that a CRS-model IT-secure
robust extractor implies a plain-model IT-secure “authentication scheme”, which
was the main tool for showing the lower bound of entropy rate [12].

Note that a CRS-model robust extractor for all (n, k)-sources trivially implies
a CRS-model “authentication scheme” {Auth,Vrfy}: Auth runs the generation
algorithm Gen and outputs the helper string P as an “authentication tag” ς; Vrfy
runs Rep on input P and outputs 1 unless Rep fails. For any (n, k)-source W
and any unbounded adversary A, the scheme is correct and unforgeable w.r.t. a
randomly sampled crs according to the CRS distribution CRS. To show a CRS-
model “authentication scheme” gives a plain model one: we prove that there
exist at least one concrete CRS string crs∗ such that it will enable “correct”
authentication and “unforgeability” for all CRS-dependent sources.

For unforgeability, assume that the advantage of any adversary forging a tag
in the CRS-model scheme is bounded by δ. First, we show that, for each source
W , any adversary A, and any constants c0, c1 ∈ (0, 1), there will be a good set
SW,A with weight at least c0 (namely, Pr[CRS ∈ SW,A] ≥ c0) such that for every
crs ∈ SW,A, the advantage of A forging a valid tag for W is bounded by δ/c0.

Note that the above discussions give a “locally good” set for each W , but we
need a “globally good” set of CRSs for all sources and all adversaries. For any A,
we show that, ̂SA, the intersection of {SW,A} for all sources W , is with weight
at least c0; for every crs ∈ ̂SA, A’s advantage is bounded by δ/c0. We proceed
with proof by contradiction: if not, its complement ̂SC

A will have the weight
of at least (1 − c0). By definition, for every crs(i) ∈ ̂SC

A , there is one source
W (whose conditional distribution is W

(i)
crs) s.t. A has advantage greater than

δ/c0. We can define a “new” (n, k)-source W ∗ = {W |crs} where W |crs(i) = W
(i)
crs

if crsi ∈ ̂SC
A and uniform otherwise. For such W ∗ and A, there is no good

SW ∗,A with weight greater than c0, which contradicts our previous argument.
Finally, we can prove

⋂

A ̂SA is globally good, as otherwise, we can “construct”
an adversary A∗ contradicting the existence of ̂SA∗ .

By similar arguments, we can show there is a globally good CRS set ˜S for
correctness as well. Then by adequately choosing c0 and c1, the sum weight of
̂S and ˜S can be greater than 1, thus there exists a crs∗ which is globally good
for both correctness and unforgeability. Hardcoded with this string crs∗, the
CRS-model authentication scheme gives a plain-model authentication scheme.

2 Note that secure sketches achieving t error tolerance are also subject to some entropy-
rate lower-bounds [14]. However, for almost all error-rate t/n (except a small range),
the bound is notably smaller than 1/2.
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Adding Post-application Robustness to Randomness Extractor for “free”. We
then turn to computational setting. In a conventional strong extractor Ext (which
converts a weak secret w into a uniform r with the help of a uniform seed s), we
may view the seed as the “helper string”. To make it robust, we could let the
“helper string” additionally include a MAC tag for the seed such that adversaries
cannot malleate it without being detected. One might want to use r as the key,
but the verifier will not have r until receiving s, which leads to circularity. We
consider taking w as the MAC key directly.

We can see that a normal MAC will be insufficient. On the one hand, the
secret w is non-uniform, especially when we consider post-application robustness,
the randomness r and the seed s together give non-trivial information about w
and will be leaked to adversaries. On the other hand, the authentication tag
itself may contain information about w, which in turn affects the quality of
randomness extraction.

We, therefore, introduce a new MAC called κ-MAC. Besides unforgeability,
it satisfies key privacy, that is, adversaries cannot learn anything new about the
key from an authentication tag. Thus, the authentication tag will not affect the
randomness extraction (in the computational setting). Moreover, both unforge-
ability and key privacy should hold even when adversaries have arbitrary admis-
sible auxiliary information about the secret, making this primitive co-exist with
(r, s). We define κ-MAC in the CRS model and allow the distribution of secrets
to be arbitrarily dependent on the CRS, as long as it is efficiently samplable and
has sufficient min-entropy (conditioned on the CRS). We remark that a one-time
κ-MAC suffices for constructing robust extractors.

κ-MAC from sLRH Relation. It is natural to view κ-MAC as a special leakage-
resilient (more precisely, auxiliary-input secure) MAC; then upgrade it to add
key privacy. The known approach to auxiliary-input MAC is using the auxiliary-
input signature in the symmetric setting by taking both verification key vk and
signing key sk as the MAC key k. But in κ-MAC, k is just a non-uniform string
sampled from the source, which may not have a structure like (vk, sk); we have
to deal with it carefully.

We revisit Katz-Vaikuntanathan signature [17] that is shown to be auxiliary-
input secure [13]. On rough terms, they used a true-simulation-extractable NIZK
(tSE-NIZK) [8] to prove the knowledge of a witness k∗ w.r.t. a statement y
(contained in the verification key), such that (k∗, y) satisfy a leakage-resilient
hard (LRH) relation. In an LRH relation, for honest generated (y, k), and given
y and leakage about k, it is infeasible to find a witness of y. If there is a successful
forgery, we can extract k∗ for y (by tSE-NIZK), which contradicts the LRH
relation.

For our κ-MAC, we take the signing key sk as the authentication key k,
but vk cannot be posted on a trusted bulletin board, as in signatures, or be in
k as the source might not be structured. We address this challenge as follows.
First, there is a part of vk (denoted by pp) that can be generated without k
and reused across users, and we put it in the CRS. For the other part (denoted
by yk), while adversaries can manipulate it, we strengthen the LRH relation
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to ensure this manipulation will not give advantages. Specifically, we define the
strengthened LRH relation (sLRH relation): given honestly generated (pp, yk)
along with leakage about k, adversaries cannot find a (yk′, k′) such that both
(pp, yk′, k′) and (pp, yk′, k) satisfy the sLRH relation. This strengthening is suffi-
cient, since using tSE-NIZK to prove knowledge of k w.r.t. (pp, yk) and attaching
yk (and the proof) to the authentication tag could give an auxiliary-input MAC
from weak secrets. Here, the verifier algorithm checks whether (pp, yk′, k) satis-
fies this relation and whether π is valid, and a forgery violates either the sLRH
relation or tSE-NIZK.

For key privacy, we need yk to hide partial information about k, i.e., one can
simulate the yk distribution without k. Accordingly, we formulate the privacy of
generators for a sLRH relation. With a sLRH relation and its generator satisfying
privacy (called a private generator), we have a κ-MAC construction in this way.

Constructing sLRH Relation from DPKE+NIZK. The privacy of generator
indeed prevents adversaries from finding k from (pp, yk) and the leakage. If
it further has a kind of “collision-resistance”, namely, even when k is given, it
is infeasible to find a distinct k′ along with yk′ such that both (pp, yk′, k) and
(pp, yk′, k′) belong to RLR, RLR with a private generator will be a sLRH relation.
Specifically, consider an adversary that outputs (yk′, k′) and breaks the sLRH
relation; if k = k′, it contradicts the privacy of generator; otherwise, it violates
this “collision-resistance”.

We use an auxiliary-input-secure deterministic encryption scheme to instan-
tiate an NP relation Rde with a private generator. Specifically, (pk, c,m) ∈ Rde iff
c = DEnc(pk,m). From the security of DPKE, (pk, c) could hide partial informa-
tion about m. For handling all hard-to-invert auxiliary information, the DPKE
scheme from exponentially hard DDH assumption [24] will be the only choice.

Note that pk has to be a part of yk (not pp) since DPKE only works
for message distributions independent of pk, and we need work for CRS-
dependent sources. Now, the adversary can replace pk with a “bad” pk′ such
that (pk′, c′ = DEnc(pk′,m)) cannot uniquely determine the message m; so this
relation (together with its private generator) is not a sLRH relation. To get
around this obstacle, we let yk include a NIZK proof π (besides (pk, c)) demon-
strating that pk defines an injection DEnc(pk, ·). Though NIZK needs a CRS as
well, it is secure even when statements and witnesses are dependent on the CRS.

Extending to the Fuzzy Case. Finally, we extend our solutions to the fuzzy case.
The starting point is using κ-MAC to authenticate the helper string of a fuzzy
extractor. We take the standard secure-sketch-based fuzzy extractor as a building
block, in which one can recover the secret w using his secret w′ first.

The κ-MAC we just defined will be insufficient for the fuzzy case. Adversaries
may manipulate the helper string, such that one recovers another secret w′′

(which is t-close to w′) that a forged tag can be verified under w′′. We therefore
need κ-MAC to satisfy fuzzy unforgeability, that is, given an authentication tag
from w, adversaries cannot forge an authentication tag being accepted by any
string close to w. Note that the distance between w′′ and w is bounded by 2t,
the fuzzy unforgeability should prevent from a forgery w.r.t. any 2t-close secret.
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To construct a fuzzy unforgeable κ-MAC, we first introduce a fuzzy version
of sLRH relation. More specifically, for a 2t-fuzzy sLRH relation, it is infeasible
to find (yk′, k′) to “frame” any secret k∗ which is 2t-close to k. It is easy to
verify the according κ-MAC satisfies 2t-fuzzy unforgeability.

Interestingly, we do not need other tools to construct a fuzzy sLRH relation.
Our construction of sLRH relation is fuzzy already. Particularly, if a sLRH rela-
tion is “collision-resistant”, the adversary can “frame” some k′′ only when she
exactly finds k′′. It remains to argue that, given (pp, yk) from a private genera-
tor on input k and the leakage about k, can adversaries find a secret k′′ that is
2t-close to k?

This question seems straightforward at first glance but turns out to need
some care. Note that the privacy of generator cannot ensure that (pp, yk) hides
all partial information about k, as (pp, yk) itself must be non-trivial about k.
A safe way to check whether a value can be recovered from (pp, yk) is to see
whether this value is useful for distinguishing yk and ̂yk; anything can be used
to distinguish cannot be recovered. For small t (say, logarithmic in the security
parameter), one knowing k′′ ∈ B2t(k) can guess the original k with a non-
negligible probability, and then she can use k to distinguish. The situation gets
complicated when t is large and B2t(k) has exponentially many points. In this
case, one cannot naively guess k according to k′′. We overcome this challenge by
observing the task of recovering k from k′′ can be done with the help of 2t-secure
sketch. More specifically, assume an adversary can recover k′′ from (pp, yk).
Then, the distinguisher specifies the leakage as a 2t-secure sketch, invokes the
adversary to have this k′′ ∈ B2t(k), and converts k′′ to k with the help of the
secure sketch. Usually, auxiliary inputs are considered a “bad” object to be
against, but our proof leverages the auxiliary input to get around barriers of
security proof.

2 Preliminaries

Notations. All adversaries considered in this paper are non-uniform, and we
model an adversary A by a family of circuits {Aλ}n∈N. For a set X, x←$X

denotes sampling x from the uniform distribution over X. For a distribution X,
x ← X denotes sampling x from X. Let (X,Y ) be a joint distribution, X|y
denotes the conditional distribution of X conditioned on Y = y.

Min-entropy. The min-entropy of a distribution W is defined by H∞(W ) =
−minw∈Supp(W ) log Pr[W = w]. We say W has min-entropy of ̂k conditioned on
Z, if H∞(W |z) ≥ ̂k for every z ∈ Supp(Z).

Strong Extractor. Let n, k, � be integer functions of the security parame-
ter. An (n, k, �) strong randomness extractor Ext is a deterministic algorithm,
which on inputs w ∈ {0, 1}n(λ) along with a public seed iext (with length si(λ))
outputs another randomness r ∈ {0, 1}�(λ). Ext satisfies ε-privacy, if for any
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polynomial-time A and any (n, k)-sources W, it holds that AdvextW,A(λ) ≤ ε(λ),
where AdvextW,A(λ) is defined as

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎣

w ← Wλ, iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) :
1 ← A(iext, r)

⎤

⎥

⎦ − Pr

⎡

⎢

⎣

w ← Wλ, iext ←$ {0, 1}si(λ)

r ←$ {0, 1}(�(λ)) :
1 ← A(iext, r)

⎤

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

.

Metric Spaces. A metric space M = {Mλ}λ∈N is a collection of sets with a
distance function dist : Mλ × Mλ → [0,∞). Throughout this paper we consider
Mλ = {0, 1}n(λ) equipped with a distance function (e.g., Hamming distance).

Secure Sketch. Let M be a metric space. An (M, k, k′, t)-secure sketch scheme
is a pair of PPT algorithms SS and Rec that satisfies correctness and security.
For every λ ∈ N, SS on input w ∈ Mλ, outputs a sketch ss; Rec takes as inputs
a sketch ss and w̃ ∈ Mλ, and outputs w′.
Correctness. ∀w̃ ∈ Mλ, if dist(w, w̃) ≤ t(λ), then Rec(w̃,SS(w)) = w.
Security. For every λ, any distribution W over Mλ with min-entropy at least
k(λ), it holds that H∞(W |SS(W )) ≥ k′(λ).

We may abbreviate an (M, k, k′, t)-secure sketch by t-secure sketch without
specifying other parameters.

NIZK. A non-interactive zero-knowledge proof system (NIZK) Π for an NP
relation R can be described by the following three algorithms. Setup(1λ) gener-
ates a CRS crs; Prove(crs, x, ψ) takes as inputs a CRS crs, a statement x and
a witness ψ, and outputs a proof π; Verify(crs, x, π) checks the validity of π.

Π satisfies the perfect completeness, if for any λ ∈ N and for any (x, ψ) ∈ R,

Pr[crs ← Setup(1λ);π ← Prove(crs, x, ψ) : Verify(crs, x, π) = 1] = 1.

Π satisfies εsnd-adaptive soundness, if for any polynomial-time adversary A, it
holds that AdvsndA (λ) ≤ εsnd(λ), where AdvsndA (λ) is defined as

Pr[crs ← Setup(1λ); (x, π) ← A(crs) : Verify(σ, x, π) = 1 ∧ (∀ψ, (x, ψ) /∈ R)].

For zero-knowledgeness, we introduce the single theorem version, which suffices
for our applications. Namely, we say Π satisfies εzk-ZK, if there exists a simulator
(SimSetup,SimProve), such that for any polynomial-time A = (A1,A2), it holds
that AdvzkA (λ) ≤ εzk(λ), where AdvzkA (λ) is defined as

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

crs ← Setup(1λ)
(x, ψ, st) ← A1(crs)
π ← Prove(crs, x, ψ) :
1 ← A2(st, π)

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

(crs, tk) ← SimSetup(1λ)
(x, ψ, st) ← A1(crs)
π ← SimProve(crs, tk, x) :
1 ← A2(st, π)

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Furthermore, we will need a strengthened soundness termed by true-
simulation-extractability (tSE) [8], which says that any efficient adversary
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A cannot produce a valid proof π∗ for x∗ without knowing x∗’s witness, even
A can see a simulated proof for a valid statement x. Note that a tSE-NIZK is
implied by a simulation-extractable NIZK [18] which allows adversaries to see
simulated proofs on arbitrary statements, including false statements. Moreover,
tSE-NIZK may have more efficient constructions [8].

We now present the single-theorem version. We say Π satisfies (εtse1, εtse2)-
tSE, if there exists a simulation-knowledge extractor (SESetup,SimProve,KExt),
such that for any polynomial-time adversary A and B = (B1,B2), Advtse1A (λ) ≤
εtse1(λ), where Advtse1A (λ) is defined as

∣

∣

∣

∣

∣

Pr

[

(crs, tk, ek) ← SESetup(1λ) :
1 ← A(crs, tk)

]

− Pr

[

(crs, tk) ← SimSetup(1λ) :
1 ← A(crs, tk)

]∣

∣

∣

∣

∣

,

and Advtse2A (λ) ≤ εtse2(λ), where Advtse2A (λ) is defined as

Pr

[

(crs, tk, ek) ← SESetup(1λ), (x, ψ, st) ← B1(crs), π ← SimProve(crs,
tk, x), (x∗, π∗) ← B2(st, π), w∗ ← KExt(crs, tk, x∗, π∗) : (x∗, w∗) /∈ R

]

.

Deterministic Public-Key Encryption. A deterministic public-key encryp-
tion (DPKE) scheme Σ is defined by a triple of PPT algorithms
{KeyGen,Enc,Dec} where Enc and Dec are deterministic.

A DPKE scheme Σ is (n, εhv, εind)-PRIV-IND-secure [5], if for any message
source W defined over {{0, 1}n(λ)}λ∈N and any function ensemble F = {fλ}λ∈N

such that F is εhv-hard-to-invert w.r.t. W, for any polynomial-time adversary
A, it follows that AdvindA,W,F (λ) ≤ εind(λ), where AdvindA,W,F (λ) is defined as

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

(pk, sk) ← KeyGen(1λ)
m ← Wλ,

c ← Enc(pk,m) :
1 ← A(c, pk, fλ(m))

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

(pk, sk) ← KeyGen(1λ)

m ← Wλ,m′ ←$ {0, 1}n(λ),

c ← Enc(pk,m′) :
1 ← A(c, pk, fλ(m))

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We assume w.l.o.g. that Σ has a key relation Rpk s.t. for every (pk, sk) ∈ Rpk,
it follows that Dec(sk,Enc(pk,m)) = m for any message m.

3 CRS-Model Robust Extractor: Definitions

In this section, we present both information-theoretic and computational defini-
tions of robust extractors in the CRS model.

CRS-Dependent Sources. Being different from all previous CRS-model works
of fuzzy extractors [7,19–22] that require sources to be independent of the CRS,
we consider all sources that could potentially depend on the CRS while having
sufficient conditional min-entropy. Formally, We model a source W as an ensem-
ble of distributions W = {Wλ}λ∈N. Let CRS = {CRSλ}λ∈N be an ensemble of
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CRS distributions, and we denote each Wλ by a collection {Wλ|crs}crs∈Supp(CRSλ).
Here Wλ|crs is used to denote the conditional distribution of Wλ conditioned on
that CRSλ = crs. For a distribution Wλ independent of CRS, it holds that
Wλ = Wλ|crs for every crs. Moreover, any collection {Wλ,crs}crs∈Supp(CRSλ) in
turn defines a distribution Wλ for which Wλ|crs = Wλ,crs.

Let n and k be integer functions of the security parameter. For a source W
defined over {{0, 1}n(λ)}λ∈N, we call it an (n, k)-source (w.r.t. CRS), if for any
λ, the distribution Wλ is an (n(λ), k(λ))-distribution (w.r.t. CRSλ). Namely,

H∞(Wλ) ≥ k(λ) (or for any crs ∈ Supp(CRSλ),H∞(Wλ|crs) ≥ k(λ).)

In the computational setting, we further require each Wλ to be efficiently
samplable by a polynomial-bounded circuit.

Definition 1 (Efficiently-samplable source w.r.t. CRS). For a distri-
butions ensembles CRS = {CRSλ}λ∈N and W = {Wλ}λ∈N, we call Wλ an
efficiently-samplable distribution w.r.t. CRSλ, if there is a circuit Gλ whose run-
ning time is polynomial in λ, such that for every crs ∈ Supp(CRSλ), it holds
that

Gλ(crs) = Wλ|crs.
If for every λ ∈ N, Wλ is an efficiently-samplable distribution w.r.t. CRSλ, we
call W an efficiently-samplable source w.r.t. CRS.

Remark 1. We consider efficiently samplable sources in the computational set-
ting, as the dependence between a source being extracted and the CRS distri-
bution is usually caused by an efficient adversary. A typical scenario could be
that a non-uniform PPT adversary A = {Aλ}λ∈N “creates” a source after seeing
the CRS. Therefore, we ask a uniform polynomial-bounded circuit Gλ (which
can be considered as Aλ) for every crs ∈ Supp(CRSλ), rather than different
polynomial-bounded circuits for different crs. Similar settings appeared in the
recent works on two sources extractors [1,15].

Robust Extractor. A robust extractor rExt in the CRS-model is defined by a
triplet of efficient algorithms {CRS,Gen,Rep}. CRS is a sampler algorithm that
specifies the CRS distribution. Gen takes as inputs a CRS and a weak secret w
and outputs a randomness R along with a helper string P . Then, Rep can recover
R from P using w. rExt requires privacy and robustness. The former says R is
pseudorandom conditioned on P , and the latter captures the infeasibility of
forging a different P that will not lead to the failure of Rep. Particularly, when
A is given both R and P , the robustness is called post-application robustness;
when only P is given, it is called pre-application robustness.

Formally, we define a robust extractor below.

Definition 2 (Robust extractor). For integer functions n, k, � of the secu-
rity parameter, an (n, k, �)-robust extractor rExt is defined by the following PPT
algorithms.
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– crs ← CRS(1λ). On input the security parameter λ, it outputs a CRS crs,
whose distribution is denoted by CRSλ.

– (R,P ) ← Gen(crs, w). On inputs crs and a string w ∈ {0, 1}n(λ), it outputs
a randomness R ∈ {0, 1}�(λ) along with a helper string P .

– R ← Rep(crs, w, P ). It recover the randomness R from P using w.

Correctness: For a function ρ : N → [0, 1], we say rExt satisfies ρ-correctness,
if for any (n, k)-source W, for every λ, it holds that

Pr

[

crs ← CRSλ;w ← Wλ|crs;
(R,P ) ← Gen(crs, w) : Rep(crs, w, P ) = R

]

≥ ρ(λ).

Privacy: For ε : N → (0, 1), rExt satisfies the ε-IT-privacy, if for any unbounded
adversary A and any (n, k)-source W, it holds that

AdvprivA,W(λ) := |Pr[Exppriv,0A,W (λ) = 1] − Pr[Exppriv,1A,W (λ) = 1]| ≤ ε(λ).

Robustness: For δ : N → (0, 1),rExt satisfies the δ-IT-post-application-
robustness (or pre-application robustness, without boxed items in the experiment
ExprobA,W), if for any unbounded adversary A, and any (n, k)-source W, it holds
that AdvrobA,W(λ) = Pr[ExprobA,W(λ) = 1] ≤ δ(λ).

Exppriv,bA,W(λ)

crs ← CRSλ;w ← Wλ|crs; (R, P ) ← Gen(crs, w);

R0 ←$ {0, 1} (λ);R1 = R; b ← A(crs, P, Rb)

return b

ExprobA,W(λ)

crs ← CRSλ;w ← Wλ|crs
(R,P ) ← Gen(crs, w);P ∗ ← A(crs, P , R )

if P ∗ = P ∧ Rep(crs, P ∗, w) =⊥) then return 1

return 0

Computational definitions can be defined by only considering polynomial-
time adversaries and efficiently-samplable sources. We directly call these com-
putational versions ε-privacy and δ-post-application-robustness (by removing
“IT”).

Robust Fuzzy Extractor. When the generation algorithm Gen and the repro-
duction algorithm Rep could use different but close secrets w, w̃, {CRS,Gen,Rep}
defines a robust fuzzy extractor. More formally, we require that w and w̃ are in
a metric space M with a distance function dist. For an integer ̂t, we say w is
̂t-close to w̃, if dist(w, w̃) ≤ ̂t. For W = {Wλ}λ∈N and ˜W = {˜Wλ}λ∈N defined
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over M, we say (W, ˜W) a t-pair for an integer function t, if for every λ ∈ N and
crs ∈ Supp(CRSλ), it holds that Pr[(w, w̃) ← (Wλ|crs, ˜Wλ|crs) : dist(w, w̃) ≤
t(λ)] = 1. For simplicity, we assume M is {{0, 1}n(λ)}λ∈N equipped with a dis-
tance function dist (e.g., Hamming distance).

We call rfExt = {CRS,Gen,Rep} an (M, k, �, t)-robust fuzzy extractor, if it
satisfies correctness, privacy, and robustness w.r.t. any t-pair of (n, k)-sources
(W, ˜W ). Formal definitions are given in the full paper.

4 A New Lower Bound for IT-Secure Robust Extractors

As briefly explained in the introduction, a plain-model IT-secure robust extractor
for all (n, k)-sources exists only when k > n/2 [12]. This lower bound can be
trivially circumvented by assuming a CRS and work only for the special sources
that are independent of the CRS. We are interested in the case for general sources
which may be CRS-dependent. This section gives a negative result that IT-secure
robust extractors for all (n, k)-sources also require that k > n/2 in the CRS
setting. The fuzzy case trivially inherits this generalized lower bound.

Previous Tool for the Plain Model Lower Bound. Dodis and Wichs’s
[12] lower-bound comes from a plain-model IT-secure authentication scheme
(for an-(n̂,̂k)-distribution W ), which is trivially implied by an IT-secure robust
extractor. Such an authentication scheme could be described by a pair of
randomized functions {Auth,Vrfy}, formed by Auth : {0, 1}n̂ → {0, 1}ŝ, and
Vrfy : {0, 1}n̂ × {0, 1}ŝ → {0, 1}, where n̂, ŝ are integers. It satisfies (1) ρ̂-
correctness: Pr[w ← W : Vrfy(w,Auth(w)) = 1] ≥ ρ̂; and (2) ̂δ-unforgeability:
for any adversary A, Pr[w ← W, ς ← Auth(w), ς∗ ← A(ς) : Vrfy(w, ς∗) = 1] ≤ ̂δ.

Lemma 1 ([12]). If there exists an authentication scheme for all (n̂,̂k)-
distributions with ρ̂-correctness and ̂δ-unforgeability, and ̂δ < ρ̂2/4, it follows
that ̂k > n̂/2.

Generalizing the Lower-Bound. We present a new lower bound for the CRS-
model in the following theorem; our main technical lemma is to show that a CRS-
model authentication scheme could imply that in the plain model (Lemma2).

Theorem 1. Let n, k, � : N → N and ρ, δ : N → {0, 1} be functions of the
security parameter. If there exists an (n, k, �) IT-secure robust extractor with
ρ-correctness and δ-pre-application-robustness, then for any λ ∈ N s.t. δ(λ) ≤
ρ(λ)2/4, it follows that k(λ) > n(λ)/2.

Proof. We first define a CRS-model authentication scheme, which consists
{CAuth,CVrfy} (randomized) along with a CRS distribution ̂CRS, satisfying the
following, for any (n̂,̂k)-source W :

– ρ̂-correctness: Pr[crs ← ̂CRS, w ← W |crs : Vrfy(crs, w,Auth(crs, w)) = 1] ≥
ρ̂.
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– ̂δ-unforgeability: for any adversary A,

Pr

[

crs ← ̂CRS, w ← W |crs, ς ← Auth(crs, w),
ς∗ ← A(crs, ς) : Vrfy(crs, w, ς∗) = 1.

]

≤ ̂δ.

It is easy to see that, if there is a CRS-model IT-secure (n, k, �)-robust extrac-
tor {CRS,Gen,Rep} with ρ-correctness and δ-robustness, for each λ ∈ N, we
can construct {CAuth,CVrfy} along with a CRS distribution ̂CRS = CRSλ that
satisfies ρ̂ = ρ(λ)-correctness and ̂δ = δ(λ)-unforgeability w.r.t. all (n(λ), k(λ))-
distributions. More detailly,

– CAuth(crs, w) : Invoke (R,P ) ← Gen(crs, w), and return σ = P ;
– CVrfy(crs, w, σ) : If Rep(crs, w, σ) =⊥, return 0; otherwise, return 1.

Next, we give our main technical lemma for the CRS-model authentication
scheme, whose detailed proof is deferred later.

Lemma 2. If there exists a CRS-model IT-secure authentication scheme
{CAuth,CVrfy} (along with a CRS distribution ̂CRS) for all (n̂,̂k)- distribu-
tions with ρ̂-correctness and ̂δ-unforgeability, then for any ĉ0, ĉ1 ∈ (0, 1) sat-
isfying (1 − ĉ1)ρ̂ + ĉ0 > 1, there exists a plain-model IT-secure authentication
scheme {Auth,Vrfy} for all (n̂,̂k)-distributions with ĉ1ρ̂-correctness and ̂δ/ĉ0-
unforgeability.

By Lemma 1, if ̂δ/ĉ0 < (ĉ1ρ̂)2/4, {Auth,Vrfy} established in Lemma 2 exists
only when ̂k > n̂/2. Putting requirements together, {CAuth,CVrfy} with ρ̂-
correctness and ̂δ-unforgeability could imply such {Auth,Vrfy}, if there exists
ĉ0, ĉ1 ∈ {0, 1}, such that

̂δ <
ĉ0ĉ

2
1ρ̂

2

4
, and (1 − ĉ1)ρ̂ + ĉ0 > 1. (1)

It remains to show when such (ĉ0, ĉ1) exist. Note for any ρ̂ ∈ (0, 1), there
always exists (ĉ0, ĉ1) ∈ (0, 1)2 satisfying (1 − ĉ1)ρ̂ + ĉ0 > 1 (denote the solution
space by Sρ̂). Then, we can have (ĉ0, ĉ1) satisfying Eq. 1 for (ρ̂, ̂δ), unless 4̂δ

ρ̂2 ≥
ĉ0ĉ

2
1 for any (ĉ0, ĉ1) ∈ Sρ̂.
By standard analysis, we have the following result: for any ρ̂, v̂ ∈ (0, 1),

there always exists (ĉ0, ĉ1) ∈ Sρ̂ such that ĉ0ĉ
2
1 > v̂. It follows that whenever

̂δ < ρ̂2/4, such (ĉ0, ĉ1) exist. Recall that for any λ s.t. δ(λ) < ρ(λ)2/4, the
robust extractor could give such {CAuth,CVrfy} for all (n(λ), k(λ))-distributions.
It follows k(λ) < n(λ)/2 in this case. ��
Deferred Proof for Lemma 2. The over goal is to show there exists a
“good” CRS crs∗ in the support of ̂CRS, such that with crs∗ hardcoded,
{CAuth(crs∗, ·),CVrfy(crs∗, ·)} is the plain-model authentication scheme. For
both correctness and unforgeability, we will prove that there exist a sufficiently
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large “good” set of CRSs (S and ˜S) for each of them. Then by properly tuning
parameters, we can see S ∩ S̃ �= ∅, thus we can find a string crs∗.

In the claim below, we show the existence of S (for correctness). We pro-
ceed in two steps. (i) For each source W and a randomly sampled crs, we have
ρ-correctness; then, by simple probabilistic analysis, there must exist a large
enough “good” set SW that every element of it will enable “correctness” (with a
smaller correctness parameter). (ii) To show

⋂

W SW is still with sufficient size,
we can use proof by contradiction in a sense that if it does not hold, we can define
a special source W ∗ whose “good” set SW∗ will be smaller than that established
in the previous step.

Claim. For any constant ĉ1 ∈ (0, 1), there exists a set S ∈ Supp( ̂CRS) such that
Pr[ ̂CRS ∈ S] ≥ (1 − ĉ1)ρ̂, and for any crs ∈ S and any (n̂, k̂)-distribution W , it
holds that

Pr
[

w ← W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1
]

≥ ĉ1ρ̂.

Proof (of claim). For convenience, we define the “verified correctly” event w.r.t.
W and crs:

VCW,crs := [w ← W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1].

Then define a “good” set S for an (n̂,̂k)-distribution W . Namely,

SW := {crs ∈ Supp(CRS) : Pr[VCW,crs] ≥ ĉ1ρ̂}. (2)

We now show
Pr[ ̂CRS ∈ SW ] ≥ (1 − ĉ1)ρ̂ (3)

for any (n̂, k̂)-distribution W . If not, for some W , we have the following,

Pr[crs ← ̂CRS : VCW,crs]

≤ Pr[VCW,crs|crs /∈ SW ] Pr[ ̂CRS /∈ SW ] + Pr[ ̂CRS ∈ SW ]
≤ĉ1ρ̂ + (1 − ĉ1)ρ̂ = ρ̂,

which contradicts the assumption that {CAuth,CVrfy} along with ̂CRS satisfies
the ρ̂-correctness.

Note that SW is a “locally good” set for W , and we need a “globally good”
set S for all (n̂,̂k)-distributions. By definition, S will be the intersection of all
SW , namely,

S =
⋂

∀(n̂,̂k)-distribution W

SW .

Our goal is to show Pr[ ̂CRS ∈ S] ≥ (1− ĉ1)ρ̂. We proceed it by contradiction.
Specifically, if not, the complement of S (denoted by SC) will satisfy Pr[ ̂CRS ∈
SC ] > 1 − (1 − ĉ1)ρ̂. By definition, for every crsi ∈ SC , there exists a (n̂,̂k)-
distribution Wi, such that
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Pr[VCWi,crsi
] < ĉ1ρ̂.

Next, we can define a distribution W ∗ for which the set SW ∗ does not satisfy
Eq. 3. Specifically, W ∗ = {W ∗|crsi

}
crsi∈Supp(̂CRS)

, where

W ∗|crsi
=

{

Wi|crsi
, if crsi ∈ SC ,

Un̂, if crsi ∈ S.
(4)

Here Un̂ denotes the uniform distribution over {0, 1}n̂. It is easy to verify W ∗

is an (n̂,̂k)-distribution. However, from the definition of W ∗, it follows that
SW ∗

⋂

SC = ∅, and thus Pr[CRS ∈ SW ∗ ] < (1 − ĉ1)ρ̂, which contradicts the
result Eq. 3. ��

For unforgeability, it follows similar idea. We have the following claim whose
formal proof is given in the full paper.

Claim. For any constant ĉ0 ∈ (0, 1), there exists a set ˜S ∈ Supp( ̂CRS) such that
Pr[ ̂CRS ∈ ˜S] ≥ ĉ0, and for any crs ∈ ˜S, any (n̂, k̂)-distribution W , and any
adversary A, it holds that

Pr

[

w ← W |crs, ς ← CAuth(crs, w),
ς∗ ← A(crs, ς) : CVrfy(crs, w, ς∗) = 1

]

< ̂δ/ĉ0.

Finally, by the parameter condition in Eq. 1 that (1− ĉ1)ρ̂+ ĉ0 > 1, it follows
that S∩˜S �= ∅. We pick one crs∗ ∈ S∩˜S, and define an ensemble of randomized
function pairs {Auth = CAuth(crs∗, ·),Vrfy = CVrfy(crs∗, ·)}. It is easy to verify
this {Auth,Vrfy} satisfies ĉ1ρ̂-correctness and δ̂/ĉ0 for all (n̂, k̂)-distributions. ��

5 Computational Robust Extractors

In this section, we provide a generic framework in the CRS model that compiles
any computational extractor into a robust one. Compared with previous works,
our construction is the first that can work for any CRS dependent source with
minimal entropy (ω(log n) instead of n/2 as in the IT setting).

Intuitions. As briefly discussed in Introduction, a fairly intuitive idea is to add a
MAC tag on the helper string. Namely, with a MAC {Tag,Verify} (for simplicity
here we omit the public parameters) and a strong extractor Ext, the generation
procedure produces a helper string formed by (s,Tag(w, s)) along with a ran-
domness r, where s is the seed for Ext and r is the extracted randomness by Ext.
The reproduce procedure first checks the validity of Tag(w, s), and reproduces
r = Ext(s, w) if the tag is valid.

However, it is not hard to see the insufficiency of a normal MAC here. First,
the secret w is non-uniform, and some information about w will be further
leaked by (s, r) (for the strong post-application robustness), while a MAC usu-
ally requires a uniform key. Moreover, the tag Tag(w, s) may also leak partial
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information about w (e.g., some bits of it) and thus affect the quality of r.
The above issues inspire us to consider a special MAC that can addresses the
concerns above simultaneously. At a high level, (1) it should be secure w.r.t.
auxiliary information about the weak secret w, as both the seed iext and the
extracted string r generated from w are leaked to adversaries; (2) the tag of
this MAC should also hide all partial information about w, such that given the
tag the extracted string r remains pseudorandom. We call such a MAC κ-MAC
(Key-Private Auxiliary-input Message Authentication). But, for constructing a
robust extractor, we only need to ask the one-time security of κ-MAC.3

We formally define κ-MAC, present and analyze our framework of robust
extractors from κ-MAC. Then, we show how to construct (one-time) κ-MAC
from well-studied assumptions.

κ-MAC: Definitions. We define the syntax of κ-MAC in the CRS model.

Syntax. A κ-MAC scheme Σ consists of a triple of algorithms {Init,Tag,Verify},
with associated key space K = {Kλ}λ∈N, message space Mes = {Mesλ}λ∈N,
and tag space T = {Tλ}λ∈N.

– Init(1λ). On input a security parameter 1λ, it outputs a crs whose distribution
is denoted by CRSλ.

– Tag(crs, k,m). The authentication algorithm takes as inputs a CRS crs, a
key k ∈ Kλ, and a message m ∈ Mesλ. It outputs a tag ς ∈ Tλ.

– Verify(crs, k,m, ς). The verification algorithm takes as inputs a CRS crs, a
key k, a message m, and an authentication tag ς. It outputs either 1 accepting
(m, ς) or 0 rejecting (m, ς).

The correctness states that for every crs ← Init(1λ), every secret k ∈ Kλ,
and every message m ∈ Mesλ, we have Pr[Verify(crs, k,m,Tag(crs, k,m))] = 1.
A secure κ-MAC scheme should satisfy unforgeability, which is similar to regular
MAC, and key privacy, which requires the tag to be simulatable without using
the key. The main difference (with the conventional definitions) in the security
notions is that they are all under auxiliary input. We first discuss the admissible
auxiliary input and then present the formal definitions.

Admissible Auxiliary Inputs. Note that the auxiliary information cannot be arbi-
trary. (1) it must be hard-to-invert leakage, as defined by Dodis et al. [9]. Namely,
the auxiliary input is a function f(w) of the secret w, and we say f is hard-to-
invert w.r.t. a distribution W , if it is infeasible to recover w from f(w), for a
random sample w ← W . (2) to avoid triviality, the auxiliary information should
not contain a valid authentication tag. Note that the authentication algorithm is
indeed “hard-to-invert”, and thus we have to put other restrictions on the leak-
age function to exclude the trivial case. Similar issues arise in auxiliary-input
secure digital signatures [13] that they require the admissible function f to be
exponentially hard-to-invert. For our purpose, however, this treatment will put
3 The RO-based MAC (where Tag(w, m) = H(w, m) for a random oracle H) employed

in Boyen et al.’s robust (fuzzy) extractor [4] captures all above intuitions, and thus
it can be considered as a κ-MAC in the random oracle model.
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unnecessary restrictions on either the sources being extracted or the underlying
extractor. Instead, we observe and leverage the following asymmetry: the authen-
tication algorithm is only required to be hard-to-invert for a randomly chosen
CRS; while the auxiliary-input function, particularly, the Gen of the underly-
ing extractor, can be hard-to-invert for every CRS. By defining the hardness
of inverting over every CRS, we can exclude the authentication algorithm from
admissible auxiliary-input functions. By design, we can further ensure that any
efficient algorithm that produces valid authentication tags may not be “hard-to-
invert” for some CRSs. Considering all the above, we define admissible auxiliary
inputs below.

Definition 3. Let CRS = {CRSλ}λ∈N be an ensemble of CRS distributions and
W be a source that may depend on CRS. We call an efficiently computable
function ensemble F = {fλ}λ∈N ε-hard-to-invert w.r.t. W and CRS, if for
any polynomial-time A, any λ ∈ N and any crs ∈ Supp(CRSλ), it holds that
Pr[k ← Wλ|crs : A(crs, f(crs, k)) = k] ≤ ε(λ).

One-Time Unforgeability. The unforgeability captures the infeasibility of forging
an authentication tag being accepted by a secret key k drawn from a high-
entropy source. Particularly, it considers a key from a non-uniform distribution
and allows adversaries to obtain auxiliary information.

Definition 4 (One-time unforgeability). Let Σ = {Init,Tag,Verify} be a
κ-MAC scheme with the key space {0, 1}n(λ). We say Σ satisfies (n, εunf , εhv)
one-time unforgeability, if for any polynomial-time adversary A, any efficiently-
samplable source W (defined over {{0, 1}n(λ)}λ∈N) and any function ensemble
F s.t. F is εhv hard-to-invert w.r.t. W and CRS, it holds that AdvunfA,W,F (λ) =
Pr[ExpunfA,W,F (λ) = 1] ≤ εunf(λ). The experiment ExpunfA,W,F is defined below.

ExpunfA,W,F (λ)

crs ← Init(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k)); ς ← Tag(crs, k, m)

(m∗, ς∗) ← A(ς, st)

if (m∗, ς∗) �= (m, ς) ∧ Verify(crs, k, m∗, ς∗) = 1 then return 1

return 0

One-Time Key Privacy. This property seeks to capture that an adversary cannot
learn anything new about the secret from an authentication tag.

We follow the simulation paradigm that was developed for defining non-
interactive zero-knowledge [2]. Namely, with the help of some “trapdoor” infor-
mation about the CRS, these tags can be simulated without the secret, and
adversaries cannot distinguish simulated tags from real ones. The simulation
procedure is done by the following pair: SimInit(1λ) – the init simulation algo-
rithm outputs a CRS crs along with its trapdoor τ . SimTag(crs, τ,m) – the
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tag simulation algorithm outputs a simulated tag ς for m. With the simulation
algorithms, we can formally define this property.

Definition 5 (One-time key privacy). Let Σ = {Init,Tag,Verify} be a κ-
MAC scheme with the key space {0, 1}n(λ). We say Σ satisfies (n, εkpriv, εhv) one-
time key privacy, if there is a pair of PPT algorithms (SimInit,SimTag), and for
any polynomial-time adversary A, any efficiently-samplable source W (defined
over {{0, 1}n(λ)}λ∈N) and any function ensemble F s.t. F is εhv hard-to-invert
w.r.t. W and CRS, it holds that

AdvkprivA,W,F (λ) = |Pr[Expkpriv,0A,W,F (λ) = 1] − Pr[Expkpriv,1A,W,F (λ) = 1]| ≤ εunf(λ).

The experiments Expkpriv,0A,W,F and Expkpriv,1A,W,F are defined below.

Expkpriv,0A,W,F (λ)

(crs, τ) ← SimInit(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k))

ς ← SimTag(crs, τ, m); b′ ← A(ς, st)

return b′

Expkpriv,1A,Σ,W,F (λ)

crs ← Init(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k))

ς ← Tag(crs, k, m); b′ ← A(ς, st)

return b′

Making Any Computational Extractor Robust Without Requiring
More Entropy. We then show how to compile a strong extractor into a robust
extractor (for general CRS dependent sources) using one-time κ-MAC. Let Ext
be a (n, k, �) strong extractor (working on (n, k)-sources, and output � bits)
with the seed length s�, and let Σ = {Init,Tag,Verify} be a κ-MAC scheme
with the key space K = {{0, 1}n(λ)}λ∈N and the message space Mes that con-
tains {{0, 1}�(λ)+s�(λ)}λ∈N. Then, we illustrate our robust extractor construction
E = {CRS,Gen,Rep} in Fig. 1.

CRS(1λ)

crs ← Init(1λ)

return crs

Gen(crs, w)

s ←$ {0, 1}s (λ), r ← Ext(s, w)

ς ← Tag(crs, w, s)

return R = r, P = (s, ς)

Rep(crs, w, P )

if Verify(crs, w, s, ς) = 1

return R = Ext(s, w)

return ⊥

Fig. 1. Robust extractor from randomness extractor + one time κ-MAC

Analysis. The correctness and security of our construction are fairly straightfor-
ward. We remark that we only require the source to have minimal min-entropy
to enable a strong extractor. Formally, we have the following:
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Theorem 2. Let Ext be an (n, k, �)-strong extractor with εext-privacy, Σ be a κ-
MAC with (n, εkpriv, εhv) one-time key privacy and (n, εunf , εhv) one-time robust-
ness. If εhv ≥ εext, then for any εpriv,δrob, satisfying εpriv ≥ εext+2εkpriv, and δrob >
εunf , the construction in Fig. 1 is an (n, k, �)-robust extractor with εpriv-privacy
and δrob-post-application-robustness (defined in Sect. 4).

We prove privacy and robustness in Lemmas 3 and 4, respectively.

Lemma 3. Assume that Ext satisfies εext-privacy, and Σ satisfies (n, εkpriv, εhv)
one-time key privacy, where εhv ≥ εext. Then, rExt (in Fig. 3) satisfies εpriv-
privacy, for any εpriv > εext + 2εkpriv.

Proof. We prove this lemma by contradiction. Assume there is ε0 > εext +2εkpriv,
and we have a polynomial-time adversary B who has an advantage greater than
ε0 w.r.t. some efficiently-samplable (n, k)-source W. Then, we leverage B to
construct a polynomial-time adversary Aext for Ext, and two polynomial-time
adversaries Amac,0 and Amac,1 for κ-MAC Σ, such that, for the source W,

AdvextAext,W(λ) + AdvkprivAmac,0,W,F (λ) + AdvkprivAmac,1,W,F (λ) > ε0, (5)

where F is a function ensemble implementing Ext. As εhv ≥ εext, such F is an
admissible auxiliary inputs. Now, since we assume ε0 > εext + 2εkpriv, it follows
that either AdvextAext,W(λ) > εext, Adv

kpriv
Amac,0,W,F (λ) > εkpriv, or AdvkprivAmac,1,W,F (λ) >

εkpriv.
Now, we give the code of each adversary in Fig. 2.

Algorithm Aext(iext, r)

(crs, τ ) ← SimInit(1λ)

ς ← SimTag(crs, τ, iext)

b ← B(crs, (iext, ς), r)
return b

Algorithm AOβ

mac,b(crs, (iext, r))

Query Oβ with iext, and obtain ς

R0 ←$ {0, 1} (λ), R1 = r

β ← B(crs, (iext, ς), Rb)

return β

Fig. 2. Construction of Aext and Aam,b. In Aext, (SimInit, SimTag) is the simulator of
κ-MAC. In Amac,b, r is the extracted randomness from w with the seed iext. Oβ returns
a real tag when β = 1 or returns a simulated tag when β = 0.

It is easy to see that Aext and Aam,b are polynomial-time. Now, we argue
advantages of each adversary.

Recall the privacy definition of a robust extractor (cf. Definition 2). The
advantage of B against rExt’s privacy w.r.t. W is defined by AdvprivB,W(λ) =
|Pr[Exppriv,0B,W (λ) = 1] − Pr[Exppriv,1B,W (λ) = 1]|. Let us assume that

p0 = Pr

[

w ← Wλ, iext ←$ {0, 1}si(λ)

r ←$ {0, 1}�(λ) : 1 ← Aext(iext, r)

]

,
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p1 = Pr

[

w ← Wλ, iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) : 1 ← Aext(iext, r)

]

.

Then, by definition, the advantage of Aext against Ext is AdvextAext,W(λ) = |p0−p1|.
For b ∈ {0, 1}, we denote Pr[Exppriv,bB,W (λ) = 1]−pb = Δb. By standard arguments,
we have

AdvprivB,W(λ) = AdvextAext,W(λ) + |Δ0| + |Δ1| (6)

It is easy to verify that, at the point of B’s view, the experiment Exppriv,bB,W
is identical to Expkpriv,1Amac,b,W,F (cf. Definition 5), and thus Pr[Exppriv,bB,W (λ) = 1] =

Pr[Expkpriv,1Amac,b,W,F (λ) = 1]. Similarly, we have pb = Pr[Expkpriv,0Amac,b,W,F = 1]. Notice

that AdvkprivAmac,b,W,F (λ) = |Pr[Expkpriv,0Amac,b,W,F (λ) = 1] − Pr[Expkpriv,1Amac,b,W,F (λ) = 1]|,
we have AdvkprivAmac,b,W,F (λ) = Δb, thus Eq. 6. ��

Lemma 4. Assume that Ext satisfies εext-privacy, and Σ satisfies (n, εunf , εhv)
one-time unforgeability, where εhv ≥ εext. Then, rExt (in Fig. 3) satisfies δrob-
post-application-robustness, for any δrob ≥ εunf .

Proof. We prove this lemma by contradiction. Assume there is δ0 > εunf , and we
have a polynomial-time adversary B who has an advantage greater than δ0 w.r.t.
some efficiently-samplable (n, k)-source W. Then, we leverage B to construct a
polynomial adversary Amac against the unforgeability of κ-MAC Σ w.r.t. W,
with advantage AdvunfAmac,W,F (λ) > δ0 > εunf . Here F is the function ensemble
implementing Ext.

Amac can be easily constructed. Given crs of Σ and (iext, r) which are the
seed and the extracted randomness respectively from w (treated as auxiliary
input), Amac asks an authentication tag ς on iext, and invokes B by giving
(crs, (iext, ς), r). When B breaks the robustness, i.e., it outputs P ∗ = (i∗ext, ς

∗) �=
(iext, ς) s.t. Verify(crs, w, i∗ext, ς

∗) = 1, Aam can output (i∗ext, ς
∗) as a forgery. It is

easy to see that Aam is polynomial-time. ��

Constructing One-Time κ-MAC. Now we discuss how to construct a κ-
MAC. It is natural to view κ-MAC as a special leakage-resilient MAC, then
upgrade it to add “key privacy”. Given state of the art, the only known approach
to MACs tolerating hard-to-invert leakage is using auxiliary-input secure signa-
tures [13,23]. However, when considering weak keys and key privacy, it turns out
to be more involved. We have to revisit the design framework of auxiliary-input
secure signatures, adapt it to the symmetric setting, and address the subse-
quent challenges for realizing the new framework. To illustrate the challenges
and ideas towards κ-MAC we first briefly recall Katz-Vaikuntanathan’s leakage-
resilient signature scheme [17] which was later shown by Faust et al. [13] to be
secure against hard-to-invert leakage (with minor modifications). For the sake of
clarification, we follow Dodis et al.’s [8] insightful abstraction, which bases KV
signature upon the following building blocks.
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– A leakage-resilient hard relation RLR with its sampling algorithm GenLR. R is
an NP relation, and GenLR is a PPT algorithm which always outputs (y, k) ∈
RLR. We say RLR is leakage-resilient, if for any efficient adversary A and any
admissible leakage function f , we have

Pr[(y, k) ← GenLR(1λ), k∗ ← A(y, f(y, k)) : (y, k∗) ∈ RLR] ≤ negl(λ).

– A true-simulation-extractable NIZK (tSE-NIZK) [8] Π for the relation R̄LR :=
{(y, k,m) : (y, k) ∈ RLR}. Π consists of a setup algorithm Szk, a prover
algorithm Pzk, and a verifier algorithm Vzk.

Informally, Katz-Vaikuntanathan signature proceeds as follows: To sign a
message m, the signer with sk proves the knowledge of k for a statement
(y, k,m) ∈ R̄LR and returns the proof π as the signature σ, where (y, k) ∈ RLR

is part of the verification key. Given that Π is a tSE-NIZK, a successful forgery
will violate that RLR is a leakage-resilient hard relation. Specifically, the zero-
knowledge guarantees the signature will not leak new information about k, and
the true-simulation-extractability ensures that an adversary who successfully
generated a forgery must have k∗ s.t. (y, k∗) ∈ RLR. It follows that this adver-
sary could produce k∗ only given the verification key y and the leakage f(y, k),
which contradicts our assumption that RLR is leakage-resilient hard.

Towards κ-MAC. While we can trivially use a signature scheme as a MAC by
taking both vk and sk as the authentication key, this approach will require the
key to be uniform. However, κ-MAC needs to work for weak keys. The central
question is how to safely generate and share (vk, sk) between the sender and
the receiver (verifier), while they initially only have a weak key in common that
relates to the CRS.

It is safe to treat the CRS of tSE-NIZK (contained in the verification key
vk) as a part of CRS in our κ-MAC construction. We then deal with (y, k) ∈
RLR. A natural approach is to take the shared weak key as k and efficiently
generate y according to k. However, while signatures can assume a bulletin board
for posting verification keys, in κ-MAC, y has to be sent to the verifier via
an unauthenticated channel (namely, being a part of the authentication tag).
Consequently, adversaries might alter y to y′, as the verifier will not notice this
change if (y′, k) ∈ RLR. To prevent those attacks, we take the following steps.

– Observe that there might be a part of y (denoted by pp) that could be gen-
erated without k and reused across statements. We let pp be a part of CRS
such that adversaries cannot modify it.

– We strengthen the definition of leakage-resilient hard relation against adver-
saries who alter the other part of y (denoted by yk). Namely, given (pp, yk)
and leakage about k, adversaries cannot generate (yk′, k′) s.t. ((pp, yk′), k′) ∈
RLR and ((pp, yk′), k) ∈ RLR. We call such a relation a strengthened leakage-
resilient hard relation (sLRH relation).

Next, for key privacy, yk (as a statement) should be indistinguishable
with another ˜yk (simulated without k). Note that this requirement cannot be
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bypassed, even when yk is uniquely determined by (pp, k) and is not contained
in the authentication tag explicitly, since a NIZK proof is not supposed to hide
the statement being proved. We therefore require the generator of κ-MAC to be
a private generator.

We formalize all notions and intuitions in the following definition.

Definition 6. Let RLR be an NP relation defined over {Yλ × {0, 1}n(λ)}λ∈N,

– Generator. A pair of PPT algorithms (PGen,SGen) is a generator of RLR,
if for every λ ∈ N and k ∈ {0, 1}n(λ), it follows that

Pr[pp ← PGen(1λ), yk ← SGen(pp, k) : ((pp, yk), k) ∈ RLR] = 1.

– sLRH relation. RLR along with (PGen,SGen) is an (n, εlr, εhv)-sLRH rela-
tion, if for any efficiently-samplable source W (over {{0, 1}n(λ)}λ∈N and
dependent of PGen) and any function ensemble F s.t. F is εhv hard-to-invert
w.r.t. W and PGen, for any P.P.T adversary A, it holds that AdvslrhA,W,F (λ) ≤
εlr(λ) where AdvslrhA,W,F (λ) is defined as

Pr

[

pp ← PGen(1λ), k ← Wλ|pp, yk ← SGen(pp, k),
(yk′, k′) ← A(pp, yk, fλ(pp, k)) : (pp, yk′, k′), (pp, yk′, k) ∈ RLR

]

.

– Private generator. (PGen,SGen) satisfies (n, εpr, εhv)-privacy, if for
(A,W,F) above, AdvprA,W,F (λ) ≤ εpr(λ), where AdvprA,W,F (λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

pp ← PGen(1λ)
k ← Wλ|pp
yk ← SGen(pp, k) :
1 = A(pp, yk, fλ(pp, k))

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

pp ← PGen(1λ)

k ← Wλ|pp, k′ ←$ {0, 1}n(λ)

yk ← SGen(pp, k′) :
1 = A(pp, yk, fλ(pp, k))

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Remark 2. The auxiliary-input function f does not take as input yk, because yk
is generated by the authentication algorithm, and the auxiliary input is supposed
to be leaked before authenticating. The source W and the leakage are dependent
on pp since it is a part of the CRS. Other parts of CRS are not considered
explicitly since SGen does not use them.

The Final κ-MAC Construction. Using an sLRH relation RLR along with its
private generator (PGen,SGen) and a tSE-NIZK Π = {Szk,Pzk,Vzk} for the
relation R̄LR := {(pp, yk, k,m) : ((pp, yk), k) ∈ RLR}, we construct an one-time
κ-MAC scheme in Fig. 3.4

4 The one-time κ-MAC is enough for our purpose; we may generalize our construction
to get a full-fledged κ-MAC using multi-message secure DPKE [5], which will require
concrete entropy bound on the source though.
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Init(1λ)

crszk ← Szk(1λ)

pp ← PGen(1λ)

return

crs = (crszk, pp)

Tag(crs, k, m)

yk ← SGen(pp, k)

π ← Pzk(crszk,

(pp, yk, m), k)

return ς = (yk, π)

Verify(crs, k, m, ς)

return 1 iff

(pp, yk, k) ∈ RLR and

Vzk(crszk, (pp,

yk, m), π) = 1

Fig. 3. One-time κ-MAC from tSE-NIZK + sLRH relation

Analysis. Correctness is easy to see. Regarding security: from the privacy of the
generator SGen and the zero-knowledgeness of Π, efficient adversaries cannot
learn new information about k from the tag (y, π), and the key privacy follows.
The tSE-NIZK ensures an adversary who successfully forges an authentication
tag can also output a pair (y′, k′) ∈ RLR s.t. (y′, k) ∈ RLR, which contradicts the
sLRH relation, and thus the unforgeability follows. Formal analysis is presented
in the full paper.

Theorem 3. Let (PGen,SGen) be an (n, εpr, εhv)-private generator for an NP
relation RLR, and RLR along with (PGen,SGen) be an (n, εlr, εhv)-sLRH relation.
Let Π = {Szk,Pzk,Vzk} be a NIZK for the relation R̄LR satisfying εzk-ZK and
(εtse1, εtse2)-tSE. Then, the construction in Fig. 3 satisfies (n, εkpriv, εhv) one-time
key privacy and (n, εunf , εhv) one-time unforgeability, for any εkpriv ≥ εpr + εzk,
and any εunf ≥ εzk + εtse1 + εtse2 + εlr.

As shown by Dodis et al. [8], a tSE-NIZK could be constructed using CPA-
secure PKE and standard NIZK, or CCA-secure PKE and simulation-sound
NIZK. Both approaches can be based on standard assumptions. However, while
a leakage-resilient hard relation can be instantiated with a second-preimage-
resistant hash function H, the statement y = H(k) will leak some information
about k. For key privacy, we need new constructions for strengthened LRH
relations.

sLRH Relation from Deterministic PKE. Note that the privacy of gener-
ator is not an orthogonal property of sLRH relation; it indeed prevents adver-
saries from finding the exact k from (pp, yk) and the leakage. If it is further
ensured that adversaries cannot find a distinct k′ along with yk′ such that both
(pp, yk′, k) and (pp, yk′, k′) belong to RLR, RLR with a private generator will be
a sLRH relation. We therefore abstract a useful property of RLR called “collision
resistance” below.

Definition 7. RLR is (n, εcr)-collision-resistant w.r.t. PGen, if for any
polynomial-time A, it holds that

Pr

[

pp ←PGen(1λ), (yk, k, k′) ← A(pp) :
k �= k′ ∧ (pp, yk, k) ∈ RLR ∧ (pp, yk, k′) ∈ RLR

]

≤ εcr(λ).
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As discussed before, a collision-resistant relation with a private generator will
be a sLRH relation. (The formal proof is in the full paper.)

Lemma 5. Let (PGen,SGen) be an (n, εpr, εhv)-private generator for RLR. If RLR

satisfies (n, εcr)-collision-resistance w.r.t. PGen, RLR with (PGen,SGen) is an
(n, εlr, εhv)-sLRH relation, for any εlr ≥ εpr + εcr.

We now construct a collision-resistant relation with a private generator. An
auxiliary-input secure deterministic public-key encryption (DPKE) scheme is
a natural tool for realizing an NP relation with a private generator. Since no
randomness is used, it is easy to check whether a ciphertext cde encrypts a
message mde under a public key pkde. We can define an NP relation Rde such that
(pkde, cde,mde) ∈ Rde iff cde=Ede(pkde,mde). From the auxiliary-input security of
DPKE, the key generation algorithm and the encryption algorithm will give a
private generator for Rde.

The relation Rde is almostly collision-resistant. Under a valid public key pkde
(namely, there is a secret key skde to decrypt all ciphertexts under pkde), the
(perfect) correctness of DPKE ensures that for any ciphertext cde there is at
most one message mde such that cde=Ede(pkde,mde). While it seems straight-
forward to ensure the validity of pkde by putting it into the CRS, however, it
violates security. The problem inherits from that DPKE only applies to message
distributions independent of public key, but our goal is to have a construction
for CRS-dependent sources.

We enforce the validity of public key as follows: note that a valid pair
(pkde, skde) defines an NP relation Rpk, and pkde can be ensured valid (with
overwhelming probability) using a NIZK proof demonstrating the knowledge of
skde s.t. (pkde, skde) ∈ Rpk (the key relation). Now, pkde (with its validity proof)
can be outputted by SGen, and PGen is only used to establish a CRS of NIZK.
Though CRS is still in need, adaptively secure NIZK does allow CRS-dependent
statements. The relation Rde will be extended for verifying the proof. Formally,
let Σde = {Kde,Ede,Dde} be an auxiliary-input secure DPKE scheme and the key
relation Rpk, and Πpk = {Spk,Ppk,Vpk} be a NIZK for Rpk. We define an NP
relation Rde

LR and construct its generator (PGende,SGende) below.

– Let pp = crspk, yk = (cde, pkde, πde) and k = mde. (pp, yk, k) ∈ Rde
LR iff

cde = Ede(pkde,mde) and Vpk(crspk, pkde, πde) = 1.
– PGende(1λ). Invoke crspk ← Spk(1λ), and return pp = crspk.
– SGende(pp, k = mde). Invoke (pkde, skde) ← Kde(1λ), πde ←
Ppk(crspk, pkde, skde), and cde ← Ede(pkde,mde). Return yk = (cde, pkde, πde).

Summarizing above, we have the following result, whose formal analysis is in
the full paper.

Lemma 6. Let Σde be (n, εhv, εind)-PRIV-IND secure DPKE with message space
{{0, 1}n(λ)}λ∈N, Rpk be its key relation. Let Πpk be a NIZK for Rpk with εzk-ZK
and εsnd-adaptive-soundness. (PGende,SGende) is a (n, εpr, εhv)-private generator
of Rde

LR for any εpr ≥ εind + 2εzk, and Rde
LR is (n, εcr)-collision resistant w.r.t.

PGende, for any εcr ≥ εsnd.



Computational Robust (Fuzzy) Extractors for CRS-Dependent Sources 713

Under the exponentially-hard DDH assumption [24], it is known to exist a
DPKE which is perfectly correct and secure against any ε-hard-to-invert leakage
(as long as ε is a negligible function and s is a polynomial). Following Theorem3
and Lemma 6, we have a κ-MAC against any ε-hard-to-invert leakage and thus
can compile any secure randomness extractor.

6 Extension to Robust Fuzzy Extractors

In this section, we construct robust fuzzy extractors.

Intuition. Similar to the non-fuzzy case, we use a κ-MAC scheme to authen-
ticate the helper string of the underlying fuzzy extractor. However, correctness
and security will not directly inherit from the non-fuzzy case. Correctness can be
fixed easily. We can use secure sketches to construct the underlying fuzzy extrac-
tor; thus, one can recover the original secret w from the helper string using a
close secret w′.

We now discuss the obstacles towards security. While the helper string has
to contain a secure sketch, the adversary may manipulate the secure sketch
such that secret w′′ recovered from it is not identical to the original secret w,
and she may forge an authentication tag being accepted by w′′ to break the
robustness. We can simply reject all w′′ that are not t-close to w′ (in this case
w′′ must be incorrect), and an allowed w′′ will be 2t-close to w. The challenge is
to ensure that adversaries cannot forge an authentication tag being accepted by
this 2t-close secret. In the following, we introduce fuzzy unforgeability of κ-MAC
and show that the construction in the last section already satisfies this property.
Then, we construct a robust fuzzy extractor for CRS-dependent sources by using
fuzzy-unforgeable κ-MAC.

κ-MAC with Fuzzy Unforgeability. A κ-MAC scheme Σ = {Init,Tag,Verify}
satisfies q-fuzzy unforgeability, if given an authentication tag ς from k along with
an auxiliary input about k, one cannot forge a new authentication tag being
accepted by any secret k′ which is q-close to k. The formal definition (presented
in the full paper) is parameterized by (n, q, εunf) along with W and F, where n
is the length of the secret, εunf is the advantage of polynomial-time adversaries,
W is the admissible family of sources, and F is the family of admissible leakage
functions.

Construction from Fuzzy sLRH Relation. Recall our κ-MAC construction in
Fig. 3. If an adversary who is given yk and leakage about k outputs a forgery
being accepted by a secret k∗, then, by tSE-NIZK, the adversary is able to output
(yk′, k′) such that both (pp, yk′, k′) and (pp, yk′, k∗) belong to the relation RLR.
For one-time standard unforgeability, k and k∗ are equal, and such an adversary
contradicts the definition of sLRH relation. For one-time q-fuzzy unforgeability,
k∗ will just be q-close to w, and we therefore strengthen the sLRH relation into
its fuzzy version accordingly. More precisely, we call an NP relation RLR a q-fuzzy
relation w.r.t. (PGen,SGen), if given (pp, yk) generated from k using the gener-
ator, one cannot find a new pair (yk′, k′) such that (pp, yk′, k′) and (pp, yk′, k′′)
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belong to RLR for some k′′ ∈ Bq(k). We show the κ-MAC construction in Fig. 3
will be a q-fuzzy unforgeable, if the underlying sLRH relation is a q-fuzzy sLRH
relation. The formal definition of the relation and the proof will be deferred to
the full paper.

Lemma 7. Let RLR along with (PGen,SGen) be an (n, εlr)-q-fuzzy sLRH relation
w.r.t. W and F. Let Π = {Szk,Pzk,Vzk} be a NIZK for the relation R̄LR satisfying
εzk-ZK and (εtse1, εtse2)-tSE. Then, the construction in Fig. 3 satisfies (n, q, εunf)
one-time fuzzy-unforgeability w.r.t. W and F, for any εunf > εzk+εtse1+εtse2+εlr.

Fuzzy sLRH Relation from Collision-Resistant Relation with Private Generator.
For a “collision-resistant” sLRH relation, the adversary can “frame” some k′′

only when she finds k′′. If given (pp, yk) finding k′′ ∈ Bt
q is hard, then the rela-

tion will be a q-fuzzy sLRH relation. We argue when we can have the latter
property from the privacy of the generator.

Note that the privacy of generator cannot ensure that (pp, yk) hides all par-
tial information about k, as (pp, yk) itself must be non-trivial about k. Actually,
the privacy ensures that adversaries cannot learn anything which is useful for
deciding that yk is either generated by using the leaked key k or using an inde-
pendent key. Then, for small q such that Bq(k) only contains polynomial points,
k′′ ∈ Bq(k) is surely hard-to-find from (pp, yk). However, for large q such that
Bq(k) could contain super-polynomial points, this argument does not apply.

We overcome this challenge by observing the task of recovering k from k′′ can
be done with the help of 2t-secure sketch. More specifically, assume an adversary
can recover k′′ from (pp, yk). Then, the distinguisher specifies the leakage as a
2t-secure sketch, invokes the adversary to have this k′′ ∈ B2t(k), and converts
k′′ to k with the help of the secure sketch. We establish the following theorem,
whose analysis is in the full paper.

Theorem 4. Let (PGen,SGen) be a (n, εpr, εhv)-private generator for an NP rela-
tion RLR, and let RLR be (n, εcr)-collision-resistant w.r.t. PGen. Then RLR along
with (PGen,SGen) will be a (n, q, εlr)-fuzzy sLRH relation, for any εlr > εpr + εcr,
w.r.t. W and F which satisfy the following conditions. (1) There is a q-secure
sketch {SS,Rec} for each W ∈ W. (2)For each f ∈ F, there is a one-way per-
mutation g, and define ˜f = (f,SS, g). Then ˜f is εhv-hard-to-invert w.r.t. every
W.

Constructing Robust Fuzzy Extractors. For a robust fuzzy extractor with
t-error tolerance, we use a 2t-fuzzy unforgeable κ-MAC to authenticate the helper
string of a fuzzy extractor with t-error tolerance. Note the helper string along
with the extracted randomness forms the auxiliary input f(w) of the κ-MAC,
our 2t-fuzzy unforgeable κ-MAC construction allows an auxiliary input function
f when f together with a 2t-secure sketch forms a hard-to-invert leakage. There-
fore, although a t-secure sketch is sufficient for constructing a fuzzy extractor
with t-error tolerance, we will use a 2t-secure sketch instead, such that f(w)
along with a 2t-secure sketch must be hard-to-invert.
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Let {SS,Rec} be a 2t-secure sketch, Σ = {Init,Tag,Verify} be a κ-MAC with
2t-fuzzy unforgeability, and Ext be a strong extractor. We present the detailed
construction of robust fuzzy extractor in Fig. 4.

CRS(1λ)

crs ← Init(1λ)

return crs

Gen(crs, w)

ss ← SS(w)

i ←$ {0, 1}s, r ← Ext(w, i)

ς ← Tag(crs, w, (ss, i))

return R = r, P = (ss, i, ς)

Rep(crs, w , P )

w ← Rec(ss, w )

return R ← Ext(w , i), if

dist(w , w ) ≤ t

Verify(crs, w , (ss, i), ς) = 1

return ⊥

Fig. 4. Robust fuzzy extractor from randomness extractor + secure sketch + κ-MAC

Regarding security, we present the following theorem whose formal proof will
be in the full paper.

Theorem 5. Assume {SS,Rec} is an (M, k, k′, 2t)-secure sketch scheme, Ext
is an (n, k′, �)-strong extractor with εext-privacy, and Σ is a κ-MAC with
(n, 2t, εunf)-fuzzy unforgeability w.r.t. W and F and (n, εkpriv, εhv). Then, if W is
all (n, k)-sources, F contains function ensembles implementing SS, and εext < εhv,
the construction in Fig. 4 is an (M, k, �, t)-robust fuzzy extractor with perfect cor-
rectness, ε-privacy and δ-robustness, for any ε > εext + 2εkpriv and δ > εunf .

7 Conclusion and Open Problems

We give the first CRS-dependent (fuzzy) robust extractors with minimal min-
entropy requirement (super-logarithmic) on the source, in the computational
setting. They close the major gap left by the state-of-the-art robust extractors
which require a linear fraction. Along the way, we formulate a new primitive
κ-MAC.

We believe our new robust extractors (and our new tool of κ-MAC) could
have broader applications. Also, converting other fuzzy extractors (not from
secure sketch) into robust fuzzy extractors may be applicable to more general
sources. We leave them all as interesting open problems.
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