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Abstract. The random oracle methodology has proven to be a power-
ful tool for designing and reasoning about cryptographic schemes, and
can often act as an effective bridge between theory and practice. In this
paper, we focus on the basic problem of correcting faulty—or adversari-
ally corrupted—random oracles, so that they can be confidently applied
for such cryptographic purposes.

We prove that a simple construction can transform a “subverted” ran-
dom oracle—which disagrees with the original one at a negligible frac-
tion of inputs—into a construction that is indifferentiable from a random
function. Our results permit future designers of cryptographic primitives
in typical kleptographic settings (i.e., with adversaries who may sub-
vert the implementation of cryptographic algorithms but undetectable
via blackbox testing) to use random oracles as a trusted black box, in
spite of not trusting the implementation. Our analysis relies on a gen-
eral rejection re-sampling lemma which is a tool of possible independent
interest.

1 Introduction

The random oracle methodology [7] has proven to be a powerful tool for designing
and reasoning about cryptographic schemes. It consists of the following two steps:
(i) design a scheme IT in which all parties (including the adversary) have oracle
access to a common truly random function, and establish the security of II in
this favorable setting; (ii) instantiate the random oracle in IT with a suitable
cryptographic hash function (such as SHA256) to obtain an instantiated scheme
IT'. The random oracle heuristic states that if the original scheme IT is secure,
then the instantiated scheme IT’ is also secure. While this heuristic can fail
in various settings [19] the basic framework remains a fundamental design and
analysis tool. In this work we focus on the problem of correcting faulty—or
adversarially corrupted—random oracles so that they can be confidently applied
for such cryptographic purposes.
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Specifically, given a function h drawn from a distribution which agrees in most
places with a uniform function, we would like to produce a corrected version that
has stronger uniformity properties. Our problem shares some features with the
classical “self-checking and self-correcting program” paradigm [9-11]: we wish
to transform a program that is faulty at a small fraction of inputs (modeling an
evasive adversary) to a program that is correct at all points. In this light, our
model can be viewed as an adaptation of the classical theory that considers the
problem of “self-correcting a probability distribution.” Notably, in our setting the
functions to be corrected are structureless—specifically, drawn from the uniform
distribution—rather than heavily structured. Despite that, the basic procedure
for correction and portions of the technical development are analogous.

One particular motivation for correcting random oracles in a cryptographic
context arises from recent work studying security in the kleptographic setting.
In this setting, the various components of a cryptographic scheme may be sub-
verted by an adversary so long as the tampering cannot be detected via black-
box testing. This is a challenging setting for a number of reasons highlighted by
[6,49,50]: one particular difficulty is that the random oracle paradigm is directly
undermined. In terms of the discussion above, the random oracle—which is even-
tually to be replaced with a concrete function—is subject to adversarial subver-
sion which complicates even the first step (i) of the random oracle methodology
above. Our goal is to provide a generic approach that can rigorously “protect”
random oracles from subversion.

1.1 Owur Contributions

We first give two concrete attacking scenarios where hash functions are sub-
verted in the kleptographic setting. We then express the security properties
by adapting the successful framework of indifferentiability [23,41] to our setting
with adversarial subversion. This framework provides a satisfactory guarantee of
modularity—that is, that the resulting object can be directly employed by other
constructions demanding a random oracle. We call this new notion “crooked”
indifferentiability to reflect the role of adversary in the modeling; see below.
(A formal definition appears in Sect. 2.)

We prove that a simple construction involving only public randomness can
boost a “subverted” random oracle into a construction that is indifferentiable
from a random function (Sects.3 and 4). We remark that our technical devel-
opment establishes a novel “rejection re-sampling” lemma, controlling the dis-
tribution emerging from adversarial re-sampling of product distributions. This
may be a technique of independent interest. We expand on these contributions
below.

Consequences of kleptographic hash subversion. We first illustrate the
damages that are caused by using hash functions that are subverted at only a
negligible fraction of inputs with two concrete examples:

(1) Chain take-over attack on blockchain. For simplicity, consider a proof-of-work
blockchain setting where miners compete to find a solution s to the “puzzle”
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h(pre||transactions||s) < d, where pre denotes the hash of previous block, trans-
actions denotes the set of valid transactions in the current block, and d denotes
the difficulty parameter. Here h is intended to be a strong hash function. Note
that, the mining machines use a program h(-) (or a dedicated hardware module)
which could be designed by a clever adversary. Now if h has been subverted so
that h(x||z) = 0 for a randomly chosen z—and h(xz) = h(z) in all other cases—
this will be difficult to detect by prior black-box testing; on the other hand, the
adversary who created h has the luxury of solving the proof of work without
any effort for any challenge, and thus can completely control the blockchain. (A
fancier subversion can tune the “backdoor” z to other parts of the input so that
it cannot be reused by other parties; e.g., h(w||z) = 0 if z = f(w) for a secret
pseudorandom function known to the adversary.)

(2) System sneak-in attack on password authentication. In Unix-style system,
during system initialization, the root user chooses a master password « and the
system stores the digest p = h(«), where h is a given hash function normally
modeled as a random oracle. During login, the operating system receives input
2 and accepts this password if h(z) = p. An attractive feature of this practice
is that it is still secure if p is accidentally leaked. In the presence of klepto-
graphic attacks, however, the module that implements the hash function A may
be strategically subverted, yielding a new function h which destroys the security
of the scheme above: for example, the adversary may choose a relatively short
random string z and define h(y) = h(y) unless y begins with z, in which case
h(zx) = z. As above, h and h are indistinguishable by black-box testing; on
the other hand, the adversary can login as the system administrator using p
and its knowledge of the backdoor z (without knowing the actual password «;,
presenting zp instead).

The model of “crooked” indifferentiability. The problem of cleaning defec-
tive randomness has a long history in computer science. Our setting requires that
the transformation must be carried out by a local rule and involve an exponen-
tially small amount of public randomness (in the sense that we wish to clean a
defective random function h : {0,1}"™ — {0,1}"™ with only a polynomial length
random string). The basic framework of correcting a subverted random oracle is
the following:

First, a function A : {0,1}" — {0,1}"™ is drawn uniformly at random. Then,
an adversary may subvert the function h, yielding a new function h. The sub-
verted function h(x) is described by an adversarially-chosen (polynomial-time)
algorithm H"(x), with oracle access to h. We insist that h(z) # h(z) only at
a negligible fraction of inputs.! Next, the function h is “publicly corrected” to

! We remark that tampering with even a negligible fraction of inputs can have devas-
tating consequences in many settings of interest: e.g., the blockchain and password
examples above. Additionally, the setting of negligible subversion is precisely the
desired parameter range for existing models of kleptographic subversion and secu-
rity. In these models, when an oracle is non-negligibly defective, this can be easily
detected by a watchdog using a simple sampling and testing regimen, see e.g., [49].
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a function hg (defined below) that involves some public randomness R selected
after h is supplied.2

We wish to show that the resulting function (construction) is “as good as”
a random oracle, in the sense of indifferentiability. We say a construction C'
(having oracle access to an ideal primitive H) is indifferentiable from another
ideal primitive F, if there exists a simulator S so that (C¥, H) and (F,S) are
indistinguishable to any distinguisher D. R

To reflect our setting, an H-crooked-distinguisher D is introduced; the H-
crooked-distinguisher D first prepares the subverted implementation H (after
querying H first); then a fixed amount of (public) randomness R is drawn and
published; the construction C uses only subverted implementation H and R.
Now following the indifferentiability framework, we will ask for a simulator
S, such that (CHH(-,R),H) and (F,S¥(R)) are indistinguishable to any H-
crooked-distinguisher D who even knows R. A similar security preserving theo-
rem [23,41] also holds in our model. See Sect. 2 for details.

The construction. The construction depends on a parameter ¢ = poly(n)
and public randomness R = (ry,...,r¢), where each r; is an independent and
uniform element of {0, 1}". For simplicity, the construction relies on a family of
independent random oracles h;(x), for i € {0,...,¢}. (Of course, these can all
be extracted from a single random oracle with slightly longer inputs by defining
hi(x) = h(i,z) and treating the output of h;(x) as n bits long.) Then we define

~ ~ £ ~ ~
hR({E) = ho (@ h1(£C S 7"1)) = ho <§R(.’£)> .

Note that the adversary is permitted to subvert the function(s) h; by choosing
an algorithm H"+(z) so that h;(z) = H" (i, ). Before diving into the analysis,
let us first quick demonstrate how some simpler constructions fail.

Simple constructions and their shortcomings. Although during the stage of man-
ufacturing the hash functions h, = {ﬁi}fzo, the randomness R :=rq,...,r, are
not known to the adversary, they become public in the second query phase. If the
“mixing” operation is not carefully designed, the adversary could choose inputs
accordingly, trying to “peel off” R. We discuss a few examples:

1. hg(z) is simply defined as hy(z & 7). A straightforward attack is as follows:
the adversary can subvert h; in a way that ﬁl(m) = 0 for a random input
m; the adversary then queries m @ r; on BR(-) and can trivially distinguish
h from a random function.

2 We remark that in many settings, e.g., the model of classical self-correcting programs,
we are permitted to sample fresh and “private” randomness for each query; in our
case, we may only use a single polynomial-length random string for all points. Once
R is generated, it is made public and fixed, which implicitly defines our corrected
function h r(+). This latter requirement is necessary in our setting as random oracles
are typically used as a public object—in particular, our attacker must have full
knowledge of R.
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2. hp(z) is defined as hy (x@r1 ) ®ha(2@ry). Now a slightly more complex attack
can still succeed: the adversary subverts hy so that hy(z) = 0 if = = m||*,
that is, when the first half of x equals to a randomly selected string m with
length n/2; likewise, hy is subverted so that hg(z) = 0 if 2 = *||m, that is,
the second half of x equals m. Then, the adversary queries my||ms on iLR(-),
where m; = m ® 71,0, and my = m @ ro 1, and 7y o is the first half of r;, and
r9.1 is the second half of rp. Again, trivially, it can be distinguished from a
random function.

This attack can be generalized in a straightforward fashion to any ¢ < n/A:
the input can be divided in into consecutive substrings each with length A,
and the “trigger” substrings can be planted in each chunk.

Challenges in the analysis. To analyze security in the “crooked” indifferentia-
bility framework, our simulator needs to ensure consistency between two ways
of generating output values: one is directly from the construction C# " (z, R);
the other calls for an “explanation” of F—a truly random function—via recon-
struction from related queries to H (in a way consistent with the subverted
implementation H ). To ensure a correct simulation, the simulator must suitably

answer related queries (defining one value of C# " (z,R)). We develop a theo-
rem establishing an unpredictability property of the internal function gr(z) to
guarantee the success of simulation. In particular, we prove that for any input z
(if not yet “fully decided” by previous queries), the output of gr(x) is unpred-
icatable to the distinguisher even if she knows the public randomness R (even
conditioned on adaptive queries generated by 13)

Section 4 develops the detailed security analysis for the property of the inter-
nal function gr(x). The proof of correctness for this construction is complicated
by the fact that the “defining” algorithm H is permitted to make adaptive
queries to A during the definition of h; in particular, this means that even when
a particular “constellation” of points (the h;(z @ r;)) contains a point that is
left alone by H (which is to say that it agrees with h;()) there is no guarantee
that @, hi(x @ r;) is uniformly random. This suggests focusing the analysis on
demonstrating that the constellation associated with every x € {0,1}™ will have
at least one “good” component, which is (i.) not queried by H”(-) when eval-
uated on the other terms, and (ii.) answered honestly. Unfortunately, actually
identifying such a good point with certainty appears to require that we examine
all of the points in the constellation for z, and this interferes with the standard
“exposure martingale” proof that is so powerful in the random oracle setting
(which capitalizes on the fact that “unexamined” values of h can be treated as
independent and uniform values).

To sidestep this difficulty, we prove a “resampling” lemma, which lets us
examine all points in a particular constellation, identify one “good” one of inter-
est, and then resample this point so as to “forget” about all possible conditioning
this value might have. The resampling lemma gives a precise bound on the effects
of such conditioning.
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Immediate applications: Our correction function can be easily applied to
save the faulty hash implementation in several important application scenarios,
as explained in the motivational examples.

(1) For proof-of-work based blockchains, as discussed above, miners may rely on
a common library h for the hash evaluation, perhaps cleverly implemented
by an adversary. Here h is determined before the chain has been deployed.
We can then prevent the adversary from capitalizing on this subversion by
applying our correction function. In particular, the public randomness R can
be embedded in the genesis block; the function hg(-) is then used for mining
(and verification) rather than h.

(2) The system sneak-in can also be resolved immediately by applying our cor-
recting random oracle. During system initialization (or even when the oper-
ating system is released), the system administrator generates some random-
ness I? and wraps the hash module % (potentially subverted) to define hr(-).
The password « then gives rise to the digest p = hgr(«) together with the
randomness R. Upon receiving input x, the system first “recovers” iLR(~)
based on the previously stored R, and then tests if p = h r(z). The access
will be enabled if the test is valid. As the corrected random oracle ensures
the output to be uniform for every input point, this remains secure in the
face of subversion.?

1.2 Related Work

Related work on indifferentiability. The notion of indifferentiability was proposed
by Maurer et al. [41], as an extension of the classical concept of indistinguisha-
bility when one or more oracles are publicly available (such as a random oracle).
It was later adapted by Coron et al. [23] and generalized to several other variants
in [29,33,34,47,53]. Notably, a line of elegant work demonstrated the equivalence
of the random oracle model and the ideal cipher model; in particular, the Feistel
construction (with a small constant number of rounds) is indifferentiable from
an ideal cipher, see [24-26]. Our work adapts the indifferentiability framework
to the setting where the construction uses only a subverted implementation,
which we call “crooked indifferentiability,” where the construction aims to be
indifferentiable from another repaired random oracle.

Related work on self-correcting programs. The theory of program self-testing,
and self-correcting, was pioneered by the work of Blum et al. [9-11]. This the-
ory addresses the basic problem of program correctness by verifying relationships
between the outputs of the program on randomly selected inputs; a similar prob-
lem is to turn an almost correct program into one that is correct at every point
with overwhelming probability. Rubinfeld’s thesis [48] is an authoritative survey
of the basic framework and results. Our results can be seen as a distributional
analogue of this theory but with two main differences: (i). we insist on using

3 Typical authentication of this form also uses password “salt,” but this doesn’t change
the structure of the attack or the solution.
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only public randomness drawn once for the entire “correction”; (ii). our target
object is a distribution, rather than a particular function.

Related work on random oracles. The random oracle methodology [7] can signif-
icantly simplify both cryptographic constructions and proofs, even though there
exist schemes which are secure using random oracles, but cannot be instanti-
ated in the standard model, [19]. On the other hand, efforts have been made to
identify instantiable assumptions/models in which we may analyze interesting
cryptographic tasks [4,12-14,16,18,20,39]. Also, we note that research efforts
have also been made to investigate weakened idealized models [37,38,40,45].
Finally, there are several recent nice works about random oracle in the auxiliary
input model (or with pre-processing) [31,51]. Our model shares some similarities
that the adversary may embed some preprocessed information into the subverted
implementation, but our subverted implementation can further misbehave. Our
results strengthen the random oracle methodology in the sense that using our
construction, we can even tolerate a faulty hash implementation.

Related work on kleptographic security. Kleptographic attacks were originally
introduced by Young and Yung [54,55]; In such attacks, the adversary pro-
vides subverted implementations of the cryptographic primitive, trying to learn
secret without being detected. In recent years, several remarkable allegations of
cryptographic tampering [42,46], including detailed investigations [21,22], have
produced a renewed interest in both kleptographic attacks and in techniques
for preventing them [1-3,5,6,8,15,27,28,30,32,43,49,50,52]. None of those work
considered how to actually correct a subverted random oracle.

Concurrently, Fischlin et al. [36] also considered backdoored (keyed) hash
functions, and how to immunize them particularly for the settings of HMAC
and HKDF. They focused on preserving some weaker property of weak pseu-
dorandomness for the building block of the compression function. We aim at
correcting all the properties of a subverted random oracle, and moreover, our
correction function can be applied to immunize backdoored public hash func-
tions, which was left open in [36].

Similar constructions in other context. Our construction follows the simple intu-
ition by mixing and input and output by XORing multiple terms. This share
similarities in constructions in several other scenarios, e.g., about hardness ampli-
fication, notably the famous Yao XOR lemma, and for weak PRF [44]; and ran-
domizers in the bounded storage model [35]. Our construction has to have an
external layer of hg to wrap the XOR of terms, and our analysis is very different
from them due to that our starting point of a subverted implementation.

2 The Model: Crooked Indifferentiability

2.1 Preliminary: Indifferentiability

The notion of indifferentiability introduced by Maurer et al. [41] has been found
very useful for studying the security of hash function and many other primitives,
especially model them as idealized objectives. This notion is an extension of the
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classical notion of indistinguishability, when one or more oracles are publicly
available. The indifferentiability notion in [41] is given in the framework of ran-
dom systems providing interfaces to other systems. Coron et al. [23] demonstrate
an equivalent indifferentiability notion for random oracles but in the framework
of Interactive Turing Machines (as in [17]). The indifferentiability formulation
in this subsection is essentially taken from [23]. In the next subsection, we will
introduce our new notion, crooked indifferentiability.

Defining indifferentiability. We consider ideal primitives. An ideal primitive is
an algorithmic entity which receives inputs from one of the parties and returns
its output immediately to the querying party. We now proceed to the definition
of indifferentiability [23,41]:

Definition 1 (Indifferentiability [23,41]). A Turing machine C with oracle
access to an ideal primitive G is said to be (tp,ts,q, €)-indifferentiable from an
ideal primitive F, if there is a simulator S, such that for any distinguisher D, it
holds that :

[Pr[DYY = 1] - Pr[D”° =1]| <.

The simulator S has oracle access to F and runs in time at most ts. The distin-
guisher D runs in time at most tp and makes at most q queries. Similarly, CY is
said to be (computationally) indifferentiable from F if € is a negligible function
of the security parameter X (for polynomially bounded tp and ts). See Fig. 1.

A -~ 7
\\ // //

~
N
~
~ ~ -
- ~ - -

- - _ _ N~ - ===

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algo-
rithm C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm
C has oracle access to G, while simulator S has oracle access to F.

As illustrated in Fig.1, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C' and
G, or with F and §; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F. Note that normally the simulator
does not see the distinguisher’s queries to F; however, it can call F directly when
needed for the simulation.
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Replacement. Tt is shown in [41] that if CY is indifferentiable from F, then CY
can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [41] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment £ which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C' (which has oracle access to G), whereas attacker A has oracle
access to G. In the F model, both P and S4 (the simulator) has direct oracle
access to F. The definition is illustrated in Fig. 2.

—(]

1

)
820
)
)
b

Fig. 2. The environment £ interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and S have oracle access to F.

Definition 2. A cryptosystem P is said to be at least as secure in the G model
with algorithm C, as in the F model, if for any environment € and any attacker
A in the G model, there exists an attacker S4 in the F model, such that:

Pr[E(PC, A9) = 1] - PrlE(PT,8]) =1] <€

where € is a negligible function of the security parameter A, and the notation
E(PY, A9) defines the output of € after interacting with P, A as on the left side
of Fig. 2 (similarly we can define the right hand side). Moreover, a cryptosys-
tem is said to be computationally at least as secure, etc., if £, A and S are
polynomial-time in \.

We have the following security preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains:
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Theorem 1 ([23,41]). Let P be a cryptosystem with oracle access to an ideal
primitive F. Let C be an algorithm such that C9 is indifferentiable from F.
Then cryptosystem P is at least as secure in the G model with algorithm C as
in the F model.

2.2 Crooked Indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A ran-
dom oracle [7] is an ideal primitive which provides a random output for each
new query, and for the identical input queries the same answer will be given.
Next we will formalize a new notion called crooked indifferentiability to charac-
terize subversion. For simplicity, our formalization here is for random oracles, we
remark that the formalization can be easily extended for other ideal primitives.

Crooked indifferentiability for random oracles. Let us briefly recall our
goal: as mentioned in the Introduction, we are considering to repair a sub-
verted/faulty random oracle, such that the corrected construction can be used
as good as a random oracle. It is thus natural to consider the indifferentiability
notion. However, we need to adjust the notion to properly model the subversion
and to avoid trivial impossibility.

We use H to denote the original random oracle and H, to be the subverted
implementation (where z could be the potential backdoor hardcoded in the
implementation and we often ignore it using H for simplicity). There will be
several modifications to the original indifferentiability notion. (1) The deter-
ministic construction C' will have the oracle access to the random oracle via the
subverted implementation H, not via the original ideal primitive H; This creates
lots of difficulty (and even impossibility) for us to develop a suitable construc-
tion. For that reason, the construction is allowed to access to trusted but public
randomness r (see Remark 1 below). (2) The simulator will also have the ora-
cle access to the subverted implementation H and also the public randomness
r. Item (2) is necessary as it is clearly impossible to have an indifferentiability
definition with a simulator that has no access to H, as the distinguisher can
simply make query an input such that C will use a value that is modified by
H while S has no way to reproduce it. More importantly, we will show below
that, the security will still be preserved to replace an ideal random oracle with
a construction satisfying our definition (with an augmented simulator). We will
prove the security preserving (i.e., replacement) theorem from [23,41] similarly
with our adapted notions. (3) To model the whole process of the subversion and
correction, we consider a two-stage adversary: subverting and distinguishing. For
simplicity, we simply consider them as parts of one distinguisher, and do not use
separate the notations and state passing.

Definition 3 (H-crooked indifferentiability). Consider a distinguisher D
and the following multi-phase real execution. Initially, the distinguisher D who
has oracle access to ideal primitive H, publishes a subverted implementation of H
(denoted as I:I) Secondly, a uniformly random string r is sampled and published.
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Thirdly, a deterministic construction C' is then developed: the construction C
has random string r as input, and has the oracle access to H (the crooked version
of H). Finally, the distinguisher ﬁ, also having random string r as input, and
the oracle access to the pair (C,H), returns a decision bit b. Often, we call ﬁ,
the H-crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H-crooked-distinguisher D. In the ideal execution, ideal primitive F 1is
provided. The first two phases are the same (as that in the real execution). In
the third phase, a simulator S will be developed: the simulator has a random
string r as input, and has the oracle access to ﬁ,/\as well as the ideal primitive
F. In the last phase, the H-crooked-distinguisher D, after having random string
r as input, and having the oracle access to an alternative pair (F,S), returns a
decision bit b.

We say that construction C, is (t5,1s,q,€)-H-crooked-indifferentiable from
ideal primitive F, if there is a simulator § so that for any H-crooked-
distinguisher D (let w be the coins of D), it satisfies that the real execution
and the ideal execution are indistinguishable. Specifically,

Pr {H — D DOy = 1] - Pr [H D DT\ ) = 1” <e(N).

w,r,H u,r,F

Here H : {0,1}* — {0,1}* and F : {0,1}* — {0,1}* denote random func-
tions. See Fig. 3 for detailed illustration of the last phase in both real and ideal
executions (the distinguishing).

S
() | (—e

Fig. 3. The H-crooked indifferentiability notion: the distinguisher ﬁ, in the first phase,
manufactures and publishes a subverted implementation denoted as H , for ideal prim-
itive H; then in the second phase, a random string r is published; after that, in the
third phase, construction C, or simulator S is developed; the H-crooked-distinguisher
ﬁ in the last phase, either interacting with algorithm C' and ideal primitive H, or with
ideal primitive 7 and simulator S, return a decision bit. Here, algorithm C' has oracle
access to H, while simulator S has oracle access to F and H.
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Remark 1 (The necessity of public randomness). Tt appears difficult to achieve
feasibility without randomness. Intuitively: suppose the corrected hash is repre-
sented as g(H(f(x))), ie., g(), f(-) are correction functions, f will be applied

to each input x before calling H , and g will be further applied to the corre-
sponding output; then the attacker can plant a trigger using f(z) for a random
backdoor z, such that H (f(z)) = 0. It is easy to see that the attacker who has
full knowledge of (z, g(0)) and can use this pair to distinguish, as F(z) would be
a random value that would not hit g(0) with a noticeable probability. Similarly,
we can see that it is also infeasible if the randomness is generated before the
faulty implementation is provided. For this reason, we allow the model to have
a public randomness that is generated after H is supplied, but such randomness
would be available to everyone, including the attacker.

Remark 2 (Comparison with preprocessing). There have been several recent nice
works [31,51] about random oracle with preprocessing, in which the adversary
can have some auxiliary input compressing the queries. While in the first phase
of our model, we also allow the adversary to generate such an auxiliary string
as part of the backdoor z (or part of the instruction of H). We further allow
the crooked implementation to deviate from the original random oracle. In this
sense, the preprocessing model for random oracle can be considered to defend
against a similar attacker than us, but the attacker would provide an honest
implementation (only treating the backdoor as the auxiliary input). We note
that their construction using simple salting mechanism [51] cannot correct a
subverted random oracle as in our model: the distinguisher plants a trigger z into
the inputs that H(z||*) = 0 for a randomly chosen z. In this way, the salt would
be subsumed into the * part and has no effect on the faulty implementation.

Remark 3 (Extensions). For simplicity, our definition is mainly for random ora-
cle. It is not very difficult to extend our crooked indifferentiability notion to the
other setting such as ideal cipher, as long as we represent the interfaces properly,
while the multi-phase executions can be similarly defined. Another interesting
extension is to consider a global random oracle (while in the current definition,
there would be an independent instance in the real and ideal execution). We
leave those interesting questions to be explored in future works.

Replacement with crooked indifferentiability. Security preserving
(replacement) has been shown in the indifferentiability framework [41]: if CY
is indifferentiable from F, then CY9 can replace F in any cryptosystem, and
the resulting cryptosystem in the G model is at least as secure as that in the
F model. We next show that the replacement property can also hold in our
crooked indifferentiability framework. Recall that, in the “standard” indifferen-
tiability framework [23,41], a cryptosystem can be modeled as an Interactive
Turing Machine with an interface to an adversary 4 and to a public oracle.
There the cryptosystem is run by a “standard” environment & (see Fig.2). In
our crooked indifferentiability framework, a cryptosystem also has the interface
to an adversary A and to a public oracle. However, now the cryptosystem is run
by a environment £ that can “crook” the oracle.
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Consider an ideal primitive G. Similar to the G-crooked-distinguisher, we
can define thg G-crooked-environment &£ as follows: Initially, the G-crooked-
environment £ manufactures and then publishes a subverted implementation
of the ideal primitive G, denoted as Q Then & runs the attacker A, and the
cryptosystem P is developed. In the G model, cryptosystem P has oracle access
to C whereas attacker A has oracle access to G; note that, C has oracle access
to G, not directly to G. In the F model, both P and S4 (the simulator) have ora-
cle access to F. Finally, the G-crooked-environment & returns a binary decision

output. The definition is illustrated in Fig. 4.
.
:

Fig. 4. The environment & interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C' (who has oracle access to G) whereas A has
oracle access to G; In the F model, both P and S4 have oracle access to F.

'SR

Definition 4. Consider ideal primitives G and F. A cryptosystem P is said to
be at least as secure in the Q—crookgd model with algorithm C' as in the F model,
if for any G-crooked-environment £ and any attacker A in the G-crooked model,
there exists an attacker Sy in the F model, such that:

PrE(PC°, A%) = 1] - PIE(PT,8%) = 1] < .

where € is a negligible function of the security parameter A\, and éA’(PCé,.Ag)
describes the output of € running the experiment in the G-world (the left side of
Fig.}), and similarly for E(P¥,8%).

We now demonstrate the following theorem which shows that security is
preserved when replacing an ideal primitive by a crooked-indifferentiable one:

Theorem 2. Let P be a cryptosystem with oracle access to an ideal primitive
F. Let C be an algorithm such that CY9 is crooked-indifferentiable from F. Then
cryptosystem P is at least as secure in the G-crooked model with algorithm C as
in the F model.



254 A. Russell et al.

Proof. The proof is very similar to that in [23,41]. Let P be any cryptosystem,
modeled as an Interactive Turing Machine. Let & be any crooked-environment,
and A be any attacker in the G-crooked model. In the G-crooked model, P has
oracle access to C' (who has oracle access to G, not directly to G .), whereas A has
oracle access to ideal primitive G; moreover, the crooked-environment & interacts
with both P and A. This is illustrated in Fig. 5 (left part).

Since C is crooked-indifferentiable from F (see Fig.3), one can replace
(C9,G) by (F,S) with only a negligible modification of the G-crooked-
environment £’s output distribution. As illustrated in Fig. 5, by merging attacker
A and simulator S, one obtains an attacker S 4 in the 7 model, and the difference
in £’s output distribution is negligible. O

Fig. 5. Construction of attacker S4 from attacker A and simulator S.

3 The Construction

Now we proceed to give the construction. Given subverted implementations of
the hash functions {h;};=o.... ¢, (the original version of each is h;(-) could be
considered as h(i,-)), the corrected function is defined as:

¢
hr(z) = ho(gr(z)) = ho (EB hi(x ® rl)>
i=1
where R = (rq,...,r) are sampled uniformly after {h;(-)} is provided, and then

revealed to the public, and the internal function gr(-) is defined below:

4
gr(@) = P hi(z or).
i=1
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We wish to show that such a construction will be indifferentiable to an actual
random oracle (with the proper input/output length). This implies that the
distribution of values taken by iLR(~) at inputs that have not been queried have
negligible distance from the uniform distribution.

Theorem 3. Suppose h : {0,...,¢} x {0,1}"* — {0,1}™ defines a family of
random oracles h; : {0,1}™ — {0,1}" as h(3,-), fori=0,...,¢, and £ > 3n+1.
Consider a (subversion) algorithm H and H"(z) defines a subverted random
oracle h. Assume that for every h (and every i),

Pr  [h(i,z) # h(i,x)] = negl(n). (1)

ze{0,1}m

The construction iLR(’) is (tp,ts,q, €)-indifferentiable from a random oracle
F :{0,1}" — {0,1}", for any ts, with ts = poly(q), € = negl(n) and q is the
number of queries made by the distinguisher D as in Definition 3.

Roadmap for the proof. We first describe the simulator algorithm. The main
challenge for the simulator is to ensure the consistency of two ways of generat-
ing the output values of hr(-), (it could also be reconstructed by querying the
original random oracle directly together with the subverted implementation % to
replace the potentially corrupted terms). The idea for simulation is fairly simple:
for an input z, F'(z) would be used to program hy on input gr(x).

There are two obstacles that hinder the simulation: (1) for some z, hg has
been queried on gr(x) before the actual programing step, thus the simulator has
to abort; (2) the distinguisher queries on some input x such that gr(z) falls into
the incorrect portion of inputs to ho.

To bound the probability of these two events, we first establish the property
of the internal function gg(-) that no adversary can find an input value that
falls into a small domain (or for any input x, the output is unpredicatable to the
adversary if he has not made any related queries.). See Theorem 4 below. Note
that the bound is conditioned on adaptive queries of the distinguisher.

Theorem 4 (Informal). Suppose the subverted implementation disagrees with
the original oracle at only a negligible fraction of inputs, then with an over-
whelming probability in R, conditioned on the h(q1),...,h(qs) (made by any D),
for all x outside the “queried” set {t | h;(t ® r;) was queried}, and every event
E c {0,1}",

f;r[gR( z) € E] < poly(n)y/Pr[E] + negl(n

In particular, if |E| is exponentially small in {0,1}", the probability gr(x)
falls into E would be negligible for any x.

Next, our major analysis will focus on proving this theorem for gr(-).

We first set down and prove a “rejection resampling” lemma. This is instru-
mental in our approach to Theorem 5 (the formal version of Theorem 4), show-
ing that this produces unpredictable values, even to an adaptive adversary with
access to the (public) randomness R;
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Surveying the proof in more detail, recall that a value gr(x) is determined
as the XOR of a “constellation” of values @ h;(z @ r;); intuitively, if we could
be sure that (a) at least one of these terms, say x @ r;, was not queried by
H"(-) when evaluated on the other terms and, (b) this isolated term z @ r; was
answered “honestly” (that is, h;(z ® r;) = hi(z ® r;)), then it seems reasonable
to conclude that the resulting value, the XOR of the results, is close to uniform.

However, applying this intuition to rigorously prove Theorem 5 faces a few
challenges. Perhaps the principal difficulty is that it is not obvious how to “par-
tially expose” the random oracle h to take advantage of this intuition: specifically,
a traditional approach to proving such strong results is to expose the values taken
by the h(z) “as needed,” maintaining the invariant that the unexposed values
are uniform and conditionally independent on the exposed values.

In our setting, we would ideally like to expose all but one of the values of a
particular constellation {h;(z@®r;)} so as to guarantee that the last (unexposed)
value has the properties (a) and (b) above. While randomly guessing an ordering
could guarantee this with fairly high probability ~ 1 — 1/¢ we must have such a
favorable event take place for all x, and so must somehow find a way to guarantee
exponentially small failure probabilities. The rejection resampling lemma,
discussed above, permits us to examine all the points in a particular constel-
lation, identify a good point (satisfying (a) and (b)) and then “pretend” that
we never actually evaluated the point in question. In this sense, the resampling
lemma quantifies the penalty necessary for “unexposing” a point of interest.

A less challenging difficulty is that, even conditioned on h;(x®r;) = h;(x®r;),
this value may not be uniform, as the adversary may choose to be “honest”
based on some criteria depending on x or, even, other adaptively-queried points.
Finally, of course, the subversion algorithm H h(.) is fully-adaptive, and only
needs to disrupt gr(x) at a single value of x.

4 Security Proof

We begin with an abstract formulation of the properties of our construction and
the analysis, and then transition to the detailed description of the simulator
algorithm and its effectiveness.

4.1 The Simulator Algorithm

The main task of the simulator is to ensure the answers to {h;}-queries to be
consistent with the value of F(-), since for each input z, hp(z) is determined by
a sequence of related queries to {h;} and H , (or simply the backdoor z) and the
value of R. The basic idea is to program the external layer hy using values of
F(z), such that the value F'(x) is set for ho(gr(z)). The value gr(z) is obtained
by S executing the subverted implementations {h;}.

Let us define the simulator S (answering queries in two stages) as below:

In the first stage, A makes random oracle queries when manufacturing the
subverted implementations {Bi}izo,m,g.
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On input queries z1, ..., x4, (at A’s choice on which random oracle to query)
that A makes before outputting the implementations (and the backdoor), S
answers all those using uniform strings respectively. S maintains a table. See
Table 1. (w.l.o.g, we simply assume the adversary asks all the hash queries for
each value z;, if not, the simulator asks himself to prepare the table.) S and D
also both receive a random value for R.

Table 1. RO queries in phase-I

RO query x; | ho(xs) | hi(zi) | ... | he(z:)
T V1,0 V1,1 A W)
x2 V2,0 V2,1 - V2,0
Lqy Vq1,0 | VUqy,1 |---| Ugqy,t

In the second stage, the distinguisher D now having input R, will ask both
queries to the construction and the random oracles. The simulator S now also
has these extra information of R and oracle access to the implementation & and
will answer the random oracle queries to ensure consistency. In particular:

On input query m; to the kj-th random oracle hy;, S defines the adjusted
query m;- :=m; ©ry;, and prepares answers for all related queries, i.e., for each
1, the input m;- @ r; to h;; and the input §R(m;) to ho.

— If kj > 0:
S runs the implementation h; on m;@&r; =m;&ry, &ry, foralli € {1,..., 0},
to derive the value gr(m';) = @521 ﬁz(m; @®r;). During the execution of &; on
those inputs, S also answers the random oracle queries (or read from Table 1)
on those values if the implementation makes any. In more detail,

1. S first checks in both tables whether m;- @ r; has been queried for h;
(Table2 first), if queried in either of them, S returns the corresponding
answer; if not queried, S simply returns a random value u;; as answer
and records it in Table 2;

2. § checks whether gr(m/) has been queried for ho. If not, S queries F
on m/ and gets a response F'(mj). S then checks whether m/ has been
queried in stage-1, (i.e., check Table 1). If yes and the corresponding value
vj0 does not equal to F'(m}), S aborts; otherwise, S sets I'(m}) = u;
as the answer for ho(gr(m)).

~Ifk;=0:
S checks whether m; has been queried for hg in stage-II, i.e., there exists an
my, in Table 2 such that gr(m;) = m;. If yes, S simply uses the corresponding
value u; o as answer; If not, S checks whether it has been queried in stage-I,
S returns the value of v;¢ if m; has been queried. Otherwise, S chooses a
random value v; ¢ as the response and records it in Table 2.
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Table 2. Phase-II queries: The headers are adjusted random oracle queries m, =
m; @ 1k, if m; is queried for hg,, and u;,0 = F(m;).

Adjusted query m; | hi(m; ®r1) | ... he(m) D re) | gr(ms) | ho (QR(m;)>
my =mi B ri, Ui 1 U0 gr(my) Uu1,0
le =ma D Tk, U2,1 L. U2, ¢ gR(m’Q) u2,0
Mg = Mg @ Tx, Ug,1 . Uq,e gr(my) Uq,0

Probability analysis. Let us define the event that S aborts as Abort. According
to the description, & aborts only when the distinguisher D finds an input m
such that the gr(m) = = has either been queried for hg in stage-I, or queried
in stage-II before any of {m & r;}i=1,.. ¢ has been queried for h;. We can define
To = {z|x is queried for ho}, and following Theorem 5 (to be proven below),
Pr[Abort] < |2T—S| < 4E8 < negl(n) for any polynomially large ¢, q1.

We also define the event Bad as that the distinguisher finds an input m, such
that ho(gr(m)) # ho(gr(m)), also we define Ty = {ml|ho(gr(m)) # ho(gr(m))}.
Following Theorem 5, Pr[Bad] < gﬁ,l + negl(n) < negl(n). The latter inequality
comes from the condition & disagrees with k only at negligible fraction of inputs.

Furthermore, it is easy to see, conditioned on S does not abort, and Bad does
not happen, the simulation is perfect.

In the rest of the paper, we will focus on proving our main theorem about
the property of the internal function gr(-).

4.2 A Rejection Resampling Lemma

We first prove a general rejection re-sampling lemma, and use it as a machinery to
prove our main theorem for gr(-). Let {21, ..., 2 be a family of sets and let 2 =
27 X -+ x 2. We treat {2 as a probability space under the uniform probability
law: for an event E C §2, we let u(E) = |E|/|f2| denote the probability of E. For
an element x = (z1,...,2) € 2 and an index 4, we define the random variable
Rix = (x1,...,%i-1,Y,Ti+1,---,Txk) where y is drawn uniformly at random from
£2;. We say that such a random variable arises by “resampling” z at the index 1.

We consider the effect that arbitrary “adversarial” resampling can have on
the uniform distribution. Specifically, for a function A : 2 — {1,...,k}, we con-
sider the random variable R 4(x)X, where X is a uniformly distributed random
variable and the index chosen for resampling is determined by A (as a function
of X). By this device, the function A implicitly defines a probability law @4 on
{2, where the probability of an event E is given by

MA(E) = PI"[RA(X)X S E} .
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Lemma 1 (Rejection re-sampling). Let X be a random variable uniform on
D=0 x---x . Let A: 2 — {1,...,,k} and define Z = RayxyX and pa as
above. Then, for any event F,

u(E)?
k

Remark 4. Jumping ahead, such a resampling lemma will be used to define a
good event E such that one term of Bl(x @ r;) will be uniformly chosen (not
correlated with any other term), thus yields a uniform distribution for the sum-
mation. The actual adversarial distribution p4(FE) is thus bounded not too far
from u(E). Let us first prove this useful lemma.

< pa(E) <k-p(E).

Proof. Consider an event E C X. To simplify our discussion of the adver-
sarial resampling process discussed above, we remark that the random vari-
ables R;X and R,x)X can be directly defined over the probability space
§2 x §2: Consider two independent random variables, X and Y, each drawn
uniformly on §2; then, for any ¢ the random variable R; X can be described
(Xl, [N 7Xi—17)/;aXi+17 [N ,Xk) and RA(X)X = (Zl, ey Zk) where

7. Y, ifi=A(X),
e X; otherwise.
Note that for any fixed i, the probability law of R;X is the uniform law on (2.
Upper bound. It follows that for an event E
pwa(E) )](.?’{/[RA(X)X €El < )E{/[HZ,RZX €EE| <k -uE),

which establishes the claimed upper bound on pa(F).
Lower bound. As for the lower bound, define
B, ={z € 2] Ax) =1} and E;=FENB,.
As the B;, E; partition {2, E respectively, and >, pa(E;) = pa(E). Observe that

= 1> . ) )
Pr [Rax)X € E] Z Pr [Ra()X € E;] > Z )Ery[x € B; and R; X € Ej

> Pr[X € E; X € F;.
_ZXg/[ € F; and R; X € E|]
(2)
To complete the proof, we will prove that for any 7 and for any event F
PriXeFandRiX € F]> Pr[F]?. (3)
Putting aside the proof of (3) for a moment, observe that applying (3) to the
events E; in the expansion (2) above yields the following by Cauchy-Schwarz.

Pr[E)?
k

> ]2 >
PriRacoX € E] > ;Pr[EZ] >
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Finally, we return to establish (3). Observe that for an event F,

Prxy[X € Fand R; X € F|

= > PrXeFandRX € F |Vj#i,X; =a;]Pr[Vj #4, X; = a;].

(The leading 1/|2;| term cancels the sum over x;, which not referenced in the
argument of the sum.) Under such strong conditioning, however, the two events
X € F and R; X € F are independent and, moreover, have the same probability.
(Conditioned on the other coordinates, the event depends only on coordinate 4
of the result that is uniform and independent for the two random variables.) As

1

Pr[Vj;éi,Xj:x]—H XN
i#£]

we may rewrite the sum above as

PI‘X,y[X € Fand R; X € F]

1 1
= Y PiXeFandRX€F|Vj#i,X;=u;] =———
| il (x 1) ER Hz#] |‘(2 |
1yeesThe
1 .,
= Y PrX €Fand RX €F|Vj#i,X; =]
(zl,.‘.,wk)EQ
1 . .
=@ Y PiX eF|Vj#iX; =)
(1.2 )ENR
2
1 .
>op| X PIXeFIi£iX =w]| = Px e FP,
($1,--~,$k)€9
where the inequality is Cauchy-Schwarz. O

We remark that these bounds are fairly tight. For the lower bound—the case
of interest in our applications—let F; C {2; be a family of events with small
probability € and E = {(w1,...,wk,wrt+1) | Funiquei < k,w; € E;} C []; Y
When e < 1/k, Pr[E] = ke whlle Pr[Ryx)X € E] = keé* = (ke)?/k for the
strategy which, in case the event occurred, redraws the offending index and,
in case the event did not occur, redraws the k£ + 1st “dummy” index. For the
upper bound, consider an event F consisting of a single point x in the hypercube
{0,1}*; then Pr[E] = 27% and Pr[Ra(x)X € E] > 27%(k + 1)/2 for the strategy
which re-randomizes any coordinate on which the sample and z disagree (the
strategy can be defined arbitrarily on the point x itself).
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4.3 Establishing Pointwise Unpredictability

In this section, we focus our attention on the “internal” function (for ¢ > 3n)

L
gr(z) = @}Nzi(x ®ri).

In particular, we will prove that for each x, the probability that the adversary
can force the output of gr(x) to fall into some range F is polynomial in the
density of the range (that is, the probability that a uniform element lies in E).
Thus, the output will be unpredictable to the adversary if she has not queried
the corresponding random oracles.

Intuition about the analysis. As discussed above, we want to show that for
every x, there exist at least one term h; (x®r;) satisfying: (i) h;(x®r;) is answered
honestly (that is, ks (x@®r;) = hi(x®r;); (ii) hi(x@r;) is not correlated with other
terms. In order to ensure condition (ii), we proceed in two steps. We first turn to
analyze the probability that h;(z@r;) has not been queried by H" (x@r;) for all
other index j. This is still not enough to demonstrate perfect independence, as
the good term is subject to the condition of (i), but it suffices for our purposes. As
discussed above, for analytical purposes we consider an exotic distribution that
calls for this “good” term to be independently re-sampled and apply rejection
re-sampling lemma to ensure the original (adversarial) distribution is not too far
from the exotic one. We first recall the theorem for the internal function:

Theorem 5. Suppose h : {0,...,¢} x {0,1}"* — {0,1}"™ defines a family of
random oracles h; : {0,1}™ — {0,1}" as h(3,-), fori=0,...,¢, and £ > 3n+1.
Consider a (subversion) algorithm H and H"(x) defines a subverted random
oracle h. Assume that for every h (and every i),

IG{PO,rl}"[l:L(i,x) # h(i,z)] = negl(n).

Then, with overwhelming probability in R, h, and conditioned on the h(q),. ..,
h(gs) (made by any D), for all x outside the “queried” set {t | h;(t ® r;)
was queried} and every event E C {0,1}",

Prlgr(z) € E] < poly(n)/Pr[E] + negl(n).

Proof. Throughout the estimates, we will assume that ¢ > 3n. Here, we overload
the notation h, to denote the collection of functions hq, ..., hy.

We begin by considering the simpler case where no queries are made, and
just focus on controlling the resulting values vis-a-vis a particular event E. At
the end of the proof, we explain how to handle an adaptive family of queries.

Guaranteeing honest answers. First, we ensure that with high probability
in R and hy, for every x, there is a contributing term h;(x @ r;) that is likely (if
the random variable h;(x @ ;) is redrawn according to the uniform distribution)
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to be “honest” in the sense that h;(z @ r;) = hi(x @ r;). The reason that this
simple property does not follow straightforwardly is due to the fact that ?L,-
may adaptively define the “dishonest” points which are not fixed during the
manufacturing of h;.

To begin, let us consider the following random variables defined by random
selection of h, (denoting the {h;}) and R, (later used to bound the number of
dishonest terms):

0 otherwise;

d;(a) = {1 ithi(a) # hi(@), and Di(a) = Ep, (o) ldi(a)] -

(Throughout E[-] denotes expectation. For a given h, and an element «, the
value D;(«) is defined by redrawing the value of h;(«) uniformly at random;
equivalently, D;(«) is the conditional expectation of d;(«) obtained by setting
all other values of h.() except h;(«).) Note that by assumption, for each 1,

Ep, Eo[Di(a)] = Ep, Eq Ep, (o [di(@)] = Ep, Eqldi(a)] <,

where « is chosen uniformly and e is the (negligible) disagreement probability
of (1) above.

We introduce several events that play a basic role in the proof.

- Flat functions. We say that h, is flat if, for each i, E,[D;(a)] < €'/3,
where « is drawn uniformly.

Note that Pr[h, not flat] = Pr[3i € [{], E4[D;(a)] > €/3], thus

Pr[h, not flat] < £-Ey,, Eq[D;(a)]/e'/? = te/®

by Markov’s inequality and the union bound. Further, observe that if h, is flat,
then for any x € {0,1}", any 0 < k < ¢, and random choices of R = {ry,...,7¢},

Er Z HD TOr;) = Z HEHD r@r;) < <£>ek/3< (B3e)k/3

Ic] e] i Ic] e] i
= =
Next, we will use this property to show that with a sufficiently large ¢, e.g.,
¢ = 3n, then for each x, we can find an index ¢ such that D;(z @ r;) is small.
- Honesty under resampling. For a tuple R = (rq,...,7,), functions h,,
and an element x € {0,1}", we say that the triple (R, hy,z) is honest if

S JIDi@er) <25 (e

icle, i
|I|=3n

If R and h, are “universally” honest, which is to say that (R, h., ) is honest for
all z € {0,1}", we simply say (R, h,) is honest. Then I;r[(R, h.) is not honest] =

l;r[ﬂx, (R, hy,x) is not honest] . When h, is flat, we have the following:

. 3n(p3 _\n —2n
%r[(R,h*)ls not honest] < 2" ( E HD x®r;) ) 27" ()™ < 2
Icle, ¢
[I|=3n
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by Markov’s inequality (on the random variable ) ;g [[; Di(z © r;)) and the
[I|=3n
union bound. Observe that if (R, h.) is honest, then for every z,

max Di(z ®r;) < 25" (Be)™.

It follows that, for every set I of size 3n, there exists an element ¢ € I so that

DZ(LL' D ’I“i) < 3\"/ 23"(636)" = 2f\3/g

That said, conditioned on h, being flat, with an overwhelming probability
(that is, 1 — negl(n)) in R, the pair (R, h.) is honest and so gives rise to at least
one small D;(x@®r;) for each x (recall that the smaller D;(«) is, the fewer points
that h; disagrees h;).

Unfortunately, merely ensuring that some term of each “constellation”
{Bl(x @ r;)} is honest with high probability is not enough—it is possible that a
clever adversary can adapt other terms to an honest term to interfere with the
final value of gr(x). The next part focuses on controlling these dependencies.

Controlling dependence among the terms. We now transition to controlling
dependence between various values of h;(z). In particular, for every x we want
to ensure that there exists some i so that h;(z ©7;) was never queried by H"(-)
when evaluated on all other x & r;, i.e., for all j € [{] and j # 1.
Note that the set of queries made by H"*(u) is determined entirely by h, and
u: thus, conditioned on a particular h,, the event (over R) that H"*(u) queries
hs(x @ rs) and the event that H"(u') queries h;(z @ r;) are independent (for
any u,u’ and s # t). We introduce the following notation for these events: for a
pair of indices i, 7 (i # j), we define
Qii(z) = 1 if H" (x ® r;) queries hy(z @ r5),
B ~ 10 otherwise.
In light of the discussion above, for an element x and a fixed value of h,, consider
a subset T C [{] and a function s : T — [{]; we treat such a function as a

representative for the event that each “target” t € T' was queried by a “source”
s(t). (Note that there could be multiple such functions s(-) for T'). We define

Q@) = [[ Qsy—t() -

teT

We also introduce a couple of new notions for the ease of presentation:

- Independent fingerprints. We say that a representative s : T — [{] is
independent if s(T) N'T = (), which is to say that the range of the function lies
in [¢] \ T. For any such independent fingerprint s(-), note that (for any x, h,):

7(n) T
EnlQ-(o)] = En | [ Quosto)| = I Br [Quometo)) < (1)L

2n
teT teT
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where 7(n) denotes the running time (and, hence, an upper bound on the number
of queries) of H"(z) on inputs of length n.

We will next use such notion to bound the number of bad terms that were
queried by some other term.

- Dangerous set. For a fixed z, h,, and R, we say that a set T C [{] is
dangerous if every element ¢ in T is queried by some H" (x @ r;) for i #t.

We claim that if T is a dangerous set then we can always identify an inde-
pendent fingerprint s : T" — [¢] for a subset T/ C T with |T'| > |T|/2.

To see this, we build 7" as follows: write T' = {¢1,...,¢,,} and consider the
elements in order t1, ..., t,,; for each element t;, we add it to 7", if ¢; is queried
by some elements in T, pick one of them, denoted as t; (for j > i), define
s(t;) = t;j, and remove t; from T'. Observe now that (i) each element in 7" maps
to a value (or was queried by a term) outside of 7”; (ii) each element ¢; added
to T removes at most two elements of T' (¢; and s(¢;)), and hence |T"| > |T|/2.

If follows that for a set T the number of such possible independent fingerprints
(whose image is at least half the size of T') is bounded by:

T
3 (' |) (€—1)--- (¢ — m) < 277!
m
m>|T|/2
We conclude from (4) that for any fixed set T' (and any fixed x and h.)

%I“[T is dangerous] <  Pr[Qs(x) occurs for some independent fingerprint]

oI T IT] (Téil))lT/Q _ (452;(n)>T/2 .

IN

By taking the union bound over all sets T of size k, it follows immediately that

F;r [k of the h;(z & r;) are queried by some other {hj(z @ i)} izije)

()5 e () e (55

The above bound guarantees that, for any fixed x, with overwhelming probabil-
ity, there are ¢ — k terms that were never queried by any other terms.
- k-sparsity: Finally, we say that the pair (R, h.) is k-sparse if for all z, the
set of queries made by H"*(x @ r;) includes no more than k of the h;(z @ r;).
Applying the union bound over all 2™ strings « to (5), we conclude that, for
even constant k (say k = 5), we have

4£47’(n) k/2 O (k)
i - < 2™ <2™" .
hli”%[(R, h.) is not k-sparse] < 2 < 5 ) <2

4 We overload the notation a bit, here the elements in 7" simply denote the indices of
the terms.
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With the preparatory work behind us, we turn to guaranteeing that each x
possesses a good term (one that is both well behaved under resampling and not
queried by other terms).

Establishing existence of a good term. Next, we wish to show that for any
event F with Pr[E] = pu(E), and for any x,

hP%[gR( z) € E] < poly(n)/u(E) + negl(n

* 5

In particular, if £ has negligible density, the probability that ggr(z) € F is
likewise negligible.

We say that R is flat-honest if Pry, [(R, h.)not honest | h,is flat] < 27".
Observe that by Markov’s inequality a uniformly selected R is flat-honest with
probability 1 — 27",

We also say R is uniformly-k-sparse if Pry, [(R, h.)is notk — sparse] < 27™.
Assuming k is a sufficiently large constant (e.g., 5), note that by Markov’s
inequality a random R is uniformly-k-sparse with probability 1 — 27",

Now we know that selection of a uniformly random R = (rq,...,r), with
probability 1 — 2"~ is both uniformly-k-sparse (for the constant k discussed
above) and flat-honest. We condition, for the moment, on such a choice of R.
In this case, a random function h, is likely to be both k-sparse and honest: it
follows that for every x there is some term h;(x @ r;) that is not queried by H to
determine the value of the other terms and, moreover, it is equal to ﬁi(:ﬁ@ri) with
an overwhelming probability. We say that such a pair (R, h.) is unpredictable;
otherwise, we say that (R, h,) is predictable.

Er[h* predictable (for R)] = Er[(R, hs) not k-sparse or not honest]
< %’r[(R, hs) not k-sparse] +
I;I’f[(R, h.) not honest and h, flat] +
1;’*1"[(1?,, h.) not honest and h, not flat] ©
< I}FL’r[(R, hs) not k-sparse] +
sz[(R, h.) not honest | h, flat] +
I;’r[h* not flat]
<2427 4 fe2/3

For each x, we can be sure there is at least one term Bl(x @ r;) which is
typically answered according to h;(z @ r;) (i.e., answered honestly) and never
queried by the other terms. Unfortunately, to identify this term, we needed to
evaluate h on the whole constellation of points; the rejection resampling lemma
lets us correct for this with a bounded penalty.
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To complete the analysis, we consider the following experiment: conditioned
on R, consider the probability that gr(x) € E when h, is drawn as follows:

— if (R, h.) is unpredictable, there is a (lexicographically first) index ¢ for which
hi(z & r;) is queried by no other h;(x & r;) and is honest. Now, redraw the
value of h;(x @ r;) uniformly at random.

These rules define a distribution on h, that is no longer uniform. Note, however,
that redrawing h;(x @ r;) does not affect the values of h;(x @r;) (for distinct j);
as gr(xz) = @, hi(x & r;), under this exotic distribution (for any z),

gre) € B| ¢ B0 BSPAISE] < () 4 (227 06207 4 20617,

resampled h.,

where the 2¢¢'/3 term arises because we have only the guarantee that D;(z) <
20e'/3 from the condition on honesty.
However, based on the rejection resampling lemma above, we conclude

Er [gR(x) cE ‘ R unif. k—sparse} < \/g (,u(E) +9.92-n/2 1 3561/3)

& flat honest (7)
< O(WIpu(E) + V24 4 ¢et/s)

and, hence, that
Prlgr(e) € E] <27 +0 ( U(E) + V2 4+ 661/6)
-0 (\/m(E) Vi 461/6) :

where the 27" term comes from the cases that a randomly chosen R is not
flat-honest or universal-k-sparse.

Conditioning on adaptive queries. Finally, we return to the problem of han-
dling adaptive queries. With R and z fixed, the queries generated by Q"+ (R, 2)
depend only on h, and we may ramify the probability space of h according to the
queries and responses of @Q); we say « = ((q1,a1),...,(q,ar)) is a transcript for
Q if Q queries h, at q1,...,q; and receives the responses ay,...,a;. We remark
that if E is an event for which P;Lr[E | R, z] < e, then by considering the natural

martingale given by iterative exposure of values of h, at the points queried by
Q"(R,z), we have that ¢ > Pr[E | R,z] = > Pr[E | a,R,z] - Prla | R,z].
In particular, events with negligible probability likewise occur with negligible
probability for all but a negligible fraction of transcripts a. Thus, the global
properties of h discussed in the previous proof are retained even conditioned on
a typical transcript a.

We require one amplification of the high-probability structural statements
developed above. Note that, with overwhelming probability in R and h, every
constellation {z @ r;} (an argument to h;) contains only a constant number of
points that are queried by more than a 27" fraction of other points in the domain
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of h. (Indeed, the fraction of points in the domain of h, that are queried by
H"(z,z) for at least w(n) values of  can be no more than poly(n)/w(n), where
the polynomial is determined by the running time of H.) We say that a pair R, z
is diffuse if a randomly selected h has this property with probability 1 — 2-"/2;
note that a random pair (R, z) is diffuse with probability 1 —27"/2.

Consider then conditioning on the event that (R, z) is flat-honest, uniformly-
4-sparse, and diffuse; note that in this case, with high probability in h every x
has an member of its constellation which is not queried by other members of
the constellation, only queried by H() at a vanishing fraction of other points in
the domain, and has D;(z @ r;) < 2¢/e. We emphasize that these properties
are global properties, holding for all z in the domain of h. In particular, we can
apply the argument above to any x for which none of the g; touch its constellation
{z @ r;}. This concludes the proof. O

5 Conclusions

We initiate the study of correcting subverted random oracles, where each sub-
verted version disagrees with the original random oracle at a negligible fraction of
inputs. We demonstrate that such an attack is devastating in several real-world
scenarios. We give a simple construction that can be proven indifferentiable from
a random oracle. Our analysis involves developing a new machinery of rejection
resampling lemma which may be with independent interests. Our work provides
a general tool to transform a buggy implementation of random oracle into a
well-behaved one which can be directly applied to the kleptographic setting.
There are many interesting problems worth further exploring, such as better
constructions, correcting other ideal objectives under subversion and more.
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