
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Blockchain-Based P2P Content Delivery with Monetary
Incentivization and Fairness Guarantee

Songlin He , Member, IEEE, Yuan Lu , Qiang Tang , Member, IEEE, Guiling Wang , Fellow, IEEE,
and Chase Qishi Wu , Senior Member, IEEE

Abstract—Peer-to-peer (P2P) content delivery is up-and-coming to provide benefits comprising cost-saving and scalable
peak-demand handling compared with centralized content delivery networks (CDNs), and also complementary to the popular
decentralized storage networks such as Filecoin. However, reliable P2P delivery demands proper enforcement of delivery fairness, i.e.,
the deliverers should be rewarded in line with their in-time delivery. Unfortunately, most existing studies on delivery fairness are on the
basis of non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc P2P setting.
We propose an expressive yet still minimalist security requirement for desired fair P2P content delivery, and give two efficient
blockchain-enabled and monetary-incentivized solutions FairDownload and FairStream for P2P downloading and P2P streaming
scenarios, respectively. Our designs not only ensure delivery fairness where deliverers are paid (nearly) proportional to their in-time
delivery, but also guarantee exchange fairness where content consumers and content providers are also fairly treated. The fairness of
each party can be assured even when other two parties collude to arbitrarily misbehave. Our protocols provide a general design of
fetching content chunk from any specific position so the delivery can be resumed in the presence of unexpected interruption. Further,
our systems are efficient in the sense of achieving asymptotically optimal on-chain costs and optimal delivery communication.
We implement the prototype and deploy on the Ethereum Ropsten network. Extensive experiments in both LAN and WAN settings are
conducted to evaluate the on-chain costs as well as the efficiency of downloading and streaming. Experimental results show the
practicality and efficiency of our protocols.

Index Terms—Content Delivery, Peer-to-Peer, Delivery Fairness, Blockchain Application, Monetary Incentivization

F

1 INTRODUCTION

P EER-to-peer (P2P) content delivery systems are permis-
sionless decentralized services to seamlessly replicate

contents to the end consumers [1]. These systems typically
consist of a large ad-hoc network of deliverers to overcome
the bandwidth bottleneck of the original content providers.
In contrast to giant pre-planned content delivery networks
such as Akamai [2], P2P content delivery can crowdsource
unused bandwidth resources of tremendous Internet peers,
thus having a wide array of benefits including robust service
availability, bandwidth cost savings, and scalable peak-
demand handling [3, 4]. Recently, renewed attentions to P2P
content delivery are gathered [3, 5, 6] due to the fast pop-
ularization of decentralized storage networks (DSNs) [7–
9]. Indeed, DSNs feature decentralized and robust content
storage, but lack well-designed content delivery mechanisms
catering for a prosperous content consumption market in
the P2P setting, where the content shall not only be reliably
stored but also must be always quickly retrievable despite
potentially malicious participants [10].

The primary challenge of designing a proper P2P deliv-

• Songlin He is with Southwest Jiaotong University, Chengdu, Sichuan,
610031, China. Email: sohe@swjtu.edu.cn.

• Yuan Lu is with Institute of Software Chinese Academy of Sciences,
Beijing, 100190, China. Email: luyuan@iscas.ac.cn.

• Qiang Tang is with the School of Computer Science, The University of
Sydney, NSW 2006, Australia. Email: qiang.tang@sydney.edu.au.

• Guiling Wang and Chase Qishi Wu are with the Department of Computer
Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
E-mail: {gwang, chase.wu}@njit.edu.

• A preliminary version of this manuscript was previously published in
ESORICS’21 [1].

• Please send correspondence to Yuan Lu (luyuan@iscas.ac.cn).

ery mechanism lies in realizing strict guarantee of “fairness”
against adversarial peers, i.e., a fair P2P content delivery
system has to promise well-deserved items (e.g., retrieval
of valid contents, well-paid rewards to spent bandwidth)
to all participants [11]. Otherwise, free-riding parties can
abuse the system [12–14] and cause rational ones to escape,
eventually leading to possible system collapse [15].
Exchange fairness vs. delivery fairness. Conventional fair-
ness [16–21], specifically for digital goods (such as elec-
tronic cash, signatures or videos), refers to ensuring that one
party’s input is kept confidential until it does learn the other
party’s input. Unfortunately, such a definition is insufficient
in the P2P content delivery setting where the deliverer’s
input is bandwidth resource. Concretely, a deliverer may
receive no reward after spending bandwidth to transfer a
huge amount of encrypted data to a malicious content con-
sumer, which clearly breaks the deliverer’s expectation on
being well-paid but does not violate conventional fairness
at all. More seriously, (D)DoS attacks may be conducted by
exhausting the deliverer’s bandwidth.

Taking FairSwap [20] as a concrete example: the deliverer
first sends the encrypted content and secure digest to the
consumer, then waits for a message from the consumer (via
blockchain) to confirm her receiving of ciphertext, so the
deliverer can reveal his encryption key on-chain; but, in case
the consumer aborts, all bandwidth used to send ciphertext
is wasted, causing no reward for the deliverer. A seemingly
enticing way to mitigate the above attack could be splitting
the content into n smaller chunks and run FairSwap for each
chunk, but the on-chain cost would then grow linear in n,
leading to prohibitive on-chain cost for large contents.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7269-5644
https://orcid.org/0000-0002-2765-1140
https://orcid.org/0000-0003-1113-6352
https://orcid.org/0000-0003-1880-4763
https://orcid.org/0000-0002-8218-1209

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

To capture the “specially” exchanged item, i.e., band-
width, for deliverers, we give a more fine-grained definition
of fairness in the P2P content delivery setting (ref. § 4) where
exchange fairness denotes the conventional fairness while the
delivery fairness states that deliverers can receive rewards
(nearly) proportional to their bandwidth contribution.
Challenges of ensuring fairness. It is well-known that a fair
exchange protocol cannot be designed to provide complete
fairness without a trusted third party (TTP) [22]. Tradition-
ally such a trusted middleman is played by some escrow
services [19], which, however, turns to be hard to find in
practice, as exemplified by many “bogus” escrow services.
Recently, blockchain offers an attractive way to instantiate
a non-private TTP with desired security properties. A few
results [20, 21, 23, 24] leverage this innovative decentral-
ized infrastructure to facilitate fair exchange. Unfortunately,
these protocols fail to guarantee delivery fairness as they
cannot capture fairness property for the specially exchanged
item, i.e., bandwidth. In addition, the “transparency” prop-
erty of blockchain and its limited on-chain computation
power demand proper design, i.e., privacy preservation of
sensitive information published on-chain and optimized on-
chain costs, of proposed protocols.

Besides the natural delivery fairness for deliverers, it
is equally vital to ensure exchange fairness for providers
and consumers in the context of P2P content delivery,
especially with the end goal to complement DSNs and
enable some content providers to sell contents to consumers
with delegating costly delivery/storage to a P2P network.
Particularly, the content provider should be guaranteed to
receive payments proportional to the amount of correct data
learned by the consumer; meanwhile, the consumer only
has to pay if indeed receiving qualified content.

Naı̈ve attempts of tuning a fair exchange protocol [18–
21, 25] into P2P content delivery can guarantee neither
delivery fairness (as analyzed earlier) nor exchange fairness:
simply running fair exchange protocols twice between the
deliverers and the content providers and between the deliv-
erers and the consumers, respectively, would leak valuable
contents, raising the threat of massive content leakage. Even
worse, this idea disincentivizes the deliverers as they have
to pay for the whole content before making a living by
delivering the content.
Insufficiency of the existing model. Though a range of
existing literature [26–30] involve fairness guarantee for P2P
delivery, yet their designs, to our knowledge, are presented
in non-cooperative game-theoretic setting where rational and
independent attackers free ride spontaneously without ne-
gotiating their strategies. Unfortunately, such an assumption
may be particularly elusive to stand in an open environment
accessible by any potentially malicious party. For exam-
ple, a deliverer may collude with a consumer (or both
are corrupted by an adversary) to reap the payment from
the content provider without actual delivery, or a content
provider may collude with consumers to prevent deliverers
from receiving their deserved payments.

On the contrary, we seek to design the fair P2P content
delivery protocol in the cryptographic sense where the secu-
rity properties such as fairness can be strictly ensured and
the security is against an adversary who can coordinate all
malicious parties. Practically, the occurrences of tremendous

real-world attacks in open systems [31] hint us how vulner-
able the prior studies’ heavy assumptions, i.e., no tolerance
against collusion, can be and further weaken the confidence
of using them in real-world P2P content delivery.
Contributions. Overall, it remains an open problem to
achieve a strong fairness guarantee in P2P content deliv-
ery for all parties. We formalize such security intuitions
into a well-defined cryptographic problem on fairness, and
present a couple of efficient blockchain-based monetary-
incentivized protocols to solve it. In sum,

1) We formulate the problem of P2P content delivery with
desired security and efficiency goals, where fairness en-
sures that every party is fairly treated even if all others
are corrupted or collude and arbitrarily misbehave.

2) We propose two blockchain-based P2P content delivery
protocols accommodating downloading (FairDownload)
and streaming (FairStream) scenarios, respectively. Both
protocols attain only Õ(η + λ) on-chain computational
costs even in the worst case, which only relates to the
small chunk size η and even smaller security parameter
λ. Considering the fact that λ � η, both protocols
realize asymptotically optimal delivery communication
complexity, as a deliverer only sends O(η + λ) bits
amortized for each η-bit chunk. Both protocols also
support fetching content from any of its chunk position.

3) We implement1 both protocols with making various
non-trivial optimizations to reduce their critical on-
chain costs. Extensive experiments in both LAN and
WAN settings show their real-world applicability.

2 PRELIMINARIES

Notations. Let [n] denote {1, . . . , n}, [a, b] denote {a, . . . , b},
x||y denote concatenating x and y, ←$ denote uniformly
random sampling, and λ ∈ N denote the security parameter
given (sometimes implicitly) as a parameter to all crypto-
graphic algorithms.
Global ledger. It provides the primitive of cryptocurrency
that can deal with “coin” transfers transparently. Each entry
of the dictionary ledger[Pi] records the balance of the party
Pi. The global ledger is accessible by all system participants
and can be a subroutine of smart contract to transact “coins”
to a designated party when some conditions are met.
Merkle tree. A Merkle tree scheme consists of the algo-
rithms (BuildMT,GenMTP,VerifyMTP): BuildMT accepts
as input a sequence of elements m = (m1,m2, · · · ,mn) and
outputs the Merkle tree MT with root, denoted by root(MT),
that commits m; GenMTP takes as input the Merkle tree
MT (built for m) and the i-th element mi, and outputs a
proof πi to attest the inclusion of mi at the position i of
m; VerifyMTP takes as input root(MT), the index i, the
Merkle proof πi, and mi, and outputs either 1 (accept) or
0 (reject). The security of Merkle tree scheme ensures that:
for any probabilistic polynomial-time (P.P.T.) adversary A, any
sequence m and any index i, conditioned on MT is a Merkle
tree built for m, A cannot produce a fake Merkle tree proof
fooling VerifyMTP to accept m′i 6= mi ∈ m except with
negligible probability givenm, MT and security parameters.

1. Code: https://github.com/Blockchain-World/FairThunder.git

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Verifiable decryption. We consider a specific verifiable
public key encryption (VPKE) scheme consisting of the al-
gorithms (VPKE.KGen,VEnc,VDec,ProvePKE,VerifyPKE)
and allowing the decryptor to produce the plaintext along
with a proof attesting the correct decryption [32]. Specifi-
cally, KGen outputs a public-private key pair, i.e., (h, k) ←
VPKE.KGen(1λ). The public key encryption satisfies seman-
tic security. Furthermore, the ProvePKEk algorithm takes as
input the private key k and the cipher c, and outputs a mes-
sagemwith a proof π; while the VerifyPKEh algorithm takes
as input the public key h and (m, c, π), and outputs 1/0
to accept/reject the statement that m = VDeck(c). Besides
the semantic security, the verifiable decryption scheme need
satisfy the following extra properties:
• Completeness. Pr[VerifyPKEh(m, c, π) = 1|(m,π) ←
ProvePKEk(c)] = 1, for ∀ c and (h, k)← KGen(1λ);
• Soundness. For any (h, k) ← KGen(1λ) and c, no P.P.T.

adversary A can produce a proof π fooling VerifyPKEh
to accept that c is decrypted to m′ if m′ 6= VDeck(c)
except with negligible probability;
• Zero-Knowledge. The proof π can be simulated by a P.P.T.

simulator SVPKE taking as input only public knowledge
m,h, c, hence nothing more than the truthness of the
statement (m, c) ∈ {(m, c)|m = VDeck(c)} is leaked.

Cryptographic primitives. We also consider the following
standard cryptographic primitives: (i) a hash function H :
{0, 1}∗ → {0, 1}λ modeled as a random oracle; (ii) a semanti-
cally secure (fixed-length) symmetric encryption scheme con-
sisting of (SE.KGen, SEnc, SDec); (iii) an existential unforge-
ability under chosen message attack (EU-CMA) secure digital
signature scheme consisting of (SIG.KGen, Sign,Verify).

3 BUILDING BLOCKS

Before diving into the protocol details, we first present two
building blocks for the downloading protocol.

3.1 Verifiable Fair Delivery
To quantify a deliverer’s bandwidth contribution, we put
forth the notion of verifiable fair delivery (VFD), which en-
ables an honest verifier V to verify that a sender S indeed
transferred some amount of data to a receiver R. It later
acts as a key module in FairDownload. The high-level idea of
VFD is: the receiverR needs to send back a signed “receipt”
to acknowledge the sender S’s bandwidth contribution and
continuously receives the next chunk. Consider that the
data chunks of the same size η (as a system parameter) are
transferred sequentially starting from a chunk with index ζ ,
later the sender S can always use the latest receipt to count
how many chunks are transferred and prove to V about the
total contribution. Intuitively S at most wastes bandwidth of
transferring one chunk of size η.
Syntax. The VFD protocol involving a sender S , a receiver
R and a verifier V , follows the ensuing syntax:
• Sender S starts the delivery via S.send() that inputs
n sequential data chunks and their validation strings,
denoted by ((c1, σc1), . . . , (cn, σcn)), the start chunk
index ζ ∈ [n], and there exists an efficient and global
predicate Ψ(i, ci, σci) → {0, 1} to check whether ci is
the i-th valid chunk due to σci ; once the delivery starts,

S interacts withR and opens an interface S.prove() that
can be invoked by V to generate a proof π indicating the
number of sent chunks;

• ReceiverR is activated by an interfaceR.recv() that in-
puts the starting chunk index ζ and the global predicate
Ψ(·) to interact with S , and outputs a sequence of valid
(due to Ψ(·)) chunks starting from chunk ζ ;

• Verifier V takes as input the proof π generated by
S.prove() and the start index ζ ∈ [n], and outputs an
integer ctr ∈ {0, · · · , n} as the number of sent chunks.

Properties. The VFD protocol should satisfy the following
security properties:
• Completeness. If both S and R are honest, after 2n

rounds, S is able to generate a proof π which V can
take as input and output ctr ≡ n, while R can output
((c1, σc1), . . . , (cn, σcn)), which is S’s input;

• Termination. If at least one of S and R is honest, the
VFD protocol terminates within 2n rounds, where n is
the number of chunks for a content;

• Verifiable η delivery fairness. When one of S and R
maliciously aborts, VFD should satisfy the following
delivery fairness requirements:
– Sender fairness. An honest sender S is guaranteed

to generate a proof π, which enables V to output
at least ctr if S has sent ctr + 1 valid sequential
chunks. In other words, at most S wastes bandwidth
for delivering one chunk of size η;

– Receiver fairness. An honest receiver R is guaranteed
to obtain ctr valid sequential chunks if S can generate
a proof π, which enables V to output ctr.

Protocol ΠVFD. We consider S andR have generated public-
private key pairs (pkS , skS) and (pkR, skR) for digital
signature, respectively; and they have announced the public
keys to bind to themselves. Then VFD with the global pred-
icate Ψ(·) can be realized by the protocol ΠVFD hereunder
among S , R and V against P.P.T. and static adversary in the
stand-alone setting2 assuming synchronous network:
• Construction of sender. The sender S , after activated

via S.send() with the input ((c1, σc1), . . . , (cn, σcn)),
pkS , pkR, and the start chunk index ζ ∈ [n], starts a
timer TS lasting two synchronous rounds, initializes a
variable πS := ∅, and executes as follows:
– For each i ∈ [ζ, n]: S sends (deliver, i, ci, σci) to
R, and waits for response message (receipt, i, σiR)
from R. If TS expires before receiving the receipt,
breaks the iteration; otherwise S verifies whether
Verify(receipt||i||pkR||pkS , σiR, pkR) ≡ 1 or not, if
true, resets TS , outputs πS = (i, σiR) and continues
to run the next iteration (i.e., increasing i by one); if
false, breaks the iteration;

– Upon that S.prove() is invoked, it returns πS as the
VFD proof and halts.

• Construction of receiver. The receiver R, after acti-
vated via R.recv() with the input pkS , the start chunk
index ζ ∈ [n], and (pkR, skR), starts a timer TR lasting
two synchronous rounds and operates as: for each j ∈
[ζ, n]: R waits for (deliver, j, cj , σcj) from S and halts if

2. To defend against replay attack in concurrent sessions, it is trivial
to let the authenticated messages include a unique session id field.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

TR expires before receiving the deliver message; other-
wise R verifies whether Ψ(j, cj , σcj) ≡ 1 or not; if true,
resets TR, outputs (cj , σcj), and sends (receipt, i, σiR) to
S where σiR ← Sign(receipt||i||pkR||pkS , skR), halts if
false. Note that the global predicate Ψ(·) is efficient as
essentially it just performs a signature verification.

• Construction of verifier. Upon the input πS , the verifier
V parses it into (i, σiR), and checks whether i ∈ [n],
i ≥ ζ , and Verify(receipt||i||pkR||pkS , σiR, pkR) ≡ 1 or
not; if true, it outputs ctr = (i − ζ + 1), or else outputs
0. Recall that Verify is to verify a digital signature.

Lemma 1. In the synchronous authenticated network and stand-
alone setting, the protocol ΠVFD satisfies termination, complete-
ness and the verifiable η delivery fairness against non-adaptive
P.P.T. adversary that corrupts one of the sender and the receiver.

Proof. The completeness and termination properties are easy
to see. For the η delivery fairness of VFD, on one hand, for
the malicious R∗ corrupted by A, if V takes the honest S’s
proof and can output ctr, then S at most has sent (ctr + 1)
chunk-validation pairs, i.e., (ci, σci), to A. Overall, S at most
wastes bandwidth of delivering one chunk of size η. On
the other hand, the malicious S∗ corrupted by A may abort
after receiving the receipt, say with index ζ ′ (ζ ′ ∈ [ζ, n]) . In
that case, R is also guaranteed to receive a valid sequence
of ((cζ , σcζ), · · · , (cζ′ , σcζ′)) with overwhelming probability,
unless A can forge R’s signature. However, it requires A to
break the underlying EU-CMA signature scheme, which is
of negligible probability. Hence, the η delivery fairness of
VFD is rigorously guaranteed.

3.2 Structured Key Derivation

To keep the content confidentiality during delivery, we
encrypt the content chunks and delegate to deliverers. Later
only the decryption keys for chunks need to be revealed
(via blockchain) to a consumer. However, a naive approach
by revealing the n decryption keys on-chain results in linear
storage costs. We therefore propose an efficient structured key
derivation (SKD) scheme to reduce the number of revealed
elements, thus considerably decrease the on-chain storage
costs. Specifically, to encrypt n data chunks3, a sender S
can utilize a randomly sampled master key mk to deter-
ministically generate a key tree KT with n leaf nodes as
(symmetric) encryption keys; later for a receiver R who
received ctr sequential encrypted chunks starting from the
chunk ζ , S only needs to reveal few elements for R to
recover the ctr decryption keys. In the best case revealing
only one element is sufficient and in the worst case O(log n)
elements are needed, yielding Õ(1) costs for all cases. Fig. 1
gives two illustrations of the key derivation scheme.

The scheme consists of three algorithms, and the details
are presented in Algorithms 1, 2 and 3:
• KT ← SKD.GenSubKeys(n,mkhash): It takes as input

an n ∈ Z+ and the hash of a randomly sampled master
key, i.e., mkhash := H(mk), and outputs a key tree KT
with n leaf nodes.

• rk ← SKD.RevealKeys(n, ζ, ctr,mkhash): It takes as
input n ∈ Z+, ζ ∈ [n], ctr ∈ [n − ζ + 1], and the

3. W.l.o.g., we assume n = 2k for k ∈ Z+ for presentation simplicity.

master key hash 𝑚𝑘hash

𝑚𝑘hash

revealed keys 𝑟𝑘 recovered keys 𝑘𝑠

𝑚𝑘hashKT

Fig. 1: Illustrations of the key derivation scheme. For the
left-side one: n = 8, ctr = 4 and ζ = 1. For the right-side
one: n = 8, ctr = 6 and ζ = 2.

Algorithm 1 GenSubKeys algorithm
Input: n,mkhash

Output: a (2n− 1)-array KT
1: let KT be an empty array where its

size |KT| = 2n− 1
2: KT[0] = mkhash

3: if n ≡ 1 then

4: return KT
5: if n > 1 then
6: for i in [0, n− 2] do
7: KT[2i+ 1] = H(KT[i]||0)
8: KT[2i+ 2] = H(KT[i]||1)
9: return KT

Algorithm 2 RevealKeys algorithm
Input: n, ζ, ctr, and mkhash

Output: rk, an array of revealed keys
1: let rk and ind be empty arrays
2: let st = n+ ζ − 2
3: KT← GenSubKeys(n,mkhash)
4: if ctr ≡ 1 then
5: rk appends (st,KT[st])
6: return rk
7: if ctr ≡ 2 then
8: if st is odd then
9: rk appends ((st− 1)/2,

KT[(st− 1)/2])
10: else
11: rk appends (st,KT[st])
12: rk appends (st+ 1,

KT[st+ 1])
13: return rk
14: for i in [0, ctr − 1] do
15: ind[i] = st+ i
16: if st is even then
17: rk appends (st,KT[st])

18: ind removes ind[0]
19: while true do
20: let t be an empty array
21: for j in [0, b|ind|/2c − 1] do
22: pl = (ind[2j]− 1)/2
23: pr = (ind[2j + 1]− 2)/2

. merge elements with the
same parent node in KT

24: if pl ≡ pr then
25: t appends pl
26: else
27: t appends ind[2j]
28: t appends ind[2j + 1]
29: if |ind| is odd then
30: t appends ind[|ind| − 1]
31: if |ind| ≡ |t| then
32: break
33: ind = t
34: for x in [0, |ind| − 1] do
35: rk appends (ind[x],KT[ind[x]])
36: return rk

Algorithm 3 RecoverKeys algorithm
Input: n, ctr, and rk
Output: a ctr-sized array ks

1: let ks be an empty array
2: for each (i,KT[i]) in rk do

3: ni = 2(log n−blog(i+1)c)

4: vi = GenSubKeys(ni, KT[i])
5: ks appends vi[ni−1 : 2ni−2]
6: return ks

hash of the master key mkhash, and outputs an array
rk containing the minimum number of elements in KT
that can recover the ctr keys.

• ks← SKD.RecoverKeys(n, ctr, rk): It takes as input n ∈
Z+, ctr ∈ [n−ζ+1], and the revealed key array rk, and
outputs the recovered keys ks.

Property arguments. The scheme SKD satisfies the follow-
ing properties: (i) Correctness. The ctr recovered keys ks
by a receiver R is the same as the keys in key tree KT
that generated by the sender S . This follows from that the
hash process is deterministic; (ii) Succinctness. In the worst
case, only Õ(1) elements are revealed. This follows from
the tree architecture of the key tree KT; (iii) Robustness.
The scheme is robust, e.g., an adversary cannot derive the
sender’s master key from the revealed elements, due to the
random oracle model of hash function.

4 FORMALIZING P2P CONTENT DELIVERY

Now we formulate the problem of fair P2P content delivery.
Blockchain is leveraged to play the role of a non-private TTP.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Furthermore, blockchain-enabled cryptocurrencies and the
guaranteed execution of smart contracts can provide mone-
tary incentivization to facilitate the guarantee of fairness.

4.1 System Model
Participants. We consider the following parties:
• Content Provider P is an entity that owns the original

content m composed of n chunks,4 satisfying a publicly
known predicate φ(·),5 and P is willing to sell to any
user of interest. Meanwhile, P would like to delegate
the delivery of m to a set of deliverers with promise to
pay BP for each successfully delivered chunk.

• Content Deliverer D contributes its idle bandwidth re-
sources to deliver the content on behalf of the provider
P and would receive the payment proportional to the
amount of delivered data.

• Content Consumer C is an entity that would pay BC for
each chunk in content m by interacting with P and D.

Adversarial model. We consider the adversary A with the
following standard abilities [34]: A is static and can corrupt
some parties only before the course of protocol executions
and A is restricted to P.P.T. algorithms.
Communication model. We adopt the synchronous network
model [35, 36] of authenticated point-to-point channels to
describe the ability of A on controlling communications.
W.l.o.g., we consider a global clock in the system, and A
can delay the messages up to a clock round [23, 37].
Arbiter smart contract G. The system is in a hybrid model
with oracle access to an arbiter smart contract G. The
contract G is a stateful ideal functionality that leaks all its
internal states to the adversary A and all parties, while al-
lowing to pre-specify some immutable conditions to transact
“coins” over the cryptocurrency ledger, thus “mimicking”
the contracts in real life transparently. In practice, the con-
tract can be instantiated via many real-world blockchains
like Ethereum [38]. Throughout this paper, the details of G
follow the conventional pseudo-code notations in [37].

4.2 Design Goals
Syntax. A P2P content delivery protocol Π = (P ,D, C)
executes among a set of parties modeled as interactive
Turing machines (ITMs), and contains two phases:
• Preparation. The provider P takes as input public pa-

rameters and the content m where φ(m) ≡ 1 and
outputs some auxiliary data, e.g., encryption keys; a
deliverer D takes as input public parameters and out-
puts some auxiliary data, e.g., encrypted content; the
consumer C is not involved in this phase. Note that
P deposits a budget of n · BP in ledger to incentivize
deliverers to participate in.

• Delivery. The provider P and the deliverer take as input
their auxiliary data obtained in the previous phase,
respectively, and they would receive the deserved pay-
ment; the consumer C takes as input public parameters

4. Remark that the content m is dividable in the sense that each chunk
is independent to others, e.g., each chunk is a small 10-second video.

5. Throughout the paper, we consider that the predicate φ is in the
form of φ(m) = [root(BuildMT(m)) ≡ rootm], where root is the Merkle
tree root of the content m. In practice, it can be acquired from a semi-
trusted third party, such as BitTorrent forum sites [19] or VirusTotal [33].

and outputs the content m with φ(m) ≡ 1. Note that C
has a budget of n · BC in ledger to “buy” the content m
with φ(m) ≡ 1 and BC > BP .

A fair P2P content delivery protocol Π shall meet all
following properties, including completeness, fairness, con-
fidentiality, timeliness, and non-trivial efficiency.
Completeness. For any content predicate φ(·) in the form of
φ(m) = [root(BuildMT(m)) ≡ rootm], conditioned on P,D
and C are all honest, the protocol Π realizes:

• The consumer C receives the qualified content m with
φ(m) ≡ 1, and its balance in the global ledger[C] would
reduce by n · BC , where BC represents the amount paid
by C for each content chunk.

• The deliverer D obtains the payment n · BP from the
global ledger, where BP represents the amount paid by
P to D for delivering a content chunk to the consumer.

• The provider P receives its well-deserved payments
over the ledger, namely, ledger[P] would increase by
n · (BC − BP) as it receives n · BC from the consumer
while it pays out n · BP to the deliverer.

Fairness. The protocol Π shall meet the following fairness
requirements:

• Exchange fairness for consumer. For ∀ corrupted P.P.T.
D∗ and P∗ controlled by A, it is guaranteed to the hon-
est consumer C with overwhelming probability that: the
ledger[C] decreases by ` · BC only if C indeed receives a
sequence of chunks (mi, . . . ,mj) belonging to m where
` = (j − i+ 1) and φ(m) ≡ 1. This property states that
C pays proportional to valid chunks it de facto obtains.

• Delivery fairness for deliverer. For ∀ malicious P.P.T.
C∗ and P∗ corrupted by A, it is assured to the honest
delivererD that: ifD sent overall O(` ·η+1) bits during
the protocol, D should at least obtain the payment
of (` − 1) · BP . Intuitively, if D spent bandwidth for
delivering ` valid chunks, at least it will receive the
deserved payment for delivering ` − 1 chunks, and at
most the bandwidth for delivering one chunk of size
η can be wasted. The unpaid delivery is bounded by
O(η) bits where η is a system parameter.

• Exchange fairness for provider. For ∀ corrupted P.P.T.
C∗ and D∗ controlled by A, it is ensured to the honest
provider P that: if A can output η · ` bits consisted in
the content m, the provider P shall obtain at least (` −
1) · (BC − BP) net income, i.e., ledger[P] increases by
(`−1) ·(BC−BP), with all except negligible probability.
P is ensured that at mostO(η)-bit, i.e., one chunk of size
η, content are revealed without being paid.

Confidentiality against deliverers. This is to protect copy-
righted data against probably corrupted deliverers, other-
wise a malicious consumer may pretend to be or collude
with a deliverer to obtain the plaintext content without pay-
ing for the provider, which violates the exchange fairness for
P . Informally, we require that the corruptedD∗ on receiving
protocol scripts (e.g., the delegated content chunks from the
provider) cannot produce the provider’s input content with
all but negligible probability in a delivery session.
Timeliness. When at least one of P , D and C is honest (i.e.,
others are corrupted by A), the honest ones are ensured to
halt in O(n) synchronous rounds where n is the number of

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

content chunks. At completion or abortion, the aforemen-
tioned fairness and confidentiality are always guaranteed.
Non-trivial efficiency. We require the necessary non-trivial
efficiency to preclude potentially trivial approaches:
• The messages sent to G by honest parties are uniformly

bounded by Õ(1) bits, which rules out a trivial way of
using the smart contract to directly relay the content.

• In the delivery phase, the messages sent by honest P
are uniformly bounded by n · λ bits, where λ is a small
cryptographic parameter, thus ensuring n · λ is much
smaller than the content size |m|. This is the goal of
utilizing peers for content delivery so thatP can save its
bandwidth upon the completion of preparation phase
and excludes the notion of delivery on its own.

Remarks. We make the following discussions about the
above definitions: (i) φ(·) is a public parameter known to
all parties before the protocol execution; (ii) our fairness
requirements have already implied the case where the ad-
versary corrupts one party of P , D and C instead of two,
since whenever the adversary corrupts two parties, it can
let one of these corrupted two follow the original protocol;
(iii) the global ledger model captures the functionality of
coin transfers, from this perspective, it is unnecessary to
distinguish the usage of either the account-based model
or the unspent transaction output (UTXO)-based model;
(iv) like all cryptographic protocols, it does not make sense
to consider all parties are corrupted, so do we not; (v) the de-
liverer and the provider might lose well-deserved payment,
but at most lose that for one chunk, i.e., the level of unfair-
ness is rigorously bounded; (vi) upon finishing the one-time
preparation phase, the delivery phase is repeatable; (vii) it is
reasonable that there are a great number of deliverers and at
least some of them can be honest. Hence, if a consumer fails
to obtain the entire content due to unexpected situations
occurred in the middle of transmission, it can always ask
another deliverer to initiate a new session and fetch the
remaining chunks. Our designs allow consumers to fetch
the content chunks from any specific position.

5 FairDownload: FAIR P2P DOWNLOADING

This section presents the fair P2P downloading protocol
ΠFD, allowing the consumers to view the content after ob-
taining (partial or all) the chunks, namely view-after-delivery.

5.1 FairDownload Overview
The protocol ΠFD can be constructed with the modules of
verifiable fair delivery (VFD) and structured key derivation
(SKD), and proceeds in Prepare, Deliver and Reveal phases as
depicted in Fig. 2. The core ideas are highlighted as follows:
• The provider P encrypts each chunk, signs the en-

crypted chunks, and delegates to the deliverer D; the
deliverer (as the sender S) and the consumer C (as
the receiver R) can run a specific instance of VFD,
where the global predicate Ψ(·) is instantiated to ver-
ify that each chunk must be correctly signed by P ;
additionally, the non-interactive honest verifier V in
VFD is instantiated via smart contract, hence upon the
contract receives a VFD proof from D claiming the in-
time delivery of ctr chunks, it can assert that C indeed

Provider Deliverer Smart Contract Consumer

Phases

start started
join

joinedsell
ready

ready

consumeinitiatedmtree

revealing

revealKeys
revealed

pay

ok/complain
pay (ok)

ValidatePoM (complain)

refund

refund
sold

not_sold

refund

P
re

p
a

re

(E
xe

cu
te

 O
n

ce
)

D
e

li
ve

r
R

e
ve

a
l

D
is

p
u

te

R
e

so
lu

ti
o

n

Verifiable Fair Delivery (VFD)

R
e

se
t

fo
r

re
p

e
a

ta
b

le
 d

e
li

ve
ry

Fig. 2: The overview of FairDownload protocol ΠFD.

received ctr encrypted chunks signed by the provider,
who can then present to reveal the elements (via smart
contract) for decrypting these ctr chunks.

• The structured key derivation SKD scheme can mini-
mize the storage costs of revealed elements on-chain,
i.e., a short Õ(λ)-bit message. To ensure confidentiality
against malicious deliverers, the revealed elements are
encrypted using the consumer C’s public key. Once
the decryption keys are recovered and the raw content
chunks are derived, C can check the validity of each
chunk (by comparing the digest of each decrypted
chunk with the corresponding leaf node value in the
merkle tree of the content) and raise complaint to smart
contract if any invalid chunk is found. C can get refund
for a valid proof of misbehavior (PoM). Otherwise the
provider eventually gets the payment (after timeout).

5.2 Arbiter Contract G ledger
d for Downloading

The arbiter contract G ledger
d (abbr. Gd) shown in Fig. 3 is a

stateful ideal functionality having accesses to ledger to assist
the fair delivery via downloading. We remark that: (i) The
description of Gd captures the essence of real-world smart
contracts as it reflects that the Turing-complete smart con-
tract can be seen as a stateful program to transparently han-
dle pre-specified functionalities, and captures that a smart
contract can access the cryptocurrency ledger to faithfully
deal with conditional payments upon its own internal states;
(ii) Gd can invoke the VFD verifier V as a subroutine. VFD’s
predicate Ψ(·) is instantiated to verify that each chunk is
indeed signed by the provider P ; (iii) the ValidateRKeys and
ValidatePoM subroutines allow a consumer to prove to the
contract if the provider P behaves maliciously.

5.3 ΠFD: FairDownload Protocol for P2P Downloading

Now we present the details of ΠFD considering one deliv-
erer, while multi-deliverer scheme is discussed later in § 6.
The protocol aims to deliver a content m made of n chunks
with a-priori known digest in the form of Merkle tree root,
i.e., rootm. We omit the session id sid and the content digest
rootm during the protocol description since they remain the
same within a delivery session.
Phase I for Prepare. The provider P and the deliverer D
interact with the contract functionality Gd in this phase as:

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

The Arbiter Contract Functionality G ledger
d for P2P Downloading

The arbiter contract Gd has access to the ledger, and it interacts with the provider P , the deliverer D, the consumer C and the adversary A.
It locally stores the times of repeatable delivery θ, the number of content chunks n, the content digest rootm, the price BP , BC and Bpf , the
number of delivered chunks ctr (initialized as 0), the start chunk index ζ of request content, the public addresses pkP , pkD, pkC , vpkC , the
revealed keys’ hash erkhash, the state Σ and three timers Tround (implicitly), Tdeliver , and Tdispute.

Phase 1: Prepare
• On receive (start, pkP , rootm, θ, n,BP ,BC ,Bpf) from P :

- assert ledger[P] ≥ (θ · (n · BP + Bpf)) ∧ Σ ≡ ∅
- store pkP , rootm, θ, n,BP ,BC ,Bpf

- let ledger[P] := ledger[P]− θ · (n · BP + Bpf) and Σ := started
- send (started, pkP , rootm, θ, n,BP , BC ,Bpf) to all entities

• On receive (join, pkD) from D:
- assert Σ ≡ started
- store pkD and let Σ := joined
- send (joined, pkD) to all entities

• On receive (prepared) from D:
- assert Σ ≡ joined, and let Σ := ready
- send (ready) to all entities

Phase 2: Deliver
• On receive (consume, pkC , vpkC , ζ) from C:

- assert θ > 0, ζ ∈ [n] and then store ζ
- assert ledger[C] ≥ (n− ζ + 1) · BC ∧ Σ ≡ ready
- store pkC , vpkC
- let ledger[C] := ledger[C]− (n− ζ + 1) · BC
- start a timer Tdeliver and let Σ := initiated
- send (initiated, pkC , vpkC , ζ) to all entities

• On receive (delivered) from C or Tdeliver times out:
- assert Σ ≡ initiated and ctr ≡ 0
- send (getVFDProof) to D, and wait for two rounds to receive

the proof πVFD = (receipt, i, σi
C), assert i ∈ [ζ, n], then

execute verifyVFDProof(πVFD) to let ctr := (i− ζ + 1)
- let ledger[D] := ledger[D] + ctr · BP
- let ledger[P] := ledger[P] + (n− ctr) · BP
- store ctr, let Σ := revealing, and send (revealing, ctr, ζ) to all

entities
Phase 3: Reveal

• On receive (revealKeys, erk) from P :

- assert Σ ≡ revealing
- store erk (essentially erk’s hash) and start a timer Tdispute

- let Σ := revealed
- send (revealed, erk) to all entities

• Upon Tdispute times out:
- assert Σ ≡ revealed and current time T ≥ Tdispute

- ledger[P] := ledger[P] + ctr · BC + Bpf

- ledger[C] := ledger[C] + (n− ζ + 1− ctr) · BC
- let Σ := sold and send (sold) to all entities
- reset()
. Below is the dispute resolution

• On receive (wrongRK) from C before Tdispute times out:
- assert Σ ≡ revealed and current time T < Tdispute

- if (ValidateRKeys(n, ζ, ctr, erk) ≡ false):
* let ledger[C] := ledger[C] + (n− ζ + 1) · BC + Bpf
* let Σ := not sold and send (not sold) to all entities
* reset()

• On receive (PoM, i, j, ci, σci ,H(mi), π
i
MT, rk, erk, πVD) from C

before Tdispute times out:
- assert Σ ≡ revealed and current time T < Tdispute

- invoke the ValidatePoM(i, j, ci, σci ,
H(mi), π

i
MT, rk, erk, πVD) subroutine, if true is returned:

* let ledger[C] := ledger[C] + (n− ζ + 1) · BC + Bpf
* let Σ := not sold and send (not sold) to all entities
* reset()

. Reset to the ready state for repeatable delivery
• function reset():

- assert Σ ≡ sold or Σ ≡ not sold
- set ctr, Tdeliver , Tdispute, ζ as 0
- nullify pkC and vpkC
- let θ := θ − 1, and Σ := ready
- send (ready) to all entities

Fig. 3: The arbiter contract functionality G ledger
d . “Sending to all entities” captures the contract is transparent to the public.

• The provider P deploys contracts and starts 6 ΠFD by
taking as input the security parameter λ, the incentive
parameters BP ,BC ,Bpf ∈ N, where Bpf is the penalty
fee7 in a delivery session to discourage the misbehav-
ior from the provider P , the number of times θ of
repeatable delivery allowed for the contract, the n-
chunk content m = (m1, . . . ,mn) ∈ {0, 1}η×n sat-
isfying root(BuildMT(m)) ≡ rootm where rootm is
the content digest in the form of Merkle tree root,
and executes (pkP , skP) ← SIG.KGen(1λ), and sends
(start, pkP , rootm, θ, n,BP ,BC ,Bpf) to Gd.

• Upon Σ ≡ joined, the provider P would execute:
– Randomly samples a master key mk ←$ {0, 1}λ, and

runs KT ← SKD.GenSubKeys(n,H(mk)); stores mk
and KT locally;

– Uses the leaf nodes of KT, namely KT[n− 1 : 2n− 2]
to encrypt (m1, . . . ,mn) to get c = (c1, . . . , cn) ←
(SEncKT[n−1](m1), . . . , SEncKT[2n−2](mn));

– Signs the encrypted chunks to obtain the sequence
((c1, σc1), · · · , (cn, σcn)) where the signature σci ←

6. P can retrieve the deposits of BP and Bpf back if there is no
deliverer responds timely.

7. Bpf can be set proportional to (n×BC) in case P deliberately lowers
such an amount.

Sign(i||ci, skP), i ∈ [n]; meanwhile, computes MT←
BuildMT(m) and signs the Merkle tree MT to obtain
σMT
P ← Sign(MT, skP), then locally stores (MT, σMT

P)
and sends (sell, ((c1, σc1), · · · , (cn, σcn))) to D;

– Waits for (ready) from Gd to enter the next phase.
• The deliverer D executes as follows during this phase:

– Upon receiving (started, pkP , rootm, θ, n,BP ,BC ,Bpf)
from Gd, executes (pkD, skD) ← SIG.KGen(1λ), and
sends (join, pkD) to Gd;

– Waits for (sell, ((c1, σc1), · · · , (cn, σcn))) from P and
then: for every (ci, σci) in the sell message, as-
serts that Verify(i||ci, σci , pkP) ≡ 1; if hold, sends
(prepared) to Gd, and stores ((c1, σc1), · · · , (cn, σcn))
locally;

– Waits for (ready) from Gd to enter the next phase.
At the end of this phase, P owns a master key mk, the

key tree KT, and the Merkle tree MT while D receives the
encrypted content chunks and is ready to deliver.

Phase II for Deliver. The consumer C, the provider P , and
the deliverer D interact with Gd in this phase as:

• The consumer C would execute as follows:
– Asserts Σ ≡ ready, runs (pkC , skC) ← SIG.KGen(1λ)

and (vpkC , vskC) ← VPKE.KGen(1λ), and sends

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Algorithm 4 ValidateRKeys algorithm
Input: n, ζ, ctr and erk
Output: true/false; whether the

correct number (i.e., ctr) of de-
cryption keys can be recovered

1: if n ≡ ctr and |erk| ≡ 1 and the
position of erk[0] ≡ 0 then

2: return true . root of KT
3: Initialize chunks index as a set

of numbers {(n+ζ−2), . . . , (n+
ζ + ctr − 3)}

4: for each (i,) in erk do
5: di = log(n)− blog(i+ 1)c

6: li = i, ri = i
7: if di ≡ 0 then
8: chunks index removes i
9: else

10: while (di--) > 0 do
11: li = 2li + 1
12: ri = 2ri + 2
13: chunks index removes the el-

ements from li to ri
14: if chunks index ≡ ∅ then
15: return true
16: return false

(consume, pkC , vpkC , ζ) to Gd, where ζ indicates the
start chunk index of the request content, e.g., ζ = 1
indicates requesting from the first chunk;

– Upon receiving the message (mtree,MT, σMT
P) from

P where Verify(MT, σMT
P , pkP) ≡ 1 and root(MT) ≡

rootm, stores the Merkle tree MT and then acti-
vates the receiver R in the VFD subroutine by in-
voking R.recv() and instantiating the external vali-
dation function Ψ(i, ci, σci) as Verify(i||ci, σci , pkP),
and then waits for the execution of VFD to return the
delivered chunks ((cζ , σcζ), (cζ+1, σcζ+1

), · · ·) and
stores them; upon receiving the last (i.e., n-th) chunk,
sends (delivered) to Gd;

– Waits for (revealing, ctr, ζ) from Gd to enter the next
phase.

• The provider P executes as follows during this phase:
upon receiving (initiated, pkC , vpkC , ζ) from Gd, asserts
Σ ≡ initiated, and sends (mtree,MT, σMT

P) to C, and
then enters the next phase.

• The deliverer D executes as follows during this phase:
– Upon receiving (initiated, pkC , vpkC , ζ) from Gd: as-

serts Σ ≡ initiated, and then activates the sender S in
the VFD module by invoking S.send() and instan-
tiating the external validation function Ψ(i, ci, σci)
as Verify(i||ci, σci , pkP), and feeds VFD module with
input ((cζ , σcζ), . . . , (cn, σcn));

– Upon receiving (getVFDProof) from Gd, sends the
latest proof, namely (receipt, i, σiC) to Gd;

– Waits for (revealing, ctr, ζ) from Gd to halt.
At the end of this phase, C receives the valid sequence

of encrypted chunks (cζ , cζ+1, . . .), and D receives the pay-
ment for the bandwidth contribution of delivered chunks,
and the contract records the start chunk index ζ and the
number of delivered chunks ctr.

Phase III for Reveal. This phase is completed by P , C and
the arbiter contract Gd, which proceeds as follows:
• The provider P operates as follows during this phase:

– Asserts the state Σ ≡ revealing, executes rk ←
SKD.RevealKeys(n, ζ, ctr,H(mk)) to generate the re-
vealed elements rk, and encrypts rk via erk ←
VEncvpkC (rk), and then sends (revealKeys, erk) to Gd;
waits for (sold) from Gd to halt.

• The consumer C would first assert Σ ≡ revealing and
wait for (revealed, erk) from Gd to execute:
– Runs Alg. 4, namely ValidateRKeys(n, ζ, ctr, erk) to

preliminarily check whether the revealed elements
erk can recover the correct number (i.e, ctr) of keys.
If false is returned, sends (wrongRK) to Gd and halts;

– If ValidateRKeys(n, ζ, ctr, erk) ≡ true, decrypts erk
to obtain rk ← VDecvskC (erk), and then runs ks =
(kζ , · · · , kζ+ctr−1) ← SKD.RecoverKeys(n, ctr, rk) to
recover the chunk keys. Then C uses these keys to
decrypt (cζ , · · · , cζ+ctr−1) to obtain m′i = SDecki(ci),
i ∈ [ζ, (ζ + ctr − 1)], and checks whether for every
m′i ∈ (m′ζ , · · · ,m′ζ+ctr−1), H(m′i) equates the i-th
leaf node, i.e., H(mi), in Merkle tree MT received
from P in the Deliver phase. If all are consistent, it
means that C receives all the desired chunks and
there is no dispute, C outputs (m′ζ , · · · ,m′ζ+ctr−1),
and then waits for (sold) from Gd to halt. Oth-
erwise, C can raise complaint by: choosing one
inconsistent position (e.g., the i-th chunk), and
computes (rk, πVD) ← ProvePKEvskC (erk) and
πiM ← GenMTP(MT,H(mi)), and then sends
(PoM, i, j, ci, σci ,H(mi), π

i
MT, rk, erk, πVD) to the

contract Gd, where i is the index of the incorrect
chunk to be proved; j is the index of the element
in erk that can induce the key ki for the position i; ci
and σci are the i-th encrypted chunk and its signature
received in the Deliver phase; H(mi) is the value of
the i-th leaf node in MT; πiMT is the Merkle proof for
H(mi); rk is decryption result from erk; erk is the
encrypted revealed key; πVD is the verifiable decryp-
tion proof attesting to the correctness of decrypting
erk to rk.

Dispute resolution. For the sake of completeness, the details
of ValidatePoM subroutine is presented in Alg. 5, which
allows the consumer to prove that it decrypts a chunk
inconsistent to the digest rootm. The time complexity is
O(log n), which is critical to achieve the efficiency require-
ment. Additionally, we consider a natural (optimistic) case
where an honest consumer C would not complain to the
contract if receiving valid content.
Repeatable delivery. ΠFD can support repeatable delivery
for at most θ times, where θ is a pre-specified parameter.
Here θ is a finite number used to determine the minimum
deposits of the provider placed in the contract. Once a
delivery session completes (i.e., the contract state Σ either
becomes sold or not sold), the reset function will be invoked
to start a new delivery session that can serve another con-
sumer as long as not repeat for more than θ times. After θ-
time deliveries, P can utilize the same contract to re-deposit
sufficient collaterals for another θ repeatable deliveries.
Monetary incentivization. Monetary collateral is a widely
adopted way to ensure fairness using blockchain [23].
Other alternative collaterals like reputation or credits re-
quire unique digital identities [39] in the permissionless
setting, which is still under active exploration. Note that
the potential overhead of utilizing deposits lies in their time
value, e.g., the provider may face an opportunity cost in
the form of forgone returns that they could have accrued
in alternative investments. However, such overhead would
not disincentivize the content providers as long as they can
expect to receive more payments by selling their contents.

5.4 Analyzing FairDownload Protocol

Theorem 1 characterizes the properties of the protocol ΠFD.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Algorithm 5 ValidatePoM algorithm

Input: (i, j, ci, σci ,H(mi), π
i
MT, rk, erk, πVD)

(rootm, n, erkhash, pkP , vpkC) are stored in the contract and so accessible
Output: true or false

1: assert j ∈ [0, |erk| − 1]
2: assertH(erk) ≡ erkhash

3: assert VerifyPKEvpkC
(erk, rk, πVD) ≡ 1

4: assert Verify(i||ci, σci , pkP) ≡ 1

5: assert VerifyMTP(rootm, i, π
i
MT,H(mi)) ≡ 1

6: ki = RecoverChunkKey(i, j, n, rk)
7: assert ki 6= ⊥
8: m′i = SDec(ci, ki)
9: assertH(m′i) 6= H(mi)

10: return false in case of any assertion error or true otherwise

Algorithm 6 RecoverChunkKey algorithm
Input: (i, j, n, rk)
Output: ki or ⊥

1: (x, y)← rk[j]
. parse the j-th element in rk to

get the key x and the value y
2: let k path be an empty stack
3: ind = n+ i− 2 . index in KT
4: if ind < x then
5: return ⊥
6: if ind ≡ x then

7: return y . ki = y
8: while ind > x do
9: k path pushes 0 if ind is odd

10: k path pushes 1 if ind is even
11: ind = b(ind− 1)/2c
12: let b = |k path|
13: while (b--) > 0 do
14: pop k path to get the value t
15: ki = H(y||t)
16: return ki

Theorem 1. Conditioned on that the underlying cryptographic
primitives are secure, the protocol FairDownload satisfies the com-
pleteness, fairness, confidentiality against deliverer, timeliness and
non-trivial efficiency properties in the synchronous authenticated
network, G ledger

d -hybrid and stand-alone model.

Proof. The proof for theorem 1 is analyzed as follows:

Completeness. The completeness of ΠFD is immediate to
see: when all three participating parties honestly follow the
protocol, the provider P gets a net income of n · (BC − BP);
the delivererD obtains the well-deserved payment of n ·BP ;
the consumer C receives the valid content m, i.e., φ(m) ≡ 1.

Fairness. The fairness for each party in ΠFD can be reduced
to the underlying cryptographic building blocks.
• Consumer fairness. Consumer fairness means that the

honest C only needs to pay proportional to what it de
facto obtains even though malicious P∗ and D∗ may
collude with each other. This case can be modeled as
an adversary A corrupts both P and D to provide and
deliver the content to the honest C. In the Deliver phase,
the VFD subroutine ensures that if C receives ` ∈ [n]
encrypted chunks andAmaliciously aborts,A can only
claim payment from the contract of ` ·BP , which is paid
by the A itself due to the collusion. In the Reveal phase,
if A reveals correct elements in KT to recover the `
decryption keys, then C can decrypt to obtain the valid
` chunks. Otherwise, C can raise complaint by sending
the (wrongRK) and further (PoM) to the contract and
gets refund. It is obvious to see that C either pays for
the ` valid chunks or pays nothing. The fairness for the
consumer is guaranteed unless A can: (i) break VFD
to forge C’s signature; (ii) find Merkle tree collision,
namely find another chunk m′i 6= mi in position i of
m to bind to the same rootm so that A can fool the
contract to reject C’s complaint (by returning false of
ValidatePoM) while indeed sent wrong chunks; (iii) ma-
nipulate the execution of smart contract in blockchain.
However, according to the security guarantee of the

underlying signature scheme, the second-preimage re-
sistance of hash function in Merkle tree, and that the
smart contract is modeled as an ideal functionality, the
probability to break C’s fairness is negligible. Hence, the
consumer fairness is strictly guaranteed.

• Deliverer fairness. Deliverer fairness states that the hon-
est D receives the payment proportional to the ex-
pended bandwidth though the malicious P∗ and C∗
may collude with each other. This amounts to the case
that A corrupts both P and C and try to reap D’s
bandwidth contribution without paying. In the VFD
subroutine, consideringD delivers ` chunks, then it can
correspondingly obtain either ` (` ∈ [n]) or `−1 (i.e., A
stops sending the `-th receipt) receipts acknowledging
the bandwidth contribution. Later D can use the latest
receipt containing C’s signature to claim payment ` ·BP
or (` − 1) · BP from the contract. At most D may
waste bandwidth for delivering one chunk-validation
pair of O(η) bits. To break the security, A has to violate
the contract functionality (i.e., control the execution
of smart contract), which is of negligible probability.
Therefore, the deliverer fairness is strictly ensured.

• Provider fairness. Provider fairness indicates that the
honest P receives the payment proportional to the
number of valid content chunks that C learns. The ma-
licious D∗ can collude with the malicious C∗ or simply
create multiple fake C∗ (i.e., Sybil attack), and then cheat
P without real delivery. These cases can be modeled as
an adversary A corrupts both D and C. A can break the
fairness for the honest P from two aspects by: (i) letting
P pay for the delivery without truly delivering any
content; (ii) obtaining the content without paying for
P . For case (i), A can claim that ` (` ∈ [n]) chunks
have been delivered and would receive the payment
` · BP from the contract. Yet this procedure would also
update ctr := ` in the contract, which later allows P to
retrieve the payment ` ·BC after Tdispute expires unlessA
can manipulate the execution of smart contract, which
is of negligible probability. Hence, P can still obtain
the well-deserved payment ` · (BC − BP). For case (ii),
A can either try to decrypt the delivered chunks by
itself without utilizing the revealing keys from P , or
try to fool the contract to accept the PoM and therefore
repudiate the payment for P though P honestly reveals
chunk keys. The former situation can be reduced to
the violation of semantic security of the underlying
encryption scheme and the pre-image resistance of
cryptographic hash functions, and the latter requires A
to forge P ’s signature, or break the soundness of the
verifiable decryption scheme, or control the execution
of the smart contract. Obviously, the occurrence of
aforementioned situations are of negligible probability.
Overall, the provider fairness is strictly assured.

In sum, ΠFD strictly guarantees the fairness for P and C,
and the unpaid delivery for D is bounded to O(η) bits. The
fairness requirement of ΠFD is satisfied.

Confidentiality. This property states that on input all pro-
tocol scripts and the corrupted D∗’s private input and all
internal states, it is still computationally infeasible for the
adversary A to output the provider’s raw content in a

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

protocol instance. In ΠFD, each chunk delegated to D is
encrypted via symmetric encryption scheme using the keys
that derived from SKD.GenSubKeys(). Furthermore, the
revealed on-chain elements erk for recovering decryption
keys are encrypted utilizing the consumer C’s pubic key.
Additionally, C receives the Merkle tree MT of the contentm
before the verifiable fair delivery (VFD) procedure starts. To
break the confidentiality, A has to violate any of the follow-
ing conditions: (i) the pre-image resistance of cryptographic
hash function in the Merkle tree; and (ii) the security of the
public key encryption scheme. The probability of violating
the aforementioned security properties is negligible and
therefore ΠFD satisfies the confidentiality property.
Timeliness. Timeliness states that the honest parties in
the protocol ΠFD terminates in O(n) synchronous rounds,
where n is the number of content chunks, and when the
protocol completes or aborts, the fairness and confidentiality
are always preserved. The guarantee of confidentiality can
be straightforwardly derived from prior analysis even if
malicious parties abort, we only focus on the assurance of
fairness. Now we elaborate the following termination cases
for the protocol ΠFD with the arbiter contract Gd and at least
one honest party:
No abort. If all of P , D and C are honest, ΠFD terminates
in the Reveal phase, after Tdispute expires. The Prepare phase
and the Reveal phase need O(1) synchronous rounds, and
the Deliver phase requires O(n) rounds, yielding total O(n)
rounds for ΠFD to terminate and the fairness is guaranteed
at completion since each party obtains the deserved items.
Aborts in the Prepare phase. This phase involves the interac-
tion between P , D and the contract Gd. It is obvious this
phase can terminate in O(1) rounds if any party maliciously
aborts or the honest party does not receive response after
Tround expires. Besides, after each step in this phase, the
fairness for both P and D is preserved no matter which
one of them aborts, i.e., P does not lose any coins in the
ledger or leak any content chunks, while D does not waste
any bandwidth resource.
Aborts in the Deliver phase. This phase involves P , D, C and
the contract Gd. It can terminate in O(n) rounds. If other
parties abort after C sends (consume) message to Gd, C
would get its deposit back upon Tround expires. The VFD
procedure in this phase only involves D and C, and the
fairness is guaranteed whenever one of the two parties
aborts, as early analyzed. The timer Tdeliver in Gd indicates
that the delivery should be completed within such a time
period, or else Gd would continue with the protocol by
informing D to claim payment and update ctr after Tdeliver

times out. D is naturally self-motivated not to maliciously
abort until receiving the payment from Gd. At the end of this
phase, D completes its task in the delivery session, while for
P and C, they are motivated to enter the next phase and the
fairness for them at this point is guaranteed, i.e., P decreases
coins by ctr · BP in ledger, but the contract has also updated
ctr, which allows P to receive ctr ·BC from the ledger if keys
are revealed honestly, and C obtains the encrypted chunks
while does not lose any coins in ledger.
Aborts in the Reveal phase. This phase involves P , C and the
contract Gd. It can terminate in O(1) rounds after Gd sets
the state as sold or not sold. If C aborts after P reveals the
chunk keys on-chain, P can wait until Tdispute times out and

attain the deserved payment ctr · BC . If P reveals incorrect
keys and then aborts, C can raise complaint within Tdispute

by sending message (wrongRK) and further (PoM) to get
refund. Hence, the fairness for either P and C is guaranteed
no matter when and who aborts maliciously in this phase.
Non-trivial efficiency. The analysis of ensuring this prop-
erty can be conducted in the following three aspects:
• Communication complexity. In the Prepare phase, P dele-

gates the signed encrypted chunks toD, where the com-
munication complexity is O(n). Typically this phase
only needs to be executed once for the same content.
In the Deliver phase, P sends the content Merkle tree
MT to C, and D activates the VFD subroutine to deliver
the chunks to C. The communication complexity in this
phase is also O(n). In the Reveal phase, the revealed ele-
ments for recovering ctr keys is at mostO(log n). Finally,
if dispute happens, the communication complexity of
sending PoM (mostly due to the merkle proof πiMT) to
the contract is O(log n). Therefore, the communication
complexity of the protocol ΠFD is O(n).

• On-chain costs. In the optimistic case where no dispute
occurs, the on-chain costs of ΠFD include: (i) the func-
tions (i.e., start, join and prepared) in the Prepare phase
are all O(1); (ii) in the Deliver phase, the consume
and delivered functions are O(1). Note in the delivered
function, the cost of signature verification is O(1) as
D only needs to submit the latest receipt containing
one signature of C; (iii) the storage cost for revealed
elements (i.e., erk) is at most O(log n), where n is the
number of chunks. Overall, the on-chain cost is at most
O(log n), namely Õ(1). In the pessimistic case where
dispute happens, the on-chain cost is only related to
the chunk size η no matter how large the content is.

• Message volume for P . Considering that the contract is
deployed and the deliverer is ready to deliver. Every
time when a new consumer joins in, a new delivery
session starts. The provider P shows up twice for:
(i) sending the Merkle tree MT, which can be repre-
sented by n · λ bits where λ is a small cryptographic
parameter, to C in the Deliver phase, and (ii) revealing
erk, which is at most log n · λ bits, to C in the Reveal
phase. The total message volume can be represented as
n · λ bits, which is much smaller than the content size
|m| = n · η where η is the chunk size and considering
the fact that λ� η.

6 FairStream: FAIR P2P STREAMING

In this section, we present the fair P2P streaming protocol
ΠFS, allowing consumers to view-while-delivery.

6.1 FairStream Overview

As depicted in Fig. 4, ΠFS works as three phases, i.e., Prepare,
Stream, and Payout. The key ideas for ΠFS are:
• Same as the Prepare phase in ΠFD, the provider P

deploys the smart contract, encrypts the chunks, signs
and delegates the encrypted chunks to the deliver D.

• The streaming process consists of O(n) communication
rounds, where n is the number of chunks. In each
round, the consumer C would receive an encrypted

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Provider Deliverer Smart Contract Consumer

Phases

start started
join

joinedsell
ready

ready

consume
initiatedmtree

P
re

p
a

re

(E
xe

cu
te

 O
n

ce
)

S
tr

e
a

m

payrefund

pay refund

sold/not_sold

received received

claimRevealing
revealed

delivered
claimDelivery

P
a

yo
u

t

possible complaint

multiple rounds of
chunk delivery (streaming)

R
e

se
t

fo
r

re
p

e
a

ta
b

le
 d

e
li

ve
ry

Fig. 4: The overview of FairStream protocol ΠFS.

chunk from D and a decryption key from P ; any
party may abort in a certain round due to, e.g., un-
timely response or invalid message; especially, in case
erroneous chunk is detected during streaming, C can
complain and get compensated with a valid and short,
i.e., O(η + λ)-bit proof;

• Eventually all parties enter the Payout phase, where D
and P can claim the deserved payment by submitting
the latest receipt signed by C before a timer maintained
in contract expires; the contract determines the final in-
ternal state ctr, namely the number of delivered chunks
or revealed keys, as the larger one of the indexes in P
and D’s receipts. If no receipt is received from P or D
before the timer expires, the contract would treat the
submitted index for that party as 0. Such a design is
critical to ensure fairness as analyzed in § 6.4.

Fig. 5 illustrates the concrete message flow of one round
chunk delivery in the Stream phase. We highlight that a
black-box call of the VFD module is not applicable to the
streaming setting as VFD only allows the consumer C to
obtain the encrypted chunks, so that the provider P merely
needs to show up once to reveal a minimum number of
elements and get all chunk keys recovered. However, the
streaming procedure demands much less latency of retriev-
ing each content chunk, leading to the intuitive design to
let C receive both an encrypted chunk and a corresponding
chunk decryption key in one same round. P is therefore ex-
pected to keep online and reveal each chunk key to C. Over-
all, ΠFS requires relatively more involvement ofP compared
with ΠFD, but the advantage is that instead of downloading
all chunks in O(n) rounds before viewing, C now can
retrieve each chunk with O(1) latency. All other properties
including each party’s fairness, the on-chain computational
cost, and the deliverer’s communication complexity remain
the same as those in the downloading setting.

6.2 Arbiter Contract G ledger
s for Streaming

The arbiter contract G ledger
s (abbr. Gs) illustrated in Fig. 6 is

a stateful ideal functionality that can access to ledger func-
tionality to facilitate the fair content delivery via streaming.
The timer Treceive ensures that when any party maliciously
aborts or the consumer C receives invalid chunk during the
streaming process, ΠFS can smoothly continue and enter the
next phase. The dispute resolution in contract is relatively

(1) (deliver,)

(2) (keyReq,)

(3) (reveal,)

4. Validate chunk and decide
whether raising complaint

(5.a) (receipt,) (5.b) (receipt,)

Start the next round

chunkReceipt

keyResponse

keyReceipt

ConsumerDeliverer Provider

Fig. 5: The message flow of one round chunk delivery in the
Stream phase of ΠFS. All these messages are sent off-chain.

simpler than the downloading setting since no verifiable
decryption is needed. The timer Tfinish indicates that both
D and P are supposed to send the request of claiming their
payment before Tfinish times out, and therefore it is natural
to set Tfinish > Treceive. Once Tfinish expires, the contract
determines the final ctr by choosing the maximum index in
P and D’s receipts, namely ctrP and ctrD , respectively, and
then distributes the deserved payment for each party. Once
the delivery session completes, P can invoke the contract by
sending (reset) to Gs to reset to the ready state and continue
to receive new requests from consumers.

6.3 ΠFS: FairStream Protocol for P2P Streaming
We now present the concrete message flow in ΠFS.
Phase I for Prepare. This phase executes the same as the
Prepare phase in the ΠFD protocol.
Phase II for Stream. The consumer C, the deliverer D and
the provider P interact with the contract Gs in this phase as:
• The consumer C who is interested in the content with

digest rootm and wants to start the streaming from the
ζ-th (ζ ∈ [n]) chunk, would operate as follows:
– Asserts Σ ≡ ready, runs (pkC , skC) ← SIG.KGen(1λ),

and sends (consume, pkC , ζ) to Gs;
– Upon receiving the message (mtree,MT, σMT

P) from
P , asserts Verify(MT, σMT

P , pkP) ≡ 1 ∧ root(MT) ≡
rootm, and stores the Merkle tree MT, or else halts;

– Upon receiving the message (deliver, i, ci, σci) from
D, checks whether i ≡ ζ ∧ Verify(i||ci, σci , pkP) ≡
1, if hold, starts (for the first delivery) a timer
TkeyResponse or resets (for not the first deliveries) it,
sends (keyReq, i, σiC) where σiC ← Sign(i||pkC , skC)
to P (i.e., the step (2) in Fig. 5). If failing to check or
TkeyResponse times out, halts;

– Upon receiving the message (reveal, i, ki, σki) from
P before TkeyResponse times out, checks whether
i ≡ ζ ∧ Verify(i||ki, σki , pkP) ≡ 1, if failed,
halts. Otherwise, starts to validate the content
chunk based on received ci and ki: decrypts
ci to obtain m′i, where m′i = SDecki(ci), and
then checks whether H(m′i) is consistent with
the i-th leaf node in the Merkle tree MT, if in-
consistent, sends (PoM, i, ci, σci , ki, σki ,H(mi), π

i
MT)

to Gs. If it is consistent, sends the receipts
(receipt, i, σiCD) to D and (receipt, i, σiCP) to P , where
σiCD ← Sign(receipt||i||pkC ||pkD, skC) and σiCP ←
Sign(receipt||i||pkC ||pkP , skC), and sets ζ := ζ + 1,
and then waits for the next (deliver) message from D.
Upon ζ is set to be n+ 1, sends (received) to Gs;

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

The Arbiter Contract Functionality G ledger
s for P2P Streaming

The contract Gs can access to ledger and interacts with P , D, C and the adversary A. It locally maintains the following variables θ, n, ζ, rootm,
BP , BC , Bpf , ctrD , ctrP , ctr (all ctrD , ctrP , ctr are initially 0), pkP , pkD, pkC , the penalty flag plt (initially false), the state Σ, and sets up three
timers Tround (implicit), Treceive, Tfinish.

Phase 1: Prepare
• This phase is the same as the Prepare phase in Gd.

Phase 2: Stream
• On receive (consume, pkC , ζ) from C:

- assert θ > 0, ζ ∈ [n], and store ζ
- assert ledger[C] ≥ (n− ζ + 1) · BC ∧ Σ ≡ ready
- store pkC and let ledger[C] = ledger[C]− (n− ζ + 1) · BC
- start two timers Treceive, and Tfinish

- let Σ := initiated and send (initiated, pkC , ζ) to all entities
• On receive (received) from C before Treceive times out:

- assert current time T < Treceive and Σ ≡ initiated
- let Σ := received and send (received) to all entities

• Upon Treceive times out:
- assert current time T ≥ Treceive and Σ ≡ initiated
- let Σ := received and send (received) to all entities

. Below is to resolve dispute during streaming in ΠFS

• On receive (PoM, i, ci, σci , ki, σki ,H(mi), π
i
MT) from C before

Treceive expires:
- assert current time T < Treceive and Σ ≡ initiated
- assert i ∈ [ζ, n]
- assert Verify(i||ci, σci , pkP) ≡ 1
- assert Verify(i||ki, σki , pkP) ≡ 1
- assert VerifyMTP(rootm, i, πi

MT,H(mi)) ≡ 1
- m′

i = SDec(ci, ki)
- assert H(m′

i) 6= H(mi)
- let plt := true
- let Σ := received and send (received) to all entities

Phase 3: Payout
• On receive (claimDelivery, i, σi

CD) from D:
- assert current time T < Tfinish

- assert Σ ≡ received or Σ ≡ payingRevealing
- assert ctr ≡ 0 and i ∈ [ζ, n]
- assert Verify(receipt||i||pkC ||pkD, σi

CD, pkC) ≡ 1
- let ctrD := i− ζ + 1, Σ := payingDelivery, and then send

(payingDelivery) to all entities
• On receive (claimRevealing, i, σi

CP) from P :
- assert current time T < Tfinish

- assert Σ ≡ received or Σ ≡ payingDelivery
- assert ctr ≡ 0 and i ∈ [ζ, n]
- assert Verify(receipt||i||pkC ||pkP , σi

CP , pkC) ≡ 1
- let ctrP := i− ζ + 1, Σ := payingRevealing, and then send

(payingRevealing) to all entities
• Upon Tfinish times out:

- assert current time T ≥ Tfinish

- let ctr := max{ctrD, ctrP}
- let ledger[D] := ledger[D] + ctr · BP
- if plt:

let ledger[P] := ledger[P] + (n− ctr) · BP + ctr · BC
let ledger[C] := ledger[C] + (n− ζ + 1− ctr) · BC + Bpf

- else:
let ledger[P] := ledger[P] + (n− ctr) · BP + ctr · BC + Bpf

let ledger[C] := ledger[C] + (n− ζ + 1− ctr) · BC
- if ctr > 0: let Σ := sold and send (sold) to all entities
- else let Σ := not sold and send (not sold) to all entities
- reset()
. Reset to the ready state for repeatable delivery

• function reset():
- assert Σ ≡ sold or Σ ≡ not sold
- set ctr, ctrD , ctrP , Treceive, Tfinish, ζ as 0
- nullify pkC
- let θ := θ − 1 and Σ := ready
- send (ready) to all entities

Fig. 6: The arbiter contract functionality G ledger
s . “Sending to all entities” captures smart contract is transparent to the public.

– Waits for the messages (received) from Gs to halt.
• The deliverer D initializes a variable x := 1 and exe-

cutes as follows in this phase:
– Upon receiving (initiated, pkC , ζ) from Gs, sets x = ζ ,

sends the message (deliver, i, ci, σci), i = x to C and
starts a timer TchunkReceipt;

– Upon receiving the message (receipt, i, σiCD) from
C before TchunkReceipt times out, checks whether
Verify(receipt||i||pkC ||pkD, σiCD, pkC) ≡ 1 ∧ i ≡ x or
not, if succeed, continues with the next iteration: sets
x := x+1, sends (deliver, i, ci, σci), i = x to C, and re-
sets TchunkReceipt (i.e., the step (1) in Fig. 5); otherwise
TchunkReceipt times out, enters the next phase.

• The provider P initializes a variable y := 1 and exe-
cutes as follows in this phase:
– On receiving (initiated, pkC , ζ) from Gs: asserts Σ ≡
initiated, lets y = ζ and sends (mtree,MT, σMT

P) to C;
– Upon receiving (keyReq, i, σiC) from C, checks

whether i ≡ y∧Verify(i||pkC , σiC , pkC) ≡ 1, if succeed,
sends (reveal, i, ki, σki) where σki ← Sign(i||ki, skP),
to C and starts (for the first delivery) a timer TkeyReceipt

or resets (for not the first deliveries) it (i.e., the step
(3) in Fig. 5), otherwise enters the next phase;

– On input (receipt, i, σiCP) from C before TkeyReceipt ex-
pires, checks Verify(receipt||i||pkC ||pkP , σiCP , pkC) ≡
1 ∧ i ≡ y or not, if succeed, sets y := y+1. Otherwise

if TkeyReceipt times out, enters the next phase.
Phase III for Payout. The provider P and the deliverer D
interact with the contract Gs in this phase as:
• The provider P executes as follows in this phase:

– Upon receiving (received) or (delivered) from Gs, or
receiving the n-th receipt from C (i.e., y is set to be
n+ 1), sends (claimRevealing, i, σiCP) to Gs;

– Waits for (revealed) from Gs to halt.
• The deliverer D executes as follows during this phase:

– Upon receiving (received) or (revealed) from Gs, or
receiving the n-th receipt from C (i.e., x is set to be
n+ 1), sends (claimDelivery, i, σiCD) to Gs;

– Waits for (delivered) from Gs to halt.

6.4 Analyzing FairStream Protocol

Theorem 2 characterizes the properties of the protocol ΠFS.

Theorem 2. Conditioned on that the underlying cryptographic
primitives are secure, the protocol FairStream satisfies the com-
pleteness, fairness, confidentiality against deliverer, timeliness,
and non-trivial efficiency properties in the synchronous authen-
ticated network, G ledger

s -hybrid and stand-alone model.

Proof. For theorem 2, the guarantee for completeness, confiden-
tiality, timeliness and non-trivial efficiency properties are easy
to see. Next we mainly focus on the analysis of fairness.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Fairness. The fairness guarantee for each party can be
reduced to the underlying cryptographic building blocks.

• Consumer fairness. This property means that the honest
C needs to pay proportional to what it de facto receives
even though malicious P∗ and D∗ may collude with
each other. This case can be modeled as an adversary A
corrupts P and D to provide and deliver the content
to C. During the Stream phase, C can stop sending
back the receipts any time when an invalid chunk is
detected and then raise complaint to the contract to get
compensation. If C receives ` ∈ [n] valid chunks, it is
ensured that A who corrupts both P and D can at most
get ` receipts and claim payment of ` · BP and ` · BC ,
where the former is paid by A itself due to collusion.
Overall, C either pays ` · BC and obtains ` valid chunks
or pays nothing. To violate the fairness for C, A has to
break the security of the EU-CMA signature by forging
C’s signature. Therefore, the consumer fairness being
against the collusion of P∗ andD∗ is ensured. Note that
breaking the security of the Merkle tree (i.e., finding
another chunk m′i 6= mi in position i of m to bind
to the same rootm so as to fool the contract to reject
C’s PoM) or controlling the execution of smart contract
in blockchain, which are of negligible probability due
to the second-preimage resistance of hash function in
Merkle tree and the fact that contract is modeled as an
ideal functionality, can only repudiate the penalty fee
Bpf and would not impact C’s fairness in streaming.

• Deliverer fairness. This property states that the honest D
receives the payment proportional to the contributed
bandwidth though the malicious P∗ and C∗ may col-
lude with each other. This case can be modeled as A
corrupts both P and C to reap D’s bandwidth resource
without paying. In the Stream phase, if the honest D de-
livers ` chunks, then it is guaranteed to obtain ` or `−1
(i.e., A does not respond with the `-th receipt) receipts.
In the Payout phase,A cannot lower the payment for the
honest D since D can send the `-th or (`− 1)-th receipt
to the contract, which would update the internal state
ctrD as ` or ` − 1. Once Tfinish times out, D can receive
the well-deserved payment of ` · BP or (` − 1) · BP
from the contract, and at most waste bandwidth for
delivering one chunk of size η. To violate the fairness
for D, A has to control the execution of smart contract
to refuse D’s valid request of claiming payment, which
is of negligible probability, and therefore the deliverer
fairness being secure against the collusion of malicious
P∗ and C∗ is assured.

• Provider fairness. This property indicates that the honest
P receives the payment proportional to the number of
valid chunks that C receives. The malicious D∗ and C∗
may collude with each other or D∗ can costlessly create
multiple fake C∗ (i.e., Sybil attack), and then cheat P
without true delivery. These cases can be modeled as A
corrupts bothD and C. There are two situationsP ’s fair-
ness would be violated: (i) A claims payment (paid by
P) without real delivery; (ii) A obtains content chunks
without paying for P . For case (i), A would try to
maximize the payment paid by P by increasing the ctrD
via the (claimDelivery) message sent to Gs. However, Gs

would update the counter ctr as max{ctrD, ctrP} after
Tfinish times out, and the intention that A tries to max-
imize ctrD would correspondingly maximize ctr. Con-
sider thatAwants to claim the payment of `·BP , ` ∈ [n]
by letting the (claimDelivery) message contain the index
of ` while no content is actually delivered, essentially
the honest P can correspondingly receive the payment
of ` · BC , and therefore a well-deserved net income of
` · (BC − BP), unless A can manipulate the execution of
smart contract. For case (ii), on one hand, each content
chunk is encrypted before receiving the decryption keys
from P . Hence,A has to violate the semantic security of
the underlying symmetric encryption scheme to break
the provider fairness, which is of negligible probability.
On the other hand, during the streaming procedure, P
can always stop revealing the chunk key toA if no valid
receipt for the previous chunk key is responded in time.
At most P would lose one content chunk of size η. To
violate the fairness,A again has to control the execution
of smart contract, which is of negligible probability, to
deny the payment for P though the submitted receipt
is valid. Therefore, the provider fairness against the
collusion of malicious D∗ and C∗ is guaranteed.

In sum, the fairness for C is strictly ensured in ΠFS, while
for P and D, the unpaid revealed content for P and the
unpaid bandwidth resource of delivery are bounded toO(η)
bits. Overall, ΠFS satisfies the defined fairness property.

6.5 Discussion and Extension
Fetching from any specific chunk position. It is worth
pointing out that both FairDownload and FairStream can
support requesting content from any specific chunk with
index ζ . This is a vital functionality in the setting of
P2P content delivery, because a consumer can resume the
content retrieval from any specific chunk if encountering
unexpected termination of delivery.
Extension to multiple deliverers. Our previous description
of FairDownload and FairStream protocols is explained by
delegating the content to merely one deliverer. Neverthe-
less, to accelerate the delivery, our protocols can be easily
extended to support multiple deliverers. In case of κ deliver-
ers, a content m can be split into κ fragments, and each frag-
ment is just the input content for a FairDownload/FairStream
instance, cf. Fig. 7, where θi indicates the times of repeatable
delivery that associated with each content segment. We
report more details of the performance in the next section.
Other extensions. Both the downloading and the streaming
protocols meet the basic while necessary security require-
ments for P2P content delivery. Nevertheless, there could be
more interesting extensions, e.g., (i) an adaptive mechanism
to choose the proper deliverers for each delivery task [40];
(ii) preventing the linkage between the involved parties and
the content; (iii) a digital rights management (DRM) scheme
to preserve the digital rights against pirating consumers.

7 IMPLEMENTATION AND EVALUATIONS

We implement, deploy and evaluate FairDownload and
FairStream in the Ethereum8 Ropsten network. The arbiter

8. Over 72% DApps are all deployed atop Ethereum according to [41].

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

Provider Deliverer 1

Consumer
Content

Deliverer 3

Deliverer 2

Fig. 7: The multi-deliverer paradigm.

contract is implemented in Solidity and split into Optimistic
and Pessimistic modules, the former of which is executed
if no dispute and the later is additionally invoked when
dispute occurs. The contracts are only deployed once and
can be used for multiple times to facilitate many deliveries,
such that the one-time deployment cost can be amortized.

Cryptographic instantiations. The hash function uses kec-
cak256 and the digital signature is via ECDSA over
secp256k1 curve. The encryption of each chunk mi with
key ki is instantiated as: parse mi into t 32-byte blocks
(mi,1, . . . ,mi,t) and output ci = (mi,1⊕H(ki||1), . . . ,mi,t⊕
H(ki||t)). The decryption is same to the encryption. We
construct public key encryption scheme based on ElGamal:
Let G = 〈g〉 be G1 group over alt-bn128 curve [42] of
prime order q, where g is group generator; The private
key k ←$ Zq , the public key h = gk, the encryption
VEnch(m) = (c1, c2) = (gr,m · gkr) where r ←$ Zq and
m is encoded into G with Koblitz’s method [43], and the
decryption VDeck((c1, c2)) = c2/c

k
1 . To augment ElGamal

for verifiable decryption, we adopt Schnorr protocol [44] for
Diffie-Hellman tuples with using Fiat-Shamir transform [45]
in the random oracle model. The concrete construction is
illustrated in Fig. 8.

Public knowledge: g, q, h, (c1, c2)

ProvePKEk((c1, c2)) VerifyPKEh((c1, c2),m, π)

Let m := VDeck((c1, c2))
Let x←$ Zq
Let A = gx and B = cx1
Let C = H(g||A||B||h||c1||c2||m)

Let Z = x+ kC and π = (A,B,Z)

Output (m,π)
(m,π)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Parse π as (A,B,Z)

Compute C′ = H(g||A||B||h||c1||c2||m)

Output (gZ ≡ A · hC
′
) ∧ (mC

′
· cZ1 ≡ B · c

C′
2) ? 1 : 0

Fig. 8: The construction of ProvePKE and VerifyPKE.

7.1 FairDownload On-Chain Evaluation

Table 1 presents the on-chain gas costs for all functions in
ΠFD protocol. We stress that instantiating and deploying our
protocols utilizing other cryptocurrencies such as Ethereum
classic 9, Solana 10 or Cardano 11 may further decrease the
costs for execution.

Optimistic costs. Without complaint the protocol ΠFD only
executes the functions in Deliver and Reveal phases when a
new consumer joins in, yielding the total cost of 478,996
gas for all involved parties except the one-time cost for
deployment and the Prepare phase. Note that such an on-
chain cost is constant no matter how large the content size

9. https://ethereumclassic.org/
10. https://solana.com/
11. https://cardano.org/

TABLE 1: The on-chain costs of all functions in FairDownload

Phase Function Caller Gas Costs
Deploy (Optimistic) P 3 083 841
Deploy (Pessimistic) P 2 924 903

Prepare
start P 165 965
join D 70 865

prepared D 33 845

Deliver
consume C 150 801
delivered C 61 492

verifyVFDProof D 66 881

Reveal revealKeys P 138 763
payout Gd 61 059

Dispute Resolution wrongRK C 26 079
PoM C 392 017

Reset reset P 74 061

Fig. 9: Gas costs with dif-
ferent chunk sizes in ΠFD.

Fig. 10: Gas for various # of
revealed elements in ΠFD.

or the chunk size are, as illustrated in Fig. 9 optimistic
costs. In a worse case, up to log n elements in the key tree
KT need to be revealed. In that case, Fig. 10 depicts the
relationship between the number of revealed elements and
the corresponding gas costs.

Fig. 11: Gas for each party in
a protocol instance for ΠFD.

Pessimistic costs. When
complaint arises, the arbiter
contract involves to resolve
dispute. The cost of execut-
ing wrongRK function re-
lates to the values of n,
ctr and |erk|, and in Ta-
ble 1, the cost is evaluated
on n ≡ ctr ≡ 512, and
|erk| ≡ 1. The cost of PoM
function validating misbe-
havior varies by the content chunk size η, as depicted in
Fig. 9 pessimistic costs. The results demonstrate the on-
chain costs increase linearly in the chunk size (mostly due
to chunk decryption in contract). Fig. 11 illustrates the total
gas costs for each party within a protocol instance for ΠFD.

Encryption/decryption efficiency. The efficiency of off-
chain symmetric encryption (by providers) and decryption
(by consumers) for content chunks is about 22.46Mb/s,
which could be further improved with more engineering
optimizations, e.g., via multi-thread programming.

7.2 FairStream On-Chain Evaluation

Table 2 illustrates the on-chain costs of all functions in
FairStream. As the deployment of contract and the Prepare
phase can be executed only once, we discuss the costs in
both optimistic and pessimistic modes after a new consumer
participates in, i.e., starting from the Stream phase.
Optimistic costs. When no dispute occurs, the ΠFS protocol
executes the functions in Stream and Payout phases except
the PoM function for verifying proof of misbehavior, yield-
ing a total cost of 416,007 gas for all involved parties. Note

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

TABLE 2: The on-chain costs of all functions in FairStream

Phase Function Caller Gas Costs
Deploy (Optimistic) P 2 000 615
Deploy (Pessimistic) P 1 024 714

Prepare
start P 165 971
join D 53 865

prepared D 33 913

Stream

consume C 127 190
received C 33 887

receiveTimeout Gs 33 879
PoM C 112 176

Payout
claimDelivery D 77 091

claimRevealing P 77 101
finishTimeout Gs 100 738

Reset reset P 74 056

only one of the (received) and (receiveTimeout) functions
would be invoked. The (claimDelivery) and (claimRevealing)
functions may be called in different orders. Besides, the costs
in the optimistic mode is constant regardless of the content
size and chunk size, as shown in Fig. 12 optimistic costs.

Fig. 12: Gas costs with dif-
ferent chunk sizes in ΠFS.

Fig. 13: Gas for each party in
a protocol instance for ΠFS.

Pessimistic costs. When complaint arises, the contract is
involved to resolve dispute. The cost of PoM function:
(i) increases slightly in the number of chunks n since
it computes O(log n) hashes to verify the Merkle proof;
(ii) increase linearly in the the content chunk size η due
to chunk decryption in the contract, as depicted in the
pessimistic case in Fig. 12, which exhibits lower overall costs
than the downloading setting as no verification of verifiable
decryption proof is needed.

7.3 Evaluating Downloading and Streaming Efficiency
Experiment environment. To demonstrate the efficiency of
ΠFD and ΠFS, we conduct experiments in both LAN and
WAN settings, whose bandwidth are shown in Fig. 14. In
LAN, three VM instances on three servers reside on the
same rack and connect with different switches, and the
servers are all Dell PowerEdge R740. The VMs have the
same configuration of 8 vCPUs, 24 GB memory and 800
GB hard drive. In WAN, three Google cloud VM instances
are initialized in us-east4-c, us-east1-b and europe-north1-
a, respectively. Each VM is configured with 2 vCPUs, 4
GB memory and 10 GB hard drive. Considering that P
possesses information to choose the proper deliverer D to
ensure better delivery quality (e.g., less delay from D to C),
the link between D and C is therefore evaluated in a higher
bandwidth environment.
Downloading efficiency. Fig. 15a and 15b illustrate the
latency of downloading a content of 512 MB in LAN and
WAN settings with various number of deliverers and chunk
size. We observe that: (i) obviously, multiple deliverers can
accelerate the delivery; (ii) as expected, the latency in WAN

is higher and the delivery is less stable than that in LAN;
(iii) the latency becomes stable with the increased chunk
size. This is reasonable since with smaller chunk size, the
communication rounds would be large, while increased
chunk size would cause larger single-round latency, leading
to higher total latency.

102 103
Content Chunk Size [KBytes]

0

50

100

150

200

250

Ti
m
e
Co

st
s [

Se
co
nd

s] The # of Deliverer = 1
The # of Deliverer = 2
The # of Deliverer = 4

(a) LAN.

102 103
Content Chunk Size [KBytes]

0
50

100
150
200
250
300
350

Ti
m
e
Co

st
s [

Se
co
nd

s] The # of Deliverer = 1
The # of Deliverer = 2
The # of Deliverer = 4

(b) WAN.
Fig. 15: The latency of downloading a content of 512 MB
with various chunk size and number of deliverers.

D

P

C

945
Mbits/s

948
Mbits/s

10.2 Gbits/s

D

P

C

209
Mbits/s

187
Mbits/s

1.27 Gbits/s

LAN

WAN

Fig. 14: Bandwidths
among entities for
ΠFD and ΠFS.

Streaming efficiency. Fig. 16a
and 16b illustrate the time costs
of consecutively streaming 512
various-size content chunks in both
LAN and WAN with one deliverer,
which indicate that: (i) obviously
the time costs increase due to
the growth of chunk size; (ii) the
delivery process remains stable with
only slight fluctuation, as reflected
by the slope for each chunk size.
Furthermore, Fig. 17a and 17b
depict the latency for streaming
a content of 512 MB in LAN and
WAN settings with various chunk size and number of
deliverers. Besides the three similar observations as in the
downloading setting, the streaming process has an overall
higher latency. This is because each steaming round also
involves the provider for key revealing, as shown in Fig. 5.

(a) LAN. (b) WAN.
Fig. 16: Time costs of streaming 512 content chunks with
various chunk size and one deliverer.

102 103
Content Chunk Size [KBytes]

0

100

200

300

400

500

Ti
m
e
Co

st
s [

Se
co
nd

s] The # of Deliverer = 1
The # of Deliverer = 2
The # of Deliverer = 4

(a) LAN.

102 103
Content Chunk Size [KBytes]

0

500

1000

1500

2000

2500

3000

Ti
m
e
Co

st
s [

Se
co
nd

s] The # of Deliverer = 1
The # of Deliverer = 2
The # of Deliverer = 4

(b) WAN.

Fig. 17: The latency of streaming a content 512 MB with
various chunk size and different number of deliverers.

Fig. 18a and 18b further illustrate the average time costs
for delivering each chunk of various sizes and the corre-

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

(a) LAN. (b) WAN.

Fig. 18: The average chunk delivery latency and the corre-
sponding bitrate of streaming a content 512 MB with various
chunk size and different number of deliverers.

sponding bitrate (i.e., the number of bits that are delivered
per unit of time). The results show that the bitrate can reach
10 Mpbs even in the public network (i.e., WAN) with just
one deliverer, which in principle is sufficient to support
high-quality content streaming, e.g., the video bitrate for
HD 720 and HD 1080 are at most 4 Mbps and 8 Mbps,
respectively [46].

8 RELATED WORK

We review the related technologies and discuss their in-
sufficiencies in the context of P2P content delivery. Table 3
summarizes the comparisons with other related works.
P2P information exchange schemes. Many works [14, 26–
30, 48] focused on the basic challenge to incentivize users
in the P2P network to voluntarily exchange information.
However, these schemes have not been notably successful
in combating free-riding problem and strictly ensuring the
fairness. Specifically, the schemes in BitTorrent [48], Bit-
Tyrant [14], FairTorrent [26], PropShare [30] support direct
reciprocity (i.e., the willingness for participants to continue
exchange basically depends on their past direct interactions,
e.g., the Tit-for-Tat mechanism in BitTorrent) for partici-
pants, which cannot accommodate the asymmetric interests
(i.e., participants have distinct types of resources such as
bandwidth vs. cryptocurrencies) in the P2P content delivery
setting. For indirect reciprocity (e.g., reputation, currency,
credit-based) mechanisms including Eigentrust [27], Dande-
lion [28] are obsessed by Sybil attacks, e.g., a malicious peer
could trivially generate a sybil peer and “deliver to himself”
and then rip off the credits. For T-chain [29], it still considers
rational attackers and cannot strictly ensure the delivery
fairness as an adversary can waste a lot of bandwidth of
deliverers though the received content is encrypted.
Fair exchange and fair MPC. There are also intensive
works on fair exchange protocols in cryptography. Some
traditional ways hinge on a TTP [18, 19, 25, 49] to solve this
problem, which has been reckon hard to find such a TTP in
practice. To avoid the available TTP requirement [22], some
other studies [16, 17, 50, 51] rely on the “gradual release”
approach, in which the parties act in turns to release their
private values bit by bit, even if one malicious party aborts,
the honest one can recover the desired output by investing
computational resources (in form of CPU time) comparable
to that of the adversary uses. Recently, the blockchain offers
an attractive way to instantiate a non-private TTP, and a few
results [20, 21, 23, 24] leverage this innovative decentral-
ized infrastructure to facilitate fair exchange and fair MPC

despite the absence of honest majority. Unfortunately, all
above fair exchange and fair MPC protocols fail to guarantee
delivery fairness in the specific P2P content delivery setting,
as they cannot capture the fairness property for the special
exchanged item, i.e., bandwidth.
State channels. A state channel establishes a private P2P
medium, managed by pre-set rules, allowing the involved
parties to update state unanimously by exchanging authen-
ticated state transitions off-chain [52]. Though our protocols
can be reckon as the application of payment channel net-
works (PCNs) (or more general state channels [53]) yet there
are two key differences: i) fairness in state channels indicates
that an honest party (with valid state transition proof) can
always withdraw the agreed balance from the channel [52],
while our protocols, dwelling on the delivery fairness,
ensure the bandwidth contribution can be quantified and
verified to generate such a state transition proof; ii) state
channels essentially allow any two parties to interact, while
our protocols target the interactions among any three parties
with a totally different payment paradigm [3].
Decentralized content delivery. There exist some systems
that have utilized the idea of exchanging bandwidth for
rewards to incentivize users’ availability or honesty such
as Dandelion [28], Floodgate [54]. However, different draw-
backs impede their practical adoption, as discussed in [3].
Here we elaborate the comparison with three protocols, i.e.,
CacheCash [3], Gringotts [6], and Ding et al. [47], that target
the similar P2P content delivery scenario.
Application Scenario. Typically, the P2P content delivery set-
ting involves asymmetric exchange interests of participants,
i.e., the consumers expect to receive a specific content while
the providers and the deliverers would share their con-
tent (valid due to the digest) and bandwidth in exchange
of well-deserved payments/credits, respectively. Unfortu-
nately, in [3], [6] and [47], the raw contents are delegated
to deliverers, resulting in the lack of content confidentiality
and exchange fairness, i.e., a malicious consumer can pre-
tend to be or collude with a deliverer to obtain the plaintext
content without paying for the provider.
Delivery Fairness. In [3], a set of deliverers are selected to
distribute the chunks in parallel, which may cause the loss
of bandwidth for all chunks in the worst case. [6] typically
requires the deliverer to receive a receipt (for acknowledg-
ing the resource contribution) only after multiple chunks are
delivered, posing the risk of bandwidth loss for delivering
multiple chunks. In [47], the deliverer commits a transaction
containing chunk-related validity proof to blockchain before
each chunk delivery. We consider that the consumer would
stop receiving the chunks upon detecting invalid proof
though not explicitly stated, yielding the bandwidth loss
for sending a chunk and a transaction (of several Kbytes).
On the contrary, our protocols ensures that the unfairness of
delivery is bounded to one chunk of size η.
On-chain Costs. In [3], the deliverers can obtain lottery tickets
(i.e., similar to “receipts”) from the consumer after each
“valid” chunk delivery. The on-chain costs is highly per-
tinent to the winning probability p of tickets. E.g., p = 1

n
means that on average the deliverer owns a winning ticket
after n chunks are delivered, or p = 1 indicates that the
deliverer receives a winning ticket after each chunk delivery,
leading to at most O(n) on-chain costs of handling redeem

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

TABLE 3: Security comparison with related representative approaches (Can: X, Not fully: ∗, Cannot: ×). TX is the
transaction sent to blockchain for each chunk in [47], whose size is about 3 Kb. It also applies to Table 4.

Schemes
Features What to Exchange?

(Incentive Type)
Confidentiality

c.f., Sec.4
Exchange Fairness

c.f., Sec.4
Delivery Fairness

(the worst case), c.f., Sec.4

P2P
Information

Exchange

BitTorrent [48] Files↔ Files (Tit-for-Tat) × ∗ ×
Dandelion [28] Files↔ Credits (Reputation) × ∗ ×

T-Chain [29] Files↔ Files (Tit-for-Tat) X ∗ ×

Decentralized
Content
Delivery

CacheCash [3] Bandwidth↔ Coins (Monetary) × × all chunks’ bandwidth

Gringotts [6] Bandwidth↔ Coins (Monetary) × × multiple chunks’ bandwidth

Ding et al. [47] Files↔ Usual Payment (No Incentive) × × one chunk + one TX’s bandwidth

Our Protocols Bandwidth/Files↔ Coins (Monetary) X X one chunk’s bandwidth

TABLE 4: Performance comparison with related works (n
is the number of content chunks, e.g., n = 1024; |σ| is
the signature size of 32 bytes; |h| is the hash size of 32
bytes; |MAC| is the message authentication code size of
16 bytes; tkt is the lottery ticket with size of 110 bytes; D
and S indicate that the protocol supports downloading and
streaming respectively).

Protocols Comm.
Rounds

Comm. Overhead
(Besides content m)

On-Chain
Costs

CacheCash [3] 6n (D) n(|σ|+3|tkt|+2|h|),
(∼426Kb) [o(1), O(n)]

Gringotts [6] 5n (D, S) n(3|σ|+|TX|+ |h|),
(∼3Mb) O(n)

Ding et al. [47] 2n (D, S) n(|TX|+ |MAC|),
(∼3Mb) O(n)

Our Protocols 2n+3 (D),
4n+3 (S)

2n|σ|+(2n− 1)× |h|,
(∼128Kb for D)

4n|σ|+(2n− 1)× |h|,
(∼192Kb for S)

Õ(1)

transactions. For [6], it stores a record on the blockchain after
each chunk delivery, and therefore the on-chain costs is in
O(n). For [47], a transaction is submitted to blockchain with
chunk validity proof before every chunk delivery, leading to
O(n) on-chain costs. For our protocols, the on-chain costs is
bounded to Õ(1).

9 CONCLUSION

We present the first two fair P2P content delivery proto-
cols atop blockchain to support fair P2P downloading and
streaming, respectively. They enjoy strong fairness guar-
antees to protect any of the content provider, the content
consumer, and the content deliverer from being ripped off
by other colluding parties. Detailed complexity analysis and
extensive experiments of prototype implementations are
performed and demonstrate the practicality and efficiency.

ACKNOWLEDGMENT

The authors would like to thank the anonymous re-
viewers for their valuable comments. Yuan is supported
in part by National Key R&D Project of China (No.
2022YFB2701600), NSFC (No. 62102404) and the Youth Inno-
vation Promotion Association CAS. Songlin He is supported
in part by Sichuan Science and Technology Program (No.
2021YFG0040). Qiang Tang is supported in part by gifts
from Ethereum Foundation, Stellar Foundations and Pro-
tocol Labs. Guiling Wang is supported in part by the FHWA
EAR Project (No. 693JJ320C000021).

REFERENCES

[1] S. He, Y. Lu, Q. Tang, G. Wang, and C. Q. Wu, “Fair
peer-to-peer content delivery via blockchain,” in ES-
ORICS. Springer, 2021, pp. 348–369.

[2] Akamai, “Akamai,” 2021. [Online]. Available: https:
//www.akamai.com/

[3] G. Almashaqbeh, “Cachecash: A cryptocurrency-based
decentralized content delivery network,” Ph.D. disser-
tation, Columbia University, 2019.

[4] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and
N. Sastry, “Survey on peer-assisted content delivery
networks,” Computer Networks, pp. 79–95, 2017.

[5] W. Wang, D. Niyato, P. Wang, and A. Leshem, “De-
centralized caching for content delivery based on
blockchain: A game theoretic perspective,” in Proc.
IEEE ICC, 2018.

[6] P. Goyal, R. Netravali, M. Alizadeh, and H. Balakrish-
nan, “Secure incentivization for decentralized content
delivery,” in 2nd USENIX Workshop on Hot Topics in Edge
Computing, 2019.

[7] Swarm, 2020. [Online]. Available: https://swarm.
ethereum.org/

[8] J. Benet, “IPFS-content addressed, versioned, p2p file
system,” arXiv preprint arXiv:1407.3561, 2014.

[9] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Perma-
coin: Repurposing bitcoin work for data preservation,”
in Proc. IEEE S&P, 2014, pp. 475–490.

[10] Filecoin, “Filecoin spec.” 2020. [Online]. Available:
https://spec.filecoin.io/

[11] B. Fan, J. C. Lui, and D.-M. Chiu, “The design trade-
offs of bittorrent-like file sharing protocols,” IEEE/ACM
Transactions on Networking, pp. 365–376, 2008.

[12] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Ro-
bust incentive techniques for peer-to-peer networks,”
in Proc. ACM EC, 2004.

[13] T. Locher, P. Moore, S. Schmid, and R. Wattenhofer,
“Free riding in bittorrent is cheap,” in HotNets, 2006.

[14] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “Do incentives build robustness in
bittorrent,” in Proc. NSDI, 2007.

[15] G. Hardin, “The tragedy of the commons,” Journal of
Natural Resources Policy Research, pp. 243–253, 2009.

[16] M. Blum, “How to exchange (secret) keys,” in Proc.
ACM STOC, 1983, pp. 440–447.

[17] I. B. Damgård, “Practical and provably secure release
of a secret and exchange of signatures,” Journal of
Cryptology, pp. 201–222, 1995.

[18] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair
exchange of digital signatures,” IEEE Journal on Selected
Areas in communications, pp. 593–610, 2000.

[19] A. Küpçü and A. Lysyanskaya, “Usable optimistic fair
exchange,” in Cryptographers RSA Conference, 2010, pp.
252–267.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

https://www.akamai.com/
https://www.akamai.com/
https://swarm.ethereum.org/
https://swarm.ethereum.org/
https://spec.filecoin.io/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 18

[20] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap:
How to fairly exchange digital goods,” in Proc. ACM
CCS, 2018, pp. 967–984.

[21] G. Maxwell, “The first successful zero-knowledge
contingent payment,” Feb. 2016. [Online]. Avail-
able: https://bitcoincore.org/en/2016/02/26/zero-
knowledge-contingent-payments-announcement/.

[22] H. Pagnia and F. C. Gärtner, “On the impossibility of
fair exchange without a trusted third party,” Technical
Report TUD-BS-1999-02, Darmstadt University of Tech-
nology, Tech. Rep., 1999.

[23] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust
multi-party computation using a global transaction
ledger,” in Advances in Cryptology – EUROCRYPT, 2016,
pp. 705–734.

[24] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and
I. Miers, “Fairness in an unfair world: Fair multiparty
computation from public bulletin boards,” in Proc.
ACM CCS, 2017, pp. 719–728.

[25] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti,
A. Küpçü, A. Lysyanskaya, and E. Rachlin, “Making
p2p accountable without losing privacy,” in Proceedings
of the 2007 ACM workshop on Privacy in electronic society,
2007, pp. 31–40.

[26] A. Sherman, J. Nieh, and C. Stein, “Fairtorrent: a deficit-
based distributed algorithm to ensure fairness in peer-
to-peer systems,” IEEE/ACM TON, 2012.

[27] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina,
“The eigentrust algorithm for reputation management
in p2p networks,” in Proc. WWW, 2003, pp. 640–651.

[28] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki, “Dan-
delion: Cooperative content distribution with robust
incentives.” in Proc. USENIX ATC, 2007.

[29] K. Shin, C. Joe-Wong, S. Ha, Y. Yi, I. Rhee, and D. S.
Reeves, “T-chain: A general incentive scheme for coop-
erative computing,” IEEE/ACM TON, 2017.

[30] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee,
“Bittorrent is an auction: analyzing and improving bit-
torrent’s incentives,” ACM SIGCOMM Computer Com-
munication Review, 2008.

[31] ENISA, “ENISA threat landscape 2020 -botnet,”
2020. [Online]. Available: https://www.enisa.europa.
eu/publications/enisa-threat-landscape-2020-botnet.

[32] J. Camenisch and V. Shoup, “Practical verifiable en-
cryption and decryption of discrete logarithms,” in
Advances in Cryptology CRYPTO, 2020, pp. 126–144.

[33] S. Janin, K. Qin, A. Mamageishvili, and A. Gervais,
“Filebounty: Fair data exchange,” in 2020 IEEE Eu-
ropean Symposium on Security and Privacy Workshops
(EuroS&PW), 2020, pp. 357–366.

[34] J. Katz and Y. Lindell, Introduction to modern cryptogra-
phy. CRC press, 2014.

[35] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin
backbone protocol: Analysis and applications,” in EU-
ROCRYPT. Springer, 2015, pp. 281–310.

[36] A. Kiayias, A. Russell, B. David, and R. Oliynykov,
“Ouroboros: A provably secure proof-of-stake
blockchain protocol,” in Advances in Cryptology –
CRYPTO. Springer, 2017, pp. 357–388.

[37] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papaman-
thou, “Hawk: The blockchain model of cryptography

and privacy-preserving smart contracts,” in IEEE S&P,
2016, pp. 839–858.

[38] G. Wood et al., “Ethereum: A secure decentralised
generalised transaction ledger,” Ethereum project yellow
paper, pp. 1–32, 2014.

[39] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis,
A. Frolov, T. Kell, T. Lobban, C. Moy, A. Juels, and
A. Miller, “Candid: Can-do decentralized identity with
legacy compatibility, sybil-resistance, and accountabil-
ity,” in IEEE S&P. IEEE, 2021, pp. 1348–1366.

[40] G. Yan and J. Li, “Towards latency awareness for
content delivery network caching,” in USENIX Annual
Technical Conference (USENIX ATC), 2022, pp. 789–804.

[41] State of the Dapps, “Dapp Statistics,” 2022. [Online].
Available: https://www.stateofthedapps.com/stats

[42] C. Reitwiessner, “EIP-196: Precompiled contracts for
addition and scalar multiplication on the elliptic curve
alt bn128,” Ethereum Improvement Proposals, No.
196, 2017. [Online]. Available: https://eips.ethereum.
org/EIPS/eip-196

[43] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics
of computation, pp. 203–209, 1987.

[44] C.-P. Schnorr, “Efficient identification and signatures
for smart cards,” in Advances in Cryptology – CRYPTO,
1989, pp. 239–252.

[45] A. Fiat and A. Shamir, “How to prove yourself: Practi-
cal solutions to identification and signature problems,”
in Advances in Cryptology – CRYPTO, 1986, pp. 186–194.

[46] IBM, “Internet connection and recommended encoding
settings.” [Online]. Available: https://support.video.
ibm.com/hc/en-us/articles/207852117-Internet-
connection-and-recommended-encoding-settings

[47] Y. Ding, Z. Wu, and L. Xie, “Enabling manageable
and secure hybrid p2p-cdn video-on-demand stream-
ing services through coordinating blockchain and zero-
knowledge,” IEEE MultiMedia, 2022.

[48] B. Cohen, “Incentives build robustness in bittorrent,”
in Workshop on Economics of Peer-to-Peer systems, 2003,
pp. 68–72.

[49] S. Micali, “Simple and fast optimistic protocols for fair
electronic exchange,” in Proc. ACM PODC, 2003, pp.
12–19.

[50] B. Pinkas, “Fair secure two-party computation,” in
Advances in Cryptology – EUROCRYPT, 2003, pp. 87–
105.

[51] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang,
“Resource fairness and composability of cryptographic
protocols,” in Theory of Cryptography Conference, 2006,
pp. 404–428.

[52] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry,
and A. Gervais, “Sok: Layer-two blockchain protocols,”
in FC. Springer, 2020, pp. 201–226.

[53] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. Mc-
Corry, “Sprites and state channels: Payment networks
that go faster than lightning,” in FC. Springer, 2019,
pp. 508–526.

[54] S. K. Nair, E. Zentveld, B. Crispo, and A. S. Tanenbaum,
“Floodgate: A micropayment incentivized p2p content
delivery network,” in Proc. ICCCN, 2008, pp. 1–7.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 06,2022 at 18:43:41 UTC from IEEE Xplore. Restrictions apply.

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/.
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/.
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-botnet.
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-botnet.
https://www.stateofthedapps.com/stats
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196
https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings
https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings
https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings

	Introduction
	Preliminaries
	Building Blocks
	Verifiable Fair Delivery
	Structured Key Derivation

	Formalizing P2P Content Delivery
	System Model
	Design Goals

	FairDownload: Fair P2P Downloading
	FairDownload Overview
	Arbiter Contract Gdledger for Downloading
	FD: FairDownload Protocol for P2P Downloading
	Analyzing FairDownload Protocol

	FairStream: Fair P2P Streaming
	FairStream Overview
	Arbiter Contract Gsledger for Streaming
	FS: FairStream Protocol for P2P Streaming
	Analyzing FairStream Protocol
	Discussion and Extension

	Implementation and Evaluations
	FairDownload On-Chain Evaluation
	FairStream On-Chain Evaluation
	Evaluating Downloading and Streaming Efficiency

	Related Work
	Conclusion

