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Abstract: Mechanical space heating and cooling are responsible for over one-third of the
greenhouse gases released by building operations globally. As a result, heating and cooling
load reductions are high priorities in climate change mitigation efforts. Direct solar heating,
natural ventilation, and shading are often able to condition indoor spaces “passively” using
only climatic resources, but their performance is limited by the lack of effective and affordable
controls for their operable elements: rule-based control strategies cannot anticipate changes in
weather or adapt to seasonal changes, while model-based strategies require significant investment
into the creation of customized thermal models. Here, we design and validate a model-free data-
driven reinforcement learning approach by comparing tabular Q-learning and policy-gradient
(REINFORCE) algorithms for passive heating and cooling. These algorithms are trained on a
residential building simulated in EnergyPlus in Albany NY and evaluated on the basis of unmet
heating and cooling loads in both the training climate and six others. We find that the learned
operation of shading, night insulation, and window aperture opening, driven by indoor and
outdoor air temperatures, window surface heat flux, and weather forecasts, reduces total loads
by 47-76% compared to operation without passive systems. Additionally, the REINFORCE
policy reduces loads by 13-64% over conventional rule-based control, with one exception.
Together, these results show that reinforcement learning can improve passive heating and cooling
performance substantially, ultimately reducing space heating and cooling energy requirements.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Mechanical space heating and cooling of buildings account
for an estimated 4 Gt of greenhouse gas emissions annually,
exceeding one-third of the building-related total worldwide
(IEA, 2020). Despite advances in building energy codes,
growth in built space is outpacing efficiency efforts, causing
these emissions to continue to rise; the need to avoid
mechanical heating and cooling altogether where possible
is therefore urgent (IEA, 2020; Lucon et al., 2015). Direct
solar heating, natural ventilation, shading, radiative cool-
ing, and other passive strategies are of interest in this effort
because they use solar radiation, cool night air, and other
climatic resources to heat and cool building spaces without
mechanical systems (e.g. Oropeza-Perez and Ostergaard,
2018). However, reliable performance requires the coordi-
nated operation of shading, movable insulation, and aper-

Traditionally, building thermal control schemes have relied
on empirically tuned PID or rule-based controllers, often
with poor performance and energy inefficiency. To address
this, model-based approaches such as model predictive
control strategies (MPC) have become more prevalent in
the past two decades. However, these methods require sig-
nificant modeling and commissioning effort, as suggested
by (Drgona et al., 2020). As a result, interest is grow-
ing in data-driven approaches, including iterative learn-
ing control (Minakais et al., 2019) and machine learning-
based control (e.g. Peng et al., 2018). The latter includes
model-free approaches such as reinforcement learning (RL)
(Sutton and Barto, 2018) that use high-fidelity simulation
models to learn control policies that maximize a cumula-
tive reward function through repeated trial and error.

RL control strategies for indoor environments have pri-

ture openings. Typically, these are controlled by indoor
and/or outdoor air temperatures, illumination, or time
of day (e.g. Liu et al., 2015; Grynning et al., 2014), and
while these have shown promising performance, extensive
further improvements appear possible (Rempel and Lim,
2019; Chen et al., 2018).

* This work was funded by National Science Foundation CBET-1804218.

marily focused on mechanical heating, ventilating, and air-
conditioning (HVAC) systems, with the goal of reducing
energy consumption (or cost) and improving occupant
comfort. To minimize the number of control points, such
studies often adjust the end state, e.g. the room air tem-
perature setpoint, as the only action, shifting heating or
cooling loads to hours when electricity is less expensive.
Actions focused on direct control of actuators, such as
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Fig. 1. Reinforcement learning (RL) for passive system operation. States reflect inside and outside air temperature, weather forecasts, window
surface heat flux, and heating or cooling loads at each 10-min timestep (Table 1; Eqn. 3). Rewards prioritize indoor air temperatures
between 20-25°C and reduced heating and cooling load. The control policy, learned either by tabular Q-learning or a policy-gradient
algorithm like REINFORCE, generates actions that deploy or retract shading (for cooling); deploy or retract movable insulation (for
heating); and open or close window apertures for ventilation with outside air.

economizer dampers, are seldom investigated (Wang and
Hong, 2020).

The improvement of passive heating and cooling controls
is also motivated by the desire to reduce energy use and
preserve thermal comfort, resulting in analogous reward
structures, but actions must address the actuator level,
e.g. shading operation. Time-dependent building thermal
behavior, driven by both weather and occupancy, also has
greater importance in passive systems because pre-heating
or cooling must be accomplished with variable climatic
resources rather than predictable mechanical systems.
Passive systems are therefore excellent candidates for RL
because they must respond appropriately to multiple,
potentially opposing environmental conditions, such as the
co-occurrence of cold air and intense solar radiation, and
because diurnal and seasonal thermal cycles cause the ideal
responses to vary accordingly (Rempel and Lim, 2019).

However, few investigations of model-free RL for control
of passive heating or cooling have been conducted to date
and all have relied on tabular Q-learning to control a single
operable element. For example, Cheng et al. (2016) devel-
oped policies to control office window blind slat angles to
improve visual comfort and diminish lighting energy use,
improving significantly upon traditional controls during
field implementation. In related work, Chen et al. (2018)
developed policies to control aperture opening for natural
ventilation in the context of a simplified building heat
transfer model, similarly finding noticeable reductions in
cooling energy use over conventional heuristic control.

While tabular Q-learning methods are suitable for small
state and action spaces, they do not scale well with in-
creasing state and action complexity. To address this,
we investigate a (policy-based) function approximation
approach, REINFORCE (Williams, 1992), comparing it
with Q-learning (Watkins and Dayan, 1992) for the devel-
opment of control strategies for passive heating and cooling
systems that minimize space-heating and cooling loads by
leveraging climatic resources. We evaluate the performance
of these algorithms in learning optimal control strategies,
without prior knowledge of system dynamics, in terms of
(1) training data required, (2) reduction of heating and

cooling loads, and (3) robustness of the learned policies
under contrasting conditions.

2. PROBLEM FORMULATION & PRELIMINARIES

2.1 Problem Statement

As a representative test case, we consider a dwelling with
three controllable passive heating and cooling elements:
window shading, movable insulation, and aperture open-
ing. The goal is to find a feedback control strategy for these
elements that minimizes mechanical heating and cooling
loads using measurements of current indoor and outdoor
air temperatures, heat flux across window surfaces, me-
chanical heating and cooling loads, and forecast outdoor
air temperatures, without directly knowing the dynamics
of the system, using an RL approach (Fig. 1).

2.2 Markov Decision Process

RL schemes are typically based on the formulation of
a Markov Decision Process (MDP) consisting of states
S; € S, allowable actions A; € A, rewards R; € i, and
transition probabilities P(S¢4+1|S¢, A¢). The control law,
commonly referred to as the policy, maps the states to
actions 7 : 8§ — A (or 7 : § — Pr(A)). The goal of the RL
algorithm is to find the optimal policy 7* (deterministic or
stochastic) to maximize the expected cumulative reward,
G =E[Y ;27" Rit1], given the reward (cost) function
r(+). In a model-free learning scheme, where the transition
probabilities of the MDP are unknown, the optimal policy
is found through trial and error by interacting with the
environment (Sutton and Barto, 2018).

2.8 Value-based RL

Given a policy m, V™(s) (the state value function) and
Q7 (s,a) (the action value function) represent the expected
cumulative future rewards for a given state or state-action
pair, explicitly written as:

ZVthJrkH | S = 3]
k=0

V7(s)=Ex (1)

627‘-(87 a) = ]Eﬂ- [Z ’}/th+k+1 | St = S,At =a (2)

k=0
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Above, E[-] represents the expectation over the stochastic
policy m, and ~ is the discount factor that emphasizes
immediate rewards.

RL algorithms that use value functions to determine the
optimal policy are known as value-based methods. For
these methods, the policy is simply the selection of the
action that yields the highest value based on the value
function (greedy policy), or alternatively the selection of
a random action with a probability of e (e-greedy policy).
During the training process, the value function is itera-
tively updated through the Bellman equation (Bellman,
1966) until it converges to the optimal value function.

Q-learning refers to a class of value-based temporal dif-
ference (TD) RL algorithms that use the action-value
function Q(s, a) to learn the optimal policy. While Q(s, a)
is (in general) a continuous function of s and a, it can be
formulated into a tabular function if both the states and
actions are finite and discrete. Function approximations
can also be used to estimate Q(s,a) directly through
algorithms such as Deep Q-Networks (DQN) (Mnih et al.,
2013). However, since smaller and finite state-spaces are
easier to interpret, and because tabular methods have
faster convergence, we first explore tabular Q-learning
(Algorithm 1) for the application under study (Sec. 3.1).

Algorithm 1 Tabular Q-learning

Initialize Q(s,a) arbitrarily
for episode = 1,...,M do
Initialize s
for each timestep of episode do
Choose a given s using e-greedy
Take action a, observe r and s’

Q(s,a) + Q(s,a)+a|r+v maxaQ(s’,a)—Q(s,a)}
5+ s
until s is terminal

end for
end for

2.4 Policy-based RL

Policy-based RL methods directly learn the optimal policy
through a function approximator, parametrized by a set
of basis functions and the vector 6, i.e., 7 = my. One
advantage of policy-based methods is their ability to learn
stochastic policies with continuous state and action spaces.
More importantly, initial policies can be pre-trained with
samples from a pre-defined expert control, accelerating
the training process and reducing random actions when
deploying a model to a real-world system.

While policy-based schemes can use a variety of search
methods such as finite difference or gradient ascent to
optimize the parameters of the function approximator,
gradient-based strategies are well-suited for larger parame-
ter spaces. In policy-gradient (PG) methods, the objective
is to update @ based on the gradient of expected future
rewards with respect to 8, maximizing the expected fu-
ture rewards. Hence, the utility function J(6), i.e., the
performance measure of the policy with respect to 8 for
an episodic case can be defined as the state-value function
under policy 7y as J(0) = V7™ (sq).

From the policy gradient theorem (Sutton and Barto,
2018), VyJ(0), can be written as

VoJ(0) = E[G,VInm(A4, | S, 0)]. (3)

Vinn(A; | S, 0) is known, and thus E [G}] must be com-
puted to use the analytical form of the gradient. We
use REINFORCE, a Monte-Carlo PG algorithm that uses
empirical rewards sampled from trajectories from a Monte-
Carlo estimate instead of the actual expectation E [Gy].
From this estimate of VyJ(0), we update 0 via gradient
ascent. The pseudocode for REINFORCE is shown below.

Algorithm 2 REINFORCE: Monte-Carlo PG

Initialize parameter vector 8 € R?
for episode = 1,... .M do
Generate trajectory Sy, Ag, Ri,...,S7_1,Ar_1, Rr,
following 7y
for each timestep of episode t =0,...,7 — 1 do
Gt — ZZ:H—I ,katfle
0« 0+ ay'GiVelnnm(As | S, 0)
until Y'G; Vg In7(A; | St, ) is small enough
end for
end for

3. METHODOLOGY AND IMPLEMENTATION

3.1 Q-Learning MDP Formulation

As discussed in Section 2, tabular Q-learning requires the
states and actions to be defined in finite and discrete
spaces. The states should be defined to capture sufficient
information for the controller to make appropriate de-
cisions. Indoor and outdoor temperatures are central to
decisions regarding natural ventilation, while knowledge
of heat flux through windows is necessary for making
decisions regarding movable insulation and shading status.
Additionally, passive heating and cooling processes oper-
ate over time periods of many hours due to the thermal
inertia of building materials, requiring forecast informa-
tion so that the controller can pre-cool or pre-heat the
building in advance of hot days or cold nights. Finally,
an indication of the energy consumption status should be
included in the states. These raw measurements are then
discretized based on seven parameters kq, . . ., k7 (Table 1).

Table 1. Q-Learning State Discretization

Parameter Type Value range

k1 Indoor temperature trend 0,1,2

ko Indoor temperature (7°") 0,...,10
ks Outdoor temperature trend 0,1,2

ky Temperature difference (7" — T°ut) 0,...,7
ks Heat flux (q) 0,1

ke Forecast 0,1

kv Energy consumption status 0,1

Parameters k1 and k3 are determined from the trends of
the past 10 measurements (collected every 10 minutes) of
indoor and outdoor temperature, where 0 corresponds to
an increasing trend, 1 corresponds to a decreasing trend,
and 2 is assigned to any other pattern. Parameter ks
is assigned a value based on 11 discrete bins for indoor
air temperatures between 20 and 25°C, and the value of
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ks is established by the difference between indoor and
outdoor temperature within 8 discrete bins. Parameter
ks is determined from the direction of the net heat flux
through window glass, where 0 indicates outward heat flux
and 1 indicates inward heat flux. Parameter kg is assigned
a value of 1 if the maximum forecast outdoor temperature
for the next 20 hours exceeds 26 °C, and 0 otherwise.
Finally, k7 indicates the status of the mechanical heating
and cooling energy requirement, where 0 indicates the
absence and 1 indicates the presence of a heating or cooling
load. The state of the system for Q-learning, StQ L7 is then
expressed as:

S?L = [kl,k27k3,k’4,k57k67k7]' (4)

The set of possible actions (Table 2) is defined as a finite
combination of natural ventilation and window shading (or
insulation) positions. Partial opening for natural ventila-
tion is allowed, while shading may only be on or off.

Table 2. Q-Learning / REINFORCE Actions

Action Ventilation Insulation / Shading
a1 0 (closed) 1 (on)
as 1 (fully open) 1
as 0 0 (off)
as 0.5 0
as 0.5 1
ag 0.1 0
ar 0.1 1
as 1 0

Finally, the reward function is designed to reduce mechani-
cal heating and cooling loads and to avoid frequent changes
in actions. The reward function can be expressed as a
weighted sum of two components, r; and 75, where each
component corresponds to the reward component of the
energy consumption at time ¢, F; (normalized by constant
(), and change in action, respectively, while w; and ws
are the corresponding weights.

r(Fy, at,ar—1) = wiry + wary, where (5)
"T\-1-E/C E >0, and

o +1 ar=a
Tl ar#ap -

3.2 REINFORCE MDP Formulation

For the REINFORCE implementation, the reward func-
tion and actions are the same as in the tabular Q-learning
case. The key difference is that the raw measurements are
used to define continuous states. Instead of determining
the trends of the time window of the 10 most recent
indoor and outdoor temperature measurements, the vec-
tor containing the 10 most measurements itself is used
in the state. Since the forecast previews a much longer
time period, i.e., 20 hours into the future (120 time-
steps), 10 maximum values from equally-spaced bins are
selected from the raw forecast information. The maximum
value of each bin is used to define the forecast vector
TF ={1F,...,Tl}}, where T} is the maximum value of
the ith bin. Prior to adding the heat flux information,
the raw heat flux ¢ is normalized and stretched into a
vector Q¢ = {Gnorms - - - » qnorm } € R®, where gnopm is the
normalized value of the heat flux at time ¢. This is done to

compensate for the fact this scalar value is being combined
with vectors and to ensure that the information does not
lose relative significance. Similarly, the energy consump-
tion status (1 for mechanical heating/cooling on and 0 for
off) is also stretched into a vector form, Es € R®, prior
to combining the information. The state for REINFORCE

StP G can then be expressed as a concatenated vector:
PG in i t F
S‘l: = [ tlfga'"ﬂTgn’Ttoféw"7Tt01”7Tt 7QtaEs]- (6)

8.8 Demonstration Setup in Energy Plus

A single 45 m? multi-family dwelling unit with southern
and rooftop exposure was modeled in EnergyPlus 9.2
and used in all simulations. Opaque envelope and glazing
materials, infiltration, internal gain rates, and thermo-
stat setpoints (heating: 20°C; cooling: 25°C) were speci-
fied according to the 2018 International Energy Conser-
vation Code, and fresh air ventilation was set according
to ASHRAE Standard 62.2-2016. Interior operable panels
(k=0.014 W/mK) with edge seals served as both movable
insulation and shading. TMYx 2004-2018 weather files
(Lawrie and Crawley, 2019) were used as noted.

The Q-learning algorithm was implemented in MATLAB,
and the EnergyPlus Co-Simulation Toolbox (Dostal and
Baumelt, 2019) was used to communicate between Energy-
Plus and the algorithm. The REINFORCE algorithm was
implemented in Python, and MATLAB was used to com-
municate information between Python and EnergyPlus.

For Q-learning, a tabular setup represented and updated
the value function Q(s, a). For REINFORCE, an artificial
neural network with three layers, each with 200 nodes, was
used as the function approximator. With a discrete set of
actions, a softmax policy was used, in which the output of
the neural network is a multinomial distribution of the nor-
malized probabilities of each action, where the final action
is sampled from the given multinomial distribution. Both
value- and policy-based approaches were trained in Albany
NY in May, chosen for its representation of outdoor air
temperatures both above and below thermostat setpoints.

4. RESULTS AND DISCUSSION
4.1 Training Results

The Q-learning algorithm was trained over 30 iterations
each lasting 31 days (1 month), converging after approx-
imately 15 iterations, while the REINFORCE algorithm
was trained over 1700 iterations, requiring about 1500 to
converge (Fig. 2). This difference stems primarily from
the fact that Q-learning has a much smaller finite state-
space, whereas REINFORCE is a Monte Carlo method in
which trajectories are sampled over each entire episode.
Additionally, function approximation-based methods tend
to require more data, resulting in longer training periods.

4.2 Performance

Following training on one month of typical May weather
in Albany NY, the policy derived from Q-learning reduced
heating and cooling loads in the experimental dwelling
from a baseline level of 115MJ (i.e. without passive sys-
tems operating) to 53 MJ. The policy trained by REIN-
FORCE, however, reduced total loads to 22 MJ demon-
strating substantially greater effectiveness. Indoor air tem-
peratures achieved by the two policies are compared for
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one representative week in Fig. 3, in which REINFORCE
most improved upon Q-learning primarily by maintaining
cooler temperatures in advance of hot days and by limiting
ventilation during the warmest hours. Although both al-
gorithms used weather forecasts, function approximation-
based methods are better suited to continuous state-
spaces, increasing the ability to distinguish between similar
states. In Q-learning, ambiguity within state definitions
often hinders the learning process because the agent may
need to take different actions for the same state. Further
efforts therefore focused on the policy-gradient algorithm.

Fig. 4 illustrates an example of the shading and ventilation
actions learned by the REINFORCE-trained policy. When
outdoor air is cool (early May 8), the policy maintains
indoor air near the midpoint between thermostat setpoints
by allowing solar gain (shading off) and excluding outdoor
air (ventilation off); when warmer outdoor air is fore-
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Fig. 3. Comparison of temperatures and heating/cooling loads
achieved by Q-learning and REINFORCE-trained policies.

cast, the policy pre-cools the space with both ventilation
and shading, at the expense of inducing a small heating
load. May 9 shows a similar pattern: When cool outdoor
temperatures resume, the policy maintains warmer indoor
conditions; then, as outdoor air warms, the policy re-
turns to shading and ventilation to keep indoor conditions
cooler. The same pattern occurs on May 10, but in this
case, the pre-cooling is not sufficient to avoid all cooling
loads. Additionally, intermittent natural ventilation during
the afternoon, when warm outdoor air should have been
excluded, increases cooling loads unnecessarily. This rep-
resents an important opportunity for future improvement.

To evaluate robustness, the policy trained in Albany, NY
was deployed in six contrasting climates: warm and cool-
summer Mediterranean (Los Angeles; Portland OR), semi-
arid (Salt Lake City), humid subtropical (Kansas City),
and hot and warm-summer continental (Pittsburgh; De-
troit). Comparisons included baseline models both with-
out passive systems and with conventionally controlled
shading (on if incident solar radiation > 250 W/m?) and
natural ventilation (on if 20°C < Toy < 25°C) (Fig. 5).
Strikingly, the trained policy reduced total loads by 47-
76%, showing 13-64% improvement over conventional con-
trols, in five of the six cities. These five again illustrate
the strategy of pre-cooling shown in Fig. 4, shown by the
trading of higher cooling loads for lower heating loads,
while the one exception, Detroit, emphasizes the need for
improved warm-hour ventilation strategies.

Next, we investigated heating and cooling performance
of the REINFORCE policy trained in Albany in May
among contrasting months in the same climate, again in
comparison with models without passive systems or having
only conventional controls (Fig.6). Conventional controls
sometimes increased loads above those of models without
passive systems, illustrating a well-known problem. As ex-
pected, the trained policy out-performed models without
passive systems in all months, although not to the extent
accomplished in the training month. More importantly,
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Fig. 4. Actions, indoor air temperatures, and unmet heating/cooling
loads of the REINFORCE-trained policy in Albany NY.
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Salt Lake City UT; LA: Los Angeles CA; PIT: Pittsburgh PA;
PDX: Portland OR; DET: Detroit MI; KC: Kansas City MO,
each represented by May in TMYx 2004-2018 weather files.

however, the trained policy improved upon conventional
controls by substantial margins (31-39%) in all months
but one, suggesting that learning-based approaches could
provide a pathway for greater adoption of passive systems.
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Fig. 6. Heating and cooling loads in models without passive systems
(NP); with conventionally controlled systems (CC); and with
the REINFORCE-learned policy in contrasting months of the
Albany NY TMYx 2004-2018 weather file.

5. CONCLUSIONS

This study investigated two RL algorithms for reduc-
ing space heating and cooling loads in buildings through
integrated control of shading, movable insulation, and
natural ventilation. The REINFORCE-trained policy re-
duced heating and cooling loads to less than half of those
achieved by the tabular Q-learning policy in the training
environment (Albany NY in May); it also reduced May
loads by 47-76%, compared to models without passive
systems in six other climates ranging from humid sub-
tropical to cold semi-arid. Together, these results show the
advantage of policy-gradient over tabular methods for the
control of multi-faceted passive conditioning systems in
buildings, which has not previously been demonstrated,
as well as the potential robustness of resulting policies
for deployment in contrasting climates. Future work will
address three primary limitations: first, the greater chal-
lenge of learning effective responses to warm days vs.
cool ones; second, the challenge of operating shading and
natural ventilation independently; and finally, the time
required for training. These issues may be addressed by
using well-defined expert systems to pre-train the initial
policy, reducing undesirable random actions, accelerating
the training process, and guiding the algorithm toward a

more seasonally robust policy through expert demonstra-
tions. Finally, actor-critic or policy gradients with base-
lines may be used to reduce the variation during training
and accelerate learning.
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