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1 | INTRODUCTION

Online education is rapidly expanding due to its acces-
sibility, scalability, and flexibility [5,44]. One of the major
challenges in online courses is student course-level
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Abstract

Although researchers agree that student engagement in online courses is a
function of time dedicated to course-related activities, there is little consensus
about the best way to quantify the construct. This study introduces a measure
for undergraduate engineering students’ engagement in online courses using
their interactions with their online course learning management system
(LMS). Data from 81 courses offered by three fully online, undergraduate
engineering degree programs generated a total of 3848 unique student-course
combinations (approximately 2.7 million rows of LMS interaction data), to
which we applied a five-step process to calculate a single score representing
student LMS engagement. First, we converted the students’ LMS interaction
data into a set of natural features representing the time they spent per 3-day
period on various course elements, such as quizzes, assignments, discussion
forums, and so forth, and how these times changed across the duration of the
course. We then used the natural features to derive 216 relative features de-
scribing deviations from typical interaction patterns among students in the
same course. Next, we conducted association rule mining on a training portion
of the data set to generate rules separately describing the behavior of students
who completed the course (completers) and those who chose to drop early
(leavers). The rules generated were applied to students from the testing
portion of the data set to compute the percentage of unique rules met by
completers and leavers. Finally, the mathematical difference between the
percentages of completer and leaver rules met by each student was found to be
the best measure of student engagement.
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attrition, which is higher in the online format than in
face-to-face courses [11,22,45]. Researchers have tried to
address higher attrition in online courses by investigating
its probable causes. For example, Hart [24] identified
motivation, online learning satisfaction, sense of
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belonging in the community, peer and family support,
communication with the instructor, and time manage-
ment skills as factors influencing students’ decision to
persist in online courses. Other important factors in
students’ successful completion of online courses have
included students’ prior academic achievement, previous
information technology training, continuous academic
enrollment, and financial assistance [43].

Researchers have also predicted online students'
course persistence using data describing the students’
patterns of interaction with their online course
[14,17,25,35,42,54]. For example, Shelton et al. [46]
identified students at risk of dropping their online
course using student-teacher and student-student in-
teraction data, where the frequency of online interac-
tions proved to better indicate student persistence and
success than did the length of interactions. Aguiar et al.
[4] predicted persistence using first-year engineering
students' electronic portfolios, extracting information
about their course engagement through their reflec-
tions about engineering advising, project updates, and
engineering exploration throughout the course. Using
attributes related to student activities such as assign-
ment skips, assessment performance, and video skips
and lags to predict student dropout in online courses,
Halawa et al. [23] were able to successfully flag
40%-50% of students who dropped out of the course
while they were still enrolled. Finally, a study by Morris
and Finnegan [36] student attribute data and student
course interaction data to predict students' course-level
persistence decisions in separate studies.

Each of the studies above underscores the potential
to use data related to students' activities in online
courses to predict students’ persistence decisions. This
paper similarly presents evidence supporting the
development and efficacy of a student engagement
measure based on the student-learning management
system (LMS) data interaction patterns that uniquely
identify course leavers and completers in online un-
dergraduate engineering courses. We focus on online
undergraduate engineering students specifically, given
the steadily increasing number of online courses and
programs for undergraduate engineering students over
the last decade [31,44,57] and the potential for greater
student attrition due to the difficulties of replicating in
the online formal typical aspects of the undergraduate
engineering experience [8,21]. This study is part of a
larger National Science Foundation-funded study to
develop and evaluate a theoretical model for online
undergraduate engineering student persistence by
combining student attribute and LMS interaction data
[13]. A summary of the literature on student engage-
ment in online courses is provided next.

2 | STUDENT ENGAGEMENT IN
ONLINE COURSES

Student engagement is a construct widely considered in
educational research, in both face-to-face and online
modalities, due to its demonstrated correlation with
several positive student outcomes, including course level
persistence [38,53]. While some studies have focused on
cognitive measures of student engagement such as stu-
dents' motivations and strategies for learning [41], others
have operationalized engagement as student effort to-
ward educationally advancing activities [10,12,16,20] and
interaction with classmates, instructors, and the courses
themselves [19]. A growing body of work within this
category uses learning analytics to track student
engagement indicators such as the number of assign-
ments completed, discussion board messages posted,
quizzes taken, and emails written [9,28,37,48,52]. For
example, Bote-Lorenzo and Gémez-Sanchez [10] calcu-
lated students’ engagement scores by averaging the per-
centages of assignments submitted, exercises completed,
and lecture videos watched through the students’ course
LMS and the change in students’ engagement scores as
the difference in percentages completed between con-
secutive units in the course. Yet more studies have cor-
related learning analytics-based measures of student
engagement with student persistence. In one study,
Balakrishnan and Coetzee [7] used students' interactions
with their Massive Open Online Courses (MOOCsS) to
predict their retention in the MOOC. In another study,
Kizilcec et al. [30] used students’ patterns of interactions
with their course LMS to predict students’' engagement
type (i.e., completing, auditing, sampling, or disengaging
from the course) which they proposed educators could
use as a warning system to identify students at risk of
dropping the course.

The amount of time spent on LMS activities can help
understand student engagement in online courses and
time can be studied using either natural or relative re-
ference frames. The natural reference frame refers to an
individual's time spent on LMS-related activities and the
change in individual's time spent on LMS-related activ-
ities over a certain period and the relative reference
frame refers to the individual's time spent on LMS-
related activities as compared with their classmates
[53,55]. Few studies [26,47,56] consider how student
engagement varies over time and relative to one's peers,
despite evidence that student engagement is a function of
course norms [16]. Researchers lack a measure of online
student engagement they can confidently utilize in their
work that captures the relative reference frames.

This paper provides full details supporting our
methodology to create a numerical value describing the
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construct of student engagement in online under-
graduate engineering education. We begin addressing
this goal by exploring how LMS interaction data can be
used to compute student engagement scores within
online undergraduate engineering courses. The following
sections fully document our data set and methodology
used to create a numerical value describing this con-
struct. Our analysis offers researchers in the educational
data mining space a novel approach to conduct their own
investigations related to online student engagement, an
important construct to studying student persistence in
online courses.

3 | DATA SET

The data set for this study comes from 81 courses offered
by three fully online, ABET-accredited undergraduate
engineering degree programs at a large, public, south-
western university between Fall 2018 and Spring 2020.
Nine courses were from electrical engineering, 35 were
from engineering management, and 37 were from soft-
ware engineering. All courses were 7.5 weeks in duration
and used Canvas as the LMS platform. We collected ap-
proximately 2.7 million rows of LMS interaction data
from 3848 unique student-course combinations. Unique
student-course combinations were considered as stu-
dents could be enrolled in more than one course. About
90% of student-course combinations came from students
who persisted in the course to its completion. Table 1
summarizes the data set in terms of the number of
courses from each program and the number of persisting
and nonpersisting students for each 7.5-week period of
data collection. Table 2 summarizes the student enroll-
ment data across three degree programs based on the
different course levels: introductory (100 level courses),
intermediate (200 level courses), advanced intermediate
(300 level courses), and advanced (400 level courses).
Approximately, 17% of the total courses belong to the

introductory, 30% to the intermediate, 34% to the ad-
vanced intermediate, and 19% to advanced level courses.
Each row of LMS data represents a different student
interaction with their course LMS, whether navigating to
a particular type of page by clicking on a link (such as to
quizzes, assignments, discussion forums, modules, wiki
pages, attachments, grades, the syllabus, or announce-
ments) or submitting quizzes and assignments. Table 3
describes each activity type considered in this study.
Table 4 illustrates the raw structure of the data set with
deidentified student IDs and course IDs, this table has
been reproduced from the previously published work
[29]. The raw data includes the following elements:
student ID (student_id), course ID (course_id), time of the
event (eventtime), type of the event (eventtype), action re-
lated to an event (Action), activity type (object_name) and
student enrolment status in the course (enrl_status).

4 | PROCEDURE AND RESULTS

4.1 | Feature creation

The graphical representation of the process used in pre-
paring the data by creating and selecting features re-
quired to conduct association rule mining (ARM)
analysis is described in Figure 1 and explained in detail
in this section. We used the students’ LMS interaction
data to create 2161 natural features for each unique
student-course combination. The natural features re-
present one of two categories of activity. First, they re-
present a student's time spent on LMS-related activities
and include time spent on quizzes, assignments, discus-
sion forums, wiki pages, attachments, modules, the syl-
labus, grades, announcements, and the LMS overall.
Second, natural features also represent the raw number
of quiz and assignment submissions by a student. Each
natural feature was calculated over consecutive 3-day
windows; for example, "time spent on quizzes" was

TABLE 1 Student enrollment data across different sessions
Number of courses
Electrical Engineering Software Persisting Nonpersisting
# Session engineering management engineering students students
Fall-B 2018 1 3 0 156 17
2 Spring-A 2019 1 5 8 611 56
3 Spring-B 2019 1 6 7 581 82
4 Fall-A 2019 2 8 7 727 83
5 Fall-B 2019 3 5 6 675 79
6 Spring 2020 1 8 9 717 64
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TABLE 2

Course level

Student enrollment data based on course levels across degree programs

Degree program Introductory Intermediate Advanced intermediate Advanced
Electrical engineering 663 288 - -
Engineering management = = 509 407
Software engineering - 883 775 323

TABLE 3 Description of the activity types
#  Activity Type Description
1 Quizzes Student submitting a quiz, student

navigating to a quiz

2 Assignments Student submitting an assignment,
student modifying an assignment,

student navigating to an assignment

3 Discussion forum Student posting a message, student

navigating to a discussion thread
4 Wiki pages Student navigating to a wiki page

5  Attachments Student navigating to an attachment

6  Modules Student navigating to modules
7  Syllabus Student navigating to syllabus
8  Grades Student navigating to grades

9  Announcements Student navigating to announcements

calculated across each 3-day period in the course (i.e.,
Days 1-3, Days 4-6, etc.) The length of 3 days, also re-
ferred to as the “analysis window length,” or just “win-
dow length” was selected because it allowed us to detect
the students’ LMS temporal patterns as students may
choose different times and days to work on the different
tasks in the course. The 3-days data will be sufficient to
analyze students’ temporal patterns as considering more
than 3 days as an analysis window period in a 7.5-week
course could gloss over important details. The first ana-
lysis window for each course was eliminated because it
corresponded with the university's semesterly course
drop deadline (i.e., students can drop the class during the
first 3 days without penalty). After removing this first
analysis window of data, 16 analysis windows of data for
each course remained. Table 5 shows how the sample
data were structured [29]. The columns represent the
student's time spent on quiz (fqui,), assignment (fassign-
ment)> discussion forum (f4gorum), Wiki pages (fwiki), at-
tachments (faacn), modules (fmodules), course syllabus
(fsytiabus)> course grades (fgrades), and student's course
status in a given analysis window.

The broader aim of this study was to develop a
numerical representation of student engagement,
which is known to be a function of course norms [16].

Correspondingly, from the natural features, relative fea-
tures, which compare LMS interaction activities of each
student to the “norms” for others in their same course,
were calculated. Table 6 lists all the relative features
utilized in the study and includes, for example, a feature
describing the difference between an individual student's
time spent and the average time spent for all students in
the class during the analysis windows. In total, 216 re-
lative features describing change over time and devia-
tions from typical LMS-interaction patterns among
students in the same course, were generated. Of note is
that these features, shown in Table 6, are not temporal
features capturing the change in an individual student's
behavior over time, but features that describe the dif-
ference between an individual student's activities and
those of the “norms” within the class.

Calculating the relative features required specifying
the number of analysis windows over which each relative
feature would be calculated and selecting which parti-
cular analysis windows during the duration of data col-
lection would serve as the basis of their calculation. This
is an important step to meet our analysis window as we
do not wish to include students who have not spent en-
ough time and dropped from the course. Given the fact
that the total percentage of course leavers was so small in
comparison with the course completers, we were careful
in selecting the length of the analysis window such that it
captures the students' relevant behavior and to not lose a
greater number of dropping students from our data set.
We arranged the percentage of dropped students con-
sidering multiple analysis window lengths and we deci-
ded to use three analysis windows data. We chose to
calculate relative features based on three consecutive
analysis windows (e.g., analysis windows 1-3, analysis
windows 2—4, analysis windows 3-5, etc.) because it was
the minimum number necessary to calculate our
variance-related relative features (see Table 6) while still
yielding the maximum number of students who dropped
in our data set during each analysis period, which was
helpful in discriminating between the behavior of course
leavers from that of course completers.

To discriminate the behavior of course completers
and leavers, it is important to determine which analysis
windows to be considered such that the relevant data
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TABLE 4 Structure of the raw data [29]

Eventtime Student_id Course_id Eventtype Action object_name enrl_status

10/10/2018 A 2018FallB NavigationEvent NavigatedTo quizzes:quiz ENRL

9:21:33

10/15/2018 A 2018FallB NavigationEvent NavigatedTo Attachment ENRL

9:22:18

10/11/2018 B 2018FallB NavigationEvent NavigatedTo Syllabus ENRL

19:54:17

10/16/2018 B 2018FallB AssessmentEvent Submitted - ENRL

15:55:03

10/22/2018 C 2018FallB NavigationEvent NavigatedTo Modules ENRL

10:06:53

10/22/2018 C 2018FallB NavigationEvent NavigatedTo Grades ENRL

17:11:47

10/13/2018 D 2018FallB AssignableEvent Submitted - WDRW

23:05:59

10/16/2018 E 2018FallB Event Modified - WDRW

23:45:24

10/24/2018 F 2018FallB NavigationEvent NavigatedTo announcements WDRW

0:00:55

Abbreviations: ENRL, student remained enrolled in the course; WDRW, student withdrew from the course.

( Create natural features

!

‘ Derive relative features

-

‘ Apply random forest algorithm ’

Features
with least
contribution

‘ Up-sample the data

Eliminate

[ Arrange the data in a format to conduct ARM ]

FIGURE 1 Preparation of data required to conduct association

rule mining (ARM)

is available for the analysis. We also assumed that while
the features for persisting students would be non-
distinctive for any analysis period during the course, the
period just before a student drops would include the
most distinctive feature across the duration of the course
for leavers. We, thus, used the last three analysis win-
dows before a student's withdrawal from the course as
the analysis period for leavers and randomly selected
three consecutive analysis windows for course com-
pleters to create the relative features [29].

4.2 | Feature selection

Once the relative features were developed, we used the
feature selection part of the random forest algorithm [50]
to identify features that uniquely distinguish course
completers from course leavers. We randomly divided
into two data sets of 31 courses (data set 1) and
32 courses (data set 2), to verify the stability of selected
features. Each set of features was arranged in descending
order according to their random forest Gini index, the
higher of which signifies the greater importance of a
feature in distinguishing course completers from course
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TABLE 5 Structure of the data with sample natural features in a particular analysis period [29]

Student tauiz Lassignment Laforum Lwiki
57.36 0.422 0.383 278.5

B 15.01 0.266 0.000 30.00

C 18.81 0.100 2.450 239.7

D 9.960 0.160 1.580 0.000

E 48.68 0.850 1.010 184.8

F 93.00 0.000 0.230 5.580

G 9.580 4.130 0.570 92.50

H 2.730 0.100 0.060 1.460

I 109.8 0.420 0.570 227.8

J 0.000 0.000 2.130 0.030

lattach tmodules Lsyliabus Lgrades Status
193.1 111.9 4.31 3.80 ENRL
54.43 0.000 0.46 0.00 ENRL
291.1 138.2 0.01 0.18 ENRL
91.13 0.760 0.01 0.55 ENRL
32.03 1.410 0.00 0.52 ENRL
27.88 90.08 2.36 0.00 ENRL
88.91 61.75 3.35 0.28 WDRW
6.500 0.230 2.30 0.00 WDRW
16.95 183.1 0.00 0.52 WDRW
94.60 1.210 0.01 0.00 WDRW

Abbreviations: ENRL, student remained enrolled in the course; WDRW, student withdrew from the course.

leavers relative to other features. Table 7 shows the top
30 features selected using the feature selection process
from each data set, grouped based on their associated
LMS interaction activity type (e.g., quiz submission, time
spent looking at grades, etc.) For example, features re-
lated to quiz submissions appeared six times in the top 30
features selected from data set 1 and five times in the top
30 features selected from data set 2. The purpose of se-
lecting top features was to understand which relative
features related to the different LMS-activity types are
relatively more important in distinguishing course com-
pleters from course leavers. Relative features related to
the syllabus, discussion forums, and announcements did
not appear in the top 30 features selected for either data
set and were removed from further analysis, reducing the
number of relative features to 162. Readers are directed
to Reference [29] for more details on the creation of the
natural and relative features.

4.3 | Association rule mining

The process used in conducting ARM analysis is gra-
phically presented in Figure 2 and more details about this
process are described in this section. With the final 162
relative features, ARM was used to generate rules un-
iquely describing completers and leavers. ARM discovers
hidden relationships among variables in large data sets
using association rules a—b, where “a” is the antecedent
of the rule, “b” is the consequent [2,32,482,33,49]. The
rule a—b indicates the likelihood that a specific student's
activity containing relative features in “a” will tend to
include the student's persistence decision (yes/no) in “b.”
In this study, N refers to the set of total students with
unique identifiers {ID,, ID,, IDs, ..., IDy}, “a” refers to the

set of Z relative features {F,, F,, F;, ..., F;}, and “b” refers
to students’ decision to persist (“1”) or not persist (“0”) in
their online course. Table 8 illustrates the format re-
quired for data to run in ARM, where rows represent
transactions (students) and columns represent the item-
set “a+b” (relative features and persistence) [1,3]. For
example, the first row identifies a student with student
ID-1 who persisted in the course (Persistence = 1), with a
low engagement rating (1) on relative features F; and F,,
high engagement rating (3) on relative features F, and Fs.

ARM requires the discretization of continuous data,
which the relative features describing student engage-
ment in our data set were. Approaches to discretize data
for use in ARM include dichotomizing values based on
whether it is above or below a certain threshold, dividing
data into equal-sized bins, and using quartiles to assign
data to different categories [6,7,34,51]. We divided
the data for each relative feature, F;, into three bins
before initiating ARM. The first bin had data points less
than or equal to the first quartile (Q,), which were as-
signed a value of “low engagement” (LOW) relative to
the average student in the course. The second bin had
data points greater than the first quartile (Q,) and less
than or equal to the third quartile (Qs), which were as-
signed a value of “medium engagement” (MED) relative
to the average student in the course. The last and third
bin had data points greater than the third quartile (Q3),
which were assigned a value of “high engagement”
(HIGH) relative to the average student in the class. In
Table 8, 1 = LOW, 2 = MED, and 3 = HIGH. For the third
(F3) and fifth (F5) relative features (features related to
the difference between an individual student and the
student with maximum time/number of submissions in
the class), the interpretation is slightly different from the
other relative features. For features F3 and F5, a value
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TABLE 6 Relative features notation and representation [29]

Feature #

F1

F2

F3

F4

F5

F6

F7

F8

Feature description and mathematical representation

Notations:

njx—Number of students in course j in analysis period k

M,;—Number of submissions by student i in course j in analysis period k

Gijx—Time spent or number of submissions by student i in course j in analysis period k.
Dy—Duration of the course considered for a student i and course j

N—number of windows

Difference between an individual student's time spent and the average time spent for all students in the class,
in a particular analysis period

Zienjk Gijk

Gijk_ v kEDlJ

jk

Difference between an individual student's change in time spent and the average change in time spent for all
students in the class, in a particular analysis period

Zieny, (Gijk — Gijk’)
(G — Gy) — [El"i”}

njc

V k,keD; and k<K'

Difference between the maximum change in time spent for all students in the class and an individual student's
change in time spent, in a particular analysis period

max;e; (Gijx — Gijr) — (Gyjk — Gijkr)

V k,keD; and k<Kk’

Difference between an individual student's change in time spent and the minimum change in time spent for all
students in the class, in a particular analysis period

(Gjk — Gijr) — min;e; (Gyjk — Gijir)

V kkeD; and k<K'

Difference between the maximum time spent by a student in the class and the time spent by an individual
student, in a particular analysis period

max;ejx (Gyjx) — Gir V' i€j,k and k€ Dy

Difference between the time spent by an individual student and the minimum time spent by a student in the
class, in a particular analysis period

Gy — mini; (Gp) V. i €j,k and k€ Dy

Difference between the variance of an individual student's time spent and the average variance of time spent

for all students in the class across three different windows

T 2

Yk G..

1 ¢N Zi= Gijk
— _vN |G — 2=l

2 N-1 Zhe=1|Gijie ik

Nk
ZiJ=1 Gijk
an

1 N
N— 1Zk:1 [Gijk -

njk
V i€j,k and Ne (3 to 15) and k€ Dy

Difference between the variance of time spent by an individual student and the minimum variance of the time
spent by a student in the class across different windows.

s o |

Rk

njk 2
. 1 «N %L Giik
min {N— 1 Zk:l [Gyk njk

V i€j,k and Ne (3 to 15) and k€ Dy

1 N
No1 12k=1 [Gijk -
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LOW represents that a student's engagement was rela-
tively more than that of a student with a value HIGH for
feature types. This is because if the difference between a
student's score and the maximum score in the class is
smaller, it implies that the student's score was nearer to
the maximum score in the class than if the difference was
greater.

Once generated, the association rules for this study
were mined using the apriori algorithm of the arules
package in the statistical software R [39]. First, we split the
discretized data into a training data set (80%) and a testing
data set (20%) and conducted ARM on the training data set
to generate rules capturing the behavior of course com-
pleters and course leavers, separately. A syntactic con-
straint restricts the items that appear in a rule [50], such as
understanding how restricting items in the consequent
affects the set of items in the antecedent or vice versa.
Syntactic constraints were placed on the consequent of
each rule, as we were interested in identifying unique
rules for students who persisted and students who dropped
the course, respectively. We generated the rules for
course completers by fixing the syntactic constraint
on the consequent to “1,” which looked like
{set of relative features} — {persistence = HIGH}, and
the rules for course leavers by fixing the syntactic
constraint on the consequent to "0," which appeared
as {set of relative features} — {persistence = LOW}. In
addition, because choosing to include only one or two
relative features in the antecedent would generate a very
large number of rules and including more than five relative
features in the antecedent would generate very few rules,

TABLE 7 Frequency of top 30 relative features according to
learning management system interaction activity type

Frequency of top 30 features

# Data set 1 (31 courses) Data set 2 (32 courses)
Quiz submission—6 Quiz submission—5

2 Grades—3 Grades—3

3 Wiki—4 Wiki—2

4 Canvas—S5 Canvas—3

5 Attachment—5 Attachment—5

6 Quiz—5 Quiz—2

7  Assignment submission—2  Assignment submission—3

8 Assignment—O0 Assignment—4

9 Modules—0 Modules—3

10  Syllabus—0 Syllabus—0

11  Discussion forums—O0 Discussion forums—oO0

12 Announcements—O0 Announcements—O0

the minimum number of relative features allowable in the
antecedent per rule was fixed to three and the maximum
number of antecedents were allowed to be four, which
produced an amount of variability in the rules deemed
acceptable by the research team (not too many and not too
few). Thus, an example rule for course completers could be
that 30% of students who had a medium (=2) engagement
score on relative features F,, F,, and F, were likely to
persist in the course, while an example rule for course
leavers could be that 50% of students who had a medium
(=2) engagement score on relative features F, and Fs, and
low (=1) engagement score on relative features Fs were
likely to drop the course.

To determine the optimal number of rules to gen-
erate, we tested between 20 and 70 rules in increasing
increments of five by varying the rules’ support and
confidence values on which the number of rules ARM
generates also depends. We stopped generating rules at
70, as the number of unique rules generated for course
completers and course leavers approached saturation as
we reached 70 rules, which became the upper bound for
the number of rules tested. In other words, generating 80
or 90 rules or an even higher number of rules resulted in
unique rules lesser than those obtained from the 70
generated rules. The support of a rule measures how
frequently the itemset appears in the data set among all
generated rules and the confidence of a rule measures its
accuracy, that is, how often the rule is found to be true
among the data [1,44]. The range for both support and
confidence is between 0 and 1 (or 0% and 100%) and a
minimum of 10% threshold is recommended for support
values [1,6]. Higher support and confidence values in the
algorithm decrease the total number of rules generated.
The output confidence values in this study were always
100% because the generated rules were unique to com-
pleters or leavers only.

The total number of generated rules, rules after
pruning, and unique rules for each case of the desired
number of rules are presented in Table 9, along with
their respective support values. The generated rules in-
cluded duplicate rules and rules that were subsets of
others. The rules were pruned to remove redundancies as
they could introduce bias in the analysis. The rules un-
ique to completers and leavers were determined manu-
ally using Microsoft Excel and the duplicate rules were
removed. We decided to use all the unique rules in our
next step in calculating student engagement. The support
values to be entered in the ARM algorithm ranged from
36.2% (for 70 rules) to 39.6% (for 20 rules) for completer-
based rules, and 47.4% (for 70 rules) and 51% (for 20
rules) for leaver-based rules. The input confidence values
for each case of the desired number of rules ranged from
70% to 95%, these confidence values were manually
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FIGURE 2 Association rule mining (ARM)
process ‘

Discretize the data ’

A 4

[ Finalize input parameters of the ARM algorithm ’

A 4

t Run the a priori ARM algorithm J

A 4

Sort the rules ]
Prune the rules J

Compare
completers and
leavers-based
rules

Eliminate duplicate rules ]

Select unique rules ]

TABLE 8 Association rule mining final problem
representation

Student ID F, F, F; F, Persistence
1 1 3 3 1 1
2 1 2 1 2 0
3 3 2 2 3 1
N 2 3 1 2 1

adjusted to acquire the rules from 20 to 70. Generating
70 rules for both completers and leavers yielded the
largest numbers of unique completer-based rules (48) and
leaver-based rules (38), respectively. Hence, we chose 70
rules moving forward with the analysis. Supporting In-
formation Appendices A and B show the completer-based
unique rules and leaver-based unique rules.

In this study, all the unique rules were used in
computing the student engagement scores. However, we
note that some ARM researchers select the most im-
portant rules using the lift criterion, the ratio of a rule's
confidence and support values, and a standard measure

for ARM [44,50]. A large lift value is a strong indication
that a rule is important and reflects a true connection
between consequent and antecedent [50]. In this study,
we did not use a lift to select rules as the lift values for all
the rules was 1 (100%) implying that all the rules were
important.

An example completer-based rule and leaver-based
rule generated using the association rule mining process
is shown below. These rules were randomly selected (i.e.,
there was no specific reason or rationale for choosing
them). Readers are directed to Table 6 when reading the
explanation of the rules below, as this will help better
understand and appreciate the definition of the different
rules generated in this study.

The following is a completer-based rule:

{F3_quiz.sub2_3 = MED, F4 _quiz.subl_2 = MED,
F5_quiz.sub2 = MED} — {Persistence = Yes},
where,

« F3_quiz.sub2_3 represents the difference between the
maximum change in the number of quiz submissions
for all students in the class and an individual student's
change in the number of quiz submissions, across
analysis windows 2 and 3,
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o F4_quiz.subl_2 represents the difference between an
individual student's change in the number of quiz
submissions and the minimum change in the number
of quiz submissions for all students in the class, across
analysis windows 1 and 2, and

o F5_quizsub2 represents the difference between the
maximum number of quiz submissions by a student in
the class and the number of quiz submissions by an
individual student, during analysis window 2.

This rule had support of 37.4%, which means that the
relative features F3_quiz.sub2_3=MED, F4_quiz.-
subl_2=MED, and F5_quiz.sub2=MED appeared
together in the data set 37.4% times. All three relative
features in this rule had medium levels of student
engagement relative to the average student in the course.
In other words, medium levels of student engagement
relative to the average student in the course on the
activities related to quiz submissions are indicative of a
student persisting in an online undergraduate engineer-
ing course.

Next is a leaver-based rule:

{F6_quiz3 = LOW, F6_wiki3 = LOW, F6_assignment.
sub3 = LOW} — {Persistence = No},

where,

« F6_quiz3 represents the difference between the time
spent on quizzes by an individual student and the
minimum time spent on quizzes by a student in the
class, during analysis window 3,

« F6_wiki3 represents the difference between the time
spent on wiki pages by an individual student and

the minimum time spent on wiki pages by a student in
the class, during analysis window 3, and

« F6_assignment.sub3 represents the difference between
the number of assignment submissions by an in-
dividual student and the minimum number of as-
signment submissions by a student in the class, during
analysis window 3.

This rule had support of 47.4%, which means that the
relative features F6_quiz3 = LOW, F6_wiki3 = LOW, and
Fé6_assignment.sub3 = LOW appeared together in the
data set 47.4% times. All three relative features in this
rule had low levels of student engagement relative to the
average student in the course. This is to say, the low
levels of student engagement relative to the average
student in the course on activities related to quizzes, wiki
pages and assignment submissions are indicative of a
student not persisting in an online undergraduate
engineering course.

44 | Engagement score determination
The process used in computing student engagement scores
using the rules generated by ARM is shown in Figure 3
and more details follow in this section. Using the final set
of association rules for leavers and completers, we eval-
uated eight different candidate student engagement
scores, shown in Table 10. The scores were calculated for
each student in the testing data set based on the percen-
tage of unique completer-based rules met (X) and the
percentage of unique leaver-based rules met (Y).

TABLE 9 Summary of desired, generated, pruned, and unique completer-based and leaver-based rules

Desired Completers Leavers
number of Generated Pruned Unique Generated Pruned Unique
# rules Support (%) rules rules rules Support (%) rules rules rules
20 39.6 20 20 12 51.0 19 18 10
2 25 38.8 26 26 17 50.9 25 23 14
3 30 38.5 30 28 17 50.0 31 28 17
4 35 38.0 37 35 24 49.4 36 32 21
5 40 37.8 39 37 25 49.0 41 36 24
6 45 37.7 45 42 30 48.5 48 42 30
7 50 37.2 50 47 35 48.5 48 42 30
8 55 36.9 55 51 38 48.0 55 46 33
9 60 36.7 60 55 40 47.5 61 50 35
10 65 36.5 65 59 43 47.4 69 53 37
11 70 36.2 71 65 48 47.4 69 55 38
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Logistic regression was then used to evaluate the
efficacy of each candidate student engagement score in
predicting students’ online course-level persistence.
A different candidate engagement score served as the
predictor variable in each model and the dependent
variable across all models was persistence, with values
0 =Ileavers and 1= completers. Notably, we needed to
up-sample the data before conducting these analyses to
correct the imbalance between course completers and
course leavers in the data set [15,40]. There were ap-
proximately 12 times as many course completers as there
were course leavers in this study. Such a large majority
class (one 10 times or larger than the minority class) can
introduce bias into logistic regression analysis, which
can, in turn, affect the precision and accuracy of pre-
dictions about the minority class [32,40]. This imbalance
was handled in the statistical software R [39] using the
Synthetic Minority Over-sampling Technique (SMOTE),
which uses either up-or down-sampling methods to bal-
ance unevenly distributed data sets, depending on ma-
jority or minority class [15]. SMOTE was used in this
study to up-sample the minority class in the data set, the
course leavers, by creating synthetic cases [15].

We used eight different SMOTE ratios ranging be-
tween 1:1.1 and 1:9, being within the boundaries asso-
ciated with the actual ratio of leavers to completers (1:12)
in the data set, to analyze the stability of each candidate
engagement score. In other words, logistic regression was
applied to the data for each of eight sampling ratios of
leavers to completers and for each candidate engagement
score as a predictor of persistence, for a total of
64 models. We favored for the final score those whose
effectiveness in predicting course-level persistence re-
mained high. Six performance measures were considered
to evaluate the goodness of each engagement score in
predicting students’ course-level persistence: sensitivity

[ Determine candidate engagement scores J

)

|: Compute student engagement score for each candidate engagement score J

l

[ Apply logistic regression J

}

Compute performance measures ’

(Sensitivity, specificity, accuracy rate, precision rate, error rate, and AUC)

)

[ Select candidate for computing final engagement score J

FIGURE 3
rules

Computing student engagement score using the

(the proportion of true positives predicted as such), spe-
cificity (the detection of true negatives predicted as such),
accuracy (the rate of total correct predictions), precision
(the rate of correct positive predictions), error rate (the
rate of total incorrect predictions), and AUC (area under
the ROC curve, which signifies how well the model
distinguishes between two classes) [27]. Except for
error rate, high values on the other performance metrics
indicate greater effectiveness of engagement score.

Table 11 presents the output of these analyses, with
the rows representing the eight different candidate en-
gagement scores and the columns, the eight sampling
ratios. Notably, every candidate measure of student en-
gagement consistently predicted student persistence to a
statistically significant level (p < .05) except [inv(X) + inv
(V)] and [inv(Y) — inv(X)].

When a sampling ratio of 1:1.1 was used, most
performance metrics (specificity, accuracy rate, and
precision rate) were highest for the engagement score
[log(X)/(log(X) + log(Y))]. When a sampling ratio of 1:3
was used, the highest performance metric in each
category was distributed randomly across the eight
candidate engagement scores, not suggesting any en-
gagement score to be better than the other. However,
for the remaining sampling ratios (1:2, 1:4, 1:5, 1:6, 1:7,
and 1:9), most of the performance metrics were highest
for the engagement score [X—Y]. The performance
measures for the engagement score [X—Y] for the dif-
ferent sampling ratios of leavers to completers are
shown in Table 12. The error rate for [X—Y] decreased
as the sampling ratio increased from 1:1.1 to 1:9. Every
other performance metric except specificity and AUC
(fluctuates up and down as sampling ratio increases)
increased with increasing sampling ratio from 1:1.1 to
1:9. Specificity which is the accuracy with which true
leavers are predicted as such decreases in value is

TABLE 10 Different candidate student engagement scores

# Candidate student engagement scores
1 X-Y
2 X

X+Y)
3 VX2 +Y?

1 1
4 xty
5 1_1

Yy X
6 log(X) — log (Y)
7 log(X) + log(Y)
8 log (X)

log (X) + log (Y)
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Measures of

Logistic regression coefficients

TABLE 11 Logistic regression output

engagement 1:1.1 1:2 1:3 14 1:5 1:6 1:7 1:9
[X-Y] 0.04* 0.04* 0.04* 0.04* 0.04* 0.03* 0.04* 0.04*
[X/(X+Y)] 3.58%  3.40% 417" 3.48*% 3.55% 3.37% 3.55% 3.43*
[sqrt(X* + Y?)] —-0.01* —0.01* —0.01* —0.01* —0.01* —0.01* —0.01* —0.01*
[inv(X) + inv(Y)] —045 —0.69* —0.75 —0.57 —0.89* —0.56 —0.63 —0.43
[inv(Y) — inv(X)] —-0.05 -0.01 068 083 012 071 031 071
[log(X) — log(Y)] 1.83* 175 1.95% 1.67* 1.79* 1.63* 1.76* 1.69*
[log(X) + log(Y)] —0.37¢ —0.38% —0.32% —0.32* —0.31* —0.34* —0.35* —0.29*
[log(X)/(log 4.88* 3.03* 5.08% 3.65% 3.06" 3.39* 3.56* 3.32%
(X) +log(V)]
Note: Dependent variable — persistence (0 = leavers, 1 = completers).
*p <.05.
Performance measures 1:1.1 1:2 1:3 1:4 1:5 1:6 1:7 1:9 TABLE 12 Performance measures
for the engagement score [X — Y]
Sensitivity 68.12 90.14 93.39 9544 97.14 9795 98.75 99.38
Specificity 62.77 42.86 27.38 2222 19.84 13.10 13.89 13.10
Accuracy rate 65.56 74.38 76.88 80.79 84.26 85.83 88.14 90.75
Precision rate 66.62 7593 79.42 83.07 8583 87.12 88.92 091.14
Error rate 3444 2562 2312 1921 15.74 14.17 11.86 9.25
Area under the curve 70.2 78.7 79.6 78.5 78.8 77.5 79.1 78.3

acceptable as the sampling ratio increases from 1:1.1 to
1:9 because the number of leavers in comparison
with the completers decrease. Hence, we selected the
candidate [X—Y] for calculating the final student
engagement score.

4.5 |
process

Engagement score computation

Supporting Information Appendix C summarizes the
step-by-step approach used in computing the final en-
gagement score. Three subprocesses are outlined: pre-
paring the data required to conduct ARM, conducting
ARM, and computing the LMS engagement score using
the completer- and leaver-based rules.

5 | DISCUSSION AND
INTERPRETATION

In this study, a measure for undergraduate engineering
students’ engagement in online courses based on data
describing their interactions with an online course LMS

was introduced. The results from this study suggest that
the best engagement score was found to be the mathe-
matical difference between the percentages of unique
completer-based rules and leaver-based rules met by each
student.

Out of 162 possible relative features, the final set of
unique completer-based rules included 29 and the un-
ique leaver-based rules included 19 relative features. The
frequency with which these 29 and 19 relative features
occurred among the completer- and leaver-based rules is
shown in Table 13. The signifier for each relative feature
includes its feature type, course activity type, and corre-
sponding analysis windows. For example, relative feature
“F1_quiz.sub3 = MED” (#10 under the completer-based
rules) represents the difference between an individual
student's number of quiz submissions and the average
number of quiz submissions by all students in the class
during the last analysis window (analysis window 3) in
the last three analysis windows selected for leavers and
the random three analysis windows selected for com-
pleters (refer to Table 6 for details related to the num-
bering and types of relative features). As described
previously, the discretization of the data resulted in three
levels of student engagement relative to the average
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TABLE 13 Frequency of relative features for completer- and leaver-based unique rules

Completer-based rules Leaver-based rules
# Relative feature Frequency Relative feature Frequency

F6_quiz.subl = LOW 20 F6_assignment.sub3 = LOW 27
2 F6_quizl = LOW 12 F6_quiz.sub3 = LOW 19
3 F1_quizl = MED 11 F6_quiz3 = LOW 19
4 F6_quiz.sub2 = LOW 11 F6_assignment.subl = LOW 9
5 F6_quiz.sub3 = LOW 11 F6_assignment3 = LOW 5
6 F1_quiz2 = MED 8 F4_assignment.sub2_3 = MED 4
7 F1_quiz3 = MED 7 F6_attach3 = LOW 4
8 F2_quizl_2=MED 7 F6_quiz.sub2 = LOW 4
9 F1_quiz.subl = MED 6 F3_assignment.subl_2 = MED 3
10 F1_quiz.sub3 = MED 6 F6_assignment.sub2 = LOW 3
11 F6_quiz2 = LOW 6 F6_canvas3 = LOW 3
12 F1_quiz.sub2 = MED 4 F6_grades3 = LOW 3
13 F2_quiz2_3=MED 4 F6_wiki3 = LOW 3
14 F6_assignment.subl = LOW 4 F6_quiz.subl = LOW 2
15 F6_quiz3 =LOW 4 F6_quizl = LOW 2
16 F2_quiz.subl_2 =MED 3 F5_assignment.sub3 = MED 1
17 F6_assignment.sub3 = LOW 3 F6_quiz2 = LOW 1
18 F7_quiz123 = MED 3 F7_grades123 = MED 1
19 F3_assignment.sub2_3 = MED 2 F8_assignment.sub123 = LOW 1
20 F4_assignment.subl_2 = MED 2
21 F6_assignment.sub 2 = LOW 2
22 F1_assignment.sub3 = MED 1
23 F2_quiz.sub2_3 = MED 1
24 F3_assignment.subl_2 = MED 1
25 F3_quiz.sub2_3 =MED 1
26 F4_quiz.subl_2 = MED 1
27 F5_quiz.sub2 = MED 1
28 F5_assignment.sub2 = MED 1
29 F5_assignment.subl = MED 1

student in the course (i.e., 1 =LOW, 2 =MED, 3 = HIGH)
and the same can be seen in Table 13. Returning to
“F1_quiz.sub3 = MED,” this rule refers to the difference be-
tween an individual student's number of quiz submissions
and the average number of quiz submissions by all students
in the class during analysis window 3 as being in the “MED”
levels of student engagement relative to other students.
Overall, most of the relative features that appeared in the
final set of unique completer-based rules included the

combinations of “LOW” and “MED” levels of student en-
gagement relative to the average student in the course. In the
final set of unique leaver-based rules, the relative features
that most appeared included “LOW” levels of student en-
gagement relative to the average student in the course, ex-
cept for a few rules including relative features with “LOW”
and “MED” levels of student engagement. This makes sense
as students who leave (or plan to leave) the course will be
relatively less engaged in the course than other students. In
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both the unique completer- and leaver-based rules none of
the relative features included “HIGH” levels of student en-
gagement relative to the average student in the course. In
total, approximately 47% of relative features included “MED”
levels of student engagement, 30% included “LOW” levels of
student engagement, and 23% included “HIGH” levels of
student engagement relative to the average student in the
class. As the relative features with “HIGH” levels of student
engagement were the least in comparison with “LOW” and
“MED” levels of student engagement, they might have not
appeared as much in the rules that uniquely distinguish
course completers from the course leavers.

Turning our attention to trends across our findings,
the sixth relative feature type “F6” (see Table 6) refers to
the difference between the time spent by an individual
student and the minimum time spent by a student in the
class in a particular analysis period (refer to Table 13).
This relative feature type appeared the most in
both unique completer-based and leaver-based rules.
Approximately 51% of relative features of the completer-
based rules and 91% of relative features of the
leaver-based rules were related to feature “F6.” The 91%
dominance of F6 appeared in conjunction with “LOW”
levels of student engagement in all the leaver-based un-
ique rules. This particularly makes sense as the relative
feature type F6 represents that a student with “LOW”
levels of engagement is close to the minimum time spent
by a student in the class on a specific activity.

Furthermore, the relative features related to time
spent on quizzes, number of quiz submissions, and
number of assignment submissions were dominant in
both the completer- and the leaver-based rules. This
finding echoes the already published work by Crossley

TABLE 14 Frequency of common relative features for
completer- and leaver-based unique rules

Frequency of
appearance among
unique rules

# Relative feature Completers  Leavers
F6_quiz.subl = LOW 20 2
2 F6_quizl = LOW 12 2
3 F6_quiz.sub2 = LOW 11 4
4 F6_quiz.sub3 = LOW 11 19
5 F6_quiz2 = LOW 6 1
6  F6_assignment.subl = LOW 4 9
7 F6_quiz3 = LOW 4 19
8  F6_assignment.sub3 = LOW 3 27
9  F6_assignment.sub2 = LOW 2 3
10 F3_assignment.subl 2=MED 1 3

et al. [18] and Cohen [17], in which in addition to lecture
views, assignment submissions, and number of assess-
ments distinctively predicted course completers. Also,
only 4% (approx.) of leaver-based rules additionally in-
cluded relative features related to time spent on assign-
ments, grades, wiki pages, attachments, and the course
canvas site overall.

Approximately 92% of the relative features that ap-
peared in the leaver-based rules (compared to just 44% of
the completer-based rules) were associated with LOW le-
vels of student engagement relative to the average student
in the course on different activities on the LMS. This
finding supports work from Cohen [17], which reported
that relatively low measurements on different LMS activ-
ities (assignment, course view, discussion forum, and re-
source view) are indicative of dropout cases. Ten relative
features were common to both the unique completer- and
leaver-based rules, as shown in Table 14. When the relative
features listed in Table 14 are removed from the relative
features listed in Table 12, some interesting patterns
emerge. Only the relative features with “MED” ratings
remain for the completer-based rules and the leaver-based
rules are made of mostly relative features with “LOW”
ratings. Plus, separately, the leaver-based rules are made of
92% “LOW” ratings whereas half of the completer-based
rules do not have all “LOW” ratings and instead have at
least one “MED” rating. This implies that students with a
combination of “LOW” and “MED” levels of engagement
relative to the average student in the course relate to
students persisting and completing the course. On the
contrary, students with mostly “LOW” levels of engage-
ment relative to the average student in the course relate to
students’ dropping out from the course.

6 | IMPLICATIONS AND
FUTURE WORK

In this section, we present the benefits/implications of
this study to researchers interested in the educational
data mining space. In addition, we provide potential
directions for future work related to this study.

6.1 | Benefits

This study includes several potential benefits and
the same are presented in this section. The analysis
described provides researchers in the educational data
mining space a new approach to conduct their own in-
vestigations related to online student engagement, an
important construct to the study of student persistence in
online courses. As no one correct approach to calculating



KITTUR ET AL.

675

WILEY

a student engagement score exists, we recommend re-
searchers carefully explore and modify the approach to
their data in addition to applying our method of evalu-
ating the best online student engagement score to other
data sets. Long-term potential implications of such
measures include helping online course instructors
identify students at risk of dropping a course.

6.2 | Future work

The work presented in this paper describes a novel ap-
proach to numerically represent student engagement
among online undergraduate engineering students using
their LMS interaction data. Random forest was used to
select the relative features used in association rule mining
to generate completer-based rules and leaver-based rules.
A total of 48 unique completer-based rules and 38 unique
leaver-based rules were obtained. The best student en-
gagement score using these rules was found to be the
mathematical difference between the percentage of com-
pleter rules and the percentage of leaver rules met by each
student. The relative features did not include “HIGH” le-
vels of engagement relative to the average student in the
course in both the unique completer- and leaver-based
rules, investigating this further could be a potential direc-
tion for future work. The relative feature type F6 appeared
the most in both unique completer- and leaver-based rules
and the data in this study is not sufficient to provide a
rationale for this, hence this needs to be explored further.
The next steps for this study include combining the
student-LMS interaction data and student attribute data to
predict students’ persistence decisions, that is, we would
like to test whether a model that includes both
student-LMS interaction data and student attribute data is
superior to a model that uses just either of these in the
prediction of students' course-level persistence intentions.
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