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geometric modelling. introduces more degrees of freedom than those strictly necessary to describe

only the octahedral tilts. It can therefore be a challenge to disentangle the
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for modelling pure octahedral tilts and implementation of the constraints in
diffpy-CMI, a powerful package to analyse pair distribution function (PDF)
data. The model in the program allows features in the PDF that come from rigid
tilts to be separated from non-rigid relaxations, providing an intuitive picture of
the tilting. The model has many fewer refinable variables than the unconstrained
space group fits and provides robust and stable refinements of the tilt
components. It further demonstrates the use of the model on the canonical tilted
perovskite CaTiOz which has the known Glazer tilt system o8~ 8~. The Glazer
model fits comparably to the corresponding space-group model Pnma below r =
14 A and becomes progressively worse than the space-group model at higher r
due to non-rigid distortions in the real material.

1. Introduction

Structural distortions in materials, such as those occurring
during displacive structural phase transitions, often involve
collective displacements of groups of atoms (Dove, 1997). For
example, in the perovskites, a material class with the nominal
stoichiometry ABXj; (Fig. 1), collective distortions are known
to cause a host of structural phase transitions that lower the
symmetry of the cubic parent structure (Miiller et al., 1968;
Salje, 1990; Goodenough, 1955; Kwei et al, 1993, 1995).
Perovskites have a host of interesting and practical properties
and are highly prized as ferroelectrics (Bhalla et al., 2000;
Benedek & Fennie, 2013), and even as photoactive materials
in emerging photovoltaic technologies (Paillard et al., 2016). It
is critical to be able to model and characterize the nature of
the distortions and their origin to properly understand and
engineer these interesting properties. Because of the collective
motions of the atoms in the distortions, a challenge is to come
up with data-modeling approaches that capture these collec-
tive atomic displacements in a small number of variables.
Distortions away from from the cubic archetype can involve

® deformations of the octahedra, displacements of the B cations
OPEN @ ACCESS inside the octahedra and tilting of the octahedra. The first two
Published under a CC BY 4.0 licence are typically caused by electronic instabilities, while the latter
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Figure 1

Illustration of in-phase and out-of-phase tilt systems as viewed down the
tilt axis. The tilt systems shown here are o’a’y* (top) and o’a’y~
(bottom).

is due to the relative sizes of the cations. For perovskites with
smaller A cations, the octahedra tilt to compress the structure
around them, essentially improving the bonding for the A
cation. This geometric effect is conveniently captured by the
Goldschmidt tolerance factor (Goldschmidt, 1926),

t = ﬂ , 1

V2Ar 5+ Ix) @
where 7 is an ionic radius and subscripts A, B and X denote the
ion type. For t = 1, the perovskite crystallizes in the high-
symmetry cubic structure, whereas octahedral tilting is
expected for a ¢ < 1 as it signifies that the A site cation is too
small to fill the void between the octahedra. In this paper we
will concentrate on the latter type of distortion.

Due to their corner-sharing geometry, the octahedra can tilt
collectively in several different patterns. By building macro-
scopic models of corner-shared rigid octahedra, Glazer was
able to describe all 22 different patterns in which the rigid
octahedra could collectively tilt and the resulting symmetry

space groups (Glazer, 1972, 1975). Later studies uncovered
details about these Glazer systems through group theory and
geometric considerations (Aleksandrov, 1976; O’Keeffe &
Hyde, 1977; Woodward, 1997a, 1997b; Howard & Stokes,
1998).

Depending on the Glazer tilt pattern of a perovskite, the
structure will have a different symmetry space group (Alek-
sandrov, 1976; O’Keeffe & Hyde, 1977; Woodward, 1997a,b;
Howard & Stokes, 1998). Modelling the structures of the these
low-symmetry phases is therefore often achieved using the
symmetry-broken crystallographic models and constraining
the allowed atomic displacements to those imposed by the
space group symmetries. However, in general, the symmetry
space group allows for more displacive degrees of freedom
than those strictly needed to describe the tilting of the octa-
hedra. Using these models for fitting scattering data leads to
structures where the octahedra are distorted in a way that
cannot be represented in terms of the pure Glazer tilt patterns
with rigid units even in the cases where the octahedra are not
geometrically required to distort (Howard & Stokes, 1998).

Here we explore a more direct approach to modeling
collective rotations using algebraic expressions that link
displacements of atoms in the Glazer tilt systems. Going
beyond purely symmetry constraints is surprisingly challen-
ging. Approximate Monte Carlo approaches have been
attempted (Sartbaeva et al, 2006, 2007), where atoms are
tethered to rigid-unit templates which do not distort, but are
allowed to relax away from the vertices. It has also been shown
(Campbell ef al., 2018) that, for small rotations, a set of linear
equations on top of symmetry mode analysis (Perez-Mato et
al., 2010) can identify collective modes in a system of
connected rigid units that do not (or hardly) distort the units.
However, there is currently no straightforward way of incor-
porating this information into a refinement program for
quantitative modeling of data in terms of this collective mode
basis.

Our approach of explicitly building the geometric constraint
equations without assumed symmetries has the advantage that
it can be easily plugged into local structure modeling schemes
such as that used in the diffpy-CMI (Juhas et al., 2015)
program. The program works in the space group P1 by design,
allowing one to introduce structural distortions by moving
atoms at will. The approach greatly reduces the number of
refinable parameters in a physically meaningful way and can
help to build intuition about the structure and how it is likely
to distort. It also allows the user to directly test hypotheses
about the rigidity of the units or the type of tilting present in a
sample without the conceptual complexity of having to surf
between space groups. This can give new insight that might be
otherwise lost. Here we demonstrate the use of our code on
the compound CaTiOj, the archetypal perovskite with a well-
known Glazer tilt pattern a"8~ 8.

The approach described here has been made possible by
combining PDF methods, which can reveal local broken
symmetries such as collective tilts, and the diffpy-CMI
modeling code (Juhés et al., 2015), which is designed to have
the flexibility to build arbitrary mathematical constraints into
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PDF refinements. Although demonstrated here using a simple
and relatively plain perovskite, it can be easily extended to
other perovskites, such as halides and nickelates. In the latter,
the approach could be beneficial for disentangling octahedral
tilting from breathing modes and other collective distortions.
It can also be extended to other nearby structures such as the
cuprate high-temperature superconductors, a perovskite-
derived structure that also consists of corner-shared octahedra
and polyhedra.

2. Glazer tilt definitions

The Glazer tilt systems, as laid out by Glazer (1972), describe
the complete set of collective rotations allowed in a network of
corner-shared octahedra as found in perovskites (shown in
Table 1). These tilt patterns can all be described using a 2 x 2
x 2 (or smaller) supercell of the cubic perovskite unit cell, and
collective distortions requiring larger supercells are unlikely.

For clarity we use the naming scheme, as introduced by
Glazer. An octahedron can be tilted around one, two or all
three of the cartesian axes, x, y and z. The nature of each
rotation is indicated by three Greek letters with superscripts,
where the first letter denotes the rotation around x, the second
around y and the third around z. Repeating letters (e.g.
o'a'a’) indicate that the amplitudes around the specific axes
are the same, whereas different letters (e.g. «*87y") indicate
that the tilts differ in amplitude around the different axes.

The superscripts can take the value 0, + or — to indicate a
zero-tilt amplitude or a non-zero amplitude with tilts in
adjacent layers along the tilt axis being either in-phase (+) or
out-of-phase (—). For example, the tilt pattern a’a"y" has no
tilt around the x and y axes and a non-zero in-phase tilt around
the z axis. Because of the connectivity of the octahedra at their
corners, neighbouring octahedra in the plane perpendicular to
the tilt axis rotate in the opposite direction to the central
octahedron, leading to a doubling of the unit cell in that plane.
In the example of o’a’y*, the unit cell is therefore doubled in
the ab plane, but not along the z axis. On the other hand, an
out-of-phase tilt, for example along the z axis in the pattern
a’a’y~, will double the unit cell also along the tilt axis. Fig. 1
illustrates the difference between the in-phase and out-of-
phase tilt pattern of the a’a”y* and oo’y tilt systems, as
viewed down the tilt axis.

3. Approach

Here we describe the method for building constrained Glazer
tilt pattern models. The code may be found at https:/
github.com/sandraskj/glazer_fitting.

Models are built using the diffpy-CMI program (Juhas et al.,
2015), which has powerful and flexible methods for specifying
constraints between model parameters. This allows, in prin-
ciple, large numbers of parameters to be expressed in terms of
a much smaller number of variables from analytic or numer-
ical expressions. We first generate the constraints as symbolic
expressions relating multiple atoms’ fractional coordinates.

Table 1

For each of the different Glazer tilt patterns we provide the index as
assigned by Glazer (1972, 1975), the tilts given with Glazer notation and
the space group symmetry of the resulting phase.

Note we have only included the tilt systems that are symmetry-nonequivalent.

Tilt system Tilts Space group

23 o’’’ Pm3m (No. 221)
22 oy I4/mem (No. 140)
21 oo’y P4/mbm (No. 127)
20 "B B Imma (No. 74)

19 "By C2/m (No. 12)

17 By Cmem (No. 63)

16 BB T4/mmm (No. 139)
14 oo R3¢ (No. 167)

13 o BB C2/c (No. 15)

12 a By P1 (No. 2)

10 BB Pnma (No. 62)

8 atBTy” P2,/m (No. 11)

5 afaty” P4ylnme (No. 137)
3 a'ota’ Im3 (No. 204)

1 atBry” Immm (No. 71)

These expressions are then captured into the diffpy-CMI
constraint handling interface.

For the rotation of the octahedra, we set up the code such
that the user only has to input the Glazer system number and
the tilt amplitudes related to that tilt system. The rotations are
then created by rotating three of the oxygens in each octa-
hedron around the crystallographic axes (clockwise, anti-
clockwise or none) according to the chosen Glazer tilt pattern
and the tilt amplitudes. In performing these rotations, simple
rotation matrices would not do as they would lead to different
bond lengths to the two nearby B cations. To mitigate this
issue, each oxygen is displaced in straight lines perpendicular
to the line between two nearby B cations. The increased bond
lengths to the B cations resulting from this operation are fixed
when the lattice parameters are rescaled, as described below.

For all the Glazer tilt systems listed in Table 1 the
constraints have been constructed such that the shortest B—X
distances are all kept rigid. Since, for most of the systems,
there is a small coupling between the rotation modes around
the three axes, these constraints will lead to a small octahedral
distortion with octahedral angles deviating slightly from 90°,
so the tilts are not strictly rigid. However, the tilt equations
result in almost rigid octahedral tilting, where the collective
modes may be described in terms of tilt angles around each
axis which are the only refinable parameters for the modes
when fitting to data, in addition to the cubic lattice parameter.

The collective octahedral rotations do not include A site ion
structural parameters since the A atoms are not directly part
of the octahedral tilting network. However, their positions are
still refined, as they do indirectly respond to the octahedral
tilts by displacement. We chose to constrain the A cation
displacements in such a way as to respect the expected
symmetry of the tilted structure, which in the case of CaTiOj; is
the space group Pnma.

Activating tilt modes leads to well-defined reductions in the
lattice parameters, and therefore for a full description, we
need to find the appropriate scaling parameters expressed in
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terms of the Glazer tilt amplitudes and the lattice parameter of
the cubic parent structure. We start with the interatomic
vectors from the B atom at the origin to its three unique X
neighbors in the octahedron, rz_y;, rz_y, and rgz_ys,

/
ol = [@P 0] @
/ 2 ’ 2 ’ 2 172
It 0l = [@xol +E/4 + @20 . O
’ 2 ’ 2 ’ 2 12
Irp_xsl = [(“ xx3) +(b'yx3) +(c'/4) ] ) 4)

where a’, b’ and ¢’ are the lattice parameters of the distorted
supercell for a given set of Glazer tilts. Keep in mind that the
fractional coordinates yy;, zx, efc. are all expressions
containing the Glazer tilt variables and the lattice parameter
of the cubic parent structure a,. Next, we set each of the bond
lengths to be a quarter of the parent unit cell a,,

rp_xil = Irp_xol = Ip_x3l =@, /4. (%)

Since the rotations are assumed to be those of rigid octahedra,
these lengths will not change after the rotation. This allows us
to relate the lattice parameters of the Glazer tilt distorted
supercell to those of the cubic parent cell through scaling
parameters s,, s, and s,

! — 2& b/ — 2ah / zﬂ

—,c = . (6)

s, s

a

S, ¢

Substituting for &, b’ and ¢’ in Equations (2)-(4), we get a set
of three equations,

1 o\ 220017 1
Yx1 <x1
= | — = -, 7
[*g_x1l |:4s§+< 5 ) +< s, ] 1 7
1/2

20\ 1 220\ 1
= _— —_— = -, 8
[r5_xol |:< s, ) +4s12, + s, 4 ®)

2x z 2 2 1 " 1
X3 YV x3

vil = — ) =) +— =, 9
|rB 3| ( Sa ) ( Sp ) IS% ( )

that can be solved for s,, 5, and s,

S, =

1
1_256)5%(2(}’%(1_16)’3(3Z%ﬂ)_256[)’3(313(2 +x§(3(Z§(1_16Y§(1Z§(2)] ’
1-16y3; +16(—1416y%5) 231 +256(v31—v43) 7% '

(10)

Sb =
%
1_256)‘%(2 (Y%a_l 6)’3(323(1)_256[%(313(2 +x§(3 (13(1_16)%(1 Zg(z)]
1+16x3%, (141623 )—162%, +256x%5 (— 2%, +2%2)

(11)

SC:

1
[ _1_256)‘%(2 (Y§(1_16y§(31§(1 ) +256 [Y§(3Z§(2 +x§(3 (13(1 +16)’§(1 Z%(z)] ]Z
—14x5;(16-256y% 1) +256x5, (V51 —Vi3) +16y%3 '

(12)

Setting these as constraints in the refinement allows the unit
cell to change size according to the tilt amplitude without
introducing any extra refinable parameters.

We present the full constraints for Glazer system 10, as
generated from the code, in the project code repository on
GitHub (https://github.com/sandraskj/glazer_fitting). In the
GitHub repository we also provide the code that generates the
constraints for all the Glazer systems and brief instructions for
how the reader can download them and how to set it up for
their own refinements using diffpy-CMI.

4. Experimental measurements

To obtain experimental pair distribution functions (PDFs) for
CaTiO;, total scattering measurements were carried out at the
28-ID-1 (PDF) beamline at the NSLS-II at Brookhaven
National Laboratory on a commercially purchased powder
sample of CaTiO; (Strem Chemicals Inc. CAS 12049-50-2). A
2D Perkin Elmer amorphous silicon detector was placed
380 mm behind the sample, which was loaded in a 0.5 mm glass
capillary. The wavelength of the incident X-rays was
0.16635 A. Data were collected at 200 K for 60 s in a flowing
nitrogen cryostream.

The data were processed using standard methods (Egami &
Billinge, 2012). The instrument geometry was calibrated using
data from a fine Ni powder using pyFAI (Kieffer et al., 2020).
2D diffraction patterns were processed by applying masks to
remove the beam stop as well as outlier-saturated and dead
pixels using a home-written automasking protocol. After
correction for polarization effects, intensities were integrated
azimuthally along circles of constant scattering vector
magnitude, Q, also using pyFAI. The background signal from
an empty glass capillary was subtracted and the data were
normalized and corrected to obtain the reduced total scat-
tering structure function, F(Q), which was Fourier trans-
formed to obtain the PDF. This was achieved using PDFgetX3
(Juhas et al., 2013). The maximum range of data used in the
Fourier transform was Q. = 23.6 AL

For both the measured and the simulated PDFs we use the
correlation function G(r) (PDF), based on its close relation to
the experimental data as it is the Fourier transform of the
scattering function with no external information such as
density, and also because it has a constant uncertainty in r
(Keen, 2001; Egami & Billinge, 2012).

Modelling the experimental PDF data was carried out using
both the space group Pnma and the Glazer model. The Pnma
model is a +/2 x +/2 x 2 supercell of the cubic aristotype,
while the Glazer model is a2 x 2 x 2 supercell (all our Glazer
models use a 2 x 2 x 2 supercell basis regardless of the final
symmetry). Isotropic Ui, values were defined for each
element, giving three variables Uj,,(Ca), Ujso(Ti) and Ujs,(O).
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5. Results

Our initial robustness tests of the approach are carried out on
simulated PDF data of CaTiO; with a well-defined tilt pattern
according to the known ground-state structure.

The structure was created in Glazer system No. 10 with an
in-phase tilt around one axis of o = 9° and out-of-phase tilt
around the other two axes of B = 10°. For simplicity, in the
constructed structure there was no displacement of the Ca
atoms from their cubic positions. The isotropic atomic
displacement parameters for all the ions were set to Ujs,(Ca) =
0.0030 A2, Usyo(Ti) = 0.0046 A2 and Ui, (O) = 0.011 A2, similar
to those obtained from fitting an experimentally measured
PDF of CaTiO; with a conventional Pnma model between 1.6
and 50 A (discussed below), as shown in Table 2.

The PDF was simulated from the structure using diffpy-
CMI (Juhas et al., 2015), with damping and broadening para-
meters set to the values 0.029 A" and 0.010 A™!, respectively,
obtained from the calibration sample in our measurement and
Omax =23.6 A_l, the same value we used for the experimental
data.

We then fit constrained Glazer models from each of the 22
Glazer tilt patterns to the data from 1.6 < r < 15 A. The
starting values for the tilt amplitudes in the refinement models
were set to values that were roughly 70% of the true values in
the structure for the simulated dataset.

The fits with the one-tilt and two-tilt models were poor in
most cases, whereas all three-tilt systems gave fit residuals
below 10%. Tilt system 10 (the ground-truth result) is one of
the three-tilt systems so this gives confidence that the
approach can easily differentiate the presence or absence of
tilts. However, within the subset of three-tilt systems, different
families of tilt combinations can be found which refine to
significantly different R,, values, as shown in Fig. 2. Interest-
ingly, the fits can differentiate cases that have +++, ++—, +——
and ——— tilts, but within those families it can only weakly
distinguish between different Glazer systems. This may be
because the tilt amplitudes we chose for the test, coming from
the observed values in CaTiOs3, are close to each other.

The best overall fit was found for Glazer system 10, the
correct one, as well as Glazer system 8 that has qualitatively
the same tilt pattern but with an extra degree of freedom that
allows the two out-of-phase tilts to be of different amplitudes.
This shows that the collective mode refinements are working
in diffpy-CMI.

Next, we performed refinements on an experimental dataset
of CaTiO;. We performed the refinements with two models:
one using our formulation based on Glazer tilt system 10 and,
for comparison, a model with constraints consistent with the
crystallographic space group Pnma, which allows tilt distor-
tions but does not impose the constraint of those tilts to be
rigid. The Ca sites were constrained the same way in both
models, according to the space-group symmetry of Pnma. The
space-group model has ten structural degrees of freedom,
whereas the Glazer model has only five. The variables,
including explicitly refined as well as post-calculated ones, and
their values after refinement over 1.6-50 A are listed in
Table 2.

Table 2
Comparison of parameters from the space-group and Glazer model
refinements over the r range 1.6-50 A.

Two values are given each for o and B in the space-group model because
different octahedra tilt by different amounts. We note that the space-group
model Pnma is a /2 x +/2 x 2 supercell of the cubic aristotype while the
Glazer model is a 2 x 2 x 2 supercell. To aid comparison of the values, we
converted the lattice parameters of the Glazer model to a /2 X +/2 x 2 basis.
deltal accounts for correlated atomic motion effects that sharpen the nearest
neighbor PDF peak (Egami & Billinge, 2012).

Pnma space-group model Glazer model

Variable Value Variable Value

Scale 0.18 Scale 0.17

deltal 1.03 deltal 247
ay 3.907

a 5.428 at 5.402

b 7.620 bt 7.594

c 5.366 ct 5.402

XCa 0.0357 XCa 0.0216

Zca 0.0031 YVCa 0.0069

af (°) 9.6, 10.1 o (°) 7.6

Bt (°) 7.1, 10.6 B() 9.7

Xo1 0.2059

Yoi 0.0335

Zo1 0.2073

Xo2 0.0155

202 0.5784

Ujso(Ca) 0.005 U;o(Ca) 0.004

Usso(Ti) 0.003 Usso(Ti) 0.004

Uiso(O) 0.010 Uio(O) 0.011

Ry 0.087 R, 0.245

+ Parameters were not explicit variables of the respective models, and their values were
calculated post-refinement using the optimized atomic positions of the structure.

Fitting both models over this wide-r range (Fig. 3), we can
see that the space-group model provides a significantly smaller
fit residual (space group gives R,, = 0.087 while the Glazer
model gives R,, = 0.245), which is not surprising given its larger
number of refinable variables. Comparing the refined struc-
tural parameters from the two models, we see that all except
for the tilt angles and the lattice parameters are in quite good
agreement, as shown by comparing the values in Table 2.

The information of interest to us is the presence and
amplitude of rigid Glazer tilt modes. For the Glazer model
these are a direct output of the program. For comparison, we

0.10_ T L] - T T L] T L] L] L] T T L] L] -
o 0.05F b
1L 1 1 1 i1 1 1
0.00 H N W h» U O N 0 O B H =B
oYy AR RN P2 PSS L0N0 6
R 8 % 8 & & | & 8§ = = - A&
+ + + + + + + + 4+ Q { Q Q K
W ™R ™R ™R ™ K + O+ 1 | 1
+ + + + + + + 1 ™R ™™ K
X ™ R X X ™ Q) =X = 1 | 1 I |
+ + + | 1 | | I I ™ 8 ~<I 'ml Q
| | |
. Glazer system
Figure 2 ¥

Comparison of the fit of the 14 three-tilt Glazer systems to a simulated
PDF of CaTiO; with octahedral rotations but without Ca displacements.
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also calculate the tilt angles from the space group by finding
the angle that each vector between opposite pairs of oxygen
atoms on an octahedron makes with the pseuodocubic axes.
This gives two values for each of the tilt angles due to octa-
hedral distortion, in contrast with previous studies that only
reported one value for each (Kennedy ef al., 1999; Yashima &
Ali, 2009). Our choice to present both values obtained for
each tilt angle highlights the difference in rigidity and
robustness of the space-group and Glazer-mode constrained
models.

The Glazer model results in values of in-phase tilt o = 7.6°
and out-of-phase tilt 8 =9.7°. The space-group model gives the
values o = 9.6 and 10.1° and 8 = 7.1 and 10.6°. The average
value of the in-phase « tilt is higher in the space-group model
by almost 2° than in the Glazer model, and that of the out-of-
phase B tilt is lower by about 1°. In the case of B the two
different octahedra in the space-group model are quite
different and actually straddle the value obtained in the
Glazer fit.

Addressing the difference in fit quality, we believe that a
significant contribution to the poorer fit can be attributed to
the tighter constraints on the lattice parameters in the Glazer
fits. The space-group model is orthorhombic, with three
different lattice parameters. For the Glazer model, the shape
of the unit cell changes in strict accordance with the chosen tilt
pattern, and only one lattice parameter variable (the initial
cubic lattice parameter) is refined. We note that, for the
particular tilt pattern o* 8~ the unit cell is tetragonal, not
orthorhombic (Table 2). The a = ¢ parameters for the Glazer
model lie between those of the space-group model, but are not
able to separate into short and long values allowed by the
orthorhombic crystallographic model due to the Glazer model

R, =0.087 space-group model
M A A A e A Aiar A A t8in i A A A e vy A
. TV Y Rw Wy g rvwvlvv-— -v—vr-l—-v—— v.-v--—v :
0 10 20 30 40 50
r(A)
Figure 3

Plots of measured (blue) and best-fit (red) PDFs of CaTiO; with the
difference curve plotted in green offset below over the r range 1.6-50 A.
The model for the best-fit PDF is from (a) the constrained Glazer tilt
model in Glazer system 10 and (b) allowing all the structural degrees of
freedom of the Pnma space-group model.

constraints, whereas clearly structural relaxations beyond the
rigid tilts are present in the actual material.

If the difference in R,, between the two models in the wide-
range fits is due to the difference in model rigidity, the models
would be expected to perform more comparably when fitting
only the most local structure, and for the Glazer model to
perform worse at higher values of r. The Glazer model only
allows for the degrees of freedom that are strictly necessary
for the tilt pattern "B~ 8", and comparing the two fits at
different length scales therefore allows us to separate contri-
butions to the PDF signal that come from rigid tilts and
additional non-rigid relaxations. It is also interesting to
consider if the refined values of the Glazer tilts vary with the
r range that is fit over, as might be the case if the tilts become
damped with increasing r. We therefore performed a series of
fits where an r range of a fixed size (referred to as a box) is
shifted incrementally up to higher values, an approach we call
a ‘boxcar’ fit. The r-dependence of the refined variables are
shown in Fig. 4.

As evident in Figs. 4(b) and 4(c) the values of the tilt
amplitudes vary more smoothly in the Glazer model than in
the space-group model indicating that refinement of these
variables is more stable in the more highly constrained Glazer
fits. Also, whilst the « tilt is fairly r-independent, there is a
marked tendency for the p tilt to decrease with increasing r in
the Glazer fit. We also see a similar trend in the total displa-
cement of Ca from cubic positions [8c,, Fig. 4(d)], with the
Glazer model trending downwards, while the space-group
model stays at the same value throughout the r range. One
possible explanation for the downwards trends of these
structural parameters is a loss of structural coherence with
increasing r due to a non-rigidity, for example in cases where
local tilts survive in a material but are not present globally.
The range of coherence of the collective motions may then be
measured by this approach. Another explanation is that the
unit-cell shape of the model is too constrained to adequately
describe even the local structure, a constraint that is exacer-
bated at higher r. To check which of these two scenarios is the
case for CaTiOs3, we also performed boxcar fits on a simulated
PDF of CaTiOs. We constructed two versions of the structure,
both with well defined tilts of « = 9° and 8 = 10° and A site
displacements similar to those found for the space group fit in
Table 2, but one in which the lattice parameters were
constrained by the tilt pattern (tetragonal cell) and one with
orthorhombic lattice parameters similar to the known ground-
state structure. The results, provided in the supporting infor-
mation, show that both the Glazer and space-group models
perform similarly over the entire r range for the simulated
PDF of the tetragonal, ‘pure’ Glazer tilted structure, whereas
the fits of the PDF of the orthorhombic structure give trends in
R,, that strongly match the data in Fig. 4(a). It is therefore
reasonable to conclude that the imposed tetragonality of the
Glazer model does not adequately allow for the orthorhom-
bicity in the measured CaTiO;. Presumably other structural
degrees of freedom in the structure such as A site displace-
ments cause the global unit cell to relax from tetragonal to
orthorhombic, though this is not imposed by the tilts.
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Figure 4

Comparison of the (a) fit residual R,,, the octahedral tilt amplitudes (b) o
and (c¢) B, (d) the total Ca displacements (8¢c,), and (e) the Ui, values
from boxcar fits with the space-group model and the Glazer model of
CaTiO; at 200 K. The r range (or ‘the box’) was set to 8 A and
incrementally shifted to higher r values in steps of 2 A. The labels on the x
axis correspond to the highest value in the box, rpax. :l“he dotted lines
represent the values obtained from a fit over the 1.6-50 A range. We note
that, for the space-group model, the tilt angles « and B differ depending
on which octahedra were used to calculate them, and such are
represented by two different lines.

As the tetragonal constraint of the Glazer model is
expected to be exacerbated with increasing r, we expect a
good agreement between the Glazer and space-group models
at low r. A comparison for the fits over the range r = 1.6-14 A
is shown on an expanded scale in Fig. 5, where the R,, values
are indeed comparable.

We note that for the case we studied, CaTiO; at room
temperature, the tilts are long-range ordered and so are
expected to persist over large distances, asymptotically
approaching the crystallographic values. This kind of boxcar
analysis can be expected to be more interesting in materials
where no tilts are observed in the average structure but are
observed locally (Skjeerve et al., 2019; Bozin et al., 2019; Koch
et al., 2021; Yang et al., 2020; Wang et al., 2020; Senn et al.,
2016). Expanding the Glazer model to accommodate changes
in unit-cell shape beyond that predicted by the tilt pattern

GIazeAmodeI
I\ A AL N\ A A AI\ AN AAADA AN
M VA Al ad vV A vV vv\l' "Vv V V"

Figure 5
Plots of measured (blue) and best-fit (red) PDFs of CaTiO; with the
difference curve plotted in green offset below over the r range 1.6-14 A.
The model for the best-fit PDF is from (a) the constrained Glazer tilt
model in Glazer system 10 and (b) allowing all the structural degrees of
freedom of the Pnma space-group model.

would allow us to keep the benefits of a highly constrained
model while mitigating poorer fits at high r due to too strict
lattice parameters and therefore allow us to explore any
potential effects of loss of coherence on the fit residual.

6. Conclusions

We have developed sets of constraint equations that explicitly
model octahedral tilts (Glazer tilts) in perovskites. The model
allows refinements of collective atomic motions by geome-
trically connecting atoms in the lattice, allowing rigid rotations
to be modeled directly. We have implemented the constraints
directly in the PDF modeling program diffpy-CM1I.

We have demonstrated the use of our code on the canonical
tilted perovskite system CaTiOs;, which has a known long-
range ordered Glazer tilt system "8~ B~. We found that our
Glazer model fits comparably to the known space-group
model Pnma below r = 14 A. We further observed that the
Glazer model performed progressively worse at higher r due
to the rigidity of the model. In this case the rigid tilts alone
broke the cubic symmetry to tetragonal, whereas the observed
symmetry is orthorhombic, which explains the discrepancy in
the fit residuals. Presumably, non-rigid relaxations and
relaxations of atoms not involved in the tilts are responsible
for the additional reduction in symmetry.

Our Glazer model could be used to study a wide range of
perovskite systems to better understand whether their struc-
ture is well explained in terms of pure octahedral rotations,
how the rotations vary with parameters such as temperature
and pressure, and what additional structural relaxations are
needed to explain the structure beyond the simple picture of
octahedral rotations. The highly constrained fits can be
expected to give stable refinements even when data quality is
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limited, for example, from small nanoparticles or powders in a
diamond anvil cell. The work also highlights the strengths and
limitations of the geometric approach in building rigid-body
constraints.
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