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ABSTRACT

High pressure is an effective tool to induce novel and exotic quantum phenomena in magnetic
topological insulators by controlling the interplay of magnetic order and topological state. This
work presents a comprehensive high-pressure study of the crystal structure and magnetic
ground state up to 62 GPa in an intrinsic topological magnet EuSn,P,. With a combination
of high resolution X-ray diffraction, "'Eu synchrotron Mdssbauer spectroscopy, X-ray
absorption spectroscopy, molecular orbital calculations, and electronic band structure
calculations, it has been revealed that pressure drives EuSn,P, from a rhombohedral crystal to
an amorphous phase at 36 GPa accompanied by a four-fold enhancement of magnetic ordering
temperature. In the pressure-induced amorphous phase, Eu ions take an intermediate valence
state. The drastic enhancement of magnetic ordering temperature from 30 K at ambient
pressure to 130 K at 41.2 GPa resulting from Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions likely attributes to the stronger Eu-Sn interaction at high pressure. These rich
results demonstrate that EuSn,P; is an ideal platform to study the correlation of the enhanced
RKKY interactions, disordered lattice, intermediate valence, and topological state.

INTRODUCTION

Topological materials have recently emerged as a new frontier of condensed matter physics and
materials research due to their rich quantum phases and potential applications in future
dissipationless topological electronics and quantum computations (for reviews see ref.'?).
Among them, intrinsic magnetic topological systems are particularly interesting due to the
potential applications in spintronic devices. Compared to dilute magnetic topological insulators,
intrinsic magnetic materials are stoichiometric magnetic compounds that provide an easily
synthesized, tunable, and clean platform to study magnetic topological materials with new
intriguing quantum states. Such intrinsic magnetic topological materials are generally narrow-gap
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semiconductors that combine nontrivial band topology and intrinsic magnetic order’. The
intriguing interplay between magnetic ordering and topologrcal states can generate exotrc
topological quantum phenomena such as the quantum Hall effect™™®, axion electrodynamics’

and Majorana states . Efforts in the study of emer en henomena in intrinsic magnetrc
topological systems are mostly focused on MnBi;Te,>”'* ' due to the very few available
candidate materials. Very recently, a series of Eu-based compounds have been demonstrated
experimentally, or proposed theoretically, to be intrinsic topological semimetals™'>'*. Among
them, EuSn,P, has been shown to be 2 magnetic topological ~system w1th type-A
antiferromagnetic (AFM) order below 30 K'°. EuSn,P; crystallizes in a layered rhombohedral

structure with space group of R3 m, similar to the A,B; family of topological insulators'®. It is
comprised of strongly magnetic Eu layers sandwiched between Sn-P layers. Tradrtlonally, Eu-
based intermetallic materials have achieved considerable interest for their rich properties
including magnetic phases from the stron% local moment, valence transition, superconductivity,
heavy fermion states, and Kondo physics™. Despite of the rich quantum phenomena, much work
is needed to understand the intriguing properties. In this work pressure is employed to control the
crystal structure, magnetic, and valence states. Pressure has been proven to be a clean and
effective way to tune the atomic distances and therefore electronic interactions to induce novel
quantum phenomena in materials, such as superconductivity, magnetism, or electronic
topological transitions. For example, pressure-induced suppression of Néel temperature and the
emergence of superconductivity have been observed in magnetic compounds including heavy
fermions and iron-based superconductors’"

Here we report the first systematic high-pressure investigation in EuSn,P, using a combined
experimental approach including angular-dispersive X-ray diffraction (XRD), time-domain
synchrotron Mdssbauer spectroscopy (SMS), partial fluorescence-yield X-ray absorption
spectroscopy (PFY-XAS), and molecular orbital and electronic band structure calculations. In
EuSn,P,, the rhombohedral crystal structure remains stable up to 33 GPa before transforming to
an amorphous phase. Surprisingly, an impressive over four-fold enhancement in magnetic
ordering temperature (7,) from 30 K at ambient pressure to 130 K at 41.2 GPa has been
observed, despite of an increased mean valence above 20 GPa. The enhancement of magnetic
exchange interaction is likely attributed to the stronger Eu-Sn interaction under pressure. This
comprehensive study presents intriguing interplay of crystal structure, magnetic ground state,
and the associated valence state tuned by high pressure.

RESULTS

Pressure-induced crystalline to amorphous transition

The evolution of structural properties of EuSn,P, under hydrostatic pressure has been
investigated by high resolution XRD experiments. The XRD data reveal that the ambient
rhombohedral structure is maintained under pressure up to 33 GPa. At higher pressure the
sample loses the long range crystalline order and becomes amorphous at 36 GPa, evidenced by
the loss of sharp crystalline diffraction peaks (see Fig.1). With further compression the
amorphous phase persists up to 62 GPa, the highest pressure measured in this study. The observed
pressure-induced amorphlzation (PTA) contrasts with the rhombohedral-to-monoclinic transition
reported in EuSn,As,”. The lattice parameters, interatomic distances, and unit cell volume of
EuSn,P; in the crystalhne phase obtained from the Rietveld refinements from both XRD runs are
plotted as a function of pressure (Fig.2). Parameters from run 1 with helium as hydrostatic
pressure medium and run 2 with neon as quas1hydrostat1c pressure medium agree reasonably
well. Using the third-order Birch-Murnaghan equation® a fit to the volume versus pressure data
gives bulk modulus By = 58 (2) GPa, its pressure derivative By = 3.6 (1) and volume at zero
pressure ¥y =375.1 (9) A°.
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PIA has been documented in a wide variety of systems such as ice”, AIPO*?, Snl, 8, VO,”
and Euln,As,’’. The PIA may be related to structural instability violating Born stability criteria®®
or related to density/entropy-driven liquid phase®'. However, the operative mechanism remains
an open question in many cases. Additional experimental and computational investigation of
variables (charge, orbital, elastic stability) could potentially help to gain a comprehensive
understanding of the driving mechanism of PIA in EuSn,P,.

Drastic enhancement of 7,

Typical SMS spectra at selected pressures across 7T, are presented in Fig.3. The SMS spectra
were analyzed using CONUSS™ by modeling the data with two sets of hyperfine parameters,
magnetic hyperfine field (Hy) and quadrupole splitting along with sample thickness. In the
presence of magnetic ordering, quantum oscillations emerge in the time domain SMS spectrum
due to nuclear Zeeman splitting. The analysis shows that the direction of magnetic hyperfine
field is perpendicular to the X-ray propagation direction and lies in the ab-plane at ambrent
pressure, consistent with the results from neutron diffraction experiments at ambient pressure
And this direction remains up to 42.7 GPa, the highest pressure reached, indicating Eu spms
remain in-plane. When EuSn,P, is warmed above T,, Hpr drops to zero. The periodic
oscillations in the data at 16.4 GPa and 96 K indicate a minor oxide impurity phase present in
the sample used in run 2, which shows absence of magnetic hyperfine field and can be modeled
with two paramagnetic sites with different isomer shift values, one from the sample and another
from the impurity phase. In the magnetic phase a small quadrupole splitting of 1-5 mm/s has
been included to fit the spectra. The temperature dependence of the extracted magnetic
hyperfine field at various pressures is shown in Fig.4. With increasing pressure, 7, increases
monotonically. It is remarkable that a moderate pressure of 41.2 GPa drives 7, to 130 K from
30 K at ambient pressure, a more than four-fold enhancement.

Valence state of Eu ions

To provide information on the valence state of Eu ions based on the isomer shift of '*'Eu,
additional SMS spectra were taken simultaneously from the sample in the diamond anvil cell
located inside the cryostat and the Eu,0O; reference placed outside of the cryostat and downstream
of sample. The isomer shift is proportional to the electron density gdommated by s electrons) at
the nucleus. The large separation of isomer shift values for Eu and Eu’’, resulting from
different shielding effect of the closed-shell s-electrons by the 4f ' and 4f ® configurations,

makes it useful to probe the valence based on the isomer shift value. Fig.5 displays such SMS
spectra at various pressures and temperatures as well as corresponding simulated energy-
domain spectra showing the changes of the isomer shift values of the sample with increasing
pressure and the fixed isomer shift of reference sample Eu,Os. A monotonic increase of isomer
shift from -10.3 mm/s at 1.0 GPa, 300 K to -5.39 mm/s at 41.2 GPa, 160 K has been observed
(see Table.1). Caution needs to be taken when interpreting the change of isomer shift as change
in valence state by simply assuming the contribution solely originating from the change in 4f
electrons. For example, in pure Eu metal significant change in isomer shift was observed
without obvious change in 4f electron occupancy ™.

To probe the valence state directly, PFY-XAS experiments at Eu’s L; edge (2p3n — 5d
transition) were carried out up to 47 GPa. The normalized high-pressure PFY-XAS data are
shown in Fig.6. Eu ions in EuSn,P; remain mostly divalent up to 19.8 GPa, indicating that the
change in isomer shift at lower pressure is largely due to compression effect without involving
the 4f electrons. At 19.8 GPa a second absorption peak emerges at ~8 eV higher in energy and
grows with increasing pressure, indicating a transition toward Eu’". The 8 eV shift corresponds
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to the excitation energy difference for Eu*"(4f °5d") and for Eu*"(4f "5d"). Due to the decrease
of absorption peak intensity under pressure, it is difficult to estimate the mean valence based on
the ratio of the peak intensities. However, combining the PFY-XAS and change in the isomer
shift value, it is safe to conclude that Eu take an intermediate valence state above 20 GPa. An
accurate evaluation of the valence would require detailed electronic calculations under pressure.

Pressure-enhanced RKKY interaction

The magnetic order in EuSn,P, at ambient pressure is driven by indirect Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange coupling through spin-polarized conduction band. To provide
insight to the enhanced 7,, we have performed molecular orbital calculations to illustrate the
chemical bonding evolution at high pressure. The generated molecular orbitals diagrams
containing the degenerated highest occupied molecular orbitals (HOMOs) and the lowest
unoccupied molecular orbitals (LUMOs) of EuSn,P, at ambient pressure and 23.3 GPa are
shown in Fig.7. The HOMOs and LUMOs diagrams reflect the orbital interactions just below
and above Fermi level, respectively. The blue and red colors indicate the contrast of the orbital
symmetry, i.e., antibonding interactions. At both ambient and high pressure, the antibonding
characters from Eu-4f orbitals are dominant among intralayer Eu atoms in HOMOs. EuSn,P, can
be viewed as Eu*" cation packed with (SnP),”” anion along c-axis primarily by ionic bonding
interactions from a charge balance view. Specifically, in chemistry Eu and P atoms are bonded
ionically, Sn and P atoms are bonded covalently, and Eu and Sn atoms are bonded metallically.
Near Fermi level the bonding interaction features can be observed between Eu-Sn and Eu-P at
ambient pressure. When pressurized, EuSn,P, exhibits stronger metallic Eu-Sn bonding
interaction and a weaker covalent Sn-Sn bonding feature. Moreover, the distance between Eu-P
atoms decreases, likely due to the 3p electronic localization on P induced by pressure. It suggests
that pressure-enhanced Eu-Sn bonding interaction contributes to the increasing RKKY interaction
and therefore enhanced T,. This is consistent with the monotonic decrease of distances of Eu-
Sn and Eu-P shown in Fig. 2 (c). Due to the much shorter intralayer Eu-Eu distance than
interlayer Eu-Eu distance which leads to stronger intralayer magnetic exchange interaction
than interlayer interaction, it is expected that the enhanced intralayer exchange interaction (Play
a more important role in the increase of T,, as concluded in the case of Euln,As,’’. In
addition, the pressure-induced weakening of the ionic and covalent bonding and enhancement of
metallic properties in EuSn,P, may drive the crystal structure into amorphous phase, similar to
amorphous magnets where the magnetic order is maintained in the amorphous phase™.

Band structure calculations

The surface states and spin texture of EuSn,P, from Eu termination were calculated using the
Generalized Gradient approximation (GGA) plus correlation parameter (U = 6 eV) with spin-
orbit coupling (SOC). According to the calculation, as the pressure is increased, the decreasing
atomic distance along ab-plane may influence the topological properties if the in-plane magnetic
spin orientation is maintained under pressure (Fig. S1). On the other hand, slightly spin canting
along c-axis from the Eu layers may change the topological properties completely, consistent
with the recent experimental and computational study in EuSn,P,>.

Pressure phase diagram

Fig.8 presents the phase diagram constructed by combining the XRD, SMS, and PFY-XAS
studies under pressure. The boundary between paramagnetic and magnetic phases is deduced
from Fig.4. T, shows a monotonic increase with pressure application with more than four times
of the value at ambient pressure. Above 20 GPa a clear slope change in d7,/dP coincides with
transition from Eu®" toward Eu’" in Eu’s valence based on the PFY-XAS data. Strikingly,
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magnetic order is found to persist in the amorphous phase at 42.7 GPa. In another topological
magnetic material, Euln,As,, pressure-induced hexagonal-to-amorphous transition has been
observed above 17 GPa with absence of magnetic order in the amorphous phase based on
electrical resistivity measurements’’. The PIA observed in both systems may suggest a similar
origin of crystal structure mstablhty Furthermore, in the crystalline phase of Euln,As, a large
enhancement of 7, is attributed to the increase of intraplane exchange interaction, consistent with
the enhanced Eu-Sn bond in EuSn,P,.

DISCUSSION

In summary, we have conducted comprehensive studies of crystal structure, magnetic order,
and valence state on the magnetic topological semimetal EuSn,P, under pressure up to 62 GPa.
XRD data reveals a rhombohedral-to-amorphous transition at 36 GPa and the amorphous phase
remains up to 62 GPa. Pressure enhances the magnetic ordering temperature remarkably with an
over four-fold increase from ambient pressure, attributed to the enhancement of RKKY
interactions through stronger Eu-Sn bond under pressure. Eu ions remain mostly divalent until
20 GPa and enters an intermediate valence state at higher pressure up to 47 GPa. Band structure
calculations in EuSn,P» show that both change in lattice parameter and change in magnetic
configuration from in-plane to out-of-plane will impact the topological properties, with the
latter playing a dominant role. The experimentally observed in-plane spin orientation of Eu ions
in the measured pressure range suggests that the any possible change of topological properties
will be attributed to the change in lattice parameters. Our work establishes that pressure is an
effective tuning parameter to elevate the magnetic ordering temperature, a critical parameter to
realize novel quantum phases. These rich results pave the way for further experimental and
theoretical efforts to explore the pressure-tuning of magnetism, possible superconductivity, and
their interplay with crystal structure and topological electronic states.

METHODS
XRD

Single crystals of EuSn,P, were grown by the Sn-flux method reported previously'”. High-
pressure XRD, SMS, and PFY- XAS experiments were carried out at the 13BM-C (PX?), 3ID,

and 16ID-D Beamhnes respectively, at the Advanced Photon Source, Argonne National
Laboratory. Two runs of powder XRD experiments at high pressure and room temperature were
conducted. X-rays with a wavelength of 0.434 A were focused to 15 um(v) x 15um(h) size. A
piece of single crystalline sample was ground into powder and loaded in the diamond anvil cell.

In run 1 a BX90 diamond anvil cells (DAC) equipped with one pair of Boehler-Almax anvils of
500 um diameter culet to allow large diffraction angles was used®. Helium was used as the
pressure-transmitting medium up to 23.3 GPa. Ruby was used to determlne pressure’’. Inrun2 a
symmetric cell was used up to 62 GPa with cubic boron nitride seats and anvils of 300 ym
diameter culet and neon pressure transmitting medium was used. Initial pressure was determined
from ruby during Ne gas loading and subsequent pressures were determined in-situ from the
equation of state of Au’® at the same position where XRD data was taken on the sample. In both
runs thenium (Re) gaskets were used to contain the samples between the diamond anvils. The 2-
D diffraction images were integrated usmg DIOPTAS software’” and Rietveld refinements on the
XRD data were performed in GSAS-1T*

SMS under pressure

High-pressure >'Eu SMS experiments were carried out to investigate the evolution of the
magnetism of EuSn,P,. SMS, also known as nuclear forward scattering, utilizes the pulsed
synchrotron X-ray to probe the nuclear spin transition in time domain. SMS is a sensitive probe
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to study magnetic state down to the atomic level and is one of the few techniques compatible
with extreme sample environments. The SMS experiments were performed during the standard
24-bunch timing mode of the APS with 153 ns separation between two successive electron
bunches for data collection. The magnetism is probed through M1 transition 7/2 - 5/2 in ">'Eu at
the nuclear resonant energy of 21.54 keV with high resolution monochromators*'. X-rays were
focused to 15 um(v) x 15 ,um(zh) (FWHM). Low temperatures were achieved in a specially
designed helium-flow cryostat'”. High pressures were generated using a membrane-driven
miniature panoramic DAC. Re gaskets were prepared and EDM-drilled to form the sample
chamber.

Three experimental runs were performed with different sample loadings, run 1 up to 10.4 GPa,
run 2 up to 22.7 GPa, and run 3 up to 41.2 GPa. A single crystalline sample was loaded in each
run such that the incident X-ray is along the c-axis of the crystal. In run 1 and 2 helium was used
as pressure medium to ensure hydrostatic pressure environment at low temperatures. In run 3 a
neon pressure medium was used. After gas loading at room temperature, all subsequent pressures
were applied through gas membrane at low temperature between 100 and 150 K. Pressures were
determined from ruby scale’’. At each pressure the SMS spectra were collected at various
temperatures across the magnetic order. Possible valence transition of Eu ions in the sample can
be detected by the change of the isomer shift. The isomer shift values were obtained in-situ by
placing a reference sample with a known isomer shift value in the X-ray beam’* *°. For
divalent Eu ions in EuSn,P,, a trivalent reference sample Eu,O; with an isomer shift of 1.024
mm/s (relative to EuF3) was placed in the beam. SMS data together with the reference sample
were collected in the paramagnetic phase of EuSn,P, which simplifies the spectra due to the
absence of magnetic hyperfine field.

High-pressure PFY-XAS

To provide direct information on Eu’s valent state and confirm any possible changes suggested by
the isomer shift measurements, XAS experiment was carried out at Eu’s L L3 edge (6.97 keV)
up to 47 GPa. A single crystal sample was loaded in a symmetric-type DAC with beryllium
gasket and an insert from cubic boron nitride and epoxy. Pressures were measured in-situ from
ruby fluorescence. To avoid heavy absorption by diamond anvil at this energy, XAS was taken
with the incident X-ray beam going through the Be gasket and absorption signal being taken in
the fluorescence geometry using a Pilatus detector. The X-rays were focused to 5 um (FWHM).
The sample position at each pressure was carefully determined by scanning the sample position
to minimize self-absorption. Ruby was used to determine the pressure in-situ”".

Molecular orbital calculations

To provide insight to the enhanced 7,, we have performed molecular orbital calculations in
EuSn,P, at ambient and high pressure employing semi-empirical extended-Hiickel-tight-
binding (EHTB) methods and CAESAR packages'®. The basis sets used in the the calculations
of molecular orbitals of EuSn,P, at ambient and high pressure for Eu are: 6s: Hii =-7.42 ¢V, {1
= 1.400, coefficient] = 1.0000; 6p: Hii =-4.65 eV, {1 = 1.400, coefficient]l = 1.000; 5d: Hii
= -8.08 eV, {1 = 2.753, coefficient] = 0.7187, {1 = 1.267, coefficient2 = 0.4449; 4f: Hii = -
11.28 eV, {1 =6.907, coefficient]l =0.7354, {1 = 2.639, coefficient2 = 0.4597. For Sn: 5s: Hii
=-16.16 eV, {1 = 2.120, coefficient] = 1.000; 5p: Hii = -8.32 eV, {1 = 1.820, coefficient] =
1.000. For P: 3s: Hii = -18.60 eV, {1 = 1.750, coefficient] = 1.000; 3p: Hii = -14.00 eV, {1 =
1.300, coefticient]l = 1.000.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author
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Table 1. Isomer shift (§) values of BBy in EuSnyP, relative to Eu,O; at various pressures and
temperatures.

P(GPa) T (K) 6 (mm/s)
1.0 300 -10.30 (1)
1.9 110 -10.25 (2)
3.0 300 -9.99 (1)
3.7 100 -9.98 (1)
7.3 100 -9.48 (1)
10.4 100 -9.15(3)
16.0 105 -8.25 (1)
20.7 110 -6.67 (4)
28.9 130 -6.26 (1)

412 160 -5.39 (6)




a) & ®) , [
( ) _Alb A Runl 216‘_L .
41 “a e Run? - .,
~ i n o~ B "
°f£, B ‘.b °f£, B y
< - ‘.‘."A O 24 __ ‘p.A‘
38 - Se ®e : .‘.A.A °
B 1 | 1 1 I 1 | | | I 1 1 1 | | | I. 22 _I 1 | | I 1 1 | | | 1 1 1 | |..I.I.
0 10 20 30 0 10 20 30
P (GPa) P (GPa)
) §.
~ 8 [ B
< L :
O [
o 6 [
g ._I‘l :
B 4 S i
t‘.;t::?:::tt Add :_
2||IIIIIII|IIII| IIIIIIIIIIIIII|II
0 1 20 30 0 10 20 30

0
P (GPa) P (GPa)



15.1 K 23 K 28 K 32 K
0.6 GPa
3.7 GPa
9.6 GPa
E
10" I
B
107 [ & U A, ot . IRY ‘ 16.4 GPa
: ( ’ ‘ / | H VW b /&) y RE 4
100 |_ 1 | 1 | | Illl 1 1 | 1 h | 1 | 1 I‘ I!I|"|l|lE 1 1 .hiiﬂ
E 14 K ’ 50 K 100 K 115K
2 E \
10 o e ¥ \ Vi e 9 271 GPa
OE ‘ V. & ? y 4 * \
10°f . I E T T Pl T bt Uit
2% 50 K 100 K . 130 K
107 - 41.2 GPa
E
o F WMM

20 40 60 8020 40 60 8020 40 60 80 20 40 60 80
time (ns) time (ns) time (ns) time (ns)


Wenli Bi


® = > O

® 0 » o

0.6 GPa
1.7 GPa
3.7 GPa
7.3 GPa
9.6 GPa
16.4 GPa
20.7GPa
22.7 GPa
27.1 GPa
41.2 GPa

46
80 100
T (K)

120




1 GPa, 300 K

e

3.7 GPa, 100 K

7.3 GPa, 100 K Y
E
:I 1 | L1 11 L1 11 | L1 1 1 | L1 11 | IT

16.0 GPa, 105 K ' '

o 28.9 GPa, 130 K Y

+# ¢¢

41.2 GPa, 160 K

30 40 50 60 70 80 -10 0
time (ns) velocity (mm/s)




XAS (arb. units)

19.8 GPa

6970

6980I 6990
Energy (eV)




LUMO
Cow




1 m ,— _ 1 — ] | ] 1 M L] 1 1 1
m..o o @ e o @ ° ® ®
K m F
& E
- -
0O, e® e e e e e e e e » Dnm
- e
i . A
cooo e o e o = e o
no_-_- e o o ® -
o KoY
- ﬂ a1
L ..m O ©0O0C. 0@ ® a o L -
2
. S M
| 0 |
= a®
— 1m ) 0 o 0 0000 00 © o o | m
P - o 0, .
)owﬂ“ o o woo 00_..._0.1..10 ® 000 @ 00
B momu ° ouoow mon 1
Oa o u on NQO
- n.u_ ¢ mu____,ii e o0 N
L Q-ooo ‘TX 5
| _ | 1 _ | | | | _ | i.*' | 0
- - - -
e — )



	Article File
	Figure 1
	Table 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

