

1 **Drastic Enhancement of Magnetic Critical Temperature and Amorphization in**
2 **Topological Magnet EuSn₂P₂ under Pressure**

3 Wenli Bi^{1,*}, Trenton Culverhouse¹, Zachary Nix¹, Weiwei Xie², Hung-Ju Tien³, Tay-Rong
4 Chang^{3,4,5}, Utpal Dutta¹, Jiyong Zhao⁶, Barbara Lavina^{6,7}, Esen E. Alp⁶, Dongzhou Zhang⁸,
5 Jingui Xu⁸, Yuming Xiao⁹, and Yogesh K. Vohra¹

6 ¹Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

7 ²Department of Chemistry and Chemical Biology, The State University of New Jersey-
8 Rutgers, Piscataway, NJ 08854 USA

9 ³Department of Physics, National Cheng Kung University, Tainan 701, Taiwan

10 ⁴Center for Quantum Frontiers of Research and Technology, Tainan 701, Taiwan

11 ⁵Physics Division, National Center for Theoretical Sciences, National Taiwan University, Taipei
12 10617, Taiwan

13 ⁶Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

14 ⁷Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA

15 ⁸Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and
16 Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

17 ⁹HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

18 *wbi@anl.gov

21 **ABSTRACT**

22 High pressure is an effective tool to induce novel and exotic quantum phenomena in magnetic
23 topological insulators by controlling the interplay of magnetic order and topological state. This
24 work presents a comprehensive high-pressure study of the crystal structure and magnetic
25 ground state up to 62 GPa in an intrinsic topological magnet EuSn₂P₂. With a combination
26 of high resolution X-ray diffraction, ¹⁵¹Eu synchrotron Mössbauer spectroscopy, X-ray
27 absorption spectroscopy, molecular orbital calculations, and electronic band structure
28 calculations, it has been revealed that pressure drives EuSn₂P₂ from a rhombohedral crystal to
29 an amorphous phase at 36 GPa accompanied by a four-fold enhancement of magnetic ordering
30 temperature. In the pressure-induced amorphous phase, Eu ions take an intermediate valence
31 state. The drastic enhancement of magnetic ordering temperature from 30 K at ambient
32 pressure to 130 K at 41.2 GPa resulting from Ruderman-Kittel-Kasuya-Yosida (RKKY)
33 interactions likely attributes to the stronger Eu-Sn interaction at high pressure. These rich
34 results demonstrate that EuSn₂P₂ is an ideal platform to study the correlation of the enhanced
35 RKKY interactions, disordered lattice, intermediate valence, and topological state.

36 **INTRODUCTION**

38 Topological materials have recently emerged as a new frontier of condensed matter physics and
39 materials research due to their rich quantum phases and potential applications in future
40 dissipationless topological electronics and quantum computations (for reviews see ref.^{1,2}).
41 Among them, intrinsic magnetic topological systems are particularly interesting due to the
42 potential applications in spintronic devices. Compared to dilute magnetic topological insulators,
43 intrinsic magnetic materials are stoichiometric magnetic compounds that provide an easily
44 synthesized, tunable, and clean platform to study magnetic topological materials with new
45 intriguing quantum states. Such intrinsic magnetic topological materials are generally narrow-gap

46 semiconductors that combine nontrivial band topology and intrinsic magnetic order³. The
47 intriguing interplay between magnetic ordering and topological states can generate exotic
48 topological quantum phenomena, such as the quantum Hall effect⁴⁻⁶, axion electrodynamics⁷⁻¹⁰,
49 and Majorana states¹¹. Efforts in the study of emergent phenomena in intrinsic magnetic
50 topological systems are mostly focused on MnBi₂Te₄^{6,9,12-14} due to the very few available
51 candidate materials. Very recently, a series of Eu-based compounds have been demonstrated
52 experimentally, or proposed theoretically, to be intrinsic topological semimetals^{5,15-18}. Among
53 them, EuSn₂P₂ has been shown to be a magnetic topological system with type-A
54 antiferromagnetic (AFM) order below 30 K¹⁵. EuSn₂P₂ crystallizes in a layered rhombohedral
55 structure with space group of R $\bar{3}$ *m*, similar to the A₂B₃ family of topological insulators¹⁹. It is
56 comprised of strongly magnetic Eu layers sandwiched between Sn-P layers. Traditionally, Eu-
57 based intermetallic materials have achieved considerable interest for their rich properties
58 including magnetic phases from the strong local moment, valence transition, superconductivity,
59 heavy-fermion states, and Kondo physics²⁰. Despite of the rich quantum phenomena, much work
60 is needed to understand the intriguing properties. In this work pressure is employed to control the
61 crystal structure, magnetic, and valence states. Pressure has been proven to be a clean and
62 effective way to tune the atomic distances and therefore electronic interactions to induce novel
63 quantum phenomena in materials, such as superconductivity, magnetism, or electronic
64 topological transitions. For example, pressure-induced suppression of Néel temperature and the
65 emergence of superconductivity have been observed in magnetic compounds including heavy
66 fermions and iron-based superconductors^{21,22}.

67
68 Here we report the first systematic high-pressure investigation in EuSn₂P₂ using a combined
69 experimental approach including angular-dispersive X-ray diffraction (XRD), time-domain
70 synchrotron Mössbauer spectroscopy (SMS), partial fluorescence-yield X-ray absorption
71 spectroscopy (PFY-XAS), and molecular orbital and electronic band structure calculations. In
72 EuSn₂P₂, the rhombohedral crystal structure remains stable up to 33 GPa before transforming to
73 an amorphous phase. Surprisingly, an impressive over four-fold enhancement in magnetic
74 ordering temperature (T_o) from 30 K at ambient pressure to 130 K at 41.2 GPa has been
75 observed, despite of an increased mean valence above 20 GPa. The enhancement of magnetic
76 exchange interaction is likely attributed to the stronger Eu-Sn interaction under pressure. This
77 comprehensive study presents intriguing interplay of crystal structure, magnetic ground state,
78 and the associated valence state tuned by high pressure.

79
80 **RESULTS**

81 **Pressure-induced crystalline to amorphous transition**

82 The evolution of structural properties of EuSn₂P₂ under hydrostatic pressure has been
83 investigated by high resolution XRD experiments. The XRD data reveal that the ambient
84 rhombohedral structure is maintained under pressure up to 33 GPa. At higher pressure the
85 sample loses the long range crystalline order and becomes amorphous at 36 GPa, evidenced by
86 the loss of sharp crystalline diffraction peaks (see Fig.1). With further compression the
87 amorphous phase persists up to 62 GPa, the highest pressure measured in this study. The observed
88 pressure-induced amorphization (PIA) contrasts with the rhombohedral-to-monoclinic transition
89 reported in EuSn₂As₂²³. The lattice parameters, interatomic distances, and unit cell volume of
90 EuSn₂P₂ in the crystalline phase obtained from the Rietveld refinements from both XRD runs are
91 plotted as a function of pressure (Fig.2). Parameters from run 1 with helium as hydrostatic
92 pressure medium and run 2 with neon as quasihydrostatic pressure medium agree reasonably
93 well. Using the third-order Birch-Murnaghan equation²⁴ a fit to the volume versus pressure data
94 gives bulk modulus $B_0 = 58$ (2) GPa, its pressure derivative $B'_0 = 3.6$ (1) and volume at zero
95 pressure $V_0 = 375.1$ (9) Å³.

96
97 PIA has been documented in a wide variety of systems such as ice²⁵, AlPO₄^{26,27}, SnI₄²⁸, VO₂²⁹
98 and EuIn₂As₂³⁰. The PIA may be related to structural instability violating Born stability criteria²⁸
99 or related to density/entropy-driven liquid phase^{25,31}. However, the operative mechanism remains
100 an open question in many cases. Additional experimental and computational investigation of
101 variables (charge, orbital, elastic stability) could potentially help to gain a comprehensive
102 understanding of the driving mechanism of PIA in EuSn₂P₂.

103 **Drastic enhancement of T_o**

104 Typical SMS spectra at selected pressures across T_o are presented in Fig.3. The SMS spectra
105 were analyzed using CONUSS³² by modeling the data with two sets of hyperfine parameters,
106 magnetic hyperfine field (H_{hf}) and quadrupole splitting along with sample thickness. In the
107 presence of magnetic ordering, quantum oscillations emerge in the time domain SMS spectrum
108 due to nuclear Zeeman splitting. The analysis shows that the direction of magnetic hyperfine
109 field is perpendicular to the X-ray propagation direction and lies in the ab-plane at ambient
110 pressure, consistent with the results from neutron diffraction experiments at ambient pressure¹⁵.
111 And this direction remains up to 42.7 GPa, the highest pressure reached, indicating Eu spins
112 remain in-plane. When EuSn₂P₂ is warmed above T_o , H_{hf} drops to zero. The periodic
113 oscillations in the data at 16.4 GPa and 96 K indicate a minor oxide impurity phase present in
114 the sample used in run 2, which shows absence of magnetic hyperfine field and can be modeled
115 with two paramagnetic sites with different isomer shift values, one from the sample and another
116 from the impurity phase. In the magnetic phase a small quadrupole splitting of 1-5 mm/s has
117 been included to fit the spectra. The temperature dependence of the extracted magnetic
118 hyperfine field at various pressures is shown in Fig.4. With increasing pressure, T_o increases
119 monotonically. It is remarkable that a moderate pressure of 41.2 GPa drives T_o to 130 K from
120 30 K at ambient pressure, a more than four-fold enhancement.

121
122 **Valence state of Eu ions**

123 To provide information on the valence state of Eu ions based on the isomer shift of ¹⁵¹Eu,
124 additional SMS spectra were taken simultaneously from the sample in the diamond anvil cell
125 located inside the cryostat and the Eu₂O₃ reference placed outside of the cryostat and downstream
126 of sample. The isomer shift is proportional to the electron density (dominated by *s* electrons) at
127 the nucleus. The large separation of isomer shift values for Eu²⁺ and Eu³⁺ resulting from
128 different shielding effect of the closed-shell *s*-electrons by the 4f⁷ and 4f⁶ configurations,
129 makes it useful to probe the valence based on the isomer shift value. Fig.5 displays such SMS
130 spectra at various pressures and temperatures as well as corresponding simulated energy-
131 domain spectra showing the changes of the isomer shift values of the sample with increasing
132 pressure and the fixed isomer shift of reference sample Eu₂O₃. A monotonic increase of isomer
133 shift from -10.3 mm/s at 1.0 GPa, 300 K to -5.39 mm/s at 41.2 GPa, 160 K has been observed
134 (see Table.1). Caution needs to be taken when interpreting the change of isomer shift as change
135 in valence state by simply assuming the contribution solely originating from the change in 4f
136 electrons. For example, in pure Eu metal significant change in isomer shift was observed
137 without obvious change in 4f electron occupancy³³.

138 To probe the valence state directly, PFY-XAS experiments at Eu's L_3 edge ($2p_{3/2} \rightarrow 5d$
139 transition) were carried out up to 47 GPa. The normalized high-pressure PFY-XAS data are
140 shown in Fig.6. Eu ions in EuSn₂P₂ remain mostly divalent up to 19.8 GPa, indicating that the
141 change in isomer shift at lower pressure is largely due to compression effect without involving
142 the 4f electrons. At 19.8 GPa a second absorption peak emerges at ~8 eV higher in energy and
143 grows with increasing pressure, indicating a transition toward Eu³⁺. The 8 eV shift corresponds

145 to the excitation energy difference for $\text{Eu}^{3+}(4f^65d^1)$ and for $\text{Eu}^{2+}(4f^75d^0)$. Due to the decrease
146 of absorption peak intensity under pressure, it is difficult to estimate the mean valence based on
147 the ratio of the peak intensities. However, combining the PFY-XAS and change in the isomer
148 shift value, it is safe to conclude that Eu take an intermediate valence state above 20 GPa. An
149 accurate evaluation of the valence would require detailed electronic calculations under pressure.
150

151 Pressure-enhanced RKKY interaction

152 The magnetic order in EuSn_2P_2 at ambient pressure is driven by indirect Ruderman-Kittel-
153 Kasuya-Yosida (RKKY) exchange coupling through spin-polarized conduction band. To provide
154 insight to the enhanced T_o , we have performed molecular orbital calculations to illustrate the
155 chemical bonding evolution at high pressure. The generated molecular orbitals diagrams
156 containing the degenerated highest occupied molecular orbitals (HOMOs) and the lowest
157 unoccupied molecular orbitals (LUMOs) of EuSn_2P_2 at ambient pressure and 23.3 GPa are
158 shown in Fig. 7. The HOMOs and LUMOs diagrams reflect the orbital interactions just below
159 and above Fermi level, respectively. The blue and red colors indicate the contrast of the orbital
160 symmetry, i.e., antibonding interactions. At both ambient and high pressure, the antibonding
161 characters from $\text{Eu-}4f$ orbitals are dominant among intralayer Eu atoms in HOMOs. EuSn_2P_2 can
162 be viewed as Eu^{2+} cation packed with $(\text{SnP})_2^{2-}$ anion along c -axis primarily by ionic bonding
163 interactions from a charge balance view. Specifically, in chemistry Eu and P atoms are bonded
164 ionically, Sn and P atoms are bonded covalently, and Eu and Sn atoms are bonded metallically.
165 Near Fermi level the bonding interaction features can be observed between Eu-Sn and Eu-P at
166 ambient pressure. When pressurized, EuSn_2P_2 exhibits stronger metallic Eu-Sn bonding
167 interaction and a weaker covalent Sn-Sn bonding feature. Moreover, the distance between Eu-P
168 atoms decreases, likely due to the $3p$ electronic localization on P induced by pressure. It suggests
169 that pressure-enhanced Eu-Sn bonding interaction contributes to the increasing RKKY interaction
170 and therefore enhanced T_o . This is consistent with the monotonic decrease of distances of Eu-
171 Sn and Eu-P shown in Fig. 2 (c). Due to the much shorter intralayer Eu-Eu distance than
172 interlayer Eu-Eu distance which leads to stronger intralayer magnetic exchange interaction
173 than interlayer interaction, it is expected that the enhanced intralayer exchange interaction play
174 a more important role in the increase of T_o , as concluded in the case of $\text{EuIn}_2\text{As}_2^{30}$. In
175 addition, the pressure-induced weakening of the ionic and covalent bonding and enhancement of
176 metallic properties in EuSn_2P_2 may drive the crystal structure into amorphous phase, similar to
177 amorphous magnets where the magnetic order is maintained in the amorphous phase³⁴.
178

179 Band structure calculations

180 The surface states and spin texture of EuSn_2P_2 from Eu termination were calculated using the
181 Generalized Gradient approximation (GGA) plus correlation parameter ($U = 6$ eV) with spin-
182 orbit coupling (SOC). According to the calculation, as the pressure is increased, the decreasing
183 atomic distance along ab-plane may influence the topological properties if the in-plane magnetic
184 spin orientation is maintained under pressure (Fig. S1). On the other hand, slightly spin canting
185 along c -axis from the Eu layers may change the topological properties completely, consistent
186 with the recent experimental and computational study in $\text{EuSn}_2\text{P}_2^{35}$.
187

188 Pressure phase diagram

189 Fig. 8 presents the phase diagram constructed by combining the XRD, SMS, and PFY-XAS
190 studies under pressure. The boundary between paramagnetic and magnetic phases is deduced
191 from Fig. 4. T_o shows a monotonic increase with pressure application with more than four times
192 of the value at ambient pressure. Above 20 GPa a clear slope change in dT_o/dP coincides with
193 transition from Eu^{2+} toward Eu^{3+} in Eu's valence based on the PFY-XAS data. Strikingly,

194 magnetic order is found to persist in the amorphous phase at 42.7 GPa. In another topological
195 magnetic material, EuIn₂As₂, pressure-induced hexagonal-to-amorphous transition has been
196 observed above 17 GPa with absence of magnetic order in the amorphous phase based on
197 electrical resistivity measurements³⁰. The PIA observed in both systems may suggest a similar
198 origin of crystal structure instability. Furthermore, in the crystalline phase of EuIn₂As₂ a large
199 enhancement of T_c is attributed to the increase of intraplane exchange interaction, consistent with
200 the enhanced Eu-Sn bond in EuSn₂P₂.

201 202 DISCUSSION

203 In summary, we have conducted comprehensive studies of crystal structure, magnetic order,
204 and valence state on the magnetic topological semimetal EuSn₂P₂ under pressure up to 62 GPa.
205 XRD data reveals a rhombohedral-to-amorphous transition at 36 GPa and the amorphous phase
206 remains up to 62 GPa. Pressure enhances the magnetic ordering temperature remarkably with an
207 over four-fold increase from ambient pressure, attributed to the enhancement of RKKY
208 interactions through stronger Eu-Sn bond under pressure. Eu ions remain mostly divalent until
209 20 GPa and enters an intermediate valence state at higher pressure up to 47 GPa. Band structure
210 calculations in EuSn₂P₂ show that both change in lattice parameter and change in magnetic
211 configuration from in-plane to out-of-plane will impact the topological properties, with the
212 latter playing a dominant role. The experimentally observed in-plane spin orientation of Eu ions
213 in the measured pressure range suggests that the any possible change of topological properties
214 will be attributed to the change in lattice parameters. Our work establishes that pressure is an
215 effective tuning parameter to elevate the magnetic ordering temperature, a critical parameter to
216 realize novel quantum phases. These rich results pave the way for further experimental and
217 theoretical efforts to explore the pressure-tuning of magnetism, possible superconductivity, and
218 their interplay with crystal structure and topological electronic states.

219 220 METHODS

221 XRD

222 Single crystals of EuSn₂P₂ were grown by the Sn-flux method reported previously¹⁵. High-
223 pressure XRD, SMS, and PFY- XAS experiments were carried out at the 13BM-C (PX²), 3ID,
224 and 16ID-D Beamlines, respectively, at the Advanced Photon Source, Argonne National
225 Laboratory. Two runs of powder XRD experiments at high pressure and room temperature were
226 conducted. X-rays with a wavelength of 0.434 Å were focused to 15 μm(v) × 15μm(h) size. A
227 piece of single crystalline sample was ground into powder and loaded in the diamond anvil cell.
228 In run 1 a BX90 diamond anvil cells (DAC) equipped with one pair of Boehler-Almax anvils of
229 500 μm diameter culet to allow large diffraction angles was used³⁶. Helium was used as the
230 pressure-transmitting medium up to 23.3 GPa. Ruby was used to determine pressure³⁷. In run 2 a
231 symmetric cell was used up to 62 GPa with cubic boron nitride seats and anvils of 300 μm
232 diameter culet and neon pressure transmitting medium was used. Initial pressure was determined
233 from ruby during Ne gas loading and subsequent pressures were determined in-situ from the
234 equation of state of Au³⁸ at the same position where XRD data was taken on the sample. In both
235 runs rhenium (Re) gaskets were used to contain the samples between the diamond anvils. The 2-
236 D diffraction images were integrated using DIOPTAS software³⁹ and Rietveld refinements on the
237 XRD data were performed in GSAS-II⁴⁰.

238 SMS under pressure

239 High-pressure ¹⁵¹Eu SMS experiments were carried out to investigate the evolution of the
240 magnetism of EuSn₂P₂. SMS, also known as nuclear forward scattering, utilizes the pulsed
241 synchrotron X-ray to probe the nuclear spin transition in time domain. SMS is a sensitive probe

242 to study magnetic state down to the atomic level and is one of the few techniques compatible
243 with extreme sample environments. The SMS experiments were performed during the standard
244 24-bunch timing mode of the APS with 153 ns separation between two successive electron
245 bunches for data collection. The magnetism is probed through M1 transition $7/2 - 5/2$ in ^{151}Eu at
246 the nuclear resonant energy of 21.54 keV with high resolution monochromators⁴¹. X-rays were
247 focused to $15 \mu\text{m}(\text{v}) \times 15 \mu\text{m}(\text{h})$ (FWHM). Low temperatures were achieved in a specially
248 designed helium-flow cryostat⁴². High pressures were generated using a membrane-driven
249 miniature panoramic DAC. Re gaskets were prepared and EDM-drilled to form the sample
250 chamber.

251
252 Three experimental runs were performed with different sample loadings, run 1 up to 10.4 GPa,
253 run 2 up to 22.7 GPa, and run 3 up to 41.2 GPa. A single crystalline sample was loaded in each
254 run such that the incident X-ray is along the c-axis of the crystal. In run 1 and 2 helium was used
255 as pressure medium to ensure hydrostatic pressure environment at low temperatures. In run 3 a
256 neon pressure medium was used. After gas loading at room temperature, all subsequent pressures
257 were applied through gas membrane at low temperature between 100 and 150 K. Pressures were
258 determined from ruby scale³⁷. At each pressure the SMS spectra were collected at various
259 temperatures across the magnetic order. Possible valence transition of Eu ions in the sample can
260 be detected by the change of the isomer shift. The isomer shift values were obtained in-situ by
261 placing a reference sample with a known isomer shift value in the X-ray beam^{33,43-45}. For
262 divalent Eu ions in EuSn_2P_2 , a trivalent reference sample Eu_2O_3 with an isomer shift of 1.024
263 mm/s (relative to EuF_3) was placed in the beam. SMS data together with the reference sample
264 were collected in the paramagnetic phase of EuSn_2P_2 which simplifies the spectra due to the
265 absence of magnetic hyperfine field.

266
267 **High-pressure PFY-XAS**
268 To provide direct information on Eu's valent state and confirm any possible changes suggested by
269 the isomer shift measurements, XAS experiment was carried out at Eu's $L_{3,2}$ edge (6.97 keV)
270 up to 47 GPa. A single crystal sample was loaded in a symmetric-type DAC with beryllium
271 gasket and an insert from cubic boron nitride and epoxy. Pressures were measured in-situ from
272 ruby fluorescence. To avoid heavy absorption by diamond anvil at this energy, XAS was taken
273 with the incident X-ray beam going through the Be gasket and absorption signal being taken in
274 the fluorescence geometry using a Pilatus detector. The X-rays were focused to $5 \mu\text{m}$ (FWHM).
275 The sample position at each pressure was carefully determined by scanning the sample position
276 to minimize self-absorption. Ruby was used to determine the pressure in-situ³⁷.

277 **Molecular orbital calculations**

278 To provide insight to the enhanced T_o , we have performed molecular orbital calculations in
279 EuSn_2P_2 at ambient and high pressure employing semi-empirical extended-Hückel-tight-
280 binding (EHTB) methods and CAESAR packages⁴⁶. The basis sets used in the the calculations
281 of molecular orbitals of EuSn_2P_2 at ambient and high pressure for Eu are: 6s: $\text{Hii} = -7.42 \text{ eV}$, ζ_1
282 = 1.400, coefficient1 = 1.0000; 6p: $\text{Hii} = -4.65 \text{ eV}$, ζ_1 = 1.400, coefficient1 = 1.000; 5d: Hii
283 = -8.08 eV, ζ_1 = 2.753, coefficient1 = 0.7187, ζ_1 = 1.267, coefficient2 = 0.4449; 4f: $\text{Hii} = -$
284 11.28 eV, ζ_1 = 6.907, coefficient1 = 0.7354, ζ_1 = 2.639, coefficient2 = 0.4597. For Sn: 5s: Hii
285 = -16.16 eV, ζ_1 = 2.120, coefficient1 = 1.000; 5p: $\text{Hii} = -8.32 \text{ eV}$, ζ_1 = 1.820, coefficient1 =
286 1.000. For P: 3s: $\text{Hii} = -18.60 \text{ eV}$, ζ_1 = 1.750, coefficient1 = 1.000; 3p: $\text{Hii} = -14.00 \text{ eV}$, ζ_1 =
287 1.300, coefficient1 = 1.000.

288
289 **DATA AVAILABILITY**
290 The data that support the findings of this study are available from the corresponding author

291 upon reasonable request.
292

293

294 **References**

- 295 1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. *Rev. Mod. Phys.* **82**,
296 3045–3067 (2010).
- 297 2. He, M., Sun, H. & He, Q. L. Topological insulator: Spintronics and quantum
298 computations. *Front. Phys.* **14**, (2019).
- 299 3. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. *Nat. Rev. Phys.*
300 **1**, 126–143 (2019).
- 301 4. Yu, R. *et al.* Quantized Anomalous Hall Effect in Magnetic Topological Insulators.
302 *Science* **329**, 61–64 (2010).
- 303 5. Masuda, H. *et al.* Quantum Hall effect in a bulk antiferromagnet EuMnBi₂ with
304 magnetically confined two-dimensional Dirac fermions. *Sci. Adv.* **2**, 1–7 (2016).
- 305 6. Deng, Y. *et al.* Quantum anomalous Hall effect in intrinsic magnetic topological insulator
306 MnBi₂Te₄. *Science* **367**, 895–900 (2020).
- 307 7. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators.
308 *Phys. Rev. B* **81**, 245209 (2010).
- 309 8. Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic
310 insulators. *Nat. Phys.* **6**, 284–288 (2010).
- 311 9. Otkrov, M. M. *et al.* Prediction and observation of an antiferromagnetic topological
312 insulator. *Nature* **576**, 416–422 (2019).
- 313 10. Zhang, D. *et al.* Topological Axion States in the Magnetic Insulator MnBi₂Te₄ with the
314 Quantized Magnetoelectric. *Phys. Rev. Lett.* **122**, 206401 (2019).
- 315 11. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the
316 quantum Hall state. *Phys. Rev. B* **82**, 184516 (2010).
- 317 12. Hao, Y.-J. *et al.* Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator
318 MnBi₂Te₄, *Phys. Rev. X* **9**, 041038 (2019).
- 319 13. Li, J. *et al.* Intrinsic magnetic topological insulators in van der Waals layered MnBi₂Te₄ -
320 family materials. *Sci. Adv.* **5**, eaaw5685 (2019).
- 321 14. Chen, B. *et al.* Intrinsic magnetic topological insulator phases in the Sb doped MnBi₂Te₄
322 bulks and thin flakes. *Nat. Commun.* **10**, 4469 (2019).
- 323 15. Gui, X. *et al.* A New Magnetic Topological Quantum Material Candidate by Design. *ACS
324 Cent. Sci.* **5**, 900–910 (2019).
- 325 16. Wang, L. L. *et al.* Single pair of Weyl fermions in the half-metallic semimetal EuCd₂As₂.
326 *Phys. Rev. B* **99**, 1–9 (2019).
- 327 17. Li, H. *et al.* Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn₂As₂
328 and MnBi_{2n}Te_{3n+1}. *Phys. Rev. X* **9**, 041039 (2019).
- 329 18. Xu, Y., Song, Z., Wang, Z., Weng, H. & Dai, X. Higher-Order Topology of the Axion
330 Insulator EuIn₂As₂. *Phys. Rev. Lett.* **122**, 256402 (2019).
- 331 19. Zhang, H. *et al.* Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac
332 cone on the surface. *Nat. Phys.* **5**, 438–442 (2009).
- 333 20. Ōnuki, Y. *et al.* Divalent, trivalent, and heavy fermion states in Eu compounds. *Philos.
334 Mag.* **97**, 3399–3414 (2017).
- 335 21. Rosa, P. F. S. *et al.* Competing magnetic orders in the superconducting state of heavy-
336 fermion CeRhIn₅. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 5384–5388 (2017).

337 22. Wu, J. J. *et al.* Pressure-decoupled magnetic and structural transitions of the parent
338 compound of iron-based 122 superconductors BaFe₂As₂. *Proc. Natl. Acad. Sci. U. S. A.*
339 **110**, 17263–17266 (2013).

340 23. Zhao, L. *et al.* Monoclinic EuSn₂As₂ : A Novel High-Pressure Network Structure -suppl.
341 *Phys. Rev. Lett.* **126**, 155701 (2021).

342 24. Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl
343 at high pressures and 300°K. *J. Geophys. Res.* **83**, 1257 (1978).

344 25. Bauer, R., Tse, J. S., Komatsu, K., Machida, S. & Hattori, T. Slow compression of
345 crystalline ice at low temperature. *Nature* **585**, E9–E10 (2020).

346 26. Sankaran, H., Sharma, S. M., Sikka, S. K. & Chidambaram, R. Pressure induced
347 amorphization of AlPO₄. *Pramana* **35**, 177–180 (1990).

348 27. Tse, J. S. & Klug, D. D. Structural Memory in Pressure-Amorphized AlPO₄. *Science* **255**,
349 1559–1561 (1992).

350 28. Liu, H. *et al.* Mechanisms for pressure-induced crystal-crystal transition, amorphization,
351 and devitrification of SnI₄. *J. Chem. Phys.* **143**, 164508 (2015).

352 29. Wang, Y. *et al.* Reversible switching between pressure-induced amorphization and
353 thermal-driven recrystallization in VO₂(B) nanosheets. *Nat. Commun.* **7**, 1–8 (2016).

354 30. Yu, F. H. *et al.* Elevating the magnetic exchange coupling in the compressed
355 antiferromagnetic axion insulator candidate EuIn₂As₂, *Phys. Rev. B* **102**, 180404 (2020).

356 31. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced
357 amorphization and an amorphous - Amorphous transition in densified porous silicon.
358 *Nature* **414**, 528–530 (2001).

359 32. Sturhahn, W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data.
360 *Hyperfine Interact.* **125**, 149–172 (2000).

361 33. Bi, W. *et al.* Synchrotron x-ray spectroscopy studies of valence and magnetic state in
362 europium metal to extreme pressures. *Phys. Rev. B* **85**, 205134 (2012).

363 34. Coey, J. M. D. Amorphous magnetic order. *J. Appl. Phys.* **49**, 1646–1652 (1978).

364 35. Pierantozzi, G. M. *et al.* Evidence of magnetism-induced topological protection in the
365 axion insulator candidate EuSn 2 P 2. *Proc. Natl. Acad. Sci.* **119**, e2116575119 (2022).

366 36. Kantor, I. *et al.* BX90: A new diamond anvil cell design for X-ray diffraction and optical
367 measurements. *Rev. Sci. Instrum.* **83**, (2012).

368 37. Dewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition
369 metals in the Mbar range: Experiments and projector augmented-wave calculations. *Phys.*
370 *Rev. B - Condens. Matter Mater. Phys.* **78**, 1–13 (2008).

371 38. Fei, Y. *et al.* Toward an internally consistent pressure scale. *Proc. Natl. Acad. Sci.* **104**,
372 9182–9186 (2007).

373 39. Prescher, C. & Prakapenka, V. B. DIOPTAS : a program for reduction of two-dimensional
374 X-ray diffraction data and data exploration. *High Press. Res.* **35**, 223–230 (2015).

375 40. Toby, B. H. & Von Dreele, R. B. GSAS-II : the genesis of a modern open-source all
376 purpose crystallography software package. *J. Appl. Crystallogr.* **46**, 544–549 (2013).

377 41. Leupold, O. *et al.* Nuclear resonance scattering of synchrotron radiation at the 21.5 keV
378 resonance of ¹⁵¹Eu. *Europhys. Lett.* **35**, 671–676 (1996).

379 42. Zhao, J. Y. *et al.* A compact membrane-driven diamond anvil cell and cryostat system for
380 nuclear resonant scattering at high pressure and low temperature. *Rev. Sci. Instrum.* **88**,
381 125109 (2017).

382 43. Wortmann, G., Ponkratz, U., Bielemeier, B. & Rupprecht, K. Phonon density-of-states in

383 bcc and hcp Eu metal under high pressure measured by ^{151}Eu nuclear inelastic scattering
384 of synchrotron radiation. *High Press. Res.* **28**, 545–551 (2008).

385 44. Souza-Neto, N. M. *et al.* Reentrant valence transition in EuO at high pressures: Beyond
386 the bond-valence model. *Phys. Rev. Lett.* **109**, 026403–4 (2012).

387 45. Bi, W. *et al.* Microscopic phase diagram of Eu(Fe_{1-x}Ni_x)As₂ (x = 0,0.04) under pressure.
388 *Phys. Rev. B* **103**, 195135 (2021).

389 46. Hoffmann, R. An Extended Hückel Theory. I. Hydrocarbons. *J. Chem. Phys.* **39**, 1397–
390 1412 (1963).

391

392

393

394 **ACKNOWLEDGMENTS**

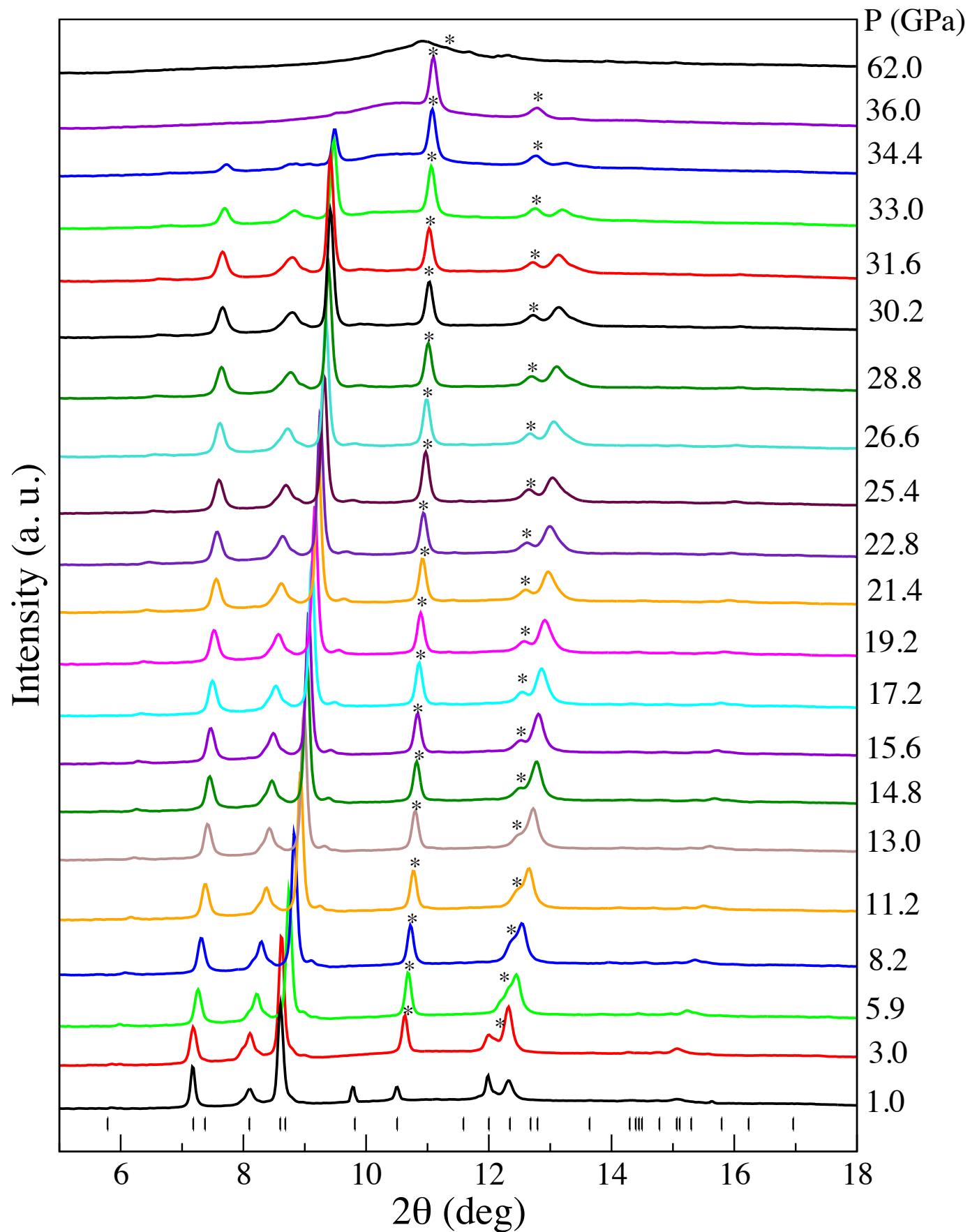
395 We thank G. Fabbris for critical reading of the manuscript and helpful discussion. This work is
396 supported by the National Science Foundation (NSF) through Grant No. OIA-2033131. T.
397 Culverhouse acknowledges the support provided by the National Aeronautics and Space
398 Administration (NASA)-Alabama Space Grant Consortium, Research Experiences for
399 Undergraduates (REU) award to University of Alabama at Birmingham. Z. Nix acknowledges
400 the support from the Department of Education-Graduate Assistantship in Areas of National Need
401 (GAANN) Grant No. P200A180001. W. Xie is supported by Department of Energy under the
402 contract of DE-SC0022156. This research used resources of the Advanced Photon Source
403 (APS), Argonne National Laboratory (ANL), a U.S. Department of Energy (DOE) Office of
404 Science User Facility operated for the DOE Office of Science by Argonne National Laboratory
405 under Contract No. DE- AC02-06CH11357. Portions of this work were performed at HPCAT
406 (Sector 16), APS, ANL. HPCAT operations are supported by DOE-NNSA's Office of
407 Experimental Sciences. Support from COMPRES under NSF Cooperative Agreement EAR-
408 1606856 is acknowledged for COMPRES-GSECARS gas loading system and the PX² program.
409 We are grateful to S. Tkachev for help with the gas loading of the DACs at the APS.

410

411 **AUTHOR CONTRIBUTIONS**

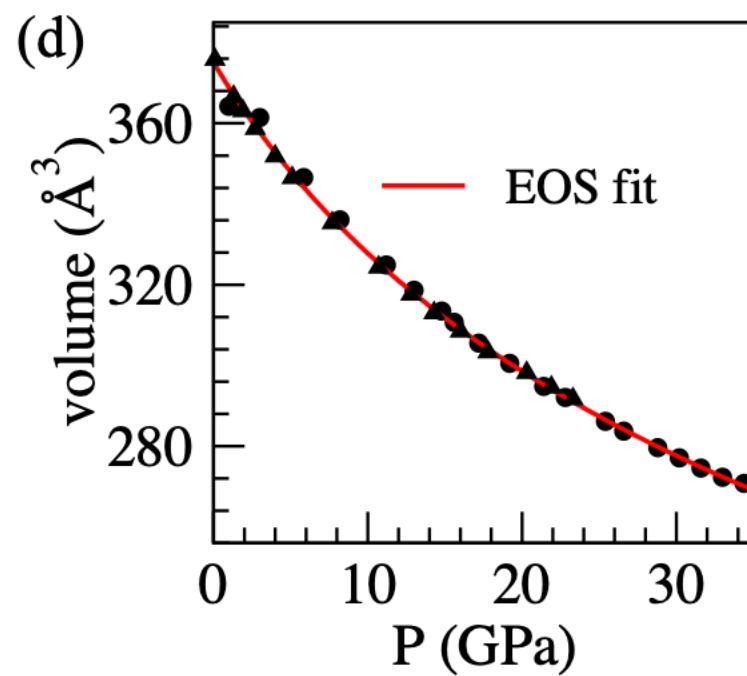
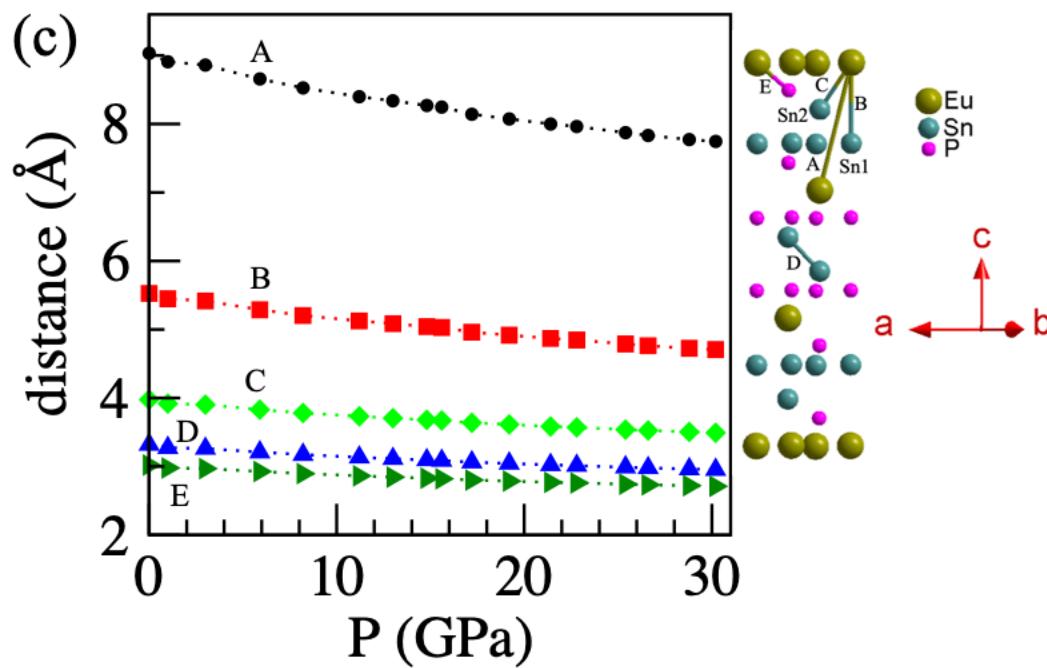
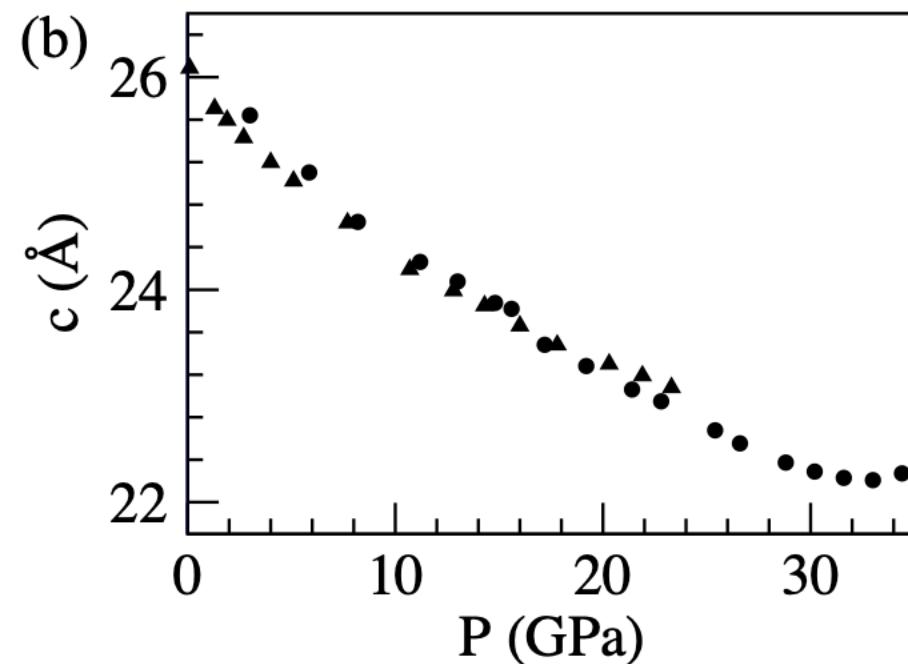
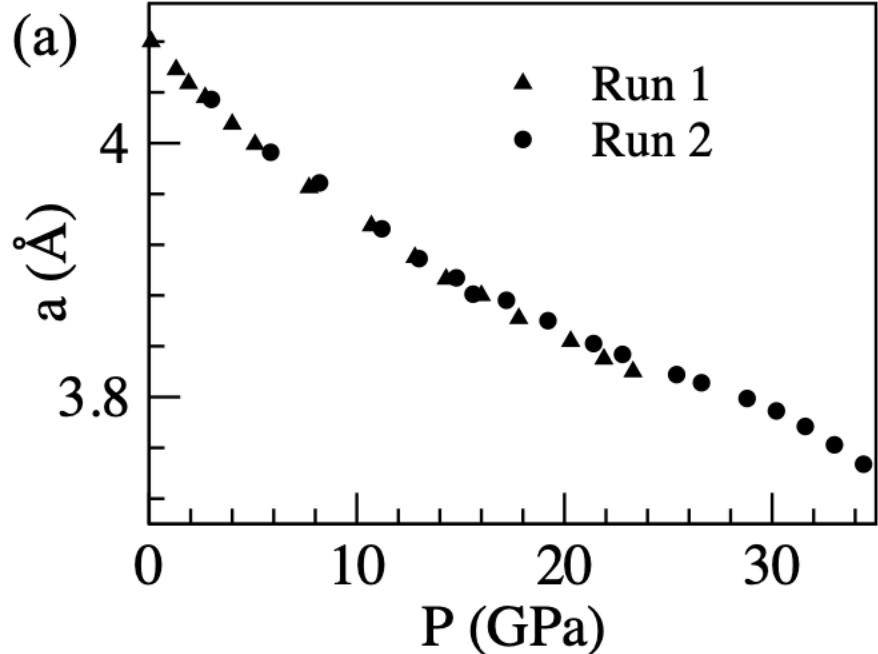
412 W.B. designed this research project. W.B., T.C., Z.N., J.Z., B.L., E.E.A, D.Z, J.X., Y.X., and
413 Y.K.V. performed the experiments. W.X. synthesize the EuSn₂P₂ sample and performed the
414 molecular orbital calculations. T.C conducted the GGA calculations. W.B., T.C., and U.D.
415 analyzed the data. W.B. and W.X. wrote the manuscript with input from all authors.

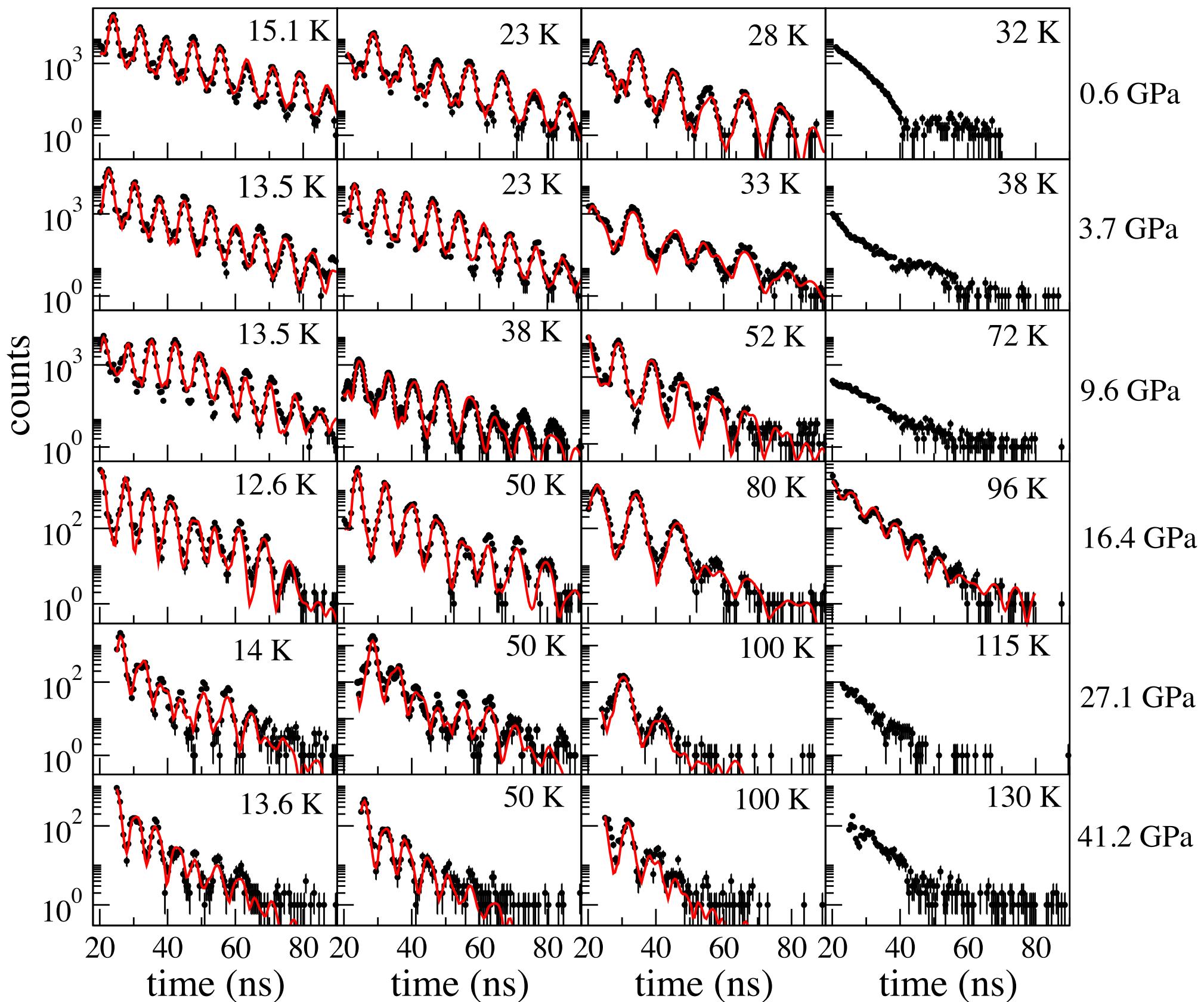
416

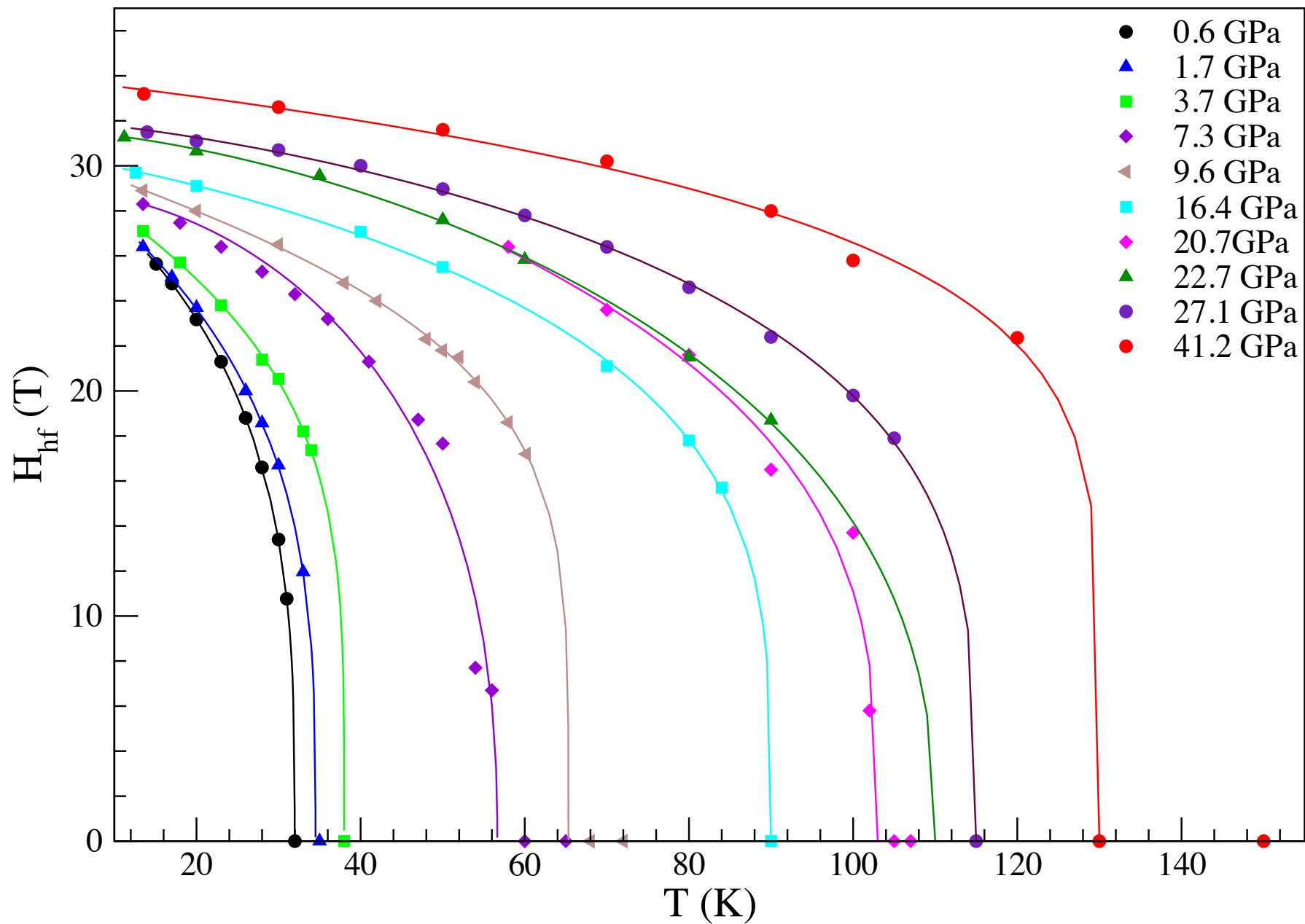

417 **COMPETING INTERESTS**

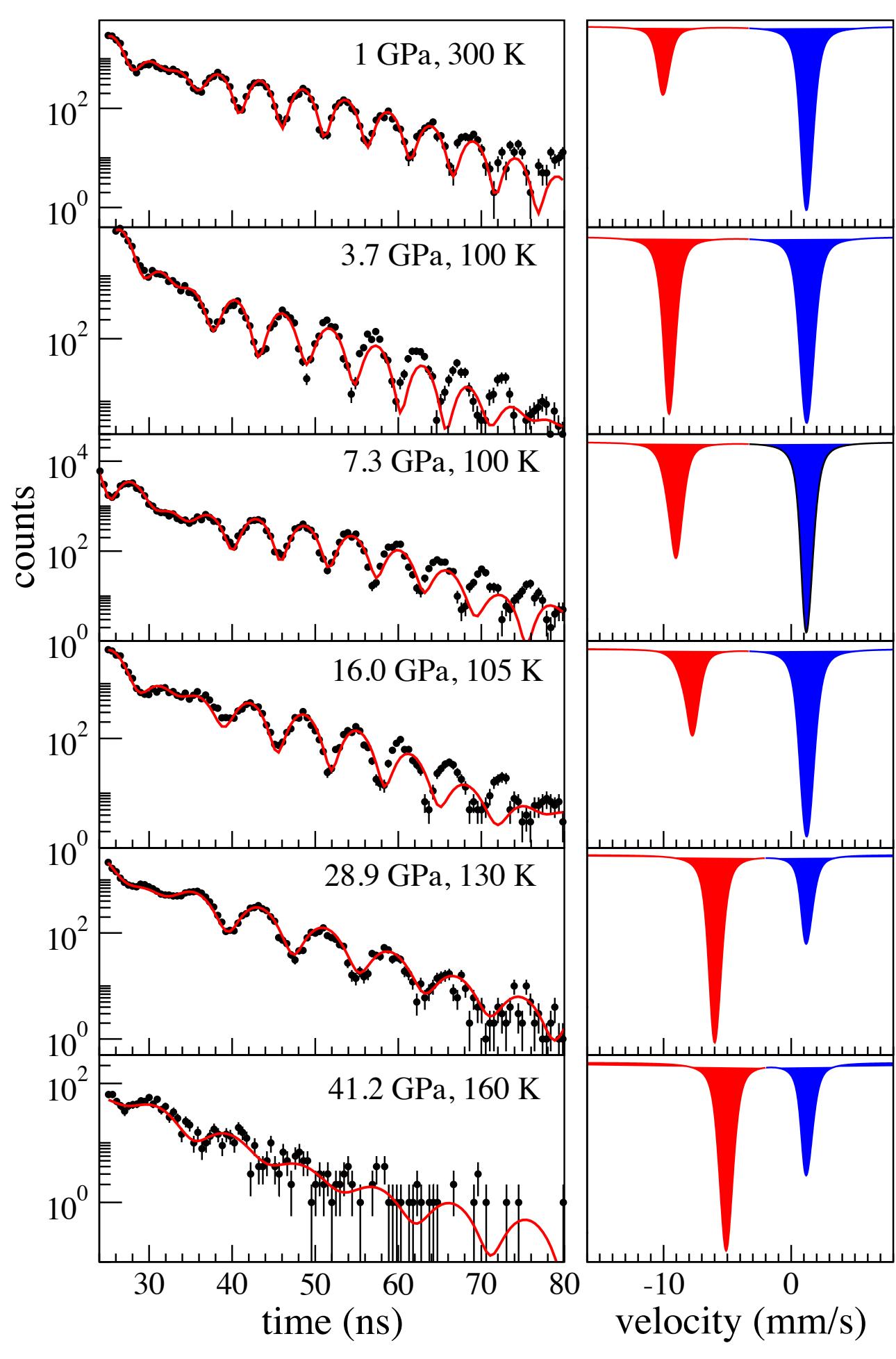
418 The authors declare no competing interests.

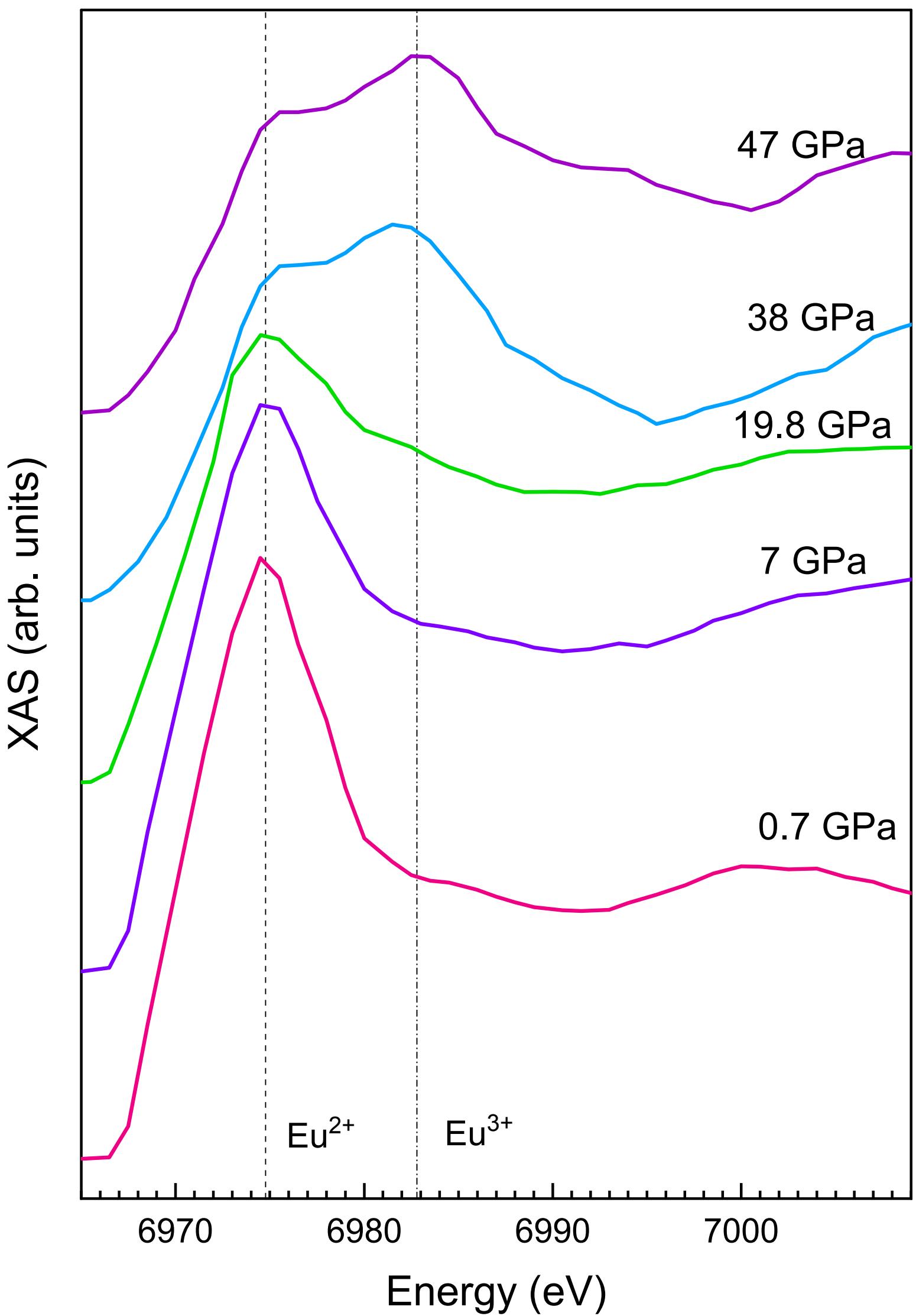
419

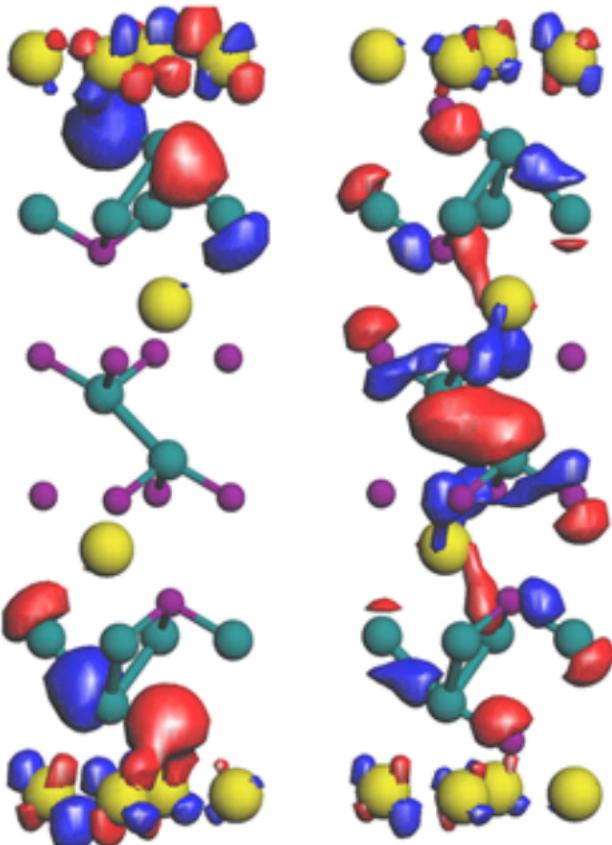




420 **ADDITIONAL INFORMATION**

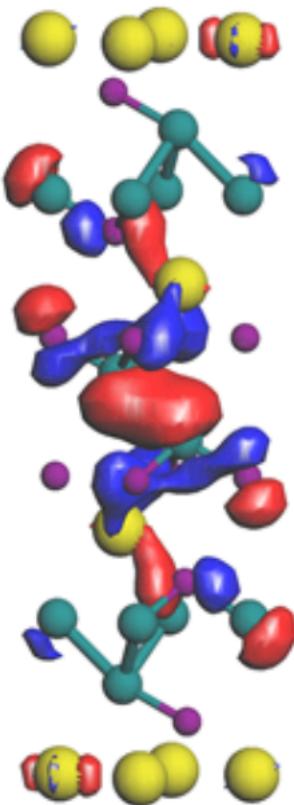

421 **Correspondence** and requests for materials should be addressed to Wenli Bi.



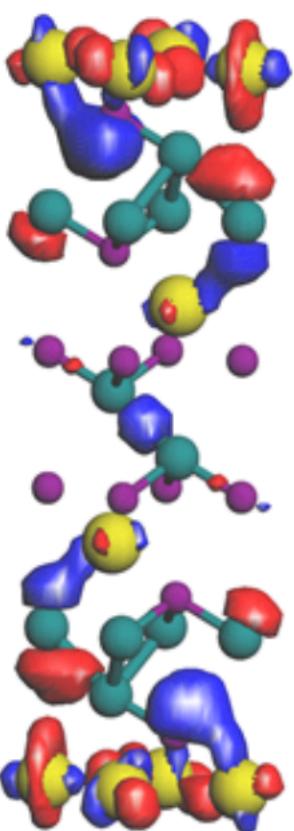
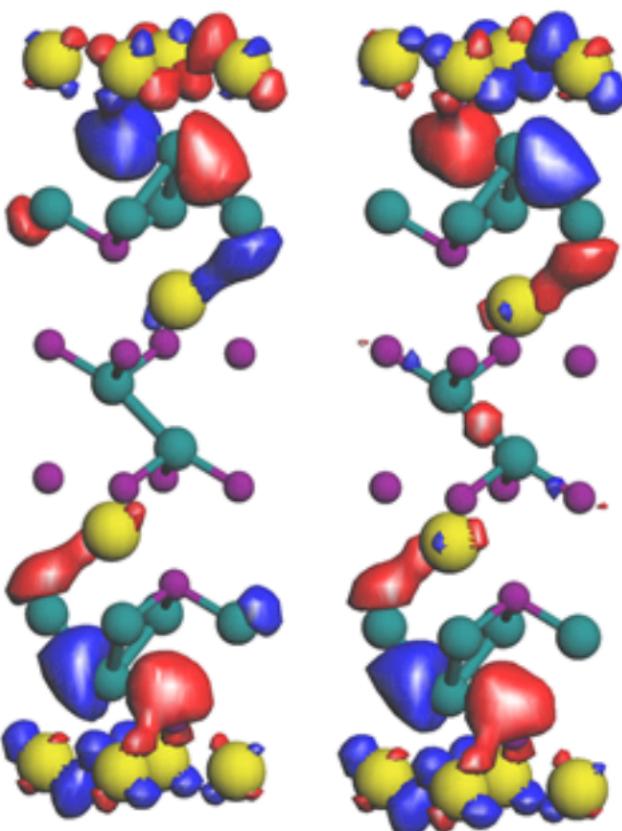

Table 1. Isomer shift (δ) values of ^{151}Eu in EuSn_2P_2 relative to Eu_2O_3 at various pressures and temperatures.

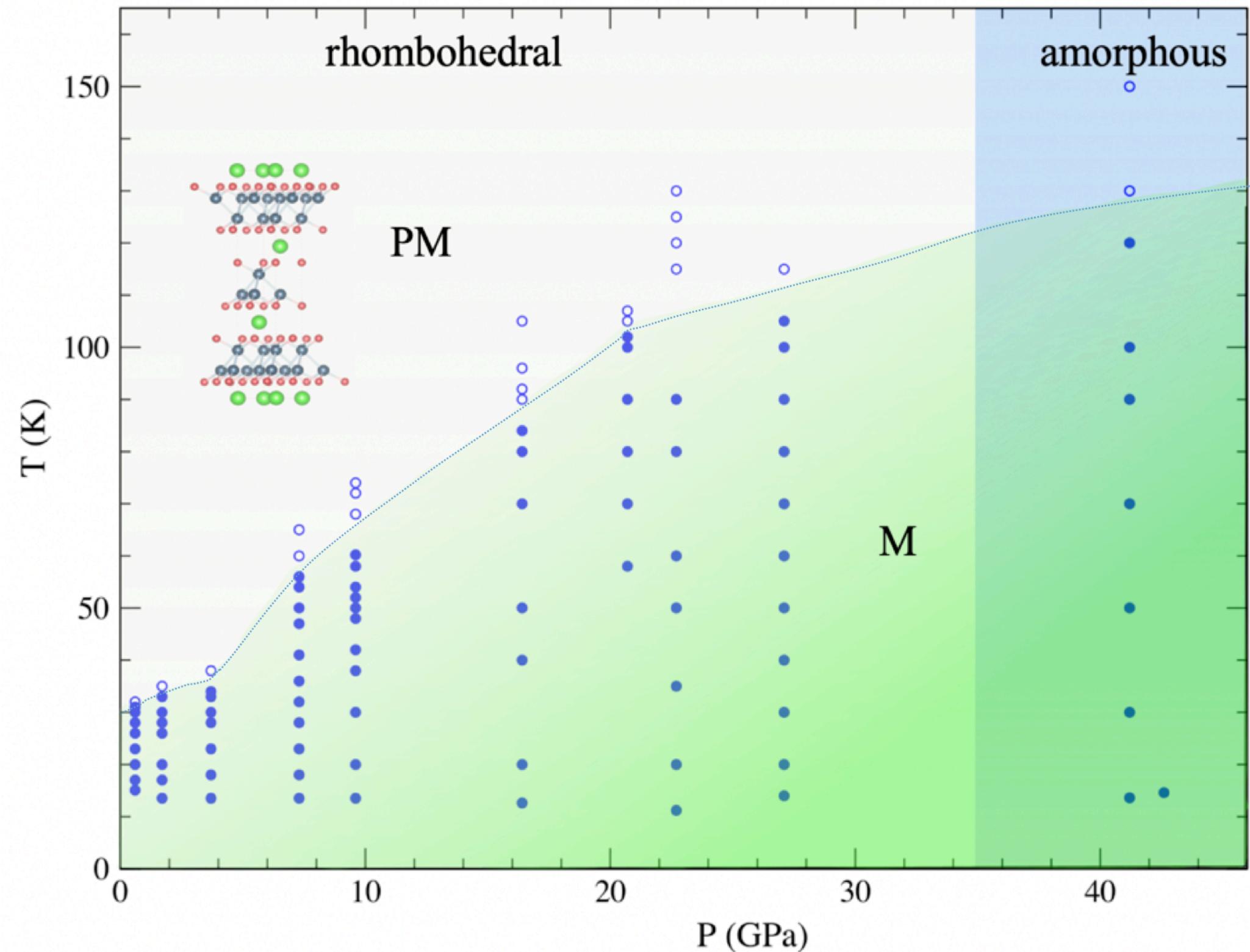

P(GPa)	T (K)	δ (mm/s)
1.0	300	-10.30 (1)
1.9	110	-10.25 (2)
3.0	300	-9.99 (1)
3.7	100	-9.98 (1)
7.3	100	-9.48 (1)
10.4	100	-9.15 (3)
16.0	105	-8.25 (1)
20.7	110	-6.67 (4)
28.9	130	-6.26 (1)
41.2	160	-5.39 (6)





HOMO


AP

LUMO

23.3 GPa

Eu^{2+} $\text{Eu}^{2+\delta}$