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Abstract—In this paper, we design algorithms to protect
swarm-robotics applications against sensor denial-of-service
(DoS) attacks on robots. We focus on applications requiring the
robots to jointly select actions, e.g., which trajectory to follow,
among a set of available actions. Such applications are central in
large-scale robotic applications, such as multi-robot motion plan-
ning for target tracking. But the current attack-robust algorithms
are centralized. In this paper, we propose a general-purpose
distributed algorithm towards robust optimization at scale, with
local communications only. We name it Distributed Robust Max-
imization (DRM). DRM proposes a divide-and-conquer approach
that distributively partitions the problem among cliques of robots.
Then, the cliques optimize in parallel, independently of each
other. We prove DRM achieves a close-to-optimal performance.
We demonstrate DRM’s performance in Gazebo and MATLAB
simulations, in scenarios of active target tracking with swarms of
robots. In the simulations, DRM achieves computational speed-
ups, being 1-2 orders faster than the centralized algorithms. Yet,
it nearly matches the tracking performance of the centralized
counterparts. Since, DRM overestimates the number of attacks
in each clique, in this paper we also introduce an Improved
Distributed Robust Maximization (IDRM) algorithm. IDRM infers
the number of attacks in each clique less conservatively than
DRM by leveraging 3-hop neighboring communications. We verify
IDRM improves DRM’s performance in simulations.

Index Terms—Distributed optimization, robust optimization,
submodular optimization, approximation algorithm, adversarial
attacks, multi-robot planning, target tracking.

I. INTRODUCTION

Safe-critical tasks of surveillance and exploration often
require mobile agility, and fast capability to detect, localize,
and monitor. For example, consider the tasks:

• Adversarial target tracking: Track adversarial targets
that move across an urban environment, aiming to escape; [1]

• Search and rescue: Explore a burning building to
localize any people trapped inside. [2]

Such scenarios can greatly benefit from teams of mobile
robots that are agile, act as sensors, and plan their actions
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Fig. 1. Targets’ attacks can block robots’ field-of-view: in target tracking
with aerial robots, the robots are mounted with down-facing cameras to track
mobile targets (depicted as dots).

rapidly. For this reason, researchers are (i) pushing the frontier
on robotic miniaturization and perception [1]–[7], to enable
mobile agility and autonomous sensing, and (ii) developing
distributed coordination algorithms [8]–[12], to enable multi-
robot planning, i.e., the joint optimization of robots’ actions.

Particularly, distributed planning algorithms are important
when one wishes to deploy large-scale teams of robots; e.g.,
at the swarm level of tens or hundreds of robots. One reason
is that distributed algorithms scale better for larger numbers of
robots than their centralized counterparts [8]. Additionally, in
large-scale teams, it is infeasible for all robots to communicate
with each other; typically, each robot can communicate only
with the robots within a certain communication range.

However, the safety of the above critical scenarios can be
at peril. Robots operating in adversarial scenarios may get
cyber-attacked or simply face failures, resulting in a temporary
withdrawal of robots from the task (e.g., because of temporary
deactivation of their sensors, blockage of their field of view,
among others; cf. Fig. 1). We refer to such attacks as Denial-
of-Service (DoS). Hence, in such adversarial scenarios, dis-
tributed attack-robust planning algorithms become necessary.1

In this paper, we formalize a general framework for dis-
tributed attack-robust multi-robot planning for tasks that re-
quire the maximization of submodular functions, such as active
target tracking [13] and informative path planning [14] with
multiple-robots.2 We focus on worst-case attacks that can
result in up to α robot withdrawals from the task at each step.

1We henceforth consider the terms attack and failure equivalent, both
resulting in robot withdrawals from the task at hand.

2Submodularity is a diminishing returns property [15], capturing the intu-
ition that the more robots participate in a task, the less the gain (return) one
gets by adding an extra robot towards the task.
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Attack-robust multi-robot planning is computationally hard
and requires accounting for all possible α withdrawals, a
problem of combinatorial complexity. Importantly, even in
the presence of no withdrawals, the problem of multi-robot
planning is NP-hard [16], [17]. All in all, the necessity for
distributed attack-robust algorithms, and the inherent compu-
tational hardness motivates our goal in this paper: to provide
a distributed, provably close-to-optimal approximation algo-
rithm. To this end, we capitalize on recent algorithmic results
on centralized attack-robust multi-robot planning [18]–[21]
and present a distributed attack-robust algorithm.

Related work. Researchers have developed several dis-
tributed, but attack-free, planning algorithms, such as [8]–
[12]. For example, [8] developed a decentralized algorithm,
building on the local greedy algorithm proposed in [22,
Section 4], which guarantees a 1/2 suboptimality bound for
submodular objective functions. In [8] the robots form a string
communication network, and sequentially choose an action,
given the actions of the robots that have chosen so far. In [11],
the authors proposed a speed-up of [8]’s approach, by enabling
the greedy sequential optimization to be executed over directed
acyclic graphs, instead of string ones. In scenarios where the
robots cannot observe all the chosen actions so far, distributed,
but still attack-free, algorithms for submodular maximization
are developed in [23], [24]. Other distributed, attack-free
algorithms are developed in the machine learning literature on
submodular maximization, towards sparse selection (e.g., for
data selection, or sensor placement) [25], instead of planning.

Researchers have also developed robust planning algo-
rithms [18]–[21], [26]–[28]. Among these, [26]–[28] focus on
deceptive attacks, instead of DoS attacks. In more detail, [26],
[27] provide distributed resilient formation control algorithms
to deal with malicious robots in the team, that share deceptive
information. Similarly, [28] provides a distributed resilient
state estimation algorithm against robots executing Byzantine
attacks by sending differing state estimates or not transmitting
any estimates. In contrast to [26]–[28], the papers [20], [21]
consider DoS attacks in multi-robot motion planning but in
centralized settings: [20] provides centralized attack-robust
algorithms for active information gathering, and [21] for target
tracking. The paper [29] extended [20] to a Model Predictive
Control (MPC) framework. The algorithms are based on
the centralized algorithms proposed in [18], [19]. Additional
attack-robust algorithms are proposed in [30], [31], which,
however, are valid for only a limited number of attacks. For
a thorough literature review on attack-robust combinatorial
algorithms, we refer the reader to [32].

Contributions. Towards enabling attack-robust planning in
multi-robot scenarios requiring local communication among
robots, we make the following contributions:

A. We present the algorithm Distributed Robust Maximiza-
tion (DRM): DRM distributively partitions the problem among
cliques of robots, where all robots are within communication
range. Then, naturally, the cliques optimize in parallel, us-
ing [21, Algorithm 1]. We prove (Section IV):

• System-wide attack-robustness: DRM is valid for any num-
ber α of worst-case attacks;

• Computational speed-up: DRM is faster up to a factor
1/K2 than its centralized counterparts in [21], where K
is the number of cliques chosen by DRM. K depends on
the inter-robot communication range, denoted henceforth
by rc, which is given as input to DRM (and, as a result,
by changing rc one controls K).

• Near-to-centralized approximation performance: Even
though DRM is a distributed algorithm, and faster than
algorithm its centralized counterpart [21, Algorithm 1],
DRM achieves a near-to-centralized performance, having
a suboptimality bound equal to [21, Algorithm 1]’s.

B. We design an Improved Distributed Robust Maximization
(IDRM) algorithm to relax the conservativeness of DRM in in-
ferring the number of attacks against each cliques (Section V).
Specifically, DRM assumes that the number of attacks against
each clique is equal to α, the total number of attacks against all
robots. Instead, in IDRM, robots communicate with their 3-hop
neighbors in the communication network of all robots to infer
the number of attacks.3 IDRM has the same approximation
performance as DRM. In our numerical evaluations, it maintains
a comparable running time to DRM (Section V-B).

Notably, the proposed algorithms in this paper allow for the
communication graph to be disconnected.

Numerical evaluations. First, we present Gazebo and MAT-
LAB evaluations of DRM, in scenarios of active target tracking
with swarms of robots (Section VI-A). All simulation results
demonstrate DRM’s computational benefits: DRM runs 1 to 2
orders faster than its centralized counterpart in [21], achieving
running times 0.5msec to 15msec for up to 100 robots. And,
yet, DRM exhibits negligible deterioration in performance (in
terms of number of targets covered). Second, we compare the
performance of DRM and IDRM through Matlab simulations
(Section VI-B). We show that IDRM performs better than
DRM in practice (higher target coverage), while maintaining
a comparable running time.

Comparison with the preliminary results. Preliminary
results were presented in [33], [34]. In this paper, we present
for the first time the algorithm Improved Distributed Robust
Maximization (Section V). Moreover, the corresponding Mat-
lab simulations are new (Section VI-B). Also, we present
a formal analysis of DRM’s computation and approximation
performance (Appendix-A & B). Further, we analyze the
approximation of a myopic algorithm and compare its practical
performance with DRM and IDRM through Matlab simulations
(Remark 2 and Appendix-C).

II. PROBLEM FORMULATION

We formalize the problem of distributed attack-robust sub-
modular maximization for multi-robot planning. At each time-
step, the problem asks for assigning actions to the robots, to
maximize an objective function despite attacks. For example,
in active target tracking with aerial robots (see Fig. 1).
The robots’ possible actions are their motion primitives; the
objective function is the number of covered targets; and the
attacks are field-of-view blocking attacks.

3A robot’s 3-hop neighbors are its neighbors, its neighbors’ neighbors, and
its neighbors’ neighbors’ neighbors.
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Fig. 2. Robots choose trajectories from a set of motion primitives: at
each time step, each robot has a set of motion primitives to choose as its
trajectory (each covering different targets, depicted as dots). For example,
robot 1 has 3 motion primitives, {x11, x21, x31}, and robot 2 has 4 motion
primitives, {x12, x22, x32, x42}, where x11 covers 2 targets, {t2, t3}, and x22
covers 4 targets, {t1, t2, t3, t4}. In combination, however, the two motion
primitives totally cover 4 targets, {t1, t2, t3, t4}.

We next introduce our framework in more detail:4

a) Robots: We consider a multi-robot teamR. At a given
time-step, pi is robot i’s position in the environment (i ∈ R).
We define P , {p1, . . . , p|R|}.

b) Communication graph: Each robot communicates
only with those robots within a prescribed communication
range. Without loss of generality, we assume all robots to have
the same communication range rc. That way, an (undirected)
communication graph G = {R, E} is induced, with nodes
the robots R, and edges E such that (i, j) ∈ E if and only
if ‖pi − pj‖2 ≤ rc. The neighbors of robot i are all robots
within the range rc, and are denoted by Ni.

c) Action set: Each robot i has an available set of actions
to choose from; we denote it by Xi. The robot can choose at
most 1 action at each time, due to operational constraints; e.g.,
in motion planning, Xi denotes robot i’s motion primitives, and
the robot can choose only 1 motion primitive at a time to be
its trajectory. For example, in Fig. 2 we have 2 robots, where
X1 = {x11, x21, x31} (and robot 1 chooses x11 as its trajectory)
and X2 = {x12, x22, x32, x42} (and robot 2 chooses x22 as its
trajectory). We let X ,

⋃
i∈R Xi. Also, S ⊆ X denotes a valid

assignment of actions to all robots. For instance, in Fig. 2,
S = {x11, x22}.

d) Objective function: The quality of each S is quantified
by a non-decreasing and submodular function f : 2X → R.
For example, this is the case in active target tracking with
mobile robots, when f is the number of covered targets [17].
As shown in Fig. 2, the number of targets covered by the
chosen actions, S = {x11, x22}, is f(S) = 4.

e) Attacks: At each time step, we assume the robots
encounter worst-case sensor DoS attacks. Each attack results
in a robot’s sensing removal (at least temporarily, i.e., for the
current time step). In this paper, we study the case where the
maximum number of attacks at each time step is known, per
Problem 1 below. We denote the maximum number of attacks
by α. We also assume that if a robot encounters a sensor
DoS attack, it can still act as an information relay node to
communicate with other robots.

4Notations. Calligraphic fonts denote sets (e.g., A). 2A denotes A’s power
set, and |A| its cardinality. A \ B are the elements in A not in B.

Problem 1 (Distributed attack-robust submodular maximiza-
tion for multi-robot planning). At each time step, the robots,
by exchanging information only over the communication graph
G, assign an action to each robot i ∈ R to maximize f against
α worst-case attacks/failures:

max
S⊆X

min
A⊆S

f(S \ A)

s.t. |S ∩ Xi| = 1, for all i ∈ R, |A| ≤ α,
(1)

where A corresponds to the actions of the attacked robots,
and α is assumed known.5

Problem 1 is equivalent to a two-stage perfect information
sequential game [35, Chapter 4] between the robots and an
attacker. Particularly, the robots first select S , and, then, the
attacker, after observing S , selects the worst-case A (which is
unknown to the robots). The “min” operator means that the
attacker aims to minimize the robots’ objective function f by
removing up to α robots’ actions A, no matter what actions
S the robots take. This is the worst-case attack on the robots’
actions S . The “min” operation is from the attackers’ point
of view, and the robots do not know which robots (or their
actions A) will be attacked. Under this assumption, the robots
aim to maximize the objective function f by assuming the
attacker executes up to α worst-case attacks.

Notably, a robot does not have to understand if it encounters
a DoS attack or not, and it does not need to communicate such
information to its neighbors either. That is because the robots’
planning happens before the attacks take place. So the robots
do not even have a way of knowing who gets a DoS attack,
and that is why they need to consider the worst-case scenario.
The DoS attacks are not permanent, and a rational attacker will
choose the worst-case subset of sensors to attack at each time
step. In other words, Problem 1 asks for planning algorithms
to prepare the robot team to be robust to withstand the worst-
case attacks without knowing the attack details (e.g., which
robots’ sensors get attacked).

III. A DISTRIBUTED ALGORITHM: DRM

We present Distributed Robust Maximization (DRM), a dis-
tributed algorithm for Problem 1 for the case where α is known
(Algorithm 1). DRM executes sequentially two main steps:
distributed clique partition (DRM’s line 1), and per clique
attack-robust optimization (DRM’s lines 2-8). During the first
step, the robots communicate with their neighbors to partition
G into cliques of maximal size (using Algorithm 2, named
DCP in DRM’s line 1).6 During the second step, each clique
computes an attack-robust action assignment (in parallel with
the rest), using the centralized algorithm in [21] —henceforth,
we refer to the algorithm in [21] as central-robust.
central-robust takes similar inputs to DRM: a set of
actions, a function, and a number of attacks.

We describe DRM’s two steps in more detail below; and
quantify its running time and performance in Section IV.

5The constraint in eq. (1) ensures that each robot chooses 1 action per time
step (e.g., 1 trajectory among a set of primitive trajectories.)

6A clique is a set of robots that can all communicate with each other.



4

Algorithm 1: Distributed robust maximization (DRM).
Input: Robots’ available actions Xi, i ∈ R; monotone and

submodular function f ; attack number α.
Output: Robots’ actions S .

1: Partition G to cliques C1, . . . , CK by calling DCP(P, rc);
2: Sk ← ∅ for all k = {1, . . . ,K};
3: for each clique Ck in parallel, do
4: if α < |Ck| then
5: Sk = central-robust(

⋃
i∈Ck Xi, f, α);

6: else
7: Sk = central-robust(

⋃
i∈Ck Xi, f, |Ck|);

8: return S =
⋃K
k=1 Sk.

A. Distributed clique partition (Step-1 of DRM)

We present the first step of DRM, distributed clique parti-
tion, which is inspired by [36, Algorithm 2] (DRM’s line 1, that
calls DCP, whose pseudo-code is presented in Algorithm 2).
The problem of distributed clique partition is inapproximable
in polynomial time, since finding even a single clique of
a desired size is inapproximable [37], even by centralized
algorithms.
DCP requires three rounds of communications among neigh-

boring robots to form separate cliques. In the first round,
each robot i communicates to find its neighbors (Algorithm 2,
line 3). In the second round, it shares its augmented neighbor
set N+

i (containing its neighbors and itself) with its neighbors,
and receives its neighbors’ sets {N+

j } (Algorithm 2, line 4).
Then robot i intersects its augmented neighbor set N+

i with
each of its neighbors’ augmented neighbor sets N+

j , and sets
the largest intersection as its clique (Algorithm 2, line 5).

The aforementioned clique computation of DCP differs from
[36, Algorithm 2] in that in [36, Algorithm 2] each robot i
computes its clique as the intersection of N+

i and N+
j where j

is the neighbor with the largest degree in Ni, whereas in DCP’s
line 5, each robot i computes its clique as the intersection
of N+

i and N+
j , where j instead is the neighbor with the

largest neighborhood overlap with i. That way, DCP is more
likely to obtain larger cliques for each robot. Also, the cliques
returned by [36, Algorithm 2] can overlap with each other.
In order to form separate cliques, DCP executes the third
round of communication to share the computed cliques among
neighbors (Algorithm 2, line 6). Specifically, each robot i tells
its neighbors which clique it will join. If the clique of some
neighboring robot j contains robot i but robot i chooses to join
a different clique (by Algorithm 2, line 5), its neighboring
robot j will update its clique by removing robot i from it.
In this way, each robot i will eventually belong to a single
clique, and thus non-overlapping cliques can be generated. An
illustrative example of DCP is shown in Fig. 3.

Remark 1. We partition the communication graph G into
cliques instead of connected subgroups is because we want
robots to have a shorter communication time interval before
making decisions. Robots within a clique have point-to-point
communication. While robots in a connected subgroup need
multi-hop communication to propagate information. Typically,

Fig. 3. DCP partitions a graph of 6 robots into 2 separate cliques. Particularly,
after clique computation, robots 1 ∼ 6 obtain cliques {1, 2, 3}, {1, 2, 3},
{3, 4, 5, 6}, {3, 4, 5, 6}, {3, 4, 5, 6}, and {3, 4, 5, 6}. Then in the third
communication round, robot 3 shares its cliques with its neighbors (i.e., tells
its neighbors {1, 2} that it joins clique {3, 4, 5, 6}), and robots 1 and 2 reset
their cliques as {1, 2} and {1, 2}.

multi-hop communication takes time when the diameter of the
communication graph is large. More formally, point-to-point
communication has O(1) communication round, while multi-
hop communication has O(N) communication rounds in the
worst case (e.g., a line graph).

Also, the robots’ actions can have overlaps when contribut-
ing to the function value. For example, in a target tracking sce-
nario, the objective function is the number of targets covered
and the robots’ actions can have coverage overlaps (e.g., two
robots’ actions may cover the same subset of targets). Thus,
to compute the total number of targets covered, robots need to
communicate subsets of targets covered (instead of numbers
of targets covered) with others. If a subset of targets covered
by a robot is large, sharing this information over multiple
hops takes time. Therefore, we choose the clique partition
model that enables robots to have a shorter communication
time before making decisions.

B. Per clique attack-robust optimization (Step-2 of DRM)

We now present DRM’s second step: per clique attack-
robust optimization (DRM’s lines 2-8). Since the step calls
central-robust as subroutine, we recall here its steps
from [21]: central-robust takes as input the available
actions of a set of robots R′ ⊆ R (i.e., the

⋃
i∈R′ Xi), a

monotone submodular f , and a number of attacks α′ ≤ α,
and constructs an action assignment S ′ by following a two-
step process. First, it tries to approximate the conjectured
worst-case attack to S ′, and, to this end, builds a “bait” set
as part of S ′. Particularly, the bait set is aimed to attract
all attacks at S ′, and for this reason, it has cardinality α′

(the same as the number of conjectured attacks). In more
detail, central-robust includes an action x ∈

⋃
i∈R′ Xi

in the bait set (at most 1 action per robot, per Problem 1)
only if f({x}) ≥ f({x′}) for any other x′ ∈

⋃
i∈R′ Xi.

That is, the bait set is composed of the “best” α′ single
actions. In the second step, central-robust a) assumes
the robots in the bait set are removed from R′, and then b)
greedily assigns actions to the rest of the robots using the
centralized greedy algorithm in [22, Section 2] which ensures
a near-optimal assignment (at least 1/2 close to the optimal).
Specifically, for the remaining |R′| − α′ robots, denoted by
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(a) A communication graph G of 15 robots (b) DCP partitions G into 5 cliques (c) Each clique runs central-robust

Fig. 4. Qualitative description of DRM’s steps over the communication graph G in subfigure (a), composed of 15 robots. The number of conjectured attacks
is considered to be α = 2. In the first step, we assume DCP (DRM’s line 1) partitions G into 5 cliques, as shown in subfigure (b). In the second step, all 5
cliques perform central-robust in parallel. Particularly, the cliques {(1), (2, 8)}, since α is larger than or equal to their size, consider that all of their
robots will be attacked, and as a result they select all of their robots as baits (depicted with red in subfigure (c)), per central-robust. In contrast, the
remaining 3 cliques, since α is smaller than their size, they select α of their robots as baits. The remaining robots (depicted with blue in subfigure (c)) of
each clique choose their actions greedily, independently of the other cliques, and assuming that the red robots in their clique do not exist.

R′a, the centralized greedy algorithm assigns actions S ′g for
them as follows.

1: S ′g ← ∅;
2: while R′a 6= ∅ do
3: (x′g, i

′
g) ∈ argmax

x∈
⋃

i∈R′
a
Xi

f(S ′g ∪ {x})− f(S ′g);

4: S ′g ← S ′g ∪ {x′g}; R′a ← R′a \ {i′g}.
Notably, it chooses an action x′g and the corresponding robot i′g
with the maximal marginal contribution to the function value
at each round (line 3).

The bait set is one way of approximating α′ worst-case
attacks to the action assignment S ′. By executing the worst-
case attacks, the attacker may or may not attack the bait set.
Selecting the bait action set for the robots can add robustness
against the worst-case attacks. That is, no matter the attacker
attacks the bait set or not, central-robust, composed of
bait action assignment and greedy action assignment, gives
suboptimality guarantees against the worst-cast attacks [18],
[19].

In this context, DRM’s second step is as follows: assuming
the clique partition step returns K cliques (DRM’s line 1), now
each clique in parallel with the others computes an attack-
robust assignment for its robots using central-robust
(DRM’s lines 3-8). To this end, the cliques need to assess how
many of the α attacks each will incur. If there is no prior on the
attack generation mechanism, then we consider a worst-case
scenario where each clique incurs all the α attacks. Otherwise,
we consider there is a prior on the attack mechanism such
that each clique k infers it will incur αk ≤ α attacks. Without
loss of generality, in DRM’s pseudo-code in Algorithm 1 we
present the former scenario, where αk = α across all cliques;
notwithstanding, our theoretical results on DRM’s performance
(Section IV) hold for any αk such that

∑K
k=1 αk ≥ α. Overall,

DRM’s lines 3-8 are as follows (cf. example in Fig. 4):
a) DRM’s lines 4-5 (α < |Ck|): If α is less than the

clique’s size (DRM’s line 4), then the clique’s robots choose
actions by executing central-robust on the clique as-
suming α attacks (DRM’s line 5).

b) DRM’s lines 6-7 (α ≥ |Ck|): But if α is larger than
the clique’s size (DRM’s line 6), then the clique’s robots
choose actions by executing central-robust on the clique

Algorithm 2: Distributed clique partition (DCP).
Input: Robots’ positions P; communication range rc.
Output: Clique partition of graph G.

1: Given P and rc, find communication graph G;
2: for each robot i do
3: Find robot i’s neighbor set Ni within rc; {1st round

communication}
4: Share N+

i := {i,Ni} with robot i’s neighbors, and
receives all N+

j from its neighbors, j ∈ Ni; {2nd
round communication}

5: Intersects N+
i with every N+

j , and set the largest
intersection as robot i’s clique, i.e.,
Ci = argmaxN+

i

⋂
N+

j
|N+

i

⋂
N+
j |, j ∈ Ni;

6: Share Ci with robot i’s neighbors; {3rd round
communication}

7: return Generated cliques.

assuming |Ck| attacks (DRM’s line 5); i.e., assuming that all
clique’s robots will be attacked.

c) DRM’s line 8: All in all, now all robots have assigned
actions, and S is the union of all assigned actions across all
cliques (notably, the robots of each clique k know only Sk,
where Sk is per the notation in DRM).

Finally, DRM is valid for any number of attacks.

IV. PERFORMANCE ANALYSIS OF DRM

We now quantify DRM’s performance, by bounding its
computational and approximation performance. To this end,
we use the following notion of curvature for set functions.

A. Curvature

Definition 1 (Curvature [38]). Consider non-decreasing sub-
modular f : 2X 7→ R such that f(x) 6= 0, for any x ∈ X \{∅}
(without loss of generality). Also, denote by I the collection
of admissible sets where f can be evaluated at. Then, f ’s
curvature is defined as

νf , 1−min
S∈I

min
x∈S

f(S)− f(S \ {x})
f(x)

. (2)



6

The curvature, νf , measures how far f is from being
additive. Particularly, Definition 1 implies 0 ≤ νf ≤ 1, and
if νf = 0, then f(S) =

∑
x∈S f({x}) for all S ∈ I (f is

additive). On the other hand, if νf = 1, then there exist S ∈ I
and x ∈ X such that f(S) = f(S\{x}) (x has no contribution
in the presence of S \ {x}).

For example, in active target tracking, f is the expected
number of covered targets (as a function of the robot trajec-
tories). Then, f has curvature 0 if each robot covers different
targets from the rest of the robots. In contrast, it has curvature
1 if, e.g., two robots cover the exact same targets.

B. Running time and approximation performance
We present DRM’s running time and suboptimality bounds.

To this end, we use the notation:
• tcDCP and tsDCP denote the communication and computation

time of the robot that spends the highest time on three-
round communications (Algorithm 2, lines 3, 4, 6 ) and
neighbor set intersection (Algorithm 2, line 5) in DCP;

• M is a clique of G, which spends the highest time
executing central-robust;

• tcCRO denotes the communication time of the robot that
spends the highest time exchanging information collected
(e.g., the subsets of targets covered) in M.

• tf denotes the time of one evaluation of the objective
function f (e.g., computing the number of targets covered
by robots’ actions).

• XM is the set of possible actions of all robots inM; that
is, XM , ∪i∈MXi;

• f? is the optimal value of Problem 1;
• A?(S) is a worst-case removal from S (a removal from S

corresponds to a set of sensor attacks); that is, A?(S) ∈
argminA⊆S,|A|≤α f(S \ A).

Theorem 1 (Computational performance). DRM runs in
O(1)(tcDCP+t

s
DCP) + O(1)tcCRO + O(|XM|2)tf time. In addition,

by DRM, each robot i ∈ R has four-round communications,
including three rounds in DCP and one round in per clique
central-robust, and exchanges 3|Ni|+|Ck|−1 messages
with i ∈ Ck. Moreover, DRM performs O(|Ni|) operations
for set intersections of each robot i in DCP and O(|XCk |2)
evaluations of objective function f in central-robust for
each clique Ck, k ∈ {1, . . . ,K}.

O(1)(tcDCP+t
s
DCP) corresponds to DRM’s clique partition step

(DRM’s line 1), and O(1)tcCRO + O(|XM|2)tf corresponds to
DRM’s attack-robust step (DRM’s lines 2-8). Particularly, DRM’s
communication time includes the time of three-round commu-
nications in the clique partition step and the time of one-round
communication of information collected in the attack-robust
step; that is O(1)tcDCP + O(1)tcCRO. DRM’s computation time
contains the time of neighbor set intersection in the clique
partition step and the time of objective function evaluations in
the attack-robust step; that is tsDCP+O(|XM|2)tf . Notably, as
the number of robots and/or the number of actions increase,
DRM’s running time will be dominated by the time for function
evaluations, i.e., O(|XM|2)tf .

In contrast, to evaluate the objective functions,
central-robust [21, Algorithm 1] runs in O(|X |2)tf

time. Thus, when XM ⊂ X (which happens when G is
partitioned into at least 2 cliques), DRM offers a computational
speed-up. The reasons are two: parallelization of action
assignment, and smaller clique size. Particularly, DRM splits
the action assignment among multiple cliques, instead of
performing the assignment in a centralized way, where
all robots form one large clique (the R). That way, DRM
enables each clique to work in parallel, reducing the overall
running time to that of clique M (Theorem 1). Besides
parallelization, the smaller clique size also contributes to
the computational reduction. To illustrate this, assume G is
partitioned to K cliques of equal size, and all robots have the
same number of actions (|Xi| = |Xj | for all i, j ∈ R). Then,
O(|XM|2) = O(|X |2)/K2, that is, DRM’s function evaluation
time is reduced by the factor K2.

Theorem 2 (Approximation performance of DRM). DRM
returns a feasible action-set S such that

f(S \ A?(S))
f?

≥ 1− νf
2

. (3)

The proof of the theorem follows from [19, Theorem 1].
From eq. (3), we conclude that even though DRM is a

distributed, faster algorithm than its centralized counterpart,
it still achieves a near-to-centralized performance. Generally,
Theorem 2 implies DRM guarantees a close-to-optimal value
for any submodular f with curvature νf < 1.

Remark 2. A myopic algorithm that selects actions for
each robot independently of all other robots (in contrast to
DRM, whose subroutine central-robust accounts for the
other robots’ actions during the greedy action assignment),
guarantees the approximation bound 1 − νf (Algorithm 4 in
Appendix C). However, being exclusively myopic, Algorithm 4
has worse practical performance than DRM.

In Appendix-C, we also show Algorithm 4 is equivalent to
central-robust (cf. Section III-B) when applied to R,
under the assumption that all robots in R are attacked. This
further reveals the practical inefficiency of Algorithm 4.

V. IMPROVED DISTRIBUTED ROBUST MAXIMIZATION

In DRM, each clique Ck assumes that the number of attacks
αk against the clique is either equal to the total number of
attacks α, or equal to its size |Ck| (when α ≥ |Ck|). Even
though this strategy guarantees a close-to-optimal approxima-
tion performance (cf. Section IV), it is conservative, since the
total number of attacks that all cliques infer (

∑
k αk) can be

much larger than the real number of attacks α for the team. In
this section, we design a strategy to amend this conservative-
ness. Particularly, we present an Improved Distributed Robust
Maximization algorithm (IDRM), and analyze its performance
in terms of approximation performance and running time.

A. Improved inference of each clique’s attack number

The number of attacks in each clique αk can be inferred by
leveraging neighboring communications. First, note that robots
can communicate with all their neighbors within communica-
tion range even though these neighbors are in different cliques.
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Algorithm 3: Algorithm to approximate the number of
attacks αk against a clique k, given a known number
of attacks α against all robots in R.
Input: Robots’ available actions Xi, i ∈ R; monotone and

submodular function f ; attack number α.
Output: Number of attacks α̂k for clique Ck,

k ∈ {1, . . . ,K}.
1: if |Ck| > α then
2: α̂k = α;
3: else
4: α̂k = |Ck|;
5: Each clique selects the top α̂k robots as Cα̂k

k ;
6: for each robot i ∈ Cα̂k

k do
7: if robot i is not one of the top α robots in its 3-hop

neighbors then
8: α̂k = α̂k − 1;
9: return α̂k.

For example, in Fig. 4, robot 2 can still communicate with
robots 1 and 4 even though they are partitioned into different
cliques. However, in DRM, this available communication is
ignored. Second, besides the 3-hop communications required
for the execution of distributed clique partition (DCP; cf. Al-
gorithm 2), the robots can also share their actions’ function
values (e.g., the number of targets covered) with their 3-
hop neighbors. Evidently, while DRM assumes robots to share
actions’ function values with their 1-hop neighbors within the
same clique, sharing the actions’ function values among 3-hop
neighbors can give a better inference of αk, and, consequently,
better performance.

Recall that DRM sets αk equal to α (or to |Ck|, when
α ≥ |Ck|) for each clique Ck. Therefore, DRM selects a
bait set of αk robots in each clique (cf. Section III-B).
Evidently, some of these “bait” robots may not be among
the α “bait” robots that central-robust would have
selected if it would have been applied directly to R (assuming
centralized communication among all robots).7 This can be
checked by communicating actions’ function values among 3-
hop neighbors. Particularly, if some robot is not one of the top
α robots among its 3-hop neighbors, it is impossible that it is
in the top α robots among the entire team. Thus, this robot
can be marked as “unselected” and αk can be reduced. Based
on this rule, we describe our αk inferring strategy in detail in
Algorithm 3.

We use Fig. 4 to illustrate how Algorithm 3 works with an
example. When α = 2, clique C2 := {2, 8} first infers α̂1 = 2,
and robots 2 and 8 are selected. Then, robot 2 communicates
with its 1-hop, 2-hop, and 3-hop neighbors ({1, 4, 8}, {3, 5,
6, 7, 11}, {9, 10, 12, 13}). If robot 2 is not one of the top 2
robots among its 3-hop neighbors, robot 2 will be marked as
“unselected” and α̂1 will be reduced by 1 (α̂1 = 1). Similarly,
if robot 8 is not one of the top 2 robots among its 3-hop

7We refer to any robot in the selected bait set of a clique k as a top αk

robot in the clique; similarly, when we consider the set of all robots R, the
top α robots are the robots in the bait set selected by a central-robust
applied to R (when the number of attacks against R is α).

neighbors, α̂1 will be further reduced by 1 (α̂1 = 0). This way,
instead of picking out 9 “bait” robots from 5 cliques (Fig. 4-c),
fewer robots will be selected. All in all, by using Algorithm 3,
we can reduce DRM’s conservativeness in inferring the number
of attacks in each clique.

B. Performance analysis of IDRM

The robots of each clique k, using the number of attacks
α̂k generated by Algorithm 3, choose actions Sk by executing
central-robust [21], that is,

Sk = central-robust(
⋃
i∈Ck

Xi, f, α̂k).

Approximation performance of IDRM. IDRM has the same
approximation bound as that of DRM (cf. eq. 3). Notwith-
standing, as we demonstrate in our numerical evaluations (cf.
Section VI-B), IDRM performs better than DRM in practice,
since IDRM utilizes more information (actions’ function values
shared among all 3-hop neighbors). When the communication
graph G only has non-overlapping cliques (i.e., the robots of
each clique can communicate only with their neighbors within
the clique), IDRM and DRM will exhibit the same performance.

Computational performance of IDRM. IDRM runs in more
time than DRM, since each robot needs to verify if it belongs to
the top α robots among its 3-hop neighbors instead of its 1-hop
neighbors within its clique as in DRM. But this verification only
takes linear time. Thus, the running time of IDRM is similarly
dominated by the central-robust operating in all cliques
as in DRM. Also, each robot only needs to share with its 3-hop
neighbors the function value of its best action instead of that of
each action. Thus, IDRM keeps the computational advantage
of DRM.

VI. NUMERICAL EVALUATIONS

We first present DRM’s Gazebo and MATLAB evaluations
in scenarios of active target tracking with swarms of robots.
Then we illustrate the advantages of IDRM by comparing it
to DRM. The implementations’ code is available online.8 We
run the code on a ThinkPad laptop with Intel Core i7 CPU @
2.6 GHz × 8 and 62.8 GB Memory by using Matlab 2018b
and ROS Kinetic installed on Ubuntu 16.04. Due to the limited
computer resources, we approximate the running time of these
distributed algorithms by the total running time divided by the
number of cliques, since all the cliques perform in parallel.
Notably, the running time of the algorithms contains both the
time of communication and the time of computation.

A. Robust multi-robot target tracking

Compared algorithms. We compare DRM with two al-
gorithms. First, the centralized counterpart of DRM in [21],
named central-robust (its near-optimal performance has
been extensively demonstrated in [21]). The second algo-
rithm is the centralized greedy algorithm in [22], named
central-greedy. The difference between the two algo-
rithms is that the former is attack-robust, whereas the latter

8https://github.com/raaslab/distributed resilient target tracking.git
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(a) Gazebo environment (b) Rviz environment

Fig. 5. Gazebo simulation setup: 10 aerial robots and 50 ground mobile
targets: (a) Gazebo environment; and (b) Rviz environment. Each robot is
color-coded, along with its coverage region. All robots in the same clique
have the same color. The targets are depicted as white cylindrical markers.

is attack-agnostic. For this reason, in [21] we demonstrated,
unsurprisingly, that central-greedy has inferior perfor-
mance to central-robust in the presence of attacks.
However, we still include central-greedy in the compar-
ison, to highlight the differences among the algorithms both
in running time and performance.

1) Gazebo evaluation over multiple steps with mobile tar-
gets: We use Gazebo simulations to evaluate DRM’s perfor-
mance across multiple rounds (time-steps). That way, we take
into account the kinematics and dynamics of the robots, as
well as, the fact that the actual trajectories of the targets,
along with the sensing noise, may force the robots to track
fewer targets than expected. The motion model for the moving
targets is known to the robots but it is corrupted with Gaussian
noise. Therefore, the robots use a Kalman Filter to estimate the
positions of the targets at each step. Due to the running efficacy
of Gazebo (which is independent of DRM), we focus on small-
scale scenarios of 10 robots. In the MATLAB simulation, we
focus instead on larger-scale scenarios of up to 100 robots.

Simulation setup. We consider 10 aerial robots that
are tasked to track 50 ground mobile targets (Fig. 5-
(a)). We set the number of attacks α equal to 4, and
the robots’ communication range to be rc = 5 me-
ters. We also visualize the robots, their field-of-view, their
cliques, and the targets using the Rviz environment (Fig. 5-
(b)). Each robot i has 5 candidates trajectories, Xi =
{forward, backward, left, right, stay}, and
flies on a different fixed plane (to avoid collision with other
robots). Each robot has a square filed-of-view lo × lo. Once a
robot picks a non-stay trajectory, it flies a distance lf along
that trajectory. If the robot selects the stay trajectory, it stays
still (i.e., lf = 0). Thus, each trajectory has a rectangular
tracking region with length lt = lf + lo and width lo. We set
the tracking length lt = 6, and tracking width lo = 3 for all
robots. We assume robots obtain noisy position measurements
of the targets, and then use a Kalman filter to estimate the
target’s position. We consider f to be the expected number of
targets covered, given all robots chosen trajectories.

For each of the compared algorithms, at each round, each
robot picks one of its 5 trajectories. Then, the robot flies a
lf = 3 meters along the selected non-stay trajectory and

stays still with the stay trajectory.
When an attack happens, we assume the attacked robot’s

tracking sensor (e.g., camera) to be turned-off; nevertheless,
we assume it can be active again at the next round. The attack
is a worst-case attack, per Problem 1’s framework. Particularly,
we compute the attack via a brute-force algorithm, which is
viable for small-scale scenarios (as this one).

We repeat for 50 rounds. A video is available online.9

Results. The results are reported in Fig. 6. We observe:
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(b) Number of targets tracked

Fig. 6. Gazebo evaluation (averaged across 50 rounds): The tracking
performance is captured by the number of covered targets per round. On each
box in (a) and (b), the central red mark denotes the median, and the bottom
and top edges of the box denote the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme values not considered outliers, and
the outliers are plotted individually using the red ‘+’ symbol. If a box does
not has outliers (as in (b)), the bottom and top ends of whiskers correspond
to the minimum and maximum values.

a) Superior running time: DRM runs considerably faster than
both central-robust and central-greedy: 1.8 orders
faster than the former, and 2.2 orders faster than the latter, with
average running time 0.1msec (Fig. 6-(a)).

b) Near-to-centralized tracking performance: Despite that
DRM runs considerably faster, it maintains near-to-centralized
performance: DRM covers on average 18.8 targets per round,
while central-robust covers 17.1 (Fig. 6-(b)). To statis-
tically evaluate DRM and central-robust, we run a t-test
with the default 5% significance level on the targets covered
by them. The t-test gives the test decision H = 0 and p-value
p = 0.0805, which indicates that t-test does not reject the null
hypothesis that the means of the number of targets covered
by DRM and central-robust are equal to each other at
the 5% significance level. This again demonstrates that DRM
performs very close to central-robust.

As expected, the attack-agnostic central-greedy per-
forms worse than all algorithms, even being centralized.
Similarly, we run a t-test on the number of targets covered
by central-greedy and DRM and obtain H = 1 and
p = 0.00069, which indicates that the means of the num-
ber of targets covered by central-greedy and DRM are
statistically different at the 5% significance level.

2) MATLAB evaluation over one step with static targets:
We use MATLAB simulations to evaluate DRM’s performance
in large-scale scenarios. Specifically, we evaluate DRM’s run-
ning time and performance for various numbers of robots

9https://youtu.be/bxbtAWxxCPg
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Fig. 7. MATLAB evaluation: Examples of clique formulations (Algorithm 2) across various numbers of robots and communication ranges rc.

(from 10 to 100) and communication ranges (resulting from
as few as 5 cliques to as many as 30 cliques). We compare
all algorithms over a single execution round.

Simulation setup. We consider N mobile robots, and 100
targets. We vary N from 10 to 100. For each N , we set the
number of attacks equal to bN/4c, bN/2c and b3N/4c.

Similarly to the Gazebo simulations, each robot moves on a
fixed plane, and has 5 possible trajectories: forward, backward,
left, right, and stay. We set lt = 10 and lo = 3 for all robots.
We randomly generate the positions of the robots and targets in
a 2D space of size [0, 200]× [0, 200]. Particularly, we generate
30 Monte Carlo runs (for each N ). We assume that the robots
have available estimates of targets’ positions. For each Monte
Carlo run, all compared algorithms are executed with the same
initialization (same positions of robots and targets). DRM is
tested across three communication ranges: rc = 30, 60, 90.
For a visualization of rc’s effect on the formed cliques, see
Fig. 7, where we present two of the generated scenarios. All
algorithms are executed for one round in each Monte Carlo
run.

Notably, since we consider large-scale scenarios (up to
N = 100 robots, and up to 75 attacks, when N = 100, and
α = b3N/4c), computing the worst-case attack via a brute-
force algorithm is now infeasible. Particularly, given a trajec-
tory assignment S to all robots, the problem of computing a
worst-case attack is equivalent to minimizing a non-increasing
submodular function, an NP-hard problem [39]. Hence, we
consider the attacker to use a greedy heuristic to attack the
robots, instead of executing the worst-case attacks. Proposed
greedy approaches can be found in [39].10

Results. The results are reported in Fig. 8 and we make the
similar qualitative conclusions as in the Gazebo evaluation:

a) Superior running time: DRM runs several orders faster
than both central-robust and central-greedy: 1 to
2 orders on average, achieving running time from 0.5msec
to 15msec (Figs. 8-(a-d)). Particularly, in Figs. 8-(a, b), the
algorithms’ running time is evaluated with respect to the
communication range rc (with the number of attacks fixed as
α = bN/2c). We observe that DRM’s running time increases
as rc increases. This is because, with a larger rc, DCP
generates larger cliques and robots need to communicate more

10Alternative algorithms, along with approximate guarantees, to approxi-
mate the worst-case attacks can be found in [40]–[42].

messages and takes more time on computation (Theorem 1),
and thus both DRM’s communication time and computation
time increase, which is shown in Figs. 8-(e, f). Particularly,
DRM spends more time on computation with a smaller rc (e.g.,
rc = 30) and spends more time on communication with a
larger rc (e.g., rc = 90).

In Figs. 8-(c, d), the algorithms’ running time is evaluated
in terms of the number of attacks α (with the communication
range fixed as rc = 60). We observe central-robust runs
faster as α increases, which is due to how central-robust
works, that causes central-robust to become faster as α
tends to N [21]). This parallels the observation that DRM’s
computation time decreases as α increases (Figs. 8-(g-h)),
since DRM’s computation time mainly comes from the function
evaluations in per clique central-robust.

b) Near-to-centralized tracking performance: Although DRM
runs considerably faster, it retains a tracking performance
close to the centralized one (Figs. 8-(i-l)). Unsurprisingly, the
attack-agnostic greedy performs worse than all algorithms.
Particularly, as shown in Figs. 8-(i, j) when the communication
range rc increases from 30 to 90, central-robust’s
tracking performance improves. This is because, with a larger
rc, fewer and larger cliques are generated by DCP, and DRM
behaves closer to central-robust. Figs. 8-(k, l) show that
all algorithms’ tracking performance drops when the number
of attacks α increases.

To summarize, in all simulations above, DRM offered sig-
nificant computational speed-ups, and, yet, still achieved a
tracking performance that matched the performance of the
centralized, near-optimal algorithm in [21].

B. Improved multi-robot target tracking

Compared algorithms. We compare IDRM with DRM. The
performance of the algorithms is evaluated through Matlab
simulations on active target tracking scenarios. We compare
the algorithms in terms of the total number of attacks inferred,
running time, and number of targets covered after α attacks.
α is known to both IDRM with DRM. The algorithms are
compared over a single execution for 30 trials.

Simulation setup. We consider N mobile robots, and 100
targets. We set N as 20 and 100 for small-scale and large-scale
evaluations, respectively. For evaluating the algorithms in the
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(a) rc = 30, α = bN/2c (b) rc = 90, α = bN/2c (c) α = bN/4c, rc = 60 (d) α = b3N/4c, rc = 60

(e) rc = 30, α = bN/2c (f) rc = 90, α = bN/2c (g) α = bN/4c, rc = 60 (h) α = b3N/4c, rc = 60

(i) rc = 30, α = bN/2c (j) rc = 90, α = bN/2c (k) α = bN/4c, rc = 60 (l) α = b3N/4c, rc = 60

Fig. 8. MATLAB evaluations (averaged across 30 Monte Carlo runs): (a)-(d) depict running time results of three algorithms, for various α and rc values;
(e)-(h) depict the corresponding communication time and the computation time of DRM (distributed-robust); and (i)-(l) depict corresponding tracking
performance results.

large-scale case (e.g., N = 100), we approximate the worst-
case attack by a greedy attack since computing the worst-case
attack requires exponential time. The total number of attacks
α is set as 6 when N = 20, and as 30 when N = 100. The
communication range rc is set as rc = 120 for N = 20, and
rc = 70 for N = 100. The remaining settings are the same as
in the Matlab simulation setup of Section VI-A.

Results. The results are reported in Fig. 9 and Fig. 10:
a) Conservativeness relaxing performance: Fig. 9-(a) and

Fig. 10-(a) show that IDRM relaxes the conservativeness of
inferring number of attacks α in both small-scale (N = 20,
α = 6) and large-scale (N = 100, α = 30) cases. Notably,
when the communication range is smaller (e.g., rc = 70
in Fig. 10-(a)), the inferred number of attacks by DRM is
much larger than the real number of attacks (α = 30). That
is because, with a smaller communication range, the graph
is likely to be partitioned into more and smaller cliques by

Algorithm 2, which increases the conservativeness of inferring
α in DRM. While IDRM gracefully relaxes this conservativeness
through 3-hop neighboring communications (Algorithm 3).
Particularly, in some trials of both small-scale and large-scale
evaluations, the number of attacks inferred by IDRM is very
close to the real number of attacks α.

b) Superior tracking performance: Because of the conserva-
tiveness relaxing, IDRM tracks more targets than DRM (Fig. 9-
(b) and Fig. 10-(b)) since it reduces the unnecessary coverage
overlaps induced by conservative estimate of α. To further
evaluate the tracking performance IDRM and DRM, we run
a t-test with the default 5% significance level on the targets
covered by them. The t-test gives the test decision H = 1 and
p-value p = 0.025 for the small-scale case (Fig. 9-(b)) and
the test decision H = 1 and p-value p = 0.030 for the large-
scale case (Fig. 10-(b)). This indicates that, in both cases, t-
test rejects the null hypothesis that the means of the number of
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(c) Running time

Fig. 9. MATLAB evaluations with N = 20, α = 6, and rc = 120: comparison of number of attacks inferred, number of targets covered, and running time
for DRM and IDRM in small-scale case. The number of target tracked of these two algorithms are calculated after applying 6 worst-case attacks. In (b) and
(c), the representations of each box’s components follow the corresponding explanations in the caption of Fig. 6.
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Fig. 10. MATLAB evaluations with N = 100, α = 30, and rc = 70: comparison of number of attacks inferred, number of targets covered, and running
time for DRM and IDRM in large-scale case. The number of target tracked of these two algorithms are calculated after applying 30 greedy attacks. In (b) and
(c), the representations of each box’s components follow the corresponding explanations in the caption of Fig. 6.

targets covered by IDRM and DRM are equal to each other at the
5% significance level. Therefore, the difference between the
means of the number of targets covered by them is statistically
significant.

c) Comparative running time: Fig. 9-(c) and Fig. 10-(c)
show that both DRM and IDRM run very fast (e.g., averaged
running time is less than 0.005 seconds). That is because, in
IDRM, after robots share the number of targets covered by their
best actions and infer a less conservative αk (Algorithm 3),
all cliques run central-robust in parallel as well.

VII. CONCLUSION

We worked towards securing swarm-robotics applications
against worst-case attacks resulting in robot withdrawals. Par-
ticularly, we proposed DRM, a distributed robust submodular
optimization algorithm. DRM is general-purpose: it applies to
any Problem 1’s instance. We proved DRM runs faster than its
centralized counterpart, without compromising approximation
performance. We demonstrated both its running time and near-
optimality in Gazebo and MATLAB simulations of active

target tracking. However, in DRM, each clique assumes the
number of attacks αk to be the total number of attacks α,
which can be too conservative if the robots are partitioned into
many small-size cliques. To relax this conservativeness, we
leveraged the 3-hop neighboring communications to present
an improved version of DRM, called IDRM. We showed that
IDRM improves the target-tracking performance of DRM with
comparative running time.

Note that, with DCP (Algorithm 2), the clique partition
solely depends on the positions of robots and the commu-
nication range. If robots have a very long communication
range, they are likely to be all part of a single clique and then
DRM would be the same as central-robust. One way
to address this issue is to intelligently manage the number
of cliques to control the trade-off between complexity and
optimality. Hence, one future research direction is to design
such clique partition approaches that can be complementary
to DCP.

A second future direction is to secure the team perfor-
mance when the number of worst-case attacks is unknown.
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One heuristic approach to infer the number of attacks αk
distributively for cliques without knowing α is presented
in the arXiv version [43] (cf. Algorithm 5 in Appendix-
D of [43]). However, this algorithm is a heuristic approach
that aims to secure the expected worst-case performance and
thus may not have guarantees against a specific number of
worst-case attacks. Therefore, our future work is focused
on designing algorithms that have approximation guarantees
against the unknown number of attacks. A third future avenue
is to investigate other attack or failure models, e.g., random
failures [44], [45], and design corresponding distributed robust
algorithms.
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APPENDIX

A. Proof of Theorem 1

Proof: DRM’s running time is equal to DCP’s plus the time
for all cliques to execute central-robust in parallel.

Particularly, the running time of DCP contains the time
of three-round communications—finding neighbors (Algo-
rithm 2, line 3), exchanging neighbor sets (Algorithm 2, line 4)
and exchanging computed cliques (Algorithm 2, line 6) and
the time of neighbor set intersection (Algorithm 2, line 5).
Since robots perform in parallel by DCP, DCP’s running
time depends on the robot that spends the highest time on
three-round communications and neighbor set intersection.
Thus, DCP takes O(1)(tcDCP + tsDCP) time. Specifically, in
each communication round, each robot i sends its message
to and receives the messages from its neighbors, and thus the
number of messages exchanged by each robot i is |Ni|. Hence,
over three-round communications, each robot exchanges 3|Ni|
messages. During the neighbor set intersection, each robot i
intersects its neighbor set with those of its neighbors, and thus
the number of set intersections (operations) for each robot i
is |Ni|.

Next, all cliques perform central-robust [21] in par-
allel. In each clique Ck, each robot i first communicates and
exchanges information collected (e.g., the subsets of targets
covered by its candidate actions) with all the other robots.
Hence, the number of messages exchanged by each robot i in
Ck is |Ck| − 1. Notably, since robots can communicate with
each other in Ck, the communication only takes one round.

After information exchange, the robots in Ck perform
central-robust that executes sequentially two steps—
the bait assignment and the greedy assignment. The bait
assignment sorts out the best min(α, |Ck|) single actions
from |Ck| robots. We denote the joint candidate action
set in Ck as XCk ,

⋃
i∈Ck Xi. Then, the sorting needs

O(|XCk | log(|XCk |) evaluations of objective function f and
thus takes O(|XCk | log(|XCk |))tf time. Then, the greedy as-
signment uses the standard greedy algorithm [22] to choose

actions for the remaining robots, which needs O(|XCk |2) eval-
uations of f and thus takes O(|XCk |2)tf time. Hence, the num-
ber of function evaluations (operations) is O(|XCk | log(|XCk |)
+ O(|XCk |2) = O(|XCk |2).

Since all cliques perform central-robust in parallel,
the running time depends on the clique that spends the
highest time, i.e., clique M. M’s running time contains
the time of exchanging information collected, i.e., O(1)tcCRO,
and of evaluating function f , i.e., O(|XCk | log(|XCk |)tf +
O(|XCk |2)tf = O(|XCk |2)tf . Thus, in total, all cliques per-
forming central-robust in parallel takes O(1)tcCRO +
O(|XCk |2)tf time.

All in all, DRM takes O(1)(tcDCP + tsDCP) + O(1)tcCRO +
O(|XM|2)tf time. In addition, each robot has four-round
communications, including three rounds in DCP and one round
in per clique central-robust, and exchanges 3|Ni| +
|Ck| − 1 messages with i ∈ Ck. Moreover, DRM performs
O(|Ni|) operations for set intersections of each robot i in
DCP and O(|XCk |2) evaluations of objective function f in
central-robust for each clique Ck.

B. Proof of Theorem 2

Proof: We prove Theorem 2, i.e., DRM’s approximation
bound, by following the steps of [19, Proof of Theorem 1].

We introduce the notation: S? denotes an optimal solution
to Problem 1. Given an action assignment S to all robots in
R, and a subset of robots R′, we denote by S(R′) the actions
of the robots in R′ (i.e., the restriction of S ′ to R′). And
vise versa: given an action assignment S ′ to a subset R′ of
robots, we let R(S) denote this subset (i.e., R(S ′) = R′).
Additionally, we let Sk , S(Ck); that is, Sk is the restriction of
S to the clique Ck selected by DRM’s line 1 (k ∈ {1, . . . ,K});
evidently, S =

⋃K
k=1 Sk. Moreover, we let Sbk correspond

to bait actions chosen by central-robust in Ck, and Sgk
denote the greedy actions for the remaining robots in Ck; that
is, Sk = Sbk∪S

g
k . If α ≥ |Ck|, then Sgk = ∅. Henceforth, we let

S be the action assignment given by DRM to all robots in R.
Also, we let W be remaining robots after the attack A?(S);
i.e., W , R \ R(A?(S)). Further, we let Wk , W ∩ Ck
be remaining robots in Ck, Wb

k ,Wk ∩ R(Sbk) be remaining
robots with bait actions in Ck, and Wg

k , Wk ∩ R(Sgk) be
remaining robots with greedy actions in Ck. Then we have
Sbk \Wb

k and Sgk \W
g
k to denote the attacked robots with bait

actions and with greedy actions in Ck, respectively. Then, we
have the number of attacks in Ck as |Sbk \ Wb

k| + |S
g
k \ W

g
k |

and
|Sbk \Wb

k|+ |S
g
k \W

g
k | ≤ α, (4)

since the total number of attacks for the robot team is α. Also,
we have

|Sbk \Wb
k|+ |Wb

k| = α, (5)

since the number of robots with bait actions in Ck is α. With
Eqs. 4 and 5, we have

|Wb
k| ≥ |S

g
k \W

g
k |. (6)
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With Eq. 6, we let Wb′

k denote the remaining robots in Wb
k

after removing from it any subset of robots with cardinality
|R(Sgk) \W

g
k |. Then |Wb

k \Wb′

k | = |R(S
g
k) \W

g
k | and robots

inWb
k \Wb′

k have bait actions and robots in R(Sgk)\W
g
k have

greedy actions. Then, Wb
k \ Wb′

k can be used to compensate
for the attacked robots R(Sgk) \W

g
k in Ck.

Now the proof follows from the steps:

f(S \ A?(S)) ≥ (1− νf )
∑
r∈W

f(S(r)) (7)

= (1− νf )
K∑
k=1

∑
r∈Wk

f(S(r)) (8)

= (1− νf )
K∑
k=1

 ∑
r∈Wb

k

f(S(r)) +
∑
r∈Wg

k

f(S(r))

 (9)

= (1− νf )
K∑
k=1

 ∑
r∈Wb′

k

f(S(r))+

∑
r∈Wb

k\W
b′
k

f(S(r)) +
∑
r∈Wg

k

f(S(r))

 (10)

≥ (1− νf )
K∑
k=1

 ∑
r∈Wb′

k

f(S(r))+

∑
r∈R(Sg

k)\W
g
k

f(S(r)) +
∑
r∈Wg

k

f(S(r))

 (11)

= (1− νf )
K∑
k=1

 ∑
r∈Wb′

k

f(S(r)) +
∑

r∈R(Sg
k)

f(S(r))

 (12)

≥ (1− νf )
K∑
k=1

 ∑
r∈Wb′

k

f(S(r)) + f(Sgk)

 (13)

≥ (1− νf )
K∑
k=1

 ∑
r∈Wb′

k

f(S?(r)) + 1

2
f(S?(R(Sgk)))

 (14)

≥ 1− νf
2

K∑
k=1

f(S?(Wk)) (15)

≥ 1− νf
2

f(S?(W)) (16)

≥ 1− νf
2

f(S? \ A?(S?)). (17)

Ineq. (7) follows from the definition of νf (see [19, Proof
of Theorem 1]). Eqs. (8) and (9) follow from the notation we
introduced above. Eq. (10) holds since Wb

k = Wb′

k ∪ (Wb
k \

Wb′

k ). Ineq. (11) holds since a) |Wb
k\Wb′

k | = |R(S
g
k)\W

g
k |; b)

robots inWb
k\Wb′

k have bait actions and robots in R(Sgk)\W
g
k

have greedy actions, such that for any r ∈ Wb
k \ Wb′

k and
r′ ∈ R(Sgk) \ W

g
k , we have f(S(r)) ≥ f(S(r′)). Eq. (12)

holds from the notation. Ineq. (13) holds by the submodularity
of f , which implies f(A) + f(B) ≥ f(A ∪ B) for any sets
A,B [15]. Ineq. (14) holds since a) with respect to the left
term in the sum, the robots in the sum correspond to robots

Algorithm 4: Myopic algorithm for Problem 1.
Input: Robots’ available actions Xi, i ∈ R; monotone and

submodular f .
Output: Robots’ actions S .

1: S ← ∅;
2: for i ∈ R do
3: s← argmaxs∈Xi

f(s);
4: S ← S ∪ {s};
5: return S .

whose actions are baits; and b) with respect to the right term
in the sum, the greedy algorithm that has assigned the actions
Sgk guarantees at least 1/2 the optimal [22]. Ineq. (11) holds
again due to the submodularity of f , as above. The same for
ineq. (12). Ineq. (13) follows from [19, Proof of Theorem 1]
because of the worst-case removal.

C. Myopic optimization yields tighter approximation perfor-
mance, yet worse practical performance

The myopic Algorithm 4, according to which each robot
selects its best action independently, guarantees a tighter
approximation bound than that of DRM:

Theorem 3 (Approximation performance of Algorithm 4).
Algorithm 4 returns a feasible action-set S such that

f(S \ A?(S))
f?

≥ 1− νf . (18)

Proof: We split S generated by Algorithm 4 into S1
and S2, with S1 denoting the action set selected by the top
α robots, and S2 denoting the action set selected by the
remaining |R|−α robots. Denote S?2 as the action set selected
by R(S2) to maximize f(A), A ∈ I,A ⊆ X (R(S2)).

f(S \ A?(S)) ≥ (1− νf )
∑
s∈S2

f(s) (19)

≥ (1− νf )
∑
s∈S?

2

f(s?) (20)

≥ (1− νf )f(S?2 ) (21)
≥ (1− νf )f(S? \ A?(S?)). (22)

Ineq. (19) follows from the definition of νf (see [19, Proof
of Theorem 1]). Ineq. (20) holds since Algorithm 4 selects
the best action for each robot (Algorithm 4, line 3). Ineq. (21)
holds due to the submodularity of f . Ineq. 22 follows from
[19, Proof of Theorem 1] because of the worst-case removal.

However, Algorithm 4 performs in practice worse than DRM
because: (i) it chooses actions for each robot independently
of the actions of the rest of the robots (instead, DRM takes
into account other robots’ actions to intentionally reduce the
performance redundancy among these robots); and (ii) it is
equivalent to central-robust but under the assumption
the number of attacks is equal to the number of robots, which
is, evidently, conservative; DRM instead is less conservative
assuming at most α attacks per clique).
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An evaluation of the practical performance of Algorithm 4
in comparison to DRM’s is made in Fig. 11. The figures
clearly show that in both small-scale and large-scale cases,
DRM outperforms Algorithm 4.
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(a) N = 20
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(b) N = 100

Fig. 11. MATLAB evaluations: comparison of number of targets covered
by Algorthm 4 (called MO), DRM, IDRM in (a) small-scale and (b) large-
scale cases. The simulation settings follow the Matlab simulation setup of
Section VI-A. In (a) small-scale case with N = 20, α = 4, and rc = 120,
the number of target tracked by these three algorithms are calculated after
applying 4 worst-case attacks. In (b) large-scale case with N = 100, α = 10,
and rc = 70, the number of target tracked by these three algorithms are
calculated after applying 10 greedy attacks. In (a) and (b), the representations
of each box’s components follow the corresponding explanations in the caption
of Fig. 6.
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