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Abstract—Next-basket recommendation considers the problem of recommending a set of items into the next basket that users will
purchase as a whole. In this paper, we develop a novel mixed model with preferences, popularities and transitions (M2) for the
next-basket recommendation. This method models three important factors in next-basket generation process: 1) users’ general
preferences, 2) items’ global popularities and 3) transition patterns among items. Unlike existing recurrent neural network-based
approaches, M? does not use the complicated networks to model the transitions among items, or generate embeddings for users.
Instead, it has a simple encoder-decoder based approach (ed-Trans) to better model the transition patterns among items. We
compared M? with different combinations of the factors with 5 state-of-the-art next-basket recommendation methods on 4 public
benchmark datasets in recommending the first, second and third next basket. Our experimental results demonstrate that M2
significantly outperforms the state-of-the-art methods on all the datasets in all the tasks, with an improvement of up to 22.1%. In
addition, our ablation study demonstrates that the ed-Trans is more effective than recurrent neural networks in terms of the
recommendation performance. We also have a thorough discussion on various experimental protocols and evaluation metrics for

next-basket recommendation evaluation.

Index Terms—Recommender Systems, Next-Basket Recommendation, Encoder-Decoder Architecture, Mixed Models

1 INTRODUCTION

EXT-BASKET recommendation [1], [2], [3], [4], [5] con-
Nsiders the problem of recommending a set of items
into the next basket that users will purchase as a whole,
based on the baskets of items that users have purchased.
It is different from the conventional top-N recommenda-
tion problem in recommender systems, in which users
will purchase a single item at each time. Next-basket rec-
ommendation has been drawing increasing attention from
research community due to its wide applications in the
grocery industry [1], [3], fashion industry [6] and tourism
industry [7], etc. With the prosperity of deep learning,
many deep models, particularly based on recurrent neural
networks (RNNs) [1], [3], [4], [5] have been developed for
next-basket recommendation purposes, and have demon-
strated superior performance [1], [3]. These methods, espe-
cially these RNN-based methods, often focus on modeling
the transitions between different baskets, but are not always
effective to model various important factors that may de-
termine next baskets. For example, the transition among
individual items in different baskets is an important factor,
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as given the individual items in the previous baskets, the
probability of being interacted /purchased in the next basket
is not equal for all the items. Users’ general preference is
another important factor as different users generally will
have different preferences on items. Recently developed
RNN-based methods [1], [3], [4] typically explicitly model
the transitions among baskets, while implicitly model the
transitions among individual items. For example, these
methods use mean pooling or weighted sum to aggregate
the items in a same basket, and then use the recurrent units
to model the transitions among baskets. However, during
such aggregation, the information of individual items could
be smoothed out so that these methods could not accurately
model the transitions among individual items. In addition,
due to the recurrent nature of RNNs, it is challenging
to train these RNN-based methods efficiently in parallel.
Another limitation with existing methods is that, existing
methods [2] usually model users” general (i.e., long-term)
preferences using the embeddings of users. However, due
to the notoriously sparse nature of data in recommendation
problems, these learned embeddings may not be able to
accurately capture users’ preferences. To mitigate the lim-
itations in the existing basket recommendation methods, in
this paper, we develop a set of novel mixed models, denoted
as M?, for the next-basket recommendation problem.

M? models three important factors in order to generate
next-basket recommendations for each user. The first factor
is users’ general preferences, which will measure long-term
preferences of users that tend to remain consistent across
multiple baskets during a certain period of time. The second
factor is items’ global popularities, which will measure
the overall popularities of items among all the users. The
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third factor is the transition patterns among items across
baskets, which will capture the transition patterns on items
over different baskets. These three factors will be combined
together using weights that will be determined by these
factors, and thus recommend items into the next basket.
With different combinations of factors, M? has three variants
M2-p?, M?-gp? and M?-gp?t. M?-p? recommends items using
users’ general preferences and items’ global popularities.
In M2-p?, these two factors are combined using a global
weight. M?-gp? is similar to M>-p? except that instead of
using a global weight, M>-gp? learns personalized weights
to combine the two factors. M2-gp?t uses all the three factors
for more accurate recommendations. The details of these
three variants will be presented in Section 4. In particular,
different from existing methods, M? explicitly models the
transitions among individual items using a simple, efficient,
and effective encoder-decoder based framework, denoted
as ed-Trans. M? also explicitly models users’ general pref-
erences using the frequencies of items that each user has
interacted with instead of the user embeddings.

We compare M2 with 5 most recent, state-of-the-art meth-
ods on 4 public benchmark datasets in recommending the
first, second and third next basket. Our experimental results
demonstrate that M? significantly outperforms the state-of-
the-art methods on all the datasets in all the tasks, with an
improvement of up to 22.1%. We also conduct a compre-
hensive ablation study to verify the effects of the different
factors. The results of the ablation study show that learn-
ing all the factors together could significantly improve the
recommendation performance compared to learning each of
them alone. The results also show that the encoder-decoder
based ed-Trans in learning item transitions among baskets
could outperform RNN-based methods on the benchmark
datasets.

The major contributions in this paper are as follows:

o We developed a novel mixed model M? for next-basket
recommendation. M? explicitly models three important
factors: 1) users’ general preferences, 2) items’ global
popularities, and 3) transition patterns among items.

o We developed a novel, simple yet effective encoder-
decoder based framework ed-Trans to model transition
patterns among items in baskets.

« M? significantly outperforms state-of-the-art methods. Our
experimental results over 4 benchmark datasets demon-
strate that M? achieves significant improvement in both
recommending the next basket and recommending the
next a few baskets, with an improvement as much as
22.1%. Our ablation study shows that the factors are
complementary and enable better performance if learned
together (Section 6.5).

e Our ablation study also shows that ed-Trans in learn-
ing item transitions among baskets could on its own
significantly outperform RNN-based methods over the
benchmark datasets, with an improvement as much as
25.4% (Section 6.5.2).

e Our cluster analysis shows that ed-Trans is able to learn
similar embeddings for items which have similar transi-
tion patterns (Section 6.7).

o We discussed the potential issues of evaluation metrics,
experimental protocols and settings that are typically used
in next-basket recommendation, and discussed the use of
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a more appropriate protocol and setting in our experi-
ments (Section 7).

o For reproducibility purposes, we released our source code
and Supplementary Materials at https://github.com/nin
glab/M2.

2 RELATED WORK
2.1 Next-Basket Recommendation

Numerous next-basket recommendation methods have been
developed, particularly using Markov Chains (MCs) and
Recurrent Neural Networks (RNNs) etc. Specifically, MCs-
based methods, such as factorized personalized Markov
chains (FPMC) [2], use MCs to model the pairwise item-
item transition patterns to recommend the next item or the
next basket of items for each user. Wan et al. [8] developed
factorization-based methods triple2vec and adaloyal, in
which the item-item complementarity, user-item compati-
bility and user-item loyalty patterns are modeled for the
next-basket recommendation. Recently, RNN-based meth-
ods have been developed for the next-basket recommenda-
tion. For instance, Yu et al. [3] used RNNs to model users’
dynamic short-term preference at different timestamps.
Wang et al. [9] developed a hierarchical attentive encoder-
decoder model, which iteratively predicts the next baskets
by learning the transitions among items and leveraging both
the positive and negative feedbacks from users. Hu ef al. [1]
developed an encoder-decoder RNN method Sets2Sets.
Sets2Sets employs an RNN as encoder to learn users’
dynamic preference at different timestamps and another
RNN as decoder to generate the recommendation score from
the learned preferences for each recommendation candidate.
Sets2Sets has been demonstrated as the state of the art,
and outperforms an extensive set of existing methods.

Aside from model-based methods, popularity-based ap-
proaches such as popularity on people (POP) [1] and popu-
larity on each person (POEP) [1], are also recently employed
for the next-basket recommendation. POP ranks items based
on their popularity among all the users and recommend
the top-k most popular items to each user. POEP is the
personalized version of POP. It ranks items based on their
popularity of each user and recommends the top-k most
popular items of each user. These two popularity-based
methods have been demonstrated as strong baselines on the
next-basket recommendation in the recent work [1].

Unlike existing RNN-based approaches, M? does not
use the Markov chains or complicated RNNs to model
the transitions among items, or generate embeddings for
users. Instead, M? models the transitions among items using
a simple yet effective fully-connected layer, and explicitly
models users’ general preferences as the frequencies of items
that users have interactions with. Our experimental results
demonstrate the superior performance of M? over the state-
of-the-art baseline methods. Our ablation study also shows
that the fully-connected layer is more effective than RNNs
in terms of the recommendation performance.

2.2 Sequential Recommendation

Sequential recommendation is to generate the recommenda-
tion of the next items based on users’ historical interactions
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as in a sequence. This task is closely related to the next-
basket recommendation. Please refer to Section S1 in the
Supplementary Materials ! for a detailed discussion about
the relations between these two tasks. The sequential rec-
ommendation methods focus on capturing the sequential
dependencies among individual items instead of baskets. In
the last few years, numerous sequential recommendation
methods have been developed, particularly using neural
networks such as Recurrent Neural Networks (RNNs), Con-
volutional Neural Networks (CNNs) and attention or gating
mechanisms, etc. RNN-based methods such as User-based
RNN [10] explicitly integrates user characteristics into
gated recurrent units (GRUs) for personalized recommen-
dation. Skip-gram-based methods such as item2vec [11] and
prod2vec [12] leverage the skip-gram model [13] to learn
transition patterns among individual items. Recently, CNN-
based and attention-based methods have been developed
for sequential recommendation. For example, Tang et al. [14]
developed a convolutional sequence embedding recommen-
dation model (Caser), which uses convolutional filters on
the most recent items to extract union-level features. Kang
et al. [15] developed a self-attention based sequential model
(SASRec), which uses attention mechanisms to capture the
most informative items in users’ historical interactions to
generate recommendations. Sun et al. [16] further devel-
oped a bidirectional self-attention based sequential model
(BERT4Rec), which employs a bidirectional attention mech-
anism to better model users” historical interactions. Recently,
Ma et al. [17] developed a hierarchical gating network
(HGN), which uses gating mechanisms to identify impor-
tant items and generate recommendations. Peng et al. [18]
developed hybrid associations models (HAM), which adapt
the pooling mechanisms to model the association patterns
and synergies among items.

2.3 Session-based Recommendation

Session-based recommendation seeks to generate the rec-
ommendations of the next items in the current session
or future sessions based on users’ interactions in histori-
cal sessions. This task is also closely related to the next-
basket recommendation. The session-based recommenda-
tion methods focus on capturing the intra- or inter-session
dependencies to generate the recommendations [19]. In
the last few years, neural networks such as RNNs, at-
tention mechanisms and graph neural networks (GNNs)
are employed in developing session-based recommendation
methods. RNN-based methods such as GRU4Rec [20] and
GRU4Rec+ [21] employ gated recurrent units (GRUs) to
capture the users’ dynamic short-term preferences over
sessions. Attention-based methods such as NARM [22] and
STAMP [23] employ attention mechanisms to identify the
important items in recent sessions to capture users’ short-
term preferences. Recently, GNN-based methods have also
been developed for the session-based recommendation. For
example, Wu et al. [24] developed a GNN-based recom-
mendation model (SR-GNN) to better model the long-term
dependency among sessions. Qiu et al. [25] re-examined
the item ordering in session-based recommendations and

Section references starting with “S” refer to the sections in the
Supplementary Materials.
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Fig. 2: M2-gp?t Model Architecture

developed a GNN-based model (FGNN) to identify the
items representing users’ short-term preferences in sessions.

3 DEFINITIONS AND NOTATIONS

In this paper, the historical interactions (e.g., purchases,
check-ins) of the i-th user in chronological order are rep-
resented as a sequence of baskets B;={b;(1),b;(2),---},
where b;(t) is a basket of one or more items in the ¢-th
interaction. Note that there may be multiple, same items in
each basket. The number of baskets in B; and the number
of items in b;(t) is denoted as T; and n;(t), respectively. In
this paper, we consider all the baskets in users” history and
all the items in each basket. We do not have a predefined
maximum length for the basket sequences, and maximum
size for each basket. When no ambiguity arises, we will
eliminate ¢ in B;/b;(t), T; and n;(t). In this paper, all the
vectors are by default row vectors and represented using
lower-case bold letters; all the matrices are represented
using upper-case letters. The key notations are in Table 1.

4 METHODS
4.1 Modeling Important Factors in M2

M? has three variants M?-p?, M?>-gp? and M*-gp?t. Figure 1
presents the M?-p? and M?-gp? models. Figure 2 presents
the M?-gp?t model. In these figures, each input basket is
represented as a vector of n (i.e., the number of items) di-
mensions, in which the value in each dimension represents
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the number of the corresponding item in this basket. M?
generates recommendations for the next baskets of items for
each user using three factors: 1) users’ general preferences,
2) items’ global popularities and 3) the transition patterns
among items across baskets. These three factors will be used
to calculate a recommendation score for each candidate item
in the next baskets. In this section, we will first describe how
these three factors are modeled. In the next Section, we will
describe how the three variant methods use these factors for
recommendations.

4.1.1 Modeling Users’ General Preferences (UGP)

Previous studies have shown that users’ interactions are
significantly affected by their general preferences [1], [6],
which are also known as the long-term preferences in the
literature [6], [18]. For example, some users prefer items
of low price, while others may like luxurious items that
could be expensive. Therefore, we explicitly model the
general preferences of users, denoted as UGP, in M?. Exist-
ing methods [2] usually model users’ general preferences
using the embeddings of users. However, there is limited,
if any, validation showing that the learned embeddings
could accurately capture users’ preferences and to what
extent. Thus, in M?, we propose to use the frequencies of
items that each user has interactions with to represent users’
general preferences. The intuition is that if a user has many
interactions with an item, the user has a high preference on
the item and the item represents the user’s preference.
Specifically, given each user’s historical interactions,
her/his general preference is represented as follows,

p:[p17p27"' 7pn] G]Rlxna (1)

where

pj = nj/zj ny, 2

n is the total number of unique items among all the baskets,
and n; is the total number of interactions with item j of
the user among all her/his interactions, and thus p; > 0,
> iD= 1. Here, we do not weight the interactions on
items differently based on when they occur. This is because
in real applications, we typically only use the data in the
past, relatively short period of time (e.g., a few months) to
train recommendation models [26]. In this short period, we
can assume that most of the users will not change their
general preferences dramatically, and thus all their inter-
acted items will contribute to their UGP estimation evenly. A
distinct advantage of the preference representation UGP as in
Equation 1 compared to embedding representations for user
preferences is that the UGP representation is very intuitive
and easy to validate, and loses minimum user information.

The formulation of users’ general preferences in Equa-
tion 1 is designed for the application scenarios that users
are likely to have multiple interactions with the same item
(e.g., online shopping, grocery shopping). For the other
few application scenarios that do not have this property
(e.g., movie recommendation), our formulation may not be
applicable. We leave the investigation of these applications
in the future work.

4.1.2 Modeling Iltems’ Global Popularities (IGP)

It has been shown in the literature [1], [2], [27], [28] that the
items’ global popularities also significantly influence users’
purchases. Specifically, users may prefer popular items than
those non-popular ones due to the herd behaviors [29], that
is, they prefer to purchase items that are also purchased
by many others. In M?, the items’ global popularities are
represented as in the following vector v,

V= [Ulvv%'” 71)11] € Rlxnv (3)

where n is the total number of unique items among all the
baskets, and v; is a learnable scalar to represent the global
popularities of item j. Intuitively, if item j is popular, v; will
be large. Here, following the ideas in Koren et al. [27], we
learn the popularity representations (i.e., v;) for items via
learning and optimizing from data for better performance
rather than directly calculating them from data.

4.1.3 Modeling Transitions among ltems (TPI) via an
Encoder-Decoder Framework (ed-Trans)

The transitions among items is another important factor
in inducing the next baskets of items that the users will
be interested in [2], [14], [18]. For example, if a user pur-
chased cat toys in a basket, she/he is likely to purchase
cat food and treats in the next baskets compared to wine
and beers, as there could be stronger transitions among cat
items compared to from cat items to alcohols. In M2, we
explicitly model the item transitions, denoted as TPI, and
their effects on the next baskets. Specifically, we model the
item transitions via an encoder-decoder based framework,
denoted as ed-Trans, which takes the individual items in
the historical interactions as input to predict the items in the
next baskets.

4131 ed-Trans Encoder: We first represent the
items aggregated over all the baskets of each user using a
vector g:

g:[gtha"'7gj7"'7gn}€Rlxna (4)

where g; is the total number of interactions with item j of
the user among all her/his baskets, weighted by a time-
decay parameter:

6= 2" Litem j € b(1), ©)

where v € (0, 1] is the time-decay parameter to emphasize
the items in the most recent baskets more than those in early
baskets, and 1(x) is an indicator function (1(z) = 1 if = is
true, otherwise 0). Existing methods usually use RNNs to
learn weights for different baskets. However, recommenda-
tion datasets are always super sparse so that RNNs may not
learn meaningful weights in such sparse datasets. Instead,
in M?, we leverage the fact that the recent interacted items
affect the next basket of items more significantly compared
to the items interacted much earlier [14], [15], and use the
time-decay factor «y to explicitly assign and incorporate the
different weights.

Given g, we use a simple fully-connected layer as the
encoder to encode the hidden representation of the next
basket h € R1* as follows:

h = tanh(gW), (6)
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where W € R™*4 is a learnable weight matrix and tanh()
is the non-linear hyperbolic tangent activation function.
Thus, the fully-connected layer represents the transition
from all previous items to the items in the next basket.
Here, we do not explicitly normalize g because the learnable
parameter W will accommodate the normalization. Differ-
ent from RNN-based methods which learn the transition
patterns in a recurrent fashion and update the hidden states
sequentially at each time stamp, the aggregation through
the fully-connected layer in Equation 6 can be done much
more efficiently as the item representation in Equation 4 can
be done within a map-reduce framework [30] and thus in
parallel. Therefore, ed-Trans could be more efficient than
RNN-based methods especially on modeling long interac-
tion sequences.

4132 ed-Trans Decoder: Given h, we use a fully-
connected layer as the decoder to decode the recommenda-
tion scores s for all the item candidates in the next basket as
follows:

s = softmax(hA + b), (7)

where s € R1X" is a vector in which the j-th dimension has
the recommendation score of item j, A € R4*" is a learnable
matrix and b is a bias vector. The bias vector can also be
interpreted as the items’ global popularities because it is
shared among all the baskets. Thus, ed-Trans could capture
both the transition patterns and items” global popularities.

4.2 Calculating Recommendation Scores in M2
4.2.1 Recommendation Scores using UGP and IGP

We propose a variant of M? to generate recommendations by
combining the representations of users’ general preferences
p and items’ global popularities v only. This method is re-
ferred to as mixed models with preferences and popularities
and denoted as M2-p2. In M2-p?, the recommendation scores
of item candidates are calculated as follows:

f = (1 — a)p + « softmax(v), 8)

where # € R " is the vector of recommendation scores,
and o is a learnable weight to model the importance of
users’ general preferences and items’ global popularities
in users’ interactions. The softmax function is employed to
normalize v to be in the same range with p. The intuition
here is that, as shown in the literature [1], [2], users’ general
preferences and items’ global popularities significantly af-
fect users’ interactions. Thus, combing these two important
factors should lead to reasonable recommendations. Based
on the scores, the items with the top-% largest scores will be
recommended into the next basket.

In M2-p?, in principle, a could be modeled as a tunable
parameter or a learnable weight. To be consistent with the
other M? variants that will be presented in Section 4.2.2 and
Section 4.2.3, and to optimize performance, we model « as
a learnable weight, and learn it in an end-to-end fashion.

4.2.2 Recommendation Scores using Gating Networks

One possible limitation of M2-p? could be that in M?-p?, we
use a single weight « for all the users. In this way, M>-p? can
not capture the pattern that the weight could be different on
different users. To resolve this limitation, we follow the idea

5

of gating networks [17] to calculate personalized weight «.
Specifically, we calculate the o« using p (Equation 1) and v
(Equation 3) as follows:

a=o(pc’ +vq'), )

where () is the sigmoid function, ¢’ and q' are learnable
weight vectors. The intuition here is that the importance of
UGP and IGP(i.e., o) would be learned from themselves (i.e.,
p and v). The method with personalized weights is referred
to as mixed models with gated preferences and popularities,
denoted as M2-gp?.

4.2.3 Recommendation Scores using UGP, IGP and TPI

Considering all the three important factors, we propose a
unified method with preferences, popularities and transi-
tions, denoted as M?-gp®t. In M?-gp?t we calculate the recom-
mendation scores vector € R1*" using the representation
p (Equation 1) generated from UGP and the recommendation
scores s (Equation 7) from ed-Trans as follows:

f=(1-a)p+as, (10)
where, similarly with that in M?-gp?, « is calculated from p
(Equation 1) and h (Equation 6) as following:

a=a(pc’ +hq'), (11)
where, as presented in Section 4.2.2, o() is the sigmoid
function, ¢' and q—r are learnable weight vectors. Please
note that as discussed in Section 4.1.3.2, the scores in s are
generated using both items’ popularities and the transition
patterns. Thus, M2-gp?t uses all the three factors to make
recommendations. Also note that, as shown in Equation 7,
the vector s is already normalized to be in the same range

with p. Therefore, we do not need the softmax function for
the normalization in Equation 10.

4.3 Network Training

We minimize the negative log likelihood that the ground-
truth items in the next baskets have high recommendation
scores. The optimization problem is formulated as follows,
m
ming Zi:l —r;log(#]) + \||©]%, (12)
where m is the number of users to recommend baskets to,
r; and 1; are for the i-th user, © is the set of the parameters,
and A is the regularization parameter. Following previous
work [1], [3], we calculate the training error on the last
basket in training data. The vector r; is the vector repre-
sentation of the items in the last basket b;(T), in which
the dimension j is 1 if item j is in b;(T") or 0 otherwise.
Here, we do not consider the frequencies of individual
items in the baskets (i.e, r; is binary), as we do not predict
the frequencies of items in the next baskets. We optimize
Problem 12 using the Adagrad optimization method [31].
The parameter tuning protocol and all the parameters for
modeling are reported in Section S3.
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5 EXPERIMENTAL SETTINGS
5.1

We compare M? with 5 state-of-the-art baseline methods on
next-basket recommendations: 1) POP [1] ranks items based
on their popularity among all the users, and recommends
the top-k most popular items. 2) POEP [1] ranks items based
on their popularity on each user and recommends the per-
sonalized top-k most popular items.3) Dream [3] uses RNNs
to model users’ preferences over time. It uses the most
recent hidden state of RNNs to generate recommendation
scores and recommends the items with top-k scores. 4)
FPMC [2] models users’ long-term preferences and the transi-
tion patterns of items using the first-order markov chain and
matrix factorization. 5) Sets2Sets [1] adapts the encoder-
decoder RNNs to model the short-term preferences and the
recurrent behaviors of users. Please note that Sets2Sets
achieves the state-of-the-art performance on the next-basket
recommendation and outperforms other methods [2], [3],
[32]. Therefore, we compare M? with Sets2Sets but not the
methods that Sets2Sets outperforms.

Baseline Methods

5.2 Datasets

We generate 4 datasets from 3 benchmark datasets TaFeng?,
TMall®, and Gowalla* to evaluate the different methods.
TaFeng has grocery transactions in 4 months (i.e., 11/1/2020
to 02/28/2020) at a grocery store and each basket is a trans-
action of grocery items. TMall has online transactions in 5
months (i.e., 07/01/2015 to 11/31/2015) and each basket
is a transaction of products. Gowalla [33] is a place-of-
interests dataset and contains user-venue check-in records
with timestamps. Similarly to Ying et al. [34], we view the
check-in records in one day as a basket and focus on the
records in 10 months (i.e., 01/01/2010 to 10/31/2010).
Following previous work [34], we do the following filter-
ing to generate the datasets we will use in the experiments:
1) filter out the infrequent users with fewer than 10, 20
and 15 items from the original TaFeng, TMall and Gowalla
dataset, respectively, 2) filter out infrequent items interacted
by fewer than 10, 20 and 25 users from the TaFeng, TMall
and Gowalla dataset, respectively, and 3) filter out users
with fewer than 2 baskets. Out of the above three filtering
steps, each of the 3 original datasets will have frequent users
and items, and we denote the processed datasets still as
TaFeng, TMall and Gowalla. In order to better evaluate the
methods in real applications that have a large amount of
users and items, from the original TMall dataset, we also
apply a smaller threshold 10 on user frequency and item
frequency to generate another dataset, denoted as sTMall,
with more users and items retained. The statistics of the
preprocessed datasets are presented in Table 2. We noticed
that the Dunnhumby dataset® and the Instacart dataset® are
also used in the literature [1], [8]. However, Dunnhumby is
a simulated dataset and the Instacart dataset is not publicly
available now. Therefore we do not use these datasets in our

Zhttps:/ /www.kaggle.com/chiranjivdas09/ ta-feng-grocery-dataset
3https: / /tianchi.aliyun.com/dataset/dataDetail?datald=42

*https:/ /snap.stanford.edu/data/loc-Gowalla.html

5https: / /www.dunnhumby.com/source-files/

®https:/ /www.instacart.com/datasets/grocery-shopping-2017

TABLE 2: Dataset Statistics

dataset #items #baskets #users #items/bskt #bskt/user
TaFeng 10,829 97,509 16,788 6.72 5.81
TMall 21,812 360,587 28,827 2.41 12.51
sTMall 104,266 2,052,959 214,105 2.01 9.59
Gowalla 26,529 902,505 26,822 1.77 33.65

The columns #items, #baskets, #users, #items/bskt and #bskt/user
correspond to the number of items, the number of baskets over all
users, the number of users, the average number of items per basket
and the average number of baskets per user, respectively.

experiments. We discussed the limitations of these datasets
in detail in Section S6.

5.3 Experimental Protocol

Similarly to Ying et al. [34], we split the 4 datasets based on
cut-off times as shown in Figure 3. Specifically, on TaFeng,
we use the transactions in the first 3 months as the training
set, the transactions in the following 0.5 month as the
validation set, and the transactions in the last 0.5 month
as the testing set. Similarly, on Gowalla, we use the records
in the first 8 months as the training set, the records in the
following 1 month as the validation set, and the records in
the last 1 month as the testing set. On TMall and sTMall, we
use the transactions in the first 3.5 months as the training set,
the transactions in the following 0.5 month as the validation
set, and the transactions in the last 1 month as the testing
set. We split the datasets in this way to guarantee that all
the interactions in the testing set occur after the interactions
in the training and validation sets. Thus, the setting is close
to real use scenarios. A detailed discussion about different
experimental protocols is presented later in Section 7.1.

We denote the baskets in the training, validation and
testing sets as training, validation and testing baskets, re-
spectively. The users which have interactions in the training,
validation and testing sets are denoted as training, valida-
tion and testing users, respectively. Please note that a user
can be both training and testing user if she/he has baskets
in both training and testing sets. During training, we only
use the interactions in the training baskets to estimate users’
general preferences and to learn item transition patterns.
There could be items in testing or validation baskets that
never appeared in training baskets (i.e. cold-start items).
In this case, we will retain the baskets with such items.
Since M? and all the baseline methods are not developed
for the cold-start problem [35], the cold-start items will not
get recommended but the baskets with such items can still
be evaluated due to other items.

We tune the parameters using grid search and use the
best parameters in terms of recall@5 on the validation set
during testing for the M? and all the baseline methods.
Following previous work [14], [15], [17], during testing, we
use the interactions in both training and validation sets to
train the model with the optimal parameters identified at
the validation set. Similarly to Hu et al. [1], we evaluate
M? and baseline methods on three tasks: recommending the
first next basket, the second next basket and the third next
basket. Please note that in recommending the second next
or third next basket, during evaluation, the first or second
testing basket, respectively, of testing users will be used
to update the user’s general preference representation p

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 3: M?-gp?t Datasets Splitting Protocol

(Equation 1) and item transitions in g (Equation 4). Also
note that the number of validation and testing users in these
three tasks could be different. In recommending the second
next basket, only users with at least two validation or testing
baskets are used as validation or testing users, but users
with only one validation or testing basket will not be used
in evaluation.

5.4 Evaluation Metrics

We use recall@k, precision@k, and NDCG@k to evaluate
the different methods. For each user, recall measures the
proportion of all the ground-truth interacted items in a
testing basket that are correctly recommended. We denote
the set of £ recommended items and the set of the items in
the ground-truth basket as Ry, and .S, respectively. Given Ry,
and S, recall@k is calculated as follows:

|Rr N S|
S| 7

where R;, N S is the intersection between the two sets and

|S| denotes the size of the set S. Precision measures the

proportion of all the recommended items that are correctly
recommended, and precision@¥ is calculated as follows:

recall@k = (13)

|RkﬂS|
—

We report in the experimental results the recall@k and
precision@k values that are calculated as the average over
all the testing users. Higher recall@k and precision@k indi-
cate better performance. It is worth noting that although
we use precision@k in our experiments, we argue that
precision@k may not be a proper metric for evaluating next-
basket recommendation methods as we will discuss later in
Section 7.2.

NDCG@Ek is the normalized discounted cumulative gain
for the top-k ranking. In our experiments, the gain indicates
whether a ground-truth item is recommended (i.e., gain is
1) or not (i.e., gain is 0). NDCG@Fk incorporates the posi-
tions of the correctly recommended items among the top-k
recommendations. Higher NDCG@k indicates the ground-
truth items are recommended at very top, and thus better
recommendation performance.

Besides these evaluation metrics, we also statistically
test the significance of the performance difference among
different methods via a standard ¢-test. Specifically, we
conducted t-test over the paired recall, NDCG and precision
values from different methods. If the p-values are smaller
than a predefined threshold « (e = 0.05 in our experiments),
the performance difference of two methods is considered
statistically significant at 100(1-a)% confidence level.

precision@k = (14)

6 EXPERIMENTAL RESULTS
6.1 Overall Performance on the First Next Basket

TABLE 3: Performance Comparison on the Next Basket

recall@k NDCG@k

method
k=5 k=10 k=20 k=5 k=10 k=20
POP 0.0866 0.0963 0.1151  0.1227 0.1161 0.1203
__ POEP 0.0817 0.1153 0.1563  0.1109 0.1127 0.1240
& Dream 0.0839 0.0928 0.1086  0.0694 0.0655 0.0697
3L FPMC 0.0568 0.0672 0.0831  0.0691 0.0658 0.0698
o Sets2Sets 0.0822 0.1230 0.1705  0.0952 0.1049 0.1200
§ M-p? 0.0908 0.1338 0.1766  0.1192 0.1244 0.1367
N M%-gp? 0.0916 0.1344 0.1782  0.1207 0.1257 0.1381
T m2gp?t 101013 0.1375 T0.1936  70.1280 10.1306 10.1469
improv  17.0% 11.8% 13.5% 43% 12.5% 18.5%
POP 0.0802 0.0828 0.0872  0.0777 0.0784 0.0800
__ POEP 0.1051 0.1264 0.1524  0.0793 0.0857 0.0927
& Dream 0.0833 0.0868 0.0927  0.0752 0.0765 0.0781
S FPMC 0.0802 0.0809 0.0867  0.0777 0.0778 0.0797
< Sets2Sets 0.1092 0.1360 f0.1653  10.0979 f0.1071 10.1154
5 M2p? 0.1118 0.1365 0.1584  0.0843 0.0919 0.0977
E M2-gp? 0.1123 0.1360 0.1548  0.0846 0.0919 0.0971
M>-gp’t  10.1165 10.1395 0.1648  0.0939 0.1010 0.1079
improv 6.7%  2.6% -0.3% A% BT% -6.5%
POP 0.0859 0.0880 0.0905  0.0834 0.0840 0.0846
~ POEP 0.0936 0.1091 0.1187  0.0761 0.0810 0.0836
& Dream 0.0852 0.0873 0.0934  0.0826 0.0833 0.0848
< FPMC 0.0845 0.0869 0.0902  0.0820 0.0828 0.0837
2 Sets2sets OOM OOM OOM  OOM OOM OOM
T M2p? 0.0991 0.1203 0.1388  0.0791 0.0857 0.0906
E M2-gp? 0.0992 0.1204 0.1393  0.0791 0.0857 0.0907
©  M2gp2t T0.1114 10.1285 70.1404  70.0948 f0.1002 10.1035
improv.  19.0% 17.8% 183%  13.7% 19.3% 22.1%
POP 0.0111 0.0240 0.0413  0.0064 0.0110 0.0158
& POEP 0.4551 0.5179 0.5649  0.3793 0.4007 0.4136
& Dream 0.0187 0.0307 0.0436  0.0127 0.0169 0.0206
o FPMC 0.0107 0.0255 0.0536  0.0059 0.0111 0.0187
= Sets2Sets 0.3941 04745 0.5443 03184 0.3462 0.3654
=5 M2p? 0.4574 05213 0.5664  0.3800 0.4019 0.4143
£ M2-gp? 0.4578 05194 0.5689  0.3802 0.4013 0.4148
O M’-gp’t T0.4599 10.5232 10.5736  10.3813 f0.4030 f0.4168
improv 11%  1.0% 15% 0.5% 0.6% 0.8%

For each dataset, the best performance among our proposed methods
(i-e., M2-p2, M2-gp? and M2-gp?t) is in bold, the best performance among
the baseline methods is underlined, and the overall best performance
is indicated by a dagger (i.e., 1 ). The row “improv” presents the per-
centage improvement of the best performing methods among M?-p2,
M2-gp? and M2-gp2t (bold) over the best performing baseline methods
(underlined) in each column. The numbers in the parentheses after
the datasets represent the number of testing users in the datasets. The
"OOM” represents the out of memory issue. The * indicates that the
improvement is statistically significant at 95 percent confidence level.

Table 3 presents the overall performance at recall@k
and NDCG@k in recommending the first next basket of
all the methods on the 4 datasets. Due to the space limit,
we report the performance at precision@k in Section S4.1.
In Table 3, for each dataset, the best performance among
M? variants (i.e., M2-p2?, M2-gp? and M2-gp2t) is in bold, the
best performance among baseline methods (e.g., POP, POEP,
Sets2Sets) is underlined. and the overall best performance
is indicated by a dagger (i.e., T). We report the parameters
that achieve the reported performance also in Section S3.
For Sets2Sets, we use the implementation provided by
the authors. However, this implementation raises memory
issues and cannot fit in 16GB GPU memory on the largest
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dataset sTMall. Therefore, we report out of memory (OOM)
for Sets2Sets on sTMall.

Table 3 shows that overall, M>-gp?t is the best performing
method on the task of recommending the first next basket. In
terms of recall@5, recall@10 and recall@20, M2-gp?t achieves
the best performance with significant improvement com-
pared to the second best method on TaFeng and sTMall. On
the TMall and Gowalla datasets, M2-gp2t also achieves the
best or second best performance at recall@5, recall@10 and
recall@20. Compared to the second best method, M?-gp*t
achieves on average 6.8%, 2.9% and 2.5% improvement at
recall@5, recall@10 and recall@20, respectively, over all the
datasets. In terms of NDCG@5, NDCG@10 and NDCG@20,
M?-gp®t achieves the best performance on TaFeng, sTMall
and Gowalla, and the second best performance on the TMall
dataset. In particular, on the largest dataset sTMall, M*-gp*t
achieves substantial improvement of 10.8% on average over
all the metrics compared to the second best method. On the
most widely used benchmark dataset TaFeng, M?-gp®t also
achieves significant improvement of at least 2.3% over the
second best method at all the metrics. On Gowalla where
many baseline methods do not perform well, M?-gp?t is still
slightly better than the second best method M2-gp?. It is also
worth noting that, compared to the performance of the best
baseline methods (underlined in Table 3), M2-gp®t achieves
statistically significant improvement over most of the met-
rics on 3 out of 4 datasets. On the TMall dataset, M2-gp?+t still
achieves statistically significant improvement over the best
baseline methods at both recall@5 and recall@10. These re-
sults demonstrate the strong performance of M?-gp?t. M2-gp?
is the second best performing method in our experiments.
It achieves the second best or (near) the second best perfor-
mance on all the four datasets. We notice that POP, Dream
and FPMC work poorly on the Gowalla dataset. This might
be due to the fact that these methods do not really capture
the personalized general preferences of users. Recall that
the Gowalla dataset is a place-of-interests dataset, which
contains user-venue check-in records of users. Different
users live in different places and could interact with very
different items. Thus, methods without explicitly model
users’ personalized general preferences could not work well
on this dataset.

6.1.1 Comparing M?-gpt with model-based methods

Table 3 also shows that among the 4 model-based methods
Dream, FPMC, Sets2Sets and M?-gp?t, M?-gp?t consistently
and significantly outperforms Dream and FPMC on all the
datasets. The primary difference among M?-gp®t, Dream
and FPMC is that M*-gp®t explicitly models users’ general
preferences using the frequencies of the items that each
user has interactions with, while Dream and FPMC implicitly
model them using the hidden state of RNNs or user embed-
dings. Given the sparse nature of recommendation datasets
(Table 2), it is possible that the learned hidden states or user
embeddings cannot represent the user preferences well, as
the signals of user preferences are smoothed out due to data
sparsity during the recurrent updates, or by the pooling or
weighting schemes used to learn user embeddings as some
other work also noticed [18], [36], [37]. The superior perfor-
mance of M2-gp?t over Dream and FPMC on all the datasets

8

demonstrates the effect of explicitly modeling users’ general
preferences.

Table 3 shows that M?-gp?t significantly outperforms
Sets2Sets on all the datasets except TMall in terms of both
recall@k and NDCG@k. The primary differences between
M?-gp®t and Sets2Sets are 1) M?-gp?t explicitly models
the transition patterns among items using encoder-decoder-
based ed-Trans, while Sets2Sets implicitly models the
transition patterns using RNNs, and 2) when calculating
the recommendation scores, M>-gp?t learns a single weight
on each user (i.e., a in Equation 10), but Sets2Sets learns
different weights for different items on each user. Given the
sparse nature of the recommendation datasets, weights for
different items on each user may not be well learned [18],
[36]. Thus, such weights may not necessarily help better
differentiate user general preferences over items. In addi-
tion, the learned weights over items may guide the model
to learn inaccurate general preferences of users, and thus
degrade the performance. We also notice that on TMall,
M2-gp?t underperforms Sets2Sets in terms of NDCG but
outperforms Sets2Sets in terms of recall. This indicates
that on certain datasets, M>-gp?t could be more effective
than Sets2Sets on ranking the items of users’ interest on
top of the recommendation list, while less effective than
Sets2Sets on raking these items on the very top. However,
Sets2Sets is very memory consuming, demonstrated by
out of memory (OOM) issues on the largest dataset sTMall,
which substantially limits its use in real, large-scale recom-
mendation problems.

6.1.2 Comparing M2-gp?t with popularity-based methods

In Table 3, we also notice that M?-gp®t statistically sig-
nificantly outperforms the best popularity-based method
M2-gp? on all the datasets. On average, it achieves 6.8%,
3.0%, 9.3% and 7.8% improvement over M?-gp? in terms of
recall@5, recall@10, NDCG@5 and NDCG®@10, respectively,
over all the datasets. Recall that the key difference between
M?-gp?t and M?-gp? is that M?-gp?t models users’ general
preferences, items’ global popularities and the transition
patterns, whereas M?-gp? only models users’ general prefer-
ences and items’ global popularities. These results demon-
strate the importance of transition patterns in sequence-
based next-basket recommendation.

6.1.3 Comparison among popularity-based methods

Among the four popularity-based methods POP, POEP, M2-p?
and M?-gp?, M?-gp? achieves the best performance at most
of the metrics on all the 4 datasets. Between M?-gp? and
M2-p?, M2-gp? outperforms M?-p? on the TaFeng and Gowalla
datasets, and achieves similar performance with M?-p? on
the TMall and sTMall datasets. In terms of recall@5, M?-gp?
outperforms M?-p? on all the datasets. In terms of recall@10
and recall@20, M?-gp? outperforms M2-p? on the TaFeng and
sTMall datasets, and achieves similar performance with
M2-p? on the TMall and Gowalla datasets. We also found
a similar trend on NDCG@k: for example, in terms of
NDCG@5, M?-gp? outperforms M?-p? on all the datasets
except sTMall. On sTMall, M?-gp? achieves the same per-
formance with M2-p2. The difference between M2-gp? and
M2-p? is that M2-gp? learns personalized weights to combine
users’ general preferences and items’ global popularities,
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while M2-p? only learns one such weight for all the users.
The substantial performance improvement of M?-gp? over
M?-p? demonstrates the importance of learning personal-
ized weights. We also notice that overall, M?-p? consistently
outperforms POP and POEP on all the datasets over all the
metrics. In terms of recall@5, recall@10 and recall@20, M?-p?
consistently outperforms POP and POEP at all the 4 datasets.
For example, on the widely used TaFeng dataset, in terms of
recall@10, M?-p? achieves significant improvement of 38.9%
and 16.6% compared to POP and POEP, respectively. Recall
that the difference between M2-p2, POP and POEP is that M2-p?
models both users’ general preferences and items’ global
popularities, while POP and POEP only model one of them.
The substantial improvement of M?-p? over POP and POEP
demonstrates that items” global popularities and users’ gen-
eral preferences are complementary. When learned together,
they will enable better performance than each alone. It is
also worth noting that M2-gp? outperforms the state-of-the-
art model-based method Sets2Sets at all the metrics on
TaFeng and Gowalla. The superior performance of M2-gp? is
a strong evidence that the simple popularity-based methods
could still be very effective in next-basket recommendations.

6.2 Performance on the Second Next Basket

Table 4 presents the overall performance of different meth-
ods at recall@k and NDCG@k in recommending the second
next basket (i.e., the second basket in the testing set) on the
4 datasets. We also report the performance at precision@k
in Section 54.2. The parameter tuning protocol in this task
is the same as that in recommending the first next basket
(Section 6.1). As discussed in Section 5.3, when recommend-
ing the second next basket, the first testing basket of users
will be used to update the models. In addition, in this
task, only users with at least two testing baskets will be
used as testing users. Thus, the number of testing users
in this task could be different from that in recommending
the first next basket. Specifically, as shown in Table 4, when
recommending the second next basket, we have 2,801, 5,109,
29,741 and 10,032 testing users on TaFeng, TMall, sTMall
and Gowalla, respectively.

6.2.1

As shown in Table 4, overall, in recommending the second
next basket, the performance of M? and baseline methods has
a similar trend as that in recommending the first next basket.
In particular, M>-gp®t is still the best performing method
in this task. In terms of recall@5, M?-gp?t achieves the best
performance on all the 4 datasets. In terms of recall@10,
M2-gp?t achieves the best performance on the sTMall and
Gowalla datasets, and the second best performance on the
TaFeng and TMall datasets. We also found a similar trend
on NDCG@k: in terms of NDCG@5, M2-gp?t achieves the
best performance on the sTMall and Gowalla datasets, and
the second best or (near) the second best performance on
the TaFeng and TMall datasets. M?-gp? is still the second
best performing method. In terms of recall@5 and recall@10,
M?-gp? achieves the best performance on the TaFeng dataset,
and the second best performance or (near) the second best
performance on the other 3 datasets (i.e., TMall, sTMall,
Gowalla). In terms of NDCG@5 and NDCG@10, M2-gp? also

Overall Performance

TABLE 4: Performance on the Second Next Basket

recall@k NDCG@k

method
k=5 k=10 k=20 k=5 k=10 k=20
POP 0.1024 0.1352 0.1475  70.1356 10.1392 0.1422
__ POEP 0.0920 0.1313 0.1787  0.1056 0.1138 0.1293
S Dream 0.0965 0.1054 0.1168  0.0629 0.0619 0.0651
X FPMC 0.0461 0.0618 0.0805  0.0476 0.0500 0.0558
o Sets2Sets 0.0734 0.1236 0.1882  0.0670 0.0856 0.1086
g M2p? 0.0893 0.1367 0.1927  0.1053 0.1161 0.1345
L{g M2-gp?  10.1113 f0.1549 02036  0.1222 0.1316 f0.1482
M2-gp®t  10.1113 0.1517 f0.2062  0.1198 0.1280 0.1461
improv 8.7% 14.6%  9.6%  99% -55% 4.2%
POP 0.0855 0.0872 0.0892  0.0827 0.0837 0.0844
POEP 0.1253 0.1556 0.1904  0.0959 0.1052 0.1144
& Dream 0.0907 0.0940 0.0979  0.0844 0.0857 0.0868
= FPMC 0.0860 0.0875 0.0915  0.0831 0.0837 0.0849
— Sets2Sets 0.1345 0.1628 0.1972  10.1175 10.1275 f0.1373
= M2p? 0.1344 10.1657 0.1940  0.1019 0.1117 0.1192
E M2-gp? 0.1347 0.1645 70.2018  0.1022 0.1112 0.1211
M2-gp?t  10.1374 0.1656 0.1999  0.1096 0.1183 0.1276
improv 22% 1.8% 23%  -67% 72% -7.1%
POP 0.0835 0.0870 0.0912  0.0820 0.0832 0.0843
. POEP 0.1132 0.1398 0.1563  0.0885 0.0968 0.1011
S Dream 0.0866 0.0893 0.0946  0.0833 0.0842 0.0856
o~ FPMC 0.0853 0.0874 0.0911  0.0828 0.0835 0.0844
S sets2sets OOM OOM OOM  OOM OOM OOM
T M2p? 0.1205 0.1482 0.1698  0.0926 0.1012 0.1069
E M2-gp? 0.1203 0.1482 0.1699  0.0925 0.1012 0.1069
»  M2-gp’t  T0.1258 10.1528 f0.1718  10.1023 f0.1109 10.1159
improv.  11.1%  93% 99%  15.6% 14.6% 14.6%
POP 0.0124 0.0228 0.0399  0.0072 0.0110 0.0158
& POEP 0.4765 05413 0.5872  0.3920 0.4142 0.4271
S Dream 0.0200 0.0340 0.0507  0.0134 0.0182 0.0228
S FPMC 0.0059 0.0158 0.0329  0.0033 0.0067 0.0112
= Sets2Sets 0.3915 0.4804 0.5565  0.3128 0.3436 0.3646
= M2p? 0.4764 05426 0.5894  0.3916 0.4145 0.4275
£ M-gp? 0.4767 05439 0.5904  0.3921 0.4152 0.4281
O M2-gp’t T0.4787 10.5456 10.5979  10.3932 f0.4163 10.4307
improv 05% 0.8% 1.8% 03% 05% 0.8%

The columns in this table have the same meanings as those in Table 3.

achieves the second best or (near) the second best perfor-
mance on 3 out of 4 datasets (i.e., TaFeng, sTMall, Gowalla).
It is also worth noting that on the widely used TaFeng
dataset, M?-gp? significantly outperforms M?-p? at 24.6%,
13.3%, 16.0% and 13.4% on recall@5, recall@10, NDCG@5
and NDCG®@10, respectively. As discussed in Section 6.1.3,
the difference between M?-gp? and M?-p? is that M?-gp? learns
personalized combine weights, while M?-p? learns one com-
bine weight for all the users. The significant improvement
of M2-gp? over M?-p? further demonstrates the importance of
learning personalized combine weights.

6.2.2 Comparing with the performance on the next basket

We also notice that the performance of those methods that
model users’ general preferences (e.g., POEP, M*-gp? and
M2-gp?t) increases as we recommend the baskets in the later
future (i.e., the second next basket). For example, on the
largest sTMall dataset, POEP has recall@5 value 0.0936 (Ta-
ble 3) in recommending the first next basket, while this value
increases to 0.1132 (Table 4) in recommending the second
next basket. This might be due to the fact that the testing
users with more than one basket in the testing set are in
general more active (i.e., have more baskets). Specifically, on
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sTMall, the testing users in the experiments of recommend-
ing the first next basket have 9.6 baskets on average used for
training. However, the testing users in the experiments of
recommending the second next basket have 10.6 baskets on
average (i.e. 10.4% increasing). Thus, more baskets used for
model training enable methods which model users’ general
preferences to more accurately estimate the general prefer-
ences of testing users, and thus achieve better performance
for the second next basket recommendation.

It is worth noting that although M?-gp? significantly
underperforms M?-gp?t when recommending the first next
basket, M2-gp? could achieve similar or even better perfor-
mance over M?-gp?t at some metrics when recommending
the second next basket. For example, on TaFeng, when
recommending the first next basket, M2-gp?t achieves signif-
icant improvement of 10.6%, 8.6% at recall@5 and recall@20
(Table 3) over M?-gp?. However, when recommending the
second next basket, M?-gp? is able to achieve the same
performance with M?-gp?t at recall@5 (i.e., 0.1113 as in Ta-
ble 4). As just discussed, the testing users in recommending
the second next basket are in general more active than
those in recommending the first next basket. The similar
performance of M?-gp? and M?-gp?t indicates that the inter-
actions of active users are more dominated by their general
preferences and the global popularities of items. Thus, for
active users, the simple popularity-based methods could be
very effective. However, since in real applications, most of
the users are not active, it is still important to model the
transition patterns in general recommendation applications.

6.3 Performance on the Third Next Basket

Table 5 presents the overall performance of methods at
recall@k and NDCG@k on the task of recommending the
third next basket. The performance at precision@k is re-
ported in Section S4.3. Please note that as discussed in
Section 5.3 and Section 6.2, the number of testing users
in this task could be different from that in recommending
the first, and second next basket. Specifically, as shown
in Table 5, when recommending the third next basket, we
have 1,099, 1,461, 7,561 and 7,985 testing users on TaFeng,
TMall, sTMall and Gowalla, respectively. Table 5 shows that
overall, the performance of M? and baseline methods still
has similar trend as that in recommending the first and
second next basket. M?-gp?t is still the best performing
method. In terms of recall@5, M2-gp?t achieves the best
performance at 3 out of 4 datasets (i.e., TaFeng, sTMall and
Gowalla). On the TMall dataset, M?-gp?t also achieves the
second best performance. We also found a similar trend on
NDCG®@k: in terms of NDCG@5, M2-gp2t also achieves the
best performance on 3 out of 4 datasets, and the second
best performance on the TMall dataset. M?-gp? is still the
second best performing method. In terms of recall@5, M2-gp?
achieves the best performance on the TMall dataset, and the
second best performance on the TaFeng and sTMall dataset.
The same trends as discussed in Section 6.2.1 could also be
found here. It is also worth noting that as shown in Table 5,
in terms of recall@k, the best M? variant (i.e., M2-p?, M2-gp?
or M?-gp?t), statistically significantly outperforms the best
baseline methods on 3 out of 4 datasets. On TMall, M2-gp2t
still statistically significantly outperforms the best baseline
method POEP at recall@5.
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TABLE 5: Performance on the Third Next Basket
method recall@k NDCG@k
k=5 k=10 k=20 k=5 k=10 k=20
POP 0.0725 0.1255 0.1519  0.0924 0.1063 0.1142
__ POEP 0.1037 0.1415 0.1907  0.1114 0.1207 0.1360
S Dream 0.0632 0.0763 0.0866  0.0552 0.0569 0.0601
X FPMC 0.0420 0.0593 0.0788  0.0451 0.0499 0.0562
o Sets2Sets 0.0732 0.1158 0.1791  0.0650 0.0802 0.1025
g M2p? 0.1039 0.1482 0.1906  0.1109 0.1231 0.1367
S M2-gp? f0.1162 f0.1547 10.2057  10.1205 f0.1297 f0.1461
T oM2gp2t 01141 01525 01969  0.1162 0.1273 0.1421
improv.  121%  9.3%  7.9% 82%  T75% 7AW
POP 0.0727 0.0741 0.0759  0.0675 0.0678 0.0682
POEP 0.1522 0.1925 02308  0.1096 0.1209 0.1306
2 Dream 0.0717 0.0744 0.0799  0.0655 0.0663 0.0677
<. FPMC 0.0736 0.0756 0.0791  0.0682 0.0684 0.0696
T sets2Sets 0.1512 0.1898 0.2368 10.1256 70.1387 f0.1517
T M2p? 0.1568 0.1942 0.2348  0.1135 0.1247 0.1348
E M2-gp? 0.1586 10.1965 0.2320  0.1150 0.1260 0.1349
M2-gp*t  10.1603 0.1909 10.2390  0.1152 0.1238 0.1358
improv 53% 21% 09% 8.3%  9.2% -10.5%
POP 0.0802 0.0824 0.0854  0.0781 0.0788 0.0795
__ POEP 0.1267 0.1610 0.1872  0.0984 0.1087 0.1155
T Dream 0.0838 0.0864 0.0903  0.0800 0.0808 0.0819
2 FPMC 0.0824 0.0846 0.0884  0.0792 0.0800 0.0808
; Sets2Sets OOM OOM OOM OOM OOM OOM
< M2-p? 0.1348 f0.1705 f0.1961  0.1029 0.1139 0.1205
£ M-gp? 0.1352 0.1703 0.1960  0.1030 0.1137 0.1204
? M2gp2t 101373 0.1696 0.1954 10.1088 10.1187 f0.1254
improv 8.4% 59% 48%  106% 92%  8.6%
POP 0.0108 0.0233 0.0402  0.0062 0.0107 0.0155
& POEP 0.5092 05751 0.6251  0.4282 0.4509 0.4649
% Dream 0.0187 0.0295 0.0442  0.0127 0.0166 0.0208
~ FPMC 0.0179 0.0404 0.0789  0.0094 0.0172 0.0274
© Sets2Sets 0.4367 05230 0.5981  0.3496 0.3799 0.4009
S M2-p2 0.5137 05779 0.6282  0.4299 0.4518 0.4657
3 M?-gp? 0.5133 10.5802 0.6268  0.4296 0.4525 0.4654
O Mm2gp?t 10.5154 10.5802 10.6321  10.4309 10.4531 f0.4675
improv 12%  09% 11% 0.6% 0.5%  0.6%

The columns in this table have the same meanings as those in Table 3.

6.4 Performance Summary among All the Tasks

Table 3, Table 4 and Table 5 together show that M2-gp?t is the
best performing method over all the 3 tasks. It significantly
outperforms the state-of-the-art baseline method Sets2Sets
at all the metrics over all the 3 tasks. For example, in
terms of recall@5, M2-gp?t achieves 15.5%, 25.4% and 26.6%
improvement on average over all the datasets except sTMall
in recommending the first, second and third next basket,
respectively. These results demonstrate the strong ability of
M2-gp?t in next-basket recommendation. Table 3, Table 4
and Table 5 together also show that M?-gp? achieves the
second best performance over the 3 tasks. It is worth noting
that although M2-gp? does not perform as well as M?-gp®t,
it still consistently outperforms the state-of-the-art base-
line method Sets2Sets over all the 3 tasks. These results
demonstrate the strong effectiveness of simple popularity-
based methods in next-basket recommendation.

6.5 Ablation Study
6.5.1 Comparing Different Factors in M?-gp>t

We conduct an ablation study to verify the effects of the
different components (i.e., UGP, TPI) in M*-gp®t. We present
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TABLE 6: Ablation Study on the Next Basket

recall@k NDCG@k
method

k=5 k=10 k=20 k=5 k=10 k=20
8 UGP 0.0817 0.1153 0.1563 0.1109 0.1127 0.1240
& TPI 0.0508 0.0774 0.1129 0.0660 0.0701 0.0807
S M2-gp?t 0.1013 0.1375 0.1936 0.1280 0.1306 0.1469
= UGP 0.1051 0.1264 0.1524 0.0793 0.0857 0.0927
g TPI 0.0947 0.1045 0.1162 0.0851 0.0880 0.0915
= M2-gp’t 0.1165 0.1395 0.1648 0.0939 0.1010 0.1079
= UGP 0.0936 0.1091 0.1187 0.0761 0.0810 0.0836
S TPI 0.0928 0.0983 0.1052 0.0856 0.0873 0.0892
5 MP-gp’t 0.1114 0.1285 0.1404 0.0948 0.1002 0.1035
£ UGP 0.4551 0.5179 0.5649 0.3793 0.4007 0.4136
g TPI 0.3105 0.3342 0.3567 0.2778 0.2856 0.2917
8 M2-gp?t 0.4599 0.5232 0.5736 0.3813 0.4030 0.4168
M2-gp?t is identical to UGP+TPI. The best and second best perfor-

mance in each dataset is in bold and underlined, respectivley.

the next basket recommendation results generated by UGP
and TPI alone, and their combination M2-gp?t in Table 6.
Note that UGP recommends the personalized most popular
items to each user, and thus it is identical to POEP. When
testing UGP, the final recommendation scores t (Equation 10)
are identical to those based on users’ general preferences in
p (Equation 1) (i.e.,, @=0 in Equation 10). When testing TPI,
essentially it is to test ed-Trans and the final recommenda-
tion scores are in s (Equation 7) (i.e., =1 in Equation 10).

Table 6 shows that UGP is a strong baseline for all the
methods on all the datasets. This indicates the importance
of users’ general preferences in the next-basket recommen-
dation. TPI does not outperform UGP in terms of recall@k on
all the datasets. We also found a similar trend on NDCG@k.
In terms of NDCG@E, UGP significantly outperforms TPI
on TaFeng and Gowalla and achieves similar performance
with TPI on the TMall and sTMall datasets. When TPI
is combined with UGP (i.e., M2-gp2t in Table 6), there is
a notable increase compared to each individual TPI and
UGP. This may be because that in M?-gp?t, as UGP captures
the general preferences, TPI can learn the remaining, tran-
sition patterns and items’ global popularities that cannot
be captured by UGP. In Table 6, M*-gp®t (i.e., UGP+TPI)
achieves the best performance on all the 4 datasets. It also
shows improvement from UGP and TPI. This indicates that
when learned together, UGP and TPI are complementary and
enable better performance than each alone.

6.5.2 Comparing ed-Trans and RNN-based Methods

We also notice that as shown in Table 3 and Table 6,
ed-Trans (i.e., the model to learn TPI), an encoder-decoder
based approach (Section 4.1.3), on its own outperforms
Dream (i.e., RNN-based method) on 3 out of 4 datasets i.e.,
TMall, sTMall and Gowalla) at both recall@k and NDCG@k,
and achieves comparable results with Dream on the TaFeng
dataset at NDCG@k. For example, on TMall, ed-Trans
achieves 0.0947 in terms of recall@5 (Table 6) compared to
Dream with 0.0833 (Table 3), that is, ed-Trans is 13.7% better
than Dream. Similarly, in terms of recall@10 and recall@20,
ed-Trans achieves 0.1045 and 0.1162 (Table 6), respectively,
compared to Dream with 0.0868 and 0.0927 (Table 3), re-
spectively, that is, ed-Trans achieves 20.4% improvement at
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Fig. 4: Distributions of Gating Weights from M?-gp?t

recall@10 and 25.4% improvement at recall@20 compared
to Dream. We also found a similar trend on sTMall. In
terms of recall@5, ed-Trans achieves 8.9% improvement
over Dream (0.0928 vs 0.0852) on sTMall. These results are
strong evidence to show that ed-Trans could outperform
RNN-based methods on benchmark datasets. It is worth
noting that as shown in Table 3 and Table 6, on Gowalla,
ed-Trans achieves reasonable performance, while Dream
fails. As discussed in Section 6.1, for doing good recommen-
dations on Gowalla, models should be able to learn users’
general preferences from the interactions. The reasonable
and poor performance of ed-Trans and Dream, respectively,
indicates that ed-Trans could implicitly learn users” general
preferences, while RNN-based methods might not. We also
notice that ed-Trans on its own does not work as well
as Sets2Sets as shown in Table 3 and Table 6. However,
this might be due to the reason that Sets2Sets models
both the transition patterns and users’ general preferences,
while ed-Trans does not explicitly model users’ general
preferences. When ed-Trans learned with UGP together
(i.e, M*-gp?t), M*-gp?t outperforms Sets2Sets on all the
datasets as shown in Table 3. These results indicate that
ed-Trans could be more effective than the RNNs used in
Sets2Sets on modeling transition patterns.

6.6 Analysis on Transition Patterns

We further analyze if M?-gp?t learns good weights o (Equa-
tion 10) to differentiate the importance of UGP and TPI.
Figure 4 presents the distribution of the weights o from
the best performing M?-gp®t models on the 4 datasets.
Please note that as presented in Section 4.1.1, only the items
interacted by the user will get non-zero recommendation
scores in UGP, while all the items could get non-zero recom-
mendation scores in TPI. As a result, for items with non-
zero scores, the scale of their scores might be different in
UGP and TPI. and thus, the absolute value of the weights on
different components may not necessarily represent the true
importance of the corresponding factors in users” behavior.
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Fig. 5: Item embeddings from M?-gp?t (TaFeng)

For example, on TMall, users have higher weights on TPI
than that on UGP. It does not necessarily indicate that the
transition patterns are more important than users” general
preference for the recommendation on this dataset.

As shown in Figure 4, on Gowalla, users” weights on UGP
are much higher than that on the other datasets. This is con-
sistent with the observation that on Gowalla, users” general
preferences play a more important role for recommendation
than that on the other datasets (shown in Table 3). This
consistency demonstrates that M-gp?t is able to learn good
weights to differentiate the importance of UGP and TPI on
different datasets and application scenarios.

6.7 Cluster Analysis

We further evaluate if M>-gp®t really learns the transition
patterns among items. Specifically, we learn the weight
matrix W (Equation 6) in M?-gp®t using the training and
validation baskets in the widely used TaFeng dataset on
recommending the first next basket, and export the matrix
for the analysis. Note that the weight matrix W could be
viewed as an item embedding matrix, in which each row
is the embedding of a single item. Given W, we evaluate
if items with similar transition patterns will have similar
embeddings. To get the ground-truth transition patterns
among items, we construct a matrix 7" also from the training
and validation baskets in TaFeng. In T', T;; is the number of
times that item ¢ in the previous baskets transits to item j in
the next basket. That is, the i-th row of 1" contains the items
that item ¢ has transited to. Thus, T contains the ground-
truth transition patterns among items. After constructing
matrix 1', we could get the items which have similar transi-
tion patterns by calculating the pairwise similarities.

Figure 5, generated using t-SNE [38] method, presents
the item embeddings generated from M?-gp®t on the TaFeng
dataset. Specifically, we project the item embeddings in W/
to the two-dimensional (2d) space using t-SNE, and then
plot the projected embeddings of items in this figure. In
Figure 5, there are many well-formed clusters (e.g., C, C5).
We find that generally, the items within the same cluster
have similar transition patterns. For example, the average
pairwise similarity of items in C; and C; is 25.7% and
11.4% higher than that over all the item pairs, respectively.
These results demonstrate that the encoder-decoder frame-
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work (ed-Trans) in M2-gp?t could effectively capture the
transition patterns among items.

6.8 Analysis on Diversity of Recommendations

We also evaluate the diversity of the recommendations
from different methods. Due to the space limit, we report
the results in Section S5. Generally, we find that M?-gp*t
could generate more diverse recommendations over all the
baseline methods except POEP. Considering both the quality
and diversity of the recommendations, M?-gp?t significantly
outperforms all the baseline methods, and could achieve
superior performance in real applications.

7 DISCUSSIONS
7.1 Experimental Protocols

A commonly used experimental protocol in the literature [1]
is as follows. Users are randomly split into 5 or 10 folds
to conduct 5 or 10-fold cross validation. For each user in
the testing fold, her/his last basket in sequential order is
used as the testing basket, the other baskets are used as
the training baskets. For each user in the training folds,
her/his last basket is used to measure training errors, the
other baskets are used to train the model and generate
recommendation scores for the last basket. When absolute
time information is absent in the datasets, this experimental
protocol enables full separation among the training and
testing sets, and approximates real application scenario for
each testing user. However, when the absolute time infor-
mation is present, which is the case in most of the popular
benchmark datasets including TaFeng, TMall and Gowalla,
this protocol will create artificial use scenario that deviates
from that in real applications. The issue is that following
this protocol, a basket in the training set from one user
may have a later timestamp than a basket in the testing
set from another user, and therefore a later basket is used
to train a model to recommend an earlier basket, which
is not realistic. Our protocol splits the training, validation
and testing sets based on an absolute cut-off time for all the
users, and thus avoids the above issue and is closer to real
application scenarios. Another widely used experimental
protocol [2], [3], [14], [18], [39] is that for each user, her/his
last and second last basket were used as the testing basket
and validation basket, respectively; the other baskets are
used as the training baskets. This protocol has the same
issue as discussed above. Here, we refer this protocol as
the order-based split protocol. We evaluate M? and baseline
methods using this widely used but questionable order-
based split protocol, and report the results in Table SI.
We found that, under the order-based split protocol, M2
still achieves superior performance over the best baseline
methods on all the datasets over most of the evaluation
metrics.

Another commonly used experimental setting [2], [3] is
to evaluate different methods in recommending the first
next basket. However, in real applications, the model is
usually updated weekly or monthly, and thus would need to
recommend multiple baskets for active users before model
updates. In this case, the performance in recommending the
first next basket may not accurately represent the models’ ef-
fectiveness in real applications. In our experiments, we also
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evaluate methods in the task of recommending a few next
baskets to more accurately and comprehensively evaluate
the model performance in real applications.

7.2 Evaluation Metrics

In the experiments, we use recall@k and NDCG@k to eval-
uate different methods. These two metrics are important
and widely used for top-N recommendation [40], and also
popular in sequential recommendations [15], [18], [39] and
next-basket recommendations [1], [2], [3]. Recall@k mea-
sures the proportion of all the ground-truth interacted items
in a testing basket that are also among top-k recommended
items. We believe this is a proper metric to use because in
the end, the recommendation methods aim to identify all
the items that the users will be interested in eventually,
that is, to maximize recall. In addition, recall values at
different top-k positions also indicate the ranking structures
of recommended items, where we prefer the items that users
are interested in are ranked on top. NDCG also measures the
ranking positions of the items that users are interested in.
Higher NDCG®@EF values indicate that more users’ interested
items are ranked on top. Since in real applications, the users
will look at a subset of the recommendations from the top of
the recommendation list, we believe that evaluation metrics
that consider ranking positions are more useful and appli-
cable in real applications, and as discussed in Aggarwal [40]
(Chapter 7.5.5), NDCG is more suitable than ROC measures
or rank-correlation coefficients in distinguishing between
higher-ranked and lower-ranked items.

The metric precision@k is also a popular metric in
evaluating recommendations. This metric, however, may
not be proper for next-basket recommendation evaluation.
First of all, precision@k does not consider the ranking
positions of the correctly recommended items. Second, the
value of precision@k is “not necessarily monotonic in k
because both the numerator and denominator may change
with k differently”, as discussed in Aggarwal [40] (Chapter
7.5.4). In addition, precision@k could be strongly biased
by basket sizes: for small baskets, precision@k could be
small even if all the items are correctly recommended. For
example, if all the items in a size-2 basket are correctly
recommended, precision@10 is only 0.2. However, for large
baskets, precision@k can be large even only a small portion
of the items are correctly recommended. For example, if
5 items of a size-20 basket are correctly recommended,
that is, only 25% of the items are correctly recommended,
precision@10 is 0.5. When only considering precision@k,
we may prefer the second recommendation, even thought
it is half way to its best possible results (i.e., correctly
recommend 10 among top-10 recommended items, with
precision@10=1.0), but the first recommendation has already
achieved its best possible results. Recall@k alleviates such
issues with a normalization using basket size. Therefore,
precision and other precision-based metrics (e.g., AUC, F1)
may not be proper for evaluating next-basket recommen-
dation methods. However, to be comprehensive, we still
use this metric in our experiments and report the results
in Section 54.
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8 CONCLUSIONS

In this paper, we presented novel M> models that conduct
next-basket recommendation using three important factors:
1) users’ general preferences, 2) items’ global popularities
and 3) the transition patterns among items. Our experimen-
tal results in comparison with 5 state-of-the-art next-basket
recommendation methods on 4 public benchmark datasets
demonstrate substantial performance improvement from M2
in both the next basket recommendation (improvement of
up to 19.0% at recall@5) and the next a few baskets rec-
ommendation (improvement of up to 14.4% at recall@5).
Our ablation study demonstrates the importance of users’
general preferences in next-basket recommendations, and
the complementarity among all the factors in M?. Our ab-
lation study also demonstrates that the simple encoder-
decoder based framework ed-Trans (Section 4.1.3) is more
effective than RNNs on modeling the transition patterns
in benchmark datasets (improvement as much as 20.4%
at recall@5). Our analysis on the learned item embedding
matrix further demonstrates that ed-Trans could effectively
capture the ground-truth transition patterns among items.

One potential limitation of M? and the other data-driven
basket recommendation methods is that the recommended
items may not form realistic baskets. For example, the
method may recommend ten brands of milk as a basket to
users. However, in practice, users rarely purchase together
ten brands in one basket. To mitigate this potential limitation
without sacrificing the recommendation performance, we
may need to carefully balance the modeling of item com-
plementarities (additional discussions in Section S7) and the
other important factors. We leave the investigation of this
problem in our future work. In addition to this limitation,
another future direction could be to extend M? for the
cold-start problem. We also leave the investigation of this
problem as in our future work.
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