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Abstract

In the first part of this paper we consider expanding vacuum cosmological

spacetimes with a free TN-action. Among them, we give evidence that Gowdy

spacetimes haveAVTD (asymptotic velocity term dominated) behavior for their

initial geometry, in any dimension.We then give sufficient conditions to reach a

similar conclusion about a T2-invariant four dimensional nonGowdy spacetime.

In the second part of the paper we consider vacuum cosmological spacetimes

with crushing singularities. We introduce a monotonic quantity to character-

ize Kasner spacetimes. Assuming scale-invariant curvature bounds and local

volume bounds, we give results about causal pasts.

Keywords: expanding, cosmological, AVTD, Gowdy

1. Introduction

This paper is about the geometry of an expanding vacuum spacetime that is diffeomorphic

to (0, t0]× X, with X compact, as one approaches the initial singularity at t = 0. There are

many open questions in this field, along with many partial results. We refer to Isenberg’s

review [1].

The known results can be classified by how many local symmetries are assumed. Natu-

rally, the more symmetries that are assumed, the stronger the results. Even in one extreme,

when spatial slices are locally homogeneous, the asymptotic behavior is not completely under-

stood. It is also of interest to find any results in the other extreme, when one assumes no local

symmetries.

In this paper we only consider vacuum spacetimes. Regarding the physical relevance of this

restriction, there are heuristic arguments that under some assumptions, the matter content is
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not relevant for the asymptotic behavior as one approaches an initial singularity [2, chapter 4].

Suffice it to say that results about vacuum spacetimes may have wider application.

In section 2 we consider vacuum spacetimes with a free spatial TN-action (possibly globally

twisted) and a two dimensional quotient space. We first consider a Gowdy spacetime, meaning

that the normal spaces to the orbits form an integrable distribution. Results about four dimen-

sional Gowdy spacetimes are described in Ringström’s review [3]. In arbitrary dimension, the

metric can be expressed in local coordinates by

g =

N∑

I,J=1

GIJ dx
I dxJ +

2∑

α,β=1

gαβ db
αdbβ. (1)

Here
∑2

α,β=1 gαβ db
αdbβ is a Lorentzian metric on the quotient space B. The matrix

(GIJ) = (GIJ)(b) is a b-dependent positive definite symmetric (N × N)-matrix.

As is standard, we assume that there is an ‘areal’ time coordinate t ∈ (0, t0] so that

det(G) = tN , see [4]. We write
∑2

α,β=1 gαβdb
αdbβ = −L2 dt2 + h dy2, where y is a local

coordinate on S1.

One possible limiting behavior is AVTD (asymptotically velocity term dominated) asymp-

totics. With AVTD asymptotics, as t→ 0, the leading asymptotics are given by the VTD

(velocity term dominated) equations, obtained by dropping spatial derivatives in the evolution

equations. This is discussed in sections 4–6 of Isenberg’s review [1].

If we make a change of variable t = e−τ then τ →∞ corresponds to approaching the

singularity. The VTD equation for G is

(G−1Gτ )τ = 0. (2)

By the choice of time parameter, Tr
(
(G−1Gτ )τ

)
= (ln det G)ττ = (−Nτ )ττ = 0. The con-

tent of (2) is that for each y ∈ S1, the normalized matrix (det G)−
1
NG describes a geodesic,

as a function of τ , in the symmetric space SL(N,R)/SO(N) of positive definite symmetric

(N × N)-matrices with determinant one. The AVTD hypothesis for G is that (G−1Gτ )τ
approaches zero as τ →∞.

In the case of four dimensional Gowdy spacetimes, i.e. when N = 2, Ringström proved

pointwise statements about the asymptotics of G, e.g. for each y ∈ S1 there is a limit

lim
τ→∞

(det G(y, τ ))−
1
2G(y, τ ) in the ideal boundary of H2 = SL(2,R)/SO(2), and the limit is

approached at an asymptotically constant speed [5]. (This followed earlier work by Isen-

berg and Moncrief on the polarized Gowdy case [6].) One interesting feature is the possible

occurrence of ‘spikes’ in the spatial behavior as τ →∞ [7–9].

We define an H−1-Sobolev space of matrix-valued maps on S1 (equation (48)). The

following result roughly says that the H−1-norm of (G−1Gτ )τ decays exponentially

fast in τ .

Theorem 1.

∫ ∞

τ0

eNτ‖(G−1Gτ )τ‖2
H−1
τ

dτ < ∞. (3)

Hence there is AVTD-like behavior. The appearance of theH−1-Sobolev space is not unrea-

sonable, in viewof the possible occurrenceof spikes in the spatial behavior.Compared to earlier

results, one difference in theorem 1 is the use of the Sobolev norm to measure the AVTD-like

behavior. The norm arises from the use of a monotonic functional, that in fact differs in the
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nonpolarized case from those previously considered. Another feature is that the result is

somewhat more geometric, in that it holds in arbitrary dimension.

We next consider four dimensional spacetimes that have a free spatial T2-action but are

nonGowdy, where there are fewer results. As in the paper [10] by LeFloch and Smulevici, the

metric has a local expression

g = e2(η−U)(−dR2
+ a−2dθ2)+ e2U(dx1 + Adx2 + (G+ AH)dθ)2 + e−2UR2(dx2 + Hdθ)2.

(4)

Here the time parameter R is such that the area of the T2-orbit is R. The variables η, U, a, A, G
andH are functions ofR and θ. Wemake a change of variableR = e−τ . The AVTD asymptotics

for U are that a(a−1Uτ )τ − 1
2
e2τe4UA2

τ goes to zero as τ →∞ [11, 12].

Unlike in the Gowdy case, one does not expect AVTD-like behavior in gen-

eral. Some solutions with a ‘half-polarized’ condition on A were constructed by

Ames–Beyer–Isenberg–LeFloch using Fuchsian methods [11]; those solutions have AVTD-

like behavior. The next theorem gives a sufficient condition for AVTD-like behavior to hold

for U.

Theorem 2. If
∫
S1
H dθ is bounded below as τ →∞, and

∫ ∞

τ0

e2τ‖e4Ua2A2
θ‖2

H−1
τ

dτ < ∞. (5)

then

∫ ∞

τ0

e2τ‖a(a−1Uτ )τ − 1

2
e2τe4UA2

τ‖2
H−1
τ

dτ < ∞. (6)

The expression
∫
S1
H dθ is a holonomy-type term. The condition (5) is consistent with the

results of [11], whereA is half-polarized. In those solutions, (5) is satisfied.When A is not half-

polarized, the construction in [11] breaks down. Numerics indicate that general T2-invariant

nonGowdy solutions are not AVTD, and instead have Mixmaster-type behavior [13]. We do

not have anything to say about Mixmaster dynamics, but the results of the paper may help to

clarify the line between AVTD dynamics and Mixmaster dynamics.

The proofs of theorems 1 and 2 involve finding energy expressions that are monotoni-

cally nondecreasing in real time, integrating the derivative to get an integral bound on spatial

derivative terms, and then applying the evolution equation.

In section 3 we consider vacuum spacetimes or, equivalently, Einstein flows, without any

assumed symmetries. The spacetime is diffeomorphic to (0, T0]× X, where X is compact. In

this introduction we take dim(X) = 3, although some of the results are true for general dimen-

sion. We assume that there is a crushing singularity as t→ 0, meaning that there is a sequence

of compact Cauchy hypersurfaces going toward the end at {0} × X whose mean curvatures

approach −∞ uniformly. From Gerhardt’s paper [14], there is a foliation near the end by

constant mean curvature (CMC) compact spatial hypersurfaces, whose mean curvatures H

approach −∞. We then take t = − 3
H
, the Hubble time, which ranges in an interval (0, t0].

The spacetime metric can be written as g = −L2dt2 + h(t), where h(t) is a Riemannian metric

on X.

Fischer and Moncrief showed that the quantity t−3vol(X, h(t)) is monotonically nonincreas-

ing in t, and is constant if and only if the spacetime is a Lorentzian cone over a hyperbolic

3
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3-manifold [15]. (A similar result was proven by Anderson [16].) This had implications for

the long-time behavior of expanding spacetimes that live instead on [t0,∞), and gave rise to

the intuition that most of such a spacetime, in the sense of volume, should approach such

a Lorentzian cone; a precise statement is in [17, section 2.2]. In this paper we are concerned

with the behavior in the shrinking direction, as t→ 0. It turns out that t−1vol(X, h(t)) is a partial

analog to the Fischer–Moncrief quantity.

Theorem 3. We have

d

dt

(
t−1 vol(X, h(t))

)
= − 1

3

∫

X

LR dvolh. (7)

Hence

∫ t0

0

∫

X

(−t2R) L dvolh(t)

t

dt

t
< ∞. (8)

One sees from (7) that t−1vol(X, h(t)) is monotonically nondecreasing in t provided that the

spatial scalar curvature R is nonpositive. The next result characterizes the equality case.

Theorem 4. Suppose that R � 0 and t−1
1 vol(X, h(t1)) = t−1

2 vol(X, h(t2)), for some

t1 < t2. Suppose that X is orientable and that there is an aspherical component in the prime

decomposition of X. Then the Einstein flow is a Kasner solution.

There is a natural rescaling (99) of a CMC Einstein flow. Using theorem 3, one can show

that if R � 0 then as one approaches the singularity, there is Kasner-like geometry in an integral

sense, relative to a limiting measure. Namely, put dvol0 = limt→0t
−1 dvolh(t); this limit exists

as a measure, although it may be zero. Let K denote the second fundamental form of the spatial

hypersurfaces.

Theorem 5. Suppose that R � 0. Given Λ > 1, we have

lim
s→0

∣∣∣∣Ls −
1

3

∣∣∣∣ = lim
s→0

∣∣∣∣|Ks|
2 − 9

u2

∣∣∣∣ = lim
s→0

|Rs| = 0 (9)

in L1
(
[Λ−1,Λ]× X, du dvol0

)
.

The analogy between t−3vol(X, h(t)) (for the expanding direction) and t−1vol(X, h(t)) (for

the shrinking direction) is only partial. First, t−1vol(X, h(t)) is only monotonic when R � 0.

Second, t−3vol(X, h(t)) is invariant under rescaling, whereas t−1vol(X, h(t)) is not.

The remaining results of the paper involve a curvature assumption. Let |Rm|T denote the

norm of the spacetime curvature, as given in (102). Following Ricci flow terminology, we

define a type-I Einstein flow to be a CMC Einstein flow for which there is some C < ∞
so that |Rm|T � Ct−2 for all t ∈ (0, t0]. We show that except for a clear counterexample, the

normalized spatial diameters in a type-I Einstein flow go to infinity as t→ 0.

Theorem 6. Suppose that a type-I Einstein flow E satisfies lim inft→0 t
−1 diam(X, h(t)) < ∞.

Then E is a Lorentzian cone over a compact hyperbolic 3-manifold.

Let Bh(t)(x, t) denote the time-t spatial metric ball of radius t around x ∈ X. We say that a

CMC Einstein flow E is noncollapsed if there is some v0 > 0 so that for all (t, x) ∈ (0, t0]× X,

4
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we have vol
(
Bh(t)(x, t)

)
� v0t

3. Since we have mentioned the two dichotomies shrink-

ing/expanding and collapsed/noncollapsed, let us clarify the difference. As H is negative, we

are considering flows for which the volume of the time-t slice is shrinking as t→ 0 and expand-

ing as t→∞. In contrast, the notion of collapsed/noncollapsed is based on the normalized

volumes of metric balls in the time slices. There are many examples of Einstein flows that are

collapsed in the expanding direction, as discussed in [17]. In contrast, Einstein flows tend to

be noncollapsed in the shrinking direction.

In this paper we focus on noncollapsed type-I Einstein flows. The motivation comes from

looking at examples of crushing singularities. There may be crushing singularities that are not

type-I, or are type-I but collapsed. If there are such examples then themethods of [17, sections 3

and 4] would give some information about them.

Noncollapsed type-I Einstein flows have the technical advantage that one can take rescaling

limits. In view of the BKL conjectures [2, 18], the possible existence of particle horizons is

relevant for understanding initial singularities. One question is whether there are distinct points

x1, x2 ∈ X so that for t sufficiently small, the causal pasts J−(x1, t) and J−(x2, t) are disjoint. In
general, this need not be the case. However, we show that except for a clear counterexample,

if t is small enough then there are many points whose causal pasts are mutually disjoint on a

relatively long backward time interval.

Theorem 7. Let E be a noncollapsed type-I CMC Einstein flow. Then either

(a) E is a Lorentzian cone over a compact hyperbolic 3-manifold, or
(b) Given N ∈ Z

+, Λ > 1 and x′ ∈ X, there is some t̂ ∈ (0, t0] with the following property.

Given t ∈ (0, t̂], there are N points {x j}Nj=1 in X, with x1 = x′, so that if j �= j′ then the

causal pasts J−(x j, t) and J−(x j′ , t) are disjoint on the time interval [Λ
−1t, t].

One can localize the preceding result to an arbitrary open subset of X.

Theorem 8. Let E be a noncollapsed type-I CMC Einstein flow. Given N ∈ Z
+, Λ > 1,

ε > 0, α ∈ (0, 1), an open set U ⊂ X and a point x′ ∈ U, there is some t̂ ∈ (0, t0] with the

following property. For t ∈ (0, t̂], either

(a) The rescaled pointed flow Et on (X, x′) is ε-close in the pointed C1,α-topology to a

Lorentzian cone over a region in a hyperbolic 3-manifold, having U as a bounded subset

of the approximation region, or

(b) There are N points {x j}N=1 in U, with x1 = x′, so that if j �= j′ then the causal pasts J−(x j, t)
and J−(x j′ , t) are disjoint on the time interval [Λ

−1t, t].

There is also a measure theoretic version (proposition 16).

The structure of the paper is the following. In section 2 we prove theorems 1 and 2. In

section 3 we prove the remaining theorems. More detailed descriptions are at the beginnings

of the sections.

I thank the referees for helpful comments.

2. Torus symmetries

In this section we prove the results about TN-actions. In subsection 2.1 we recall results about

the geometry of spacetimes with free isometric TN-actions (possibly globally twisted). In

subsection 2.2 we prove theorem 1 and in subsection 2.3 we prove theorem 2.

5
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2.1. Geometric setup

We begin with the geometric setup of [19, section 4.1], to which we refer for more details.

Let G be an N-dimensional abelian Lie group, with Lie algebra g. Let E be a local system on

B of Lie groups isomorphic to G. There is a corresponding flat g-vector bundle e on B; see

[19, section 4.1].

Let M be the total space of an E-twisted principal G-bundle with base B, in the sense of

[19, section 4.1]. (An example is when E is the constant local system andM is the total space

of a TN-bundle on B.) We write dim(B) = n+ 1 and dim(M) = m = N + n+ 1.

Let g be a Lorentzian metric onM with a free local isometric E-action. We assume that the

induced metrics on the E-orbits are Riemannian. In adapted coordinates, we can write

g =

N∑

I,J=1

GIJ (dx
I
+ AI)(dxJ + AJ)+

n+1∑

α,β=1

gαβ db
αdbβ . (10)

Here GIJ is the local expression of a Euclidean inner product on e,
∑n+1

α,β=1 gαβ db
αdbβ is the

local expression of a Lorentzian metric gB on B and AI =
∑

αA
I
αdb

α are the components of a

local e-valued 1-form describing a connection A on the twisted G-bundleM→ B.

Put FIαβ = ∂αA
I
β − ∂βA

I
α. At a given point b ∈ B, we can assume that AI(b) = 0. We write

GIJ;αβ = GIJ,αβ − Γ
σ
αβ GIJ,σ , (11)

where {Γσ
αβ} are the Christoffel symbols for the metric gαβ on B.

From [19, section 4.2], the Ricci tensor of g onM is given in terms of the curvature tensor

Rαβγδ of B, the 2-forms FIαβ and the metrics GIJ by

R
g
IJ =− 1

2
gαβGIJ;αβ −

1

4
gαβGKLGKL,αGIJ,β +

1

2
gαβGKLGIK,αGLJ,β (12)

+
1

4
gαγgβδGIKGJLF

K
αβF

L
γδ

R
g
Iα =

1

2
gγδGIKF

K
αγ;δ +

1

2
gγδGIK,γF

K
αδ +

1

4
gγδGImG

KLGKL,γF
m
αδ

R
g
αβ =R

g
αβ −

1

2
GIJGIJ;αβ +

1

4
GIJGJK,αG

KLGLI,β −
1

2
gγδGIJF

I
αγF

J
βδ.

The scalar curvature is

Rg =Rg − gαβGIJGIJ;αβ +
3

4
gαβGIJGJK,αG

KLGLI,β

− 1

4
gαβGIJGIJ,αG

KLGKL,β −
1

4
gαγgβδGIJF

I
αβF

J
γδ. (13)

In what follows we will assume that the flat vector bundle e has holonomy in SL(N,R), so

that ln detG is globally defined on B. We have

∇α ln det G = GIJGIJ,α (14)

and

6
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�g ln det G = gαβGIJGIJ;αβ − gαβGIJGJK,αG
KLGLK,β . (15)

Writing

|F|2 = GIJg
αβgγδFIαγF

J
βδ , (16)

the first equation in (12) gives

GIJRIJ = −1

2
�g ln det G− 1

4
gαβ(∇α ln det G)(∇β ln det G)+

1

4
|F|2. (17)

Note that |F|2 need not be nonnegative.
Given a foliation of B by compact spacelike hypersurfaces Y , we can write the metric g on

B as

g = −L2 dt2 +
n∑

i, j=1

hi j dy
i dy j. (18)

Here L = L(y, t) is the lapse function and we have performed spatial diffeomorphisms to kill

the shift vectors.

Suppose hereafter that detG is spatially constant, i.e. only depends on t [4]. Then

gαβ(∇α ln det G)(∇β ln det G) = −L−2(∂t ln det G)2 (19)

and

�g ln det G = − 1

L
√
det h

∂t

(
L−1

√
det h(∂t ln det G)

)
. (20)

If R
g
IJ = 0 then (17) becomes

∂t

(
L−1

√
det G(∂t ln det G)

√
det h

)
+

1

2
L
√
det G|F|2

√
det h = 0. (21)

More invariantly,

∂t

(
L−1

√
det G(∂t ln det G)dvolh(t)

)
= − 1

2
L
√
det G|F|2dvolh(t). (22)

In particular, if F = 0 then

μ = L−1
√
det G(∂t ln det G)dvolh(t) (23)

is a t-independent smooth positive density on Y .

We suppose in the rest of this section that dim(B) = 2, i.e. dim(Y) = 1. We write g locally

(in Y) as −L2dt2 + hdy2.

2.2. Gowdy spacetime

In this subsection we assume that F = 0. (This is automatic, for example, if X is a three

dimensional Sol-manifold [17, p 2288].) Let μ be the t-independent density on Y defined

in (23).

7
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Put

E(t) =
∫

Y

[
h−1Tr

((
G−1 ∂G

∂y

)2
)

+ L−2Tr

((
G−1 ∂G

∂t

)2
)]

L dvol (24)

=

∫

Y

[
Lh−

1
2Tr

((
G−1 ∂G

∂y

)2
)

+ L−1h
1
2Tr

((
G−1 ∂G

∂t

)2
)]

dy.

Still assuming that F = 0, if R
g
IJ = 0 then equation (12) gives the matrix equation

− L−2(G−1Gtt − G−1GtG
−1Gt)+ h−1(G−1Gyy − G−1GyG

−1Gy) (25)

+ L−3LtG
−1Gt + L−1h−1LyG

−1Gy −
1

2
L−2h−1htG

−1Gt

− 1

2
h−2hyG

−1Gy −
1

2
L−2(ln det G)tG

−1Gt = 0.

Suppose that (ln detG)t > 0. Using (25) and the t-independence of μ, one finds

dE
dt

=

∫

Y

(
(ln det G)tt

(ln det G)t
+

1

2
(ln det G)t

)
Lh−

1
2Tr

((
G−1Gy

)2)
dy (26)

+

∫

Y

(
(ln det G)tt

(ln det G)t
− 1

2
(ln det G)t

)
L−1h

1
2Tr

((
G−1Gt

)2)
dy

=

∫

Y

(
(ln det G)tt

(ln det G)t
+

1

2
(ln det G)t

)
Lh−1Tr

((
G−1Gy

)2)
dvol

+

∫

Y

(
(ln det G)tt

(ln det G)t
− 1

2
(ln det G)t

)
L−1Tr

((
G−1Gt

)2)
dvol.

A scale invariant quantity that is monotonically nonincreasing in t is given by

Ê(t) = 1

(ln det G)t
√
det G

E(t). (27)

Using (26), one finds

dÊ
dt

= − 1√
det G

∫

Y

L−1Tr
((
G−1Gt

)2)
dvol. (28)

Since Ê is nonincreasing in time, it can be used to understand the long time behavior of

a Gowdy solution. In order to understand the short time behavior, we want a quantity that is

monotonically nondecreasing in time. To find such a quantity, note that the right-hand sides

of (24) and (28) have a roughly similar term. This suggests using a different prefactor of E , as
compared to (27). For this reason, we put

Ẽ(t) =
√
det G

(ln det G)t
E(t). (29)

Using (26), one finds

8
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dẼ
dt

=
√
det G

∫

Y

Lh−1Tr
((
G−1Gy

)2)
dvol. (30)

Hence Ẽ is monotonically nondecreasing in t. Note that the right-hand side of (28) involves a

time derivative, whereas the right-hand side of (30) involves a spatial derivative.

Remark 1. If N = 2 and the Gowdy spacetime is polarized then the expression Ẽ from (29)

is essentially the same as the expression ε(1) from [6, (19)].

Remark 2. We correct a couple of equations in [17]. Equation (A.18) should not have the 1
2

on the right-hand side. The right-hand side of (A.20) should be multiplied by two.

As Ẽ is nonnegative and nondecreasing in t, it follows from (30) that for any t0 > 0,

∫ t0

0

∫

Y

√
det GLh−1Tr

((
G−1Gy

)2)
dvoldt < ∞. (31)

As we will use the fact that G− 1
2GyG

− 1
2 is a symmetric matrix, we rewrite (31) as

∫ t0

0

∫

Y

√
det GLh−1Tr

((
G− 1

2GyG
− 1

2

)2
)
dvoldt < ∞. (32)

We can rewrite (25) as

∂t

(√
det GL−1h

1
2G−1Gt

)
= ∂y

(√
det GLh−

1
2G−1Gy

)
. (33)

Let σ be a self-adjoint endomorphism of the vector bundle e, with compact support in

(0, t0)× Y . Locally,

σT = GσG−1. (34)

We note thatG−1Gt andG
−1Gy are self-adjoint in this sense. We write σt for ∂ tσ, and similarly

for σy. Multiplying (33) by σ, taking the trace and integrating by parts gives

∫ t0

0

∫

Y

Tr
(
σt
√
det GL−1h

1
2 (G−1Gt)

)
dydt =

∫ t0

0

∫

Y

Tr
(
σy
√
det GLh−

1
2 (G−1Gy)

)
dydt.

(35)

In terms of the density μ from (23), this says

∫ t0

0

∫

Y

1

(ln det G)t
Tr

(
σt(G

−1Gt)
)
dμdt =

∫ t0

0

∫

Y

√
det GLh−1Tr

(
σy(G

−1Gy)
)
dvoldt. (36)

Now

9
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Tr
(
σy(G

−1Gy)
)
= Tr

((
G

1
2σyG

− 1
2

)(
G− 1

2GyG
− 1

2

))

= Tr

(
1

2

((
G

1
2σyG

− 1
2

)
+

(
G

1
2σyG

− 1
2

)
T
)(

G− 1
2GyG

− 1
2

))
,

(37)

where we use the symmetry of G− 1
2GyG

− 1
2 in the last step. Differentiating (34) with respect

to y, one can check that

1

2

((
G

1
2σyG

− 1
2

)
+

(
G

1
2σyG

− 1
2

)T)
=

1

2

((
G

1
2σyG

− 1
2

)
+

(
G− 1

2σTy G
1
2

))

=G
1
2 (Dyσ)G

− 1
2 , (38)

where

Dyσ = σy +
1

2

[
G−1Gy, σ

]
. (39)

From (38), G
1
2 (Dyσ)G

− 1
2 is symmetric, which implies that Dyσ is self-adjoint in the sense of

(34). Combining (36)–(38) gives

∫ t0

0

∫

Y

1

(ln det G)t
Tr

(
σt(G

−1Gt)
)
dμdt

=

∫ t0

0

∫

Y

√
det GLh−1Tr

((
G

1
2 (Dyσ)G

− 1
2

)(
G− 1

2GyG
1
2

))
dvoldt. (40)

By the Cauchy–Schwarz inequality, and letting c denote the square root of the left-hand

side of (32), we have

∣∣∣∣
∫ t0

0

∫

Y

√
det GLh−1Tr

((
G

1
2 (Dyσ)G

− 1
2

)(
G− 1

2GyG
1
2

))
dvoldt

∣∣∣∣

� c

√∫ t0

0

∫

Y

√
det GLh−1Tr

(
(G

1
2 (Dyσ)G

− 1
2 )2

)
dvoldt

= c

√∫ t0

0

∫

Y

√
det GLh−1Tr

(
(Dyσ)2

)
dvoldt. (41)

We can write

∫ t0

0

∫

Y

√
det GLh−1Tr

(
(Dyσ)

2
)
dvoldt =

∫ t0

0

∫

Y

(det G)(ln det G)t
Tr

(
(Dyσ)

2
)
dy2

μ
dt. (42)

To put this in a more invariant way, write

10
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Tr (DYσ
⊗
DYσ) = Tr

(
(Dyσ)

2
)
dy2, (43)

a 2-density on Y . Then Tr(DYσ
⊗
DYσ)

μ
is a density on Y and (40)–(43) give

∣∣∣∣
∫ t0

0

∫

Y

1

(ln det G)t
Tr

(
σt(G

−1Gt)
)
dμdt

∣∣∣∣ (44)

� c

√∫ t0

0

∫

Y

(det G)(ln det G)t
Tr (DYσ

⊗DYσ)

μ
dt,

We choose the time parameter t so that detG = tN . Then (44) becomes

∣∣∣∣
∫ t0

0

∫

Y

tTr
(
σt(G

−1Gt)
)
dμdt

∣∣∣∣ � N
3
2 c

√∫ t0

0

tN
∫

Y

Tr (DYσ
⊗DYσ)

μ

dt

t
. (45)

Next, we define τ by t = e−τ , so that approaching the singularity corresponds to τ →∞. Define

τ 0 by t0 = e− τ0 . Then (45) becomes

∣∣∣∣
∫ ∞

τ0

∫

Y

Tr
(
στ (G

−1Gτ )
)
dμdτ

∣∣∣∣ � N
3
2 c

√∫ ∞

τ0

e−Nτ
∫

Y

Tr (DYσ
⊗DYσ)

μ
dτ ,

(46)

or

∣∣∣∣
∫ ∞

τ0

∫

Y

Tr
(
σ(G−1Gτ )τ

)
dμdτ

∣∣∣∣ � N
3
2 c

√∫ ∞

τ0

e−Nτ
∫

Y

Tr (DYσ
⊗DYσ)

μ
dτ ,

(47)

From (40), (G−1Gτ )τ is orthogonal to Ker(DY) at all times τ . Define a time-τ norm ‖·‖
H−1
Y ,τ

on square-integrable self-adjoint sections of e by

‖η‖
H−1
Y ,τ

= sup
η̂ �=0

(∫

Y

Tr (ηη̂)dμ

)/√∫

Y

(
Tr(η̂2)dμ+

Tr (DY η̂
⊗DY η̂)

μ

)
. (48)

where η̂ ranges over smooth time-τ self-adjoint sections of e. Note that ‖·‖
H−1
Y ,τ

depends on

G(τ ) through the notion of self-adjointness, but only depends on L(τ ) and h(τ ) through the

τ -independent density μ. Let H−1
Y,τ be the metric completion with respect to ‖·‖

H−1
Y ,τ
. Let H be

the weighted Hilbert space of measurable maps f with f (τ ) ∈ H−1
Y,τ such that

∫ ∞

0

eNτ‖ f (τ )‖2
H−1
Y ,τ

dτ < ∞. (49)

11
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Proposition 1.

∫ ∞

τ0

eNτ‖(G−1Gτ )τ‖2
H−1
Y ,τ

dτ < ∞. (50)

Proof. Equation (47) implies that (G−1Gτ )τ ∈ H. The theorem follows. �

2.3. NonGowdy spacetime

We now assume that F �= 0. If R
g
Iα = 0 then from the second equation in (12), one finds that

the RN-valued vector

CI = L−1h−
1
2

√
det GGIKF

K
ty (51)

is locally constant on the two dimensional spacetime. More precisely, it is a locally constant

section of the flat vector bundle e∗ (using our assumption that e is unimodular).

We now restrict to the case whenN = 2 and the flatR2-bundle e has holonomyT , around the

circle Y, lying in SL(2,R).When T = Id, the components of C are called the ‘twist quantities’

in [4] and subsequent papers such as [10]. Wemostly follow the notation of [10, p 1256–1283],

with coordinates (R, θ) for the two dimensional base. We use linear coordinates x1, x2 for the

R
2-fiber. In that paper,R =

√
det G and θ is the local coordinate for the spacelike hypersurface

Y. The coordinates x1 and x2 are chosen so that C1 = 0 and C2 = K, where K is a positive

constant. The Lorentzian metric on (0,∞)× Y can be written as

g = e2(η−U)(−dR2
+ a−2dθ2)+ e2U(dx1 + Adx2 + (G+ AH)dθ)2 + e−2UR2(dx2 + Hdθ)2.

(52)

The variables η, U, a, A, G and H are functions of R and θ. To relate to (10), the inner product
GIJ is

(
e2U e2UA

e2UA e2UA2
+ e−2UR2

)
(53)

and the connection AI is

(
Gdθ
Hdθ

)
. (54)

The analog of the density μ from (23) is 2a−1dθ; it is no longer independent of the time

parameter R.

Put

D = a−1U2
R + aU2

θ +
1

4
R−2e4U(a−1A2

R + aA2
θ) (55)

and

ÊK(R) =
∫

Y

(
D +

1

4
K2R−4e2ηa−1

)
dθ. (56)

Then from [10, p 1283],

12
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dÊK
dR

= −2R−1

∫

Y

(
a−1U2

R +
1

4
R−2e4UaA2

θ

)
dθ − K2R−5

∫

Y

a−1e2η dθ. (57)

(There were some incorrect terms in [17, (A.25) and (A.27)].)

Put

ẼK = R2ÊK +
1

2
K

∫

Y

H dθ. (58)

As seen from (54), the term
∫
YH dθ is the holonomy of the twist component of the

connection AI .

Proposition 2. We have

dẼK
dR

= 2R

∫

Y

(
aU2

θ +
1

4
R−2e4Ua−1A2

R

)
dθ. (59)

Proof. Using (58) and (59),

d

dR

(
R2ÊK

)
=R2

(
dÊK
dR

+ 2R−1ÊK
)

(60)

= 2R

∫

Y

(
aU2

θ +
1

4
R−2e4Ua−1A2

R

)
dθ − 1

2
K2R−3

∫

Y

a−1e2η dθ.

From [10, (4.28)],

∂H

∂R
= KR−3a−1e2η. (61)

The proposition follows. �

Proposition 2 is also valid if the holonomy T is such that T −T is unipotent; see [17, section
A.3.2].

Suppose that
∫
YH dθ is uniformly bounded below as R→ 0. Then ẼK is uniformly bounded

below and proposition 2 implies that

∫ R0

0

∫

Y

(
RaU2

θ +
1

4
R−1e4Ua−1A2

R

)
dθdR < ∞. (62)

From [10, (4.22)],

(Ra−1UR)R − (RaUθ)θ =
1

2
R−1e4U

(
a−1A2

R − aA2
θ

)
. (63)

Let σ be a smooth function with compact support in (0,R0)× S1. Multiplying (63) by σ and

integrating gives

13
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∫ R0

0

∫

Y

σ

(
(Ra−1UR)R − 1

2
R−1e4Ua−1A2

R +
1

2
R−1e4UaA2

θ

)
dθdR (64)

=

∫ R0

0

∫

Y

σ(RaUθ)θ dθdR = −
∫ R0

0

∫

Y

σθRaUθ dθdR.

Letting c denote the square root of the left-hand side of (62), the Cauchy–Schwarz inequality

gives

∣∣∣∣
∫ R0

0

∫

Y

σ

(
a(Ra−1UR)R − 1

2
R−1e4UA2

R +
1

2
R−1e4Ua2A2

θ

)
a−1dθdR

∣∣∣∣ (65)

� c

√∫ R0

0

∫

Y

Ra2σ2
θ a

−1dθdR.

Changing variable by R = e−τ gives

∣∣∣∣
∫ ∞

τ0

∫

Y

σ

(
a(a−1Uτ )τ − 1

2
e2τe4UA2

τ +
1

2
e4Ua2A2

θ

)
a−1dθdτ

∣∣∣∣ (66)

� c

√∫ ∞

τ0

∫

Y

e−2τa2σ2
θ a

−1dθ dτ .

Define a time-τ norm ‖·‖
H−1
Y ,τ

on L2(Y; a−1dθ) by

‖σ‖
H−1
Y ,τ

= sup
σ̂ �=0

(∫

Y

σσ̂a−1dθ

)/√∫

Y

(
σ̂2 + a2σ̂2

θ

)
a−1dθ, (67)

where σ̂ ranges over smooth functions on Y. Let H−1
Y,τ be the metric completion with respect

to ‖·‖
H−1
Y ,τ
. Let H be the weighted Hilbert space of measurable maps f with f (τ ) ∈ H−1

Y,τ such

that

∫ ∞

τ0

e2τ‖ f (τ )‖2
H−1
Y ,τ

dτ < ∞. (68)

Then (66) implies that

a(a−1Uτ )τ − 1

2
e2τe4UA2

τ +
1

2
e4Ua2A2

θ ∈ H. (69)

The AVTD asymptotics for U are that a(a−1Uτ )τ − 1
2
e2τe4UA2

τ goes to zero as τ →∞
[11, 12]. The next theorem gives a sufficient condition for AVTD asymptotics to hold for U,

in an integral sense.

Proposition 3. If
∫
S1
H dθ is bounded below as τ →∞ and

e4Ua2A2
θ ∈ H (70)

then

14



Class. Quantum Grav. 37 (2020) 085017 J Lott

a(a−1Uτ )τ − 1

2
e2τe4UA2

τ ∈ H. (71)

Proof. This follows from (69). �

Remark 3. The formal large-τ asymptotics from [11, (3.8)–(3.13)] say

U(τ , θ) ∼− 1− k(θ)

2
τ + U��(θ)+ . . . , (72)

A(τ , θ) ∼A�(θ)+ A��(θ)e
−2k(θ)τ

+ . . . ,

a(τ , θ) ∼ a�(θ)+ · · ·
H(τ , θ) ∼H�(θ)+ · · ·

where k(θ) determines the Kasner parameters. Without further assumptions, one sees that (70)

should not always hold. On the other hand, if we assume that A� is constant in θ, the half-

polarized condition, then e4Ua2A2
θ ∼ e−2τ and (70) holds. This is consistent with the finding in

[11] that the half-polarized condition is needed for the Fuchsian method to work.

Without the half-polarized condition, it appears from (69) that the right generalization of

the AVTD asymptotics for U would be that a(a−1Uτ )τ − 1
2
e2τe4UA2

τ +
1
2
e4Ua2A2

θ goes to zero

as τ →∞. For general T2-symmetric vacuum spacetimes, numerics indicate aMixmaster-type

behavior [13]. Of the two conditions in proposition 3, we do not know which ones are violated

in such a case.

3. CMC Einstein flows

In this section we consider expanding vacuum spacetimes with a CMC foliation. In subsec-

tion 3.1 we discuss the quantity t−1vol(X, h(t)), and prove theorems 3–5. In subsection 3.2 we

define noncollapsing type-I Einstein flows and their rescalings. Subsection 3.3 has the proof of

theorem 6. In subsection 3.4 we prove theorems 7 and 8. Subsection 3.5 has an improvement

of theorem 5 in the case of a noncollapsed type-I Einstein flow.

3.1. Monotonic quantities

Definition 1. Let I be an interval in R. An Einstein flow E on an n-dimensional manifold X

is given by a family of nonnegative functions {L(t)}t∈I on X, a family of Riemannian metrics

{h(t)}t∈I on X, and a family of symmetric covariant 2-tensor fields {K(t)}t∈I on X, so that if

H = hi jKi j and K
0 = K − H

n
h then the constraint equations

R− |K0|2 +
(
1− 1

n

)
H2

= 0 (73)

and

∇iK
i
j −∇ jH = 0, (74)

are satisfied, along with the evolution equations

∂hi j
∂t

= −2LKi j (75)

and
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∂Ki j
∂t

= LHKi j − 2LhklKikKl j − L;i j + LRi j. (76)

For now, we will assume that X is compact and connected, and that all of the data is smooth.

At the moment, L is unconstrained; it will be determined by the elliptic equation (83) below.

We will generally want L(t) to be positive.

An Einstein flow gives rise to a Ricci-flat Lorentzian metric

g = −L2 dt2 + h(t) (77)

on I × X, for which the second fundamental form of the time-t slice is K(t). Conversely, given

a Lorentzian metric g on a manifold with a proper time function t, we can write it in the form

(77) by using the flow of ∇t
|∇t|2 to identify nearby leaves. LettingK(t) be the second fundamental

form of the time-t slice, the metric g is Ricci-flat if and only if (L, h,K) is an Einstein flow.

Definition 2. [20, 21] There is a crushing singularity as t→ 0 if there is a sequence of

compact Cauchy surfaces going out the end at {0} × X whose mean curvatures approach

−∞ uniformly.

From [14], if there is a crushing singularity then there is a foliation near the end by

constant mean curvature (CMC) compact spatial hypersurfaces, whose mean curvatures

approach−∞.

Definition 3. A CMC Einstein flow is an Einstein flow for which H only depends on t.

We will assume that there is a crushing singularity as t→ 0; in particular, X is compact.

So we can assume we have a CMC Einstein flow with I = (0, t0] (or I = (0, t0)), and that H is

monotonically increasing in t and takes all values in (−∞,H0) for some H0 < 0.

Example 1. We give some relevant examples of crushing singularities.

(a) A Lorentzian cone over a Riemannian Einstein n-manifold (X, hEin) with Einstein constant

−(n− 1). The metric is

g = − dt2 + t2hEin. (78)

(b) The product of the previous example, in dimension n− n
′
, with a flat torus (Tn

′
, hflat). The

metric is

g = − dt2 + t2hEin + hflat. (79)

(c) A Kantowski–Sachs solution with X diffeomorphic to S2 × S1. The metric is a Z-quotient

of the interior of the event horizon in a Schwarzschild solution, after switching the usual

t and r variables:

g = − 1
2 m
t
− 1

dt2 +

(
2m

t
− 1

)
dr2 + t2gS2 . (80)

Here t ∈ (0, 2m) and the Z-quotienting is in the r-variable.
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(d) A Kasner solution on a flat n-manifold. After possibly passing to a finite cover of X, the

metric is

g = − 1

n2
dt2 + (d
x)T t2Md
x. (81)

Here M is a symmetric (n× n)-matrix with Tr(M) = Tr(M2) = 1. We have written the

metric so that t = − n
H
. Then

L =
1

n
, R = 0, |K|2 = H2

=
n2

t2
. (82)

End of example.

Returning to general expanding CMC Einstein flows, equation (76) gives

∂H

∂t
= −�hL+ LH2

+ LR = −�hL+ L|K0|2 + 1

n
LH2. (83)

The maximum principle gives

L(t) �
n

H2

∂H

∂t
. (84)

Proposition 4. [15] Let E be an expanding CMC Einstein flow. The quantity

(−H)nvol(X, h(t)) is monotonically nonincreasing in t. It is constant in t if and only if, tak-
ing t = − n

H
, the Einstein flow E is a Lorentzian cone over a Riemannian Einstein manifold

with Einstein constant−(n− 1).

One proof of proposition 4 uses the pointwise identity

∂

∂t
((−H)ndvolh) = (−H)n+1

(
L− n

H2

∂H

∂t

)
dvolh. (85)

From (84), it follows that (−H)ndvolh(t) is pointwise monotonically nonincreasing in t, and

hence (−H)nvol(X, h(t)) is monotonically nonincreasing in t. In fact,

d

dt
((−H)nvol(X, h(t))) = −n(−H)n−1

∫

X

|K0|2L dvolh. (86)

If n > 1, we can use (73) to write the monotonic quantity itself as

(−H)nvol(X, h(t)) = n

n− 1
(−H)n−2

∫

X

(
−Rh + |K0|2

)
dvolh. (87)

The monotonic quantity (−H)nvol(X, h(t)) gives information about the large time behavior

of the expanding solution [15, 17]. To get information about the small time behavior, we want

a quantity that is instead monotonically nondecreasing in t. As discussed in subsection 2.2, we

can try to play the right-hand sides of (86) and (87) against each other. The right quantity turns

out to be (−H)vol(X, h(t)).
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Proposition 5. We have

∂

∂t
((−H)dvolh) = H2

(
L− 1

H2

∂H

∂t

)
dvolh. (88)

Proof. This follows from (75). �

Corollary 1.

d

dt
((−H)vol(X, h(t))) = −

∫

X

LR dvolh. (89)

Proof. From (83) and proposition 5, we have

d

dt
((−H)vol(X, h(t))) =

∫

X

(�hL− LR) dvolh = −
∫

X

LR dvolh. (90)

This proves the claim. �

Note that as in subsection 2.2, the time derivative on the right-hand side of (86) turns into

the spatial derivatives on the right-hand side of (89).

Corollary 2. If t1 < t2 then

(−H(t2))vol(X, h(t2))− (−H(t1))vol(X, h(t1)) = −
∫ t2

t1

∫

X

LR dvolh(t) dt. (91)

Corollary 3.

−
∫ t0

0

∫

X

LR dvolh(t) dt < ∞. (92)

Proof. This follows from (91) by taking t2 = t0 and t1 → 0, along with the fact that

(−H(t1))vol(X, h(t1)) � 0. �

Corollary 4. If R � 0 then (−H(t))vol(X, h(t)) is monotonically nondecreasing in t.

Example 2. If dim(X) = 3 and X is aspherical then a locally homogenous Einstein flow on

X has R � 0, since X admits no metric of positive scalar curvature, so corollary 4 applies.

Proposition 6. If R � 0 then L � 1
H2

∂H
∂t .

Proof. This follows from (83) and the weak maximum principle. �

We now improve corollary 4 to a pointwise statement.

Corollary 5. If R � 0 then (−H)dvolh(t) is monotonically nondecreasing in t.

Proof. This follows from propositions 5 and 6. �
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Proposition 7. If R � 0 and L(x, t) = 1
H2

∂H
∂t
for some x and t, then L = 1

H2
∂H
∂t
, R = 0 and

|K|2 = H2.

Proof. Equation (83) and the strong maximum principle imply that L = 1
H2

∂H
∂t

and R = 0.

Equation (73) gives |K|2 = H2 �

Remark 4. The conclusion of proposition 7 does not use the compactness of X, or even the

completeness of (X, h(t)).

Proposition 8. If R � 0 and (−H(t1))vol(X, h(t1)) = (−H(t2))vol(X, h(t2)), for some

t1 < t2, then L = 1
H2

∂H
∂t
, R = 0 and |K|2 = H2.

Proof. From propositions 5 and 6, we know that L = 1
H2

∂H
∂t . The other claims follow from

proposition 7. �

Proposition 9. Under the hypotheses of proposition 8, suppose that X is an orientable

3-manifold and that there is an aspherical component in the prime decomposition of X. Then

up to time reparametrization, the Einstein flow is a Kasner solution.

Proof. We know that R = 0. Running the Ricci flow with initial condition h(t), either the

scalar curvature becomes immediately positive or h(t) is Ricci-flat. One knows that X admits

no metric with positive scalar curvature [22]. Hence h(t) is Ricci-flat. Because dim(X) = 3, the

metric h(t) is flat.

In matrix notation, equations (75) and (76) become

dh

dt
= −2LK, (93)

dK

dt
= LHK − 2LKh−1K.

Then h−1K satifies

d

dt
(h−1K) = LHh−1K =

1

H

dH

dt
h−1K, (94)

with the general solution

h−1K = HM, (95)

where M is a time-independent self-adjoint section of End(TX). Equation (73) gives

Tr(M2) = 1. Also, the fact that H = Tr(h−1K) gives Tr(M) = 1. Since X is flat, equation (74)

means thatM is locally constant. Then

dh

dt
= −2LK = −2

1

H

dH

dt
hM, (96)

with the general solution

h = ĥ(−H)−2M (97)

for some time-independent metric ĥ on X. This is a Kasner solution. �
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For s > 1, the Lorentzian metric s−2g is isometric to

gs = −L2(su) du2 + s−2h(su). (98)

Hence we put

Ls(u) = L(su), hs(u) = s−2h(su), Ks,i j(u) = s−1Ki j(su), (99)

Hs(u) = sH(su), K0
s,i j(u) = s−1K0

i j(su), |K0|2s (u) = s2Ki j(su),

Rs,i j(u) = Ri j(su), Rs(u) = s2R(su).

The variable u will refer to the time parameter of a rescaled Einstein flow, or a limit of such.

We now take t = − n
H
, the Hubble time, with t ranging in an interval (0, t0]. Equation (92)

becomes

∫ t0

0

∫

X

(−t2R) L dvolh(t)

t

dt

t
< ∞. (100)

If R � 0 then equation (84) and proposition 6 say 1
n
� L � 1.

Lemma 1. If R � 0 then vol(X, h(t)) = O(t) as t→ 0.

Proof. This follows from corollary 2. �

Definition 4. If R � 0, put dvol0 = limt→0((−H)dvolh(t)).

From corollary 5, the definition of dvol0 makes sense. It is a nonnegative absolutely

continuous measure on X. It could be zero.

The next proposition says that in an L1-sense, rescaling limits are similar to Kasner

solutions; cf (82).

Proposition 10. Suppose that R � 0. Given Λ > 1, we have

lim
s→0

∣∣∣∣Ls −
1

n

∣∣∣∣ = lim
s→0

∣∣∣∣||Ks|
2 − n2

u2

∣∣∣∣ = lim
s→0

|Rs| = 0 (101)

in L1
(
[Λ−1,Λ]× X, dudvol0

)
.

Proof. The proof is similar to that of [17, proposition 2.36]. We omit the details. �

3.2. Rescaling limits

Let E be an Einstein flow. Let g be the corresponding Lorentzian metric. Put e0 = T = 1
L

∂
∂t , a

unit timelike vector that is normal to the level sets of t. Let {ei}ni=1 be an orthonormal basis for

e⊥0 . Put

|Rm|T =

√√√√
n∑

α,β,γ,δ=0

R2
αβγδ. (102)

Let E∞ = (L∞, h∞,K∞) be a CMC Einstein flow on a pointed n-manifold (X∞, x∞), with

complete time slices, defined on a time interval I∞. For the moment, t need not be the Hubble

time. Take p ∈ [1,∞) and α ∈ (0, 1).
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Definition 5. The flow E∞ isW2,p-regular if X∞ is aW3,p-manifold, L∞ and h∞ are locally

W2,p-regular in space and time, and K∞ is locallyW1,p-regular in space and time.

Note that the equations of definition 1 make sense in this generality.

Let E (k) = {h(k),K(k), L(k)}∞k=1 be smooth CMC Einstein flows on pointed n-manifolds

{
(
X(k), x(k)

)
}∞k=1, defined on time intervals I(k).

Definition 6. We say that limk→∞E (k) = E∞ in the pointed weakW2,p-topology if

• Any compact interval S ⊂ I∞ is contained in I(k) for large k, and

• For any compact intervalS ⊂ I∞ and any compactn-dimensionalmanifold-with-boundary

W∞ ⊂ X∞ containing x∞, for large k there are pointed time-independent W3,p-regular

diffeomorphisms φS,W,k:W
∞ →W (k) (withW (k) ⊂ X(k)) so that

∗ limk→∞φ∗
S,W,kL

(k) = L∞ weakly inW2,p on S ×W∞,

∗ limk→∞φ∗
S,W,kh

(k) = h∞ weakly in W2,p on S ×W∞ and

∗ limk→∞φ∗
S,W,kK

(k) = K∞ weakly inW1,p on S ×W∞.

We define pointed (norm) C1,α-convergence similarly.

Definition 7. Let S be a collection of pointed CMC Einstein flows defined on a time inter-

val I∞. We say that a sequence {E (k)}∞k=1 of pointed CMC Einstein flows approaches S as

k→∞, in the pointed weak W2,p-topology, if for any subsequence of {E (k)}∞k=1, there is a

further subsequence that converges to an element of S in the pointed weakW2,p-topology.

Definition 8. LetS be a collection of pointed CMCEinstein flows defined on a time interval

I∞. We say that a 1-parameter family {E (s)}s∈(0,s0] of pointed CMC Einstein flows approaches

S, in the pointedweakW2,p-topology, if for any sequence {sk}∞k=1 in (0, s0] with limk→∞ sk = 0,

there is a subsequence of the flows {E (sk)}∞k=1 that converges to an element of S in the pointed

weakW2,p-topology.

We define ‘approachesS’ in the pointed (norm)C1,α-topology similarly. The motivation for

these definitions comes from how one can define convergence to a compact subset of a metric

space, just using the notion of sequential convergence. In our applications, the relevant set S
of Einstein flows can be taken to be sequentially compact.

Definition 9. We say that a pointed CMC Einstein flow E1 is ε-close to a pointed CMC

Einstein flow E2 in the pointed C1,α-topology if they are both defined on the time interval

(ε, ε−1) and, up to applying time-independent pointed diffeomorphisms, the metrics are ε-close
in the C1,α-norm on (ε, ε−1)× Bh2(1)(x

(2), ε−1).

We do notmake a similar definition of closeness for the pointedweakW2,p-topologybecause

the weak topology is not metrizable.

We now take t = − n
H
, with t ranging in an interval (0, t0].

Definition 10. A type-I Einstein flow is aCMCEinstein flow forwhich there is someC < ∞
so that |Rm|T � Ct−2 for all t ∈ (0, t0].

Example 3. The Einstein flows in example 1 are all type-I.
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Consider a locally homogeneous Einstein flow with a crushing singularity. As the space-

time Ricci tensor vanishes, the curvature tensor is determined by the spacetimeWeyl curvature.

When dim(X) = 3, theWeyl curvature is expressed in terms of ‘electric’ and ‘magnetic’ tensors

[23, section 1.1.3]. After normalization by the Hubble time, the tensor components can be writ-

ten as polynomials in the Wainwright-Hsu variables Σ+,Σ−,N+,N−,N1 [23, (6.37)]. Hence

the Einstein flowwill be type-I provided that these variables remain bounded as one approaches

the singularity. From [24], this is the case for homogeneous Einstein flows of Bianchi type IX,

i.e. flows of left-invariant data on SU(2) [23, section 6.4], some of which exhibit Mixmaster

behavior.

Let Bh(t)(x, t) denote the time-t metric ball of radius t around x.

Definition 11. If E is a CMC Einstein flow then a sequence {(xi, ti)}∞i=1 in X × (0, t0] is

noncollapsing if vol
(
Bh(ti)(xi, ti)

)
� v0t

n
i for all i, and some v0 > 0. We say that E is non-

collapsed if there is some v0 > 0 so that for all (x, t) ∈ X × (0, t0], we have vol
(
Bh(t)(x, t)

)

� v0t
n.

Recall the rescaling from (99). We write the rescaled Einstein flow as Es. It is also type-I,

with the same constant C.

Proposition 11. Let E be a type-I Einstein flow on an n-dimensional manifold X. Suppose

that it is defined on a time-interval (0, t0] and has complete time slices. Let {(xi, ti)}∞i=1 be a

noncollapsing sequence in X × (0, t0]with limi→∞ ti = 0. Then after passing to a subsequence,

which we relabel as {ti}∞i=1 and {xi}∞i=1, there is a limit limi→∞ Eti = E∞ in the pointed weak

W2,p-topology and the pointed C1,α-topology. The limit flow E∞ is defined on the time inter-

val (0,∞). Its time slices {(X∞, h∞(u))}u>0 are complete. Its lapse function L
∞ is uniformly

bounded below by a positive constant.

The proof of proposition 11 is essentially the same as that of [17, corollary 2.54], which

is based on [16]. It relies on the fact that the curvature bound, along with the noncollapsing,

implies uniform bounds on the local geometry in the pointed W2.p-topology or the pointed

C1,α-topology [25, 26].

Example 4. For example 1(a), E∞ = E . For example 1(b), E∞ is the product of Rn′ with

the Lorentzian cone on the (n− n′)-dimensional Einstein manifold. For example 1(c), E∞ is a

Kasner solution on R
3 with M = diag

(
2
3
, 2
3
,− 1

3

)
. For example 1(d), E∞ is a Kasner solution

on Rn with the same matrixM as the original flow.

Example 5. Suppose that E is a Mixmaster flow of Bianchi type IX [23, section 6.4.3].

As mentioned in example 3, it is a type-I Einstein flow. We don’t know if it is necessarily

noncollapsing, but let’s suppose that it is noncollapsing. We expect that any pointed rescaling

limit E∞ will be a Kasner solution or a Bianchi type II Taub solution [23, section 9.2.1]. A

priori, the rescaling limit could also be a Mixmaster solution. However, numerical evidence

indicates that the mixing slows down as t→ 0; see [27, figure 12], which shows the evolution

as a function of log(−logt). (The authors of [27] inform me that the vertical axis of figure 12

should be labeled by logN instead of Z.)
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3.3. Diameter bounds

Let S be the collection of Einstein flows that generate Lorentzian cones over compact

n-dimensional Riemannian Einstein manifolds with Einstein constant −(n− 1). They are

defined on the time interval (0,∞).

Proposition 12. Suppose that a type-I Einstein flow E has lim inft→0 t
−1diam(X, h(t)) < ∞.

Then there is a sequence {ti}∞i=1 with limi→∞ ti = 0 so that as i→∞, the rescaled Einstein

flows Eti approach S in the weak W2,p-topology and the C1,α-topology.

Proof. Choose a sequence {ti}∞i=1 with limi→∞ ti = 0 and t−1
i diam(X, h(ti)) < D, for all i and

some D < ∞. As t−nvol(X, h(t)) is monotonically nonincreasing in t, it is uniformly bounded

below on (0, t0] by some positive constant. Let {xi}∞i=1 be a sequence of points inX. Then by the

Bishop–Gromov inequality, the sequence of points {(xi, ti)}∞i=1 is noncollapsing for E . After
passing to a subsequence, we can extract a rescaling limit limi→∞ Eti = E∞ on a manifold X∞

that is compact, since D < ∞. In particular, X∞ is diffeomorphic to X.

From the monotonicity of the normalized volume of E , it follows that u−nvol(X∞, h∞(u)) is

independent of u ∈ (0,∞). The claim now follows from proposition 4, whose proof works for

W2,p-regular metrics. �

Corollary 6. If dim(X) = 3 then under the hypotheses of proposition 12, the original

flow E is a Lorentzian cone over a compact Riemannian 3-manifold with constant sectional

curvature−1.

Proof. By proposition 12, there is a hyperbolic metric h∞(1) on X, unique up to isometry by

Mostow rigidity. From the constraint equation (73), the scalar curvature R(t0) of h(t0) satisfies

R(t0) � − 6

t2
0

. Then from Perelman’s work [28, section 93.4],

t−3
0 vol(X, h(t0)) � vol(X, h∞(1)). (103)

From the existence of the limiting flow in the proof of proposition 12,

lim
i→∞

t−3
i vol(X, h(ti)) = vol(X, h∞(1)). (104)

Since t−3vol(X, h(t)) is nonincreasing in t, it follows that t−3vol(X, h(t)) = vol(X, h∞(1)) for

all t ∈ (0, t0]. The claim now follows from proposition 4. �

3.4. Causal pasts

Given x ∈ X and t ∈ [0, t0), let J−(x, t) denote the causal past of (x, t), i.e. the spacetime points

that can be reached from past-directed timelike or null curves starting from (x, t). The next

result is fairly standard but we include it for completeness.

Proposition 13. Let E be a CMC Einstein flow, defined for Hubble time t ∈ (0, t0].

Suppose that there is some continuous function f : (0, t0]→ R
+, with

∫ t0
0

dt
f (t)

< ∞,
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so that h(t) � f 2(t)h(t0) for all t ∈ (0, t0]. Then for any x
′ ∈ X, the causal past J−(x′, t) satisfies

limt→0 diam(J−(x′, t), h(t0)) = 0.

Proof. A past causal curve γ(s) = (x(s), s) satisfies −L2 + hs
(
dx
ds
, dx
ds

)
� 0. By (84), we have

hs
(
dx
ds
, dx
ds

)
� L2 � 1. The length of γ with respect to h(t0) satisfies

L=

∫ t

0

√
ht0

(
dx

ds
,
dx

ds

)
ds =

∫ t

0

√
ht0

(
dx
ds
, dx
ds

)

hs
(
dx
ds
, dx
ds

)
√
hs

(
dx

ds
,
dx

ds

)
ds�

∫ t

0

ds

f (s)
.

(105)

Hence diam(J−(x′, t), h(t0)) �
∫ t

0
ds
f (s)

. The proposition follows. �

Example 6. The Kasner solution of example 1(d) satisfies the hypotheses of proposition 13

provided that the eigenvalues ofM are strictly less than one.

Under the assumptions of proposition 13, for any distinct x, x′ ∈ X, if t is small enough then

J−(x, t) and J−(x′, t) are disjoint. This is not true for general CMC Einstein flows. However, we

show that one can often find many points whose causal pasts are disjoint on a relatively long

time interval.

Proposition 14. Let E be a noncollapsed type-I CMC Einstein flow with

limt→0 t
−1 diam(X, h(t)) = ∞. Given N ∈ Z

+, Λ > 1 and x′ ∈ X, there is some t̂ ∈ (0, t0] with

the following property. Given t ∈ (0, t̂], there are N points {x j}N=1 in X, with x1 = x′, so that if
j �= j′ then the causal pasts J−(x j, t) and J−(x j′ , t) are disjoint on the time interval [Λ

−1t, t].

Proof. Given E , suppose that the proposition fails. Then for some N ∈ Z
+ and Λ > 1, there

is a sequence of times {ti}∞i=1 with limi→∞ ti = 0 so that the proposition fails for t = ti. After

passing to a subsequence, we can take a pointed rescaling limit limi→∞ Eti = E∞, that exists for

times u ∈ (0,∞). By the diameter assumption, X∞ is noncompact. Because of the uniformly

boundedC1,α-geometry of E∞ on the time interval [Λ−1, 1] (see the comments after proposition

11), there is someR < ∞ so that if p, p′ ∈ X∞ have dh∞(1)(p, p
′) � R then J−(p, 1) and J−(p′, 1)

are disjoint on the time interval [Λ−1, 1]. Choose points {pj}Nj=1 in X
∞, with p1 = x∞, so that

dh∞(1)(pj, pj′) � 2R for j �= j′. For large i, let {xi, j}Nj=1 be points in (X, t−2
i h(ti)) that are Gro-

mov–Hausdorff approximants to the points {pj}Nj=1 in (X∞, h∞(1)), with xi,1 = x′. From the

C1,α-convergence when taking the rescaling limit, we conclude that for large i, if j �= j′ then
the causal pasts J−(xi, j, ti) and J−(xi, j′ , ti) are disjoint on the time interval [Λ−1ti, ti]. This is a

contradiction. �

In the three dimensional case, we can strengthen the conclusion of proposition 14.

Corollary 7. Let E be a noncollapsed type-I CMC Einstein flow with dim(X) = 3. Then

either

(a) E is a Lorentzian cone over a compact Riemannian 3-manifold with constant sectional

curvature−1, or
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(b) Given N ∈ Z
+, Λ > 1 and x′ ∈ X, there is some t̂ ∈ (0, t0] with the following property.

Given t ∈ (0, t̂], there are N points {x j}Nj=1 in X, with x1 = x′, so that if j �= j′ then the

causal pasts J−(x j, t) and J−(x j′ , t) are disjoint on the time interval [Λ
−1t, t].

Proof. This follows from corollary 6 and proposition 14. �

Example 7.

(a) If E is a Lorentzian cone over a compact hyperbolic 3-manifold X then there is some

Λ > 0 so that for any x ∈ X and any t ∈ (0, t0], the intersection of J−(x, t) with the slice

at time Λ−1t is all of X. This shows that the two cases in the conclusion of corollary 7 are

distinct.

(b) Suppose that E is a Kasner solution as in example 6. Using the spatial homogeneity, we

can strengthen the conclusion of corollary 7 to say that J−(x j, t) and J−(x j′ , t) are disjoint
on the time interval (0, t]. As N →∞, we can assume that the points {x j}Nj=1 become

uniformly distributed on X.

(c) Suppose that E is the product of T2 with the Lorentzian cone over a circle. Given a

point x = (xT2 , xS1) ∈ X, we can take the points {x j}Nj=1 to lie on T2 × {xS1} and we can

strengthen the conclusion of corollary 7 to say that J−(x j, t) and J−(x j′ , t) are disjoint on
the time interval (0, t].

(d) Let Ẽ be the product of R2 with the Lorentzian cone over R. Let Γ be a lattice in R
3

with irrational entries. Let E be the Γ-quotient of Ẽ , an Einstein flow on T3. We cannot

strengthen the conclusion of corollary 7 to say that J−(x j, t) and J−(x j′ , t) are disjoint on
the time interval (0, t].

We now localize proposition 14 to an arbitrary open subset U of X.

Proposition 15. Let E be a noncollapsed type-I CMC Einstein flow. Given N ∈ Z
+,Λ > 1,

ε > 0, α ∈ (0, 1), an open set U ⊂ X and a point x′ ∈ U, there is some t̂ ∈ (0, t0] with the

following property. For t ∈ (0, t̂],

(a) The rescaled pointed flow Et on (X, x′) is ε-close in the pointed C1,α-topology to a

Lorentzian cone over a Riemannian Einstein metric with Einstein constant −(n− 1),

having U as a bounded subset of the approximation region, or

(b) There are N points {x j}N=1 in U, with x1 = x′, so that if j �= j′ then the causal pasts J−(x j, t)
and J−(x j′ , t) are disjoint on the time interval [Λ

−1t, t].

Proof. Given E , suppose that the proposition fails. Then for some N ∈ Z
+, Λ > 1, ε > 0,

α ∈ (0, 1),U ⊂ X and x′ ∈ U, there is a sequence of times {ti}∞i=1 with limi→∞ ti = 0 so that the

proposition fails for t = ti. In particular, for each i, the rescaled pointed flow Eti is not ε-close
to a Lorentzian cone as described in case (a).

Suppose first that lim infi→∞ t−1
i diam(U, h(ti)) < ∞. ChooseD < ∞ so that after passing to

a subsequence, we have t−1
i diam(U, h(ti)) � D for all i. With the basepoint x′, after passing to

a subsequence, we can take a pointed rescaling limit limi→∞ Eti = E∞, that exists for times

u ∈ (0,∞). For large i, the Gromov–Hausdorff approximants of (U, t−2
i h(ti)) lie in

B(x∞, 2D) ⊂ (X∞, h∞(1)). Hence there is a uniform upper bound t−ni vol(U, h(ti)) � V < ∞.
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Now t−ndvolh(t) is pointwise nonincreasing in t, on U. From the monotone convergence

theorem, there is some x̃ ∈ U so that limt→0 t
−n dvolh(t)(̃x) < ∞. It follows from the strongmax-

imum principle, as in [17, proposition 3.5], that E∞ is a Lorentzian cone over a Riemannian

Einstein metric on U with Einstein constant −(n− 1). Then for large i, the rescaled pointed

flow Eti is ε-close to the Lorentzian cone, which is a contradiction.
Hence limi→0 t

−1
i diam(U, h(ti)) = ∞. We can now apply the argument in the proof of

proposition 14. Hence for large i, case (b) is satisfied. This is a contradiction. �

We now prove a measure-theoretic version.

Proposition 16. Let E be a noncollapsed type-I CMCEinstein flow.GivenΛ > 1,α ∈ (0, 1)

and ε > 0, there are some t̂ ∈ (0, t0] andΛ
′ < ∞ with the following property. Choose t ∈ (0, t̂]

and x ∈ X. Let V be the set of points y ∈ X such that the causal pasts J−(x, t) and J−(y, t)
intersect on the time interval [Λ−1t, t]. Then

(a) vol(V , h(t0)) � εtn0, or

(b) There are some t′ ∈ [t,Λ′t] and y ∈ V so that the rescaled pointed flow Et′ on (X, y) is

ε-close in the pointed C1,α-topology to a Lorentzian cone over a Riemannian Einstein

metric with Einstein constant−(n− 1).

Proof. Given E , suppose that the proposition fails. Then for some Λ > 1, α ∈ (0, 1) and ε >
0, there is a sequence of points {xi}∞i=1 and times {ti}∞i=1 with ti � i−1t0 so that the proposition

fails if we take x = xi, t = ti and Λ
′ = i. That is, for all i,

(a) vol(Vi, h(t0)) > εtn0, and

(b) There are no t′ ∈ [ti, iti] and y ∈ V i so that the rescaled pointed flow Et′ on (X, y) is ε-close
in the pointedC1,α-topology to a Lorentzian cone over a Riemannian Einstein metric with

Einstein constant −(n− 1).

From the uniformly bounded geometry (see the comments after proposition 11), there is

some D < ∞ so that for all i, the corresponding subset V i lies in Bh(ti)(xi,Dti). In particular,

there is some V < ∞ so that for all i, we have t−ni vol(Vi, h(ti)) � V .
Now

∫
Vi

t−n
0

dvolh(t0)

t−n
i

dvolh(ti)
dvolh(ti)

∫
Vi
dvolh(ti)

=
t−n0 vol(Vi, h(t0))

t−ni vol(Vi, h(ti))
�

ε

V . (106)

Thus there is some yi ∈ V i with

t−n0 dvolh(t0)(yi)

t−ni dvolh(ti)(yi)
�

ε

V . (107)

From the monotonicity of the normalized volume, we also have

(uti)
−n dvolh(uti)(yi)

t−ni dvolh(ti)(yi)
�

ε

V (108)

for all u ∈
[
1, t0

ti

]
.
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After passing to a subsequence, we can assume that the Eti’s, on the pointed spaces (X, yi),
have a pointed limit E∞. The limit of (108) gives

u−n dvolh∞(u)(y
∞)

dvolh∞(1)(y∞)
�

ε

V (109)

for all u � 1. From [17, proposition 3.5], there is some Λ′ < ∞ so that E∞
Λ′ on (X∞, y∞) is

1
2
ε-close in the pointed C1,α-topology to a Lorentzian cone as in case (b). Then for large i,

EΛ′ti on (X, yi) is ε-close in the pointed C1,α-topology to such a Lorentzian cone. This is a

contradiction. �

3.5. Kasner-type limits

In theorem 5 we showed that if R � 0 and dvol0 �= 0 then as t→ 0, there is Kasner-like behav-

ior in an integral sense. We now improve this to a pointwise statement under the additional

assumption that the flow is noncollapsed and type-I.

Let S be the collection of pointed Einstein flows with L = 1
n
, R = 0 and |K|2 = H2, defined

on the time interval (0,∞); cf (82).

Proposition 17. Let E be a type-I CMCEinstein flow. Suppose that R � 0. Let x ∈ X be such

that dvol0(x) = limt→0 t
−1 dvolt(x) �= 0. Suppose that the flow is noncollapsing at x as t→ 0,

i.e. that there is a uniform lower bound vol(Bh(t)(x, t)) � v0t
n for some v0 > 0. Then as s→ 0,

the rescaled Einstein flows Es, pointed at x, approach S in the pointed weak W2,p-topology and

the pointed C1,α-topology.

Proof. From proposition 6 and corollary 5, we know that L � 1
n
, and t−1dvolh(t)(x) is mono-

tonically nondecreasing in t. Let {si}∞i=1 be a sequence converging to zero. After passing

to a subsequence, we can assume that there is a limit limi→∞ Esi = E∞ in the pointed weak

W2,p-topology and the pointed C1,α-topology. Equation (88) implies that

n

∫ t0

0

(
L− 1

n

)
dt

t
= ln

t−1
0 dvolt0(x)

dvol0(x)
< ∞. (110)

It follows that L∞(x, u) = 1
n
for all u ∈ (0,∞). As in [17, proof of proposition 3.5], the strong

maximum principle implies that L∞ = 1
n
and R = 0. Then the constraint equation (73) gives

|K|2 = H2. �

Remark 5. If we omit the noncollapsing assumption then the conclusion of proposition

17 still holds, provided that we take the limit flow to live on an étale groupoid; see [17,

proposition 3.5].

Example 8. Let E be a Bianchi-VIII NUT solution on a circle bundle over a higher genus

surface [23, section 9.14]. Then the hypotheses of proposition 17 are satisfied. As t→ 0, the

diameter of the quotient surface approaches a constant, while the diameter of the circle fiber

goes like t. The pointed rescaling limit E∞ is R2 times a Lorentzian cone over a circle.

Example 9. As mentioned in example 2, Mixmaster solutions of Bianchi type VIII have

R � 0. However, we expect that proposition 17 does not give additional information. That is,
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we expect that dvol0 = 0. The reason is the infinite number of Taub Bianchi-II transitions [29,

30], which we expect will drive t−1dvolh(t) to zero as t→ 0; see (88).

4. Discussion

In section 2 of the paper we considered the initial behavior of vacuum spacetimes with a toral

symmetry. We showed that Gowdy spacetimes in arbitrary dimension have AVTD-like behav-

ior for the G-component of the metric. This complements earlier results of Ringström [5].

We also considered four dimensional nonGowdy spacetimes with a T2-symmetry. We again

showedAVTD-like behavior under certain assumptions. Since such spacetimes probablydo not

have AVTD-like behavior in general, it would be interesting to clarify the borderline between

these two types of behavior. One could also consider other symmetry classes.

Section 3 of the paperwas devoted to vacuumspacetimeswith a CMC foliation.We obtained

results about the initial geometry using a normalized volume functional, which is monotoni-

cally nondecreasing in time when the spatial slices have nonpositive scalar curvature. One

question is whether there are other relevant monotonic functionals. We also considered CMC

vacuum spacetimes that are type-I and locally noncollapsed, as one approaches an initial sin-

gularity. One can ask how widely these assumptions hold. When they do hold, we used rescal-

ing and compactness arguments to say something about causal pasts. It is possible that such

rescaling and compactness methods can be combined with other techniques to obtain further

results.
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