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Abstract

In the first part of this paper we consider expanding vacuum cosmological
spacetimes with a free T"-action. Among them, we give evidence that Gowdy
spacetimes have AVTD (asymptotic velocity term dominated) behavior for their
initial geometry, in any dimension. We then give sufficient conditions to reach a
similar conclusion about a T2-invariant four dimensional nonGowdy spacetime.
In the second part of the paper we consider vacuum cosmological spacetimes
with crushing singularities. We introduce a monotonic quantity to character-
ize Kasner spacetimes. Assuming scale-invariant curvature bounds and local
volume bounds, we give results about causal pasts.

Keywords: expanding, cosmological, AVTD, Gowdy

1. Introduction

This paper is about the geometry of an expanding vacuum spacetime that is diffeomorphic
to (0,7] x X, with X compact, as one approaches the initial singularity at = 0. There are
many open questions in this field, along with many partial results. We refer to Isenberg’s
review [1].

The known results can be classified by how many local symmetries are assumed. Natu-
rally, the more symmetries that are assumed, the stronger the results. Even in one extreme,
when spatial slices are locally homogeneous, the asymptotic behavior is not completely under-
stood. It is also of interest to find any results in the other extreme, when one assumes no local
symmetries.

In this paper we only consider vacuum spacetimes. Regarding the physical relevance of this
restriction, there are heuristic arguments that under some assumptions, the matter content is
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not relevant for the asymptotic behavior as one approaches an initial singularity [2, chapter 4].
Suffice it to say that results about vacuum spacetimes may have wider application.

In section 2 we consider vacuum spacetimes with a free spatial TV -action (possibly globally
twisted) and a two dimensional quotient space. We first consider a Gowdy spacetime, meaning
that the normal spaces to the orbits form an integrable distribution. Results about four dimen-
sional Gowdy spacetimes are described in Ringstrém’s review [3]. In arbitrary dimension, the
metric can be expressed in local coordinates by

2

N
2= Gudx'dy + ) gasdb®dd’. (1)
1J=1 a,f=1

Here 2(21,6:1 8apdb®db” is a Lorentzian metric on the quotient space B. The matrix
(Gry) = (Gi)(b) is a b-dependent positive definite symmetric (N x N)-matrix.

As is standard, we assume that there is an ‘areal’ time coordinate ¢ € (0, 7] so that
det(G) = 1V, see [4]. We write >, ;| gapdb®db? = —L2dr® + hdy?, where y is a local
coordinate on S'.

One possible limiting behavior is AVTD (asymptotically velocity term dominated) asymp-
totics. With AVTD asymptotics, as ¢ — 0, the leading asymptotics are given by the VID
(velocity term dominated) equations, obtained by dropping spatial derivatives in the evolution
equations. This is discussed in sections 4—6 of Isenberg’s review [1].

If we make a change of variable t = e~ then 7 — oo corresponds to approaching the
singularity. The VTD equation for G is

(G7'G,), = 0. ()

By the choice of time parameter, Tr((G~'G;),) = (In det G),. = (—NT),; = 0. The con-

tent of (2) is that for each y € §', the normalized matrix (det G)~ ¥ G describes a geodesic,
as a function of 7, in the symmetric space SL(N, R)/SO(N) of positive definite symmetric
(N x N)-matrices with determinant one. The AVTD hypothesis for G is that (G~'G;,),
approaches zero as 7 — 00.

In the case of four dimensional Gowdy spacetimes, i.e. when N = 2, Ringstrom proved
pointwise statements about the asymptotics of G, e.g. for each y € S! there is a limit
Tliglc (det G(y, 7))~ %G(y, 7) in the ideal boundary of H> = SL(2,R) /SO(2), and the limit is
approached at an asymptotically constant speed [5]. (This followed earlier work by Isen-
berg and Moncrief on the polarized Gowdy case [6].) One interesting feature is the possible
occurrence of ‘spikes’ in the spatial behavior as 7 — oo [7-9].

We define an H~'-Sobolev space of matrix-valued maps on S' (equation (48)). The
following result roughly says that the H '-norm of (G !G.), decays exponentially
fastin 7.

Theorem 1.

o0
|GG, ar <o G
0 T

Hence there is AVTD-like behavior. The appearance of the H~'-Sobolev space is not unrea-
sonable, in view of the possible occurrence of spikes in the spatial behavior. Compared to earlier
results, one difference in theorem 1 is the use of the Sobolev norm to measure the AVTD-like
behavior. The norm arises from the use of a monotonic functional, that in fact differs in the

2
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nonpolarized case from those previously considered. Another feature is that the result is
somewhat more geometric, in that it holds in arbitrary dimension.

We next consider four dimensional spacetimes that have a free spatial T2-action but are
nonGowdy, where there are fewer results. As in the paper [10] by LeFloch and Smulevici, the
metric has a local expression

g = 2T V(—dR* + a 2d0*) + *V(dx' + Adx* + (G + AH)d)? + e *UR*(dx* + HdH) .
“)

Here the time parameter R is such that the area of the T2-orbit is R. The variables 1, U, a, A, G
and H are functions of R and #. We make a change of variable R = e~ 7. The AVTD asymptotics
for U are that a(a™'U,), — 1e*"e*VAZ goes to zero as 7 — oo [11, 12].

Unlike in the Gowdy case, one does not expect AVTD-like behavior in gen-
eral. Some solutions with a ‘half-polarized’ condition on A were constructed by
Ames—Beyer—Isenberg—LeFloch using Fuchsian methods [11]; those solutions have AVTD-
like behavior. The next theorem gives a sufficient condition for AVTD-like behavior to hold
for U.

Theorem 2. Iffsl H d6 is bounded below as T — 0o, and

.
/ e[t a’Aj|” _, dr < . (5)

70

then

> 1
/ e” ||la(a”'U,), — EezTe“fAierl dr < oo. (6)

70

The expression |, ¢ H d0 is a holonomy-type term. The condition (5) is consistent with the
results of [11], where A is half-polarized. In those solutions, (5) is satisfied. When A is not half-
polarized, the construction in [11] breaks down. Numerics indicate that general T2-invariant
nonGowdy solutions are not AVTD, and instead have Mixmaster-type behavior [13]. We do
not have anything to say about Mixmaster dynamics, but the results of the paper may help to
clarify the line between AVTD dynamics and Mixmaster dynamics.

The proofs of theorems 1 and 2 involve finding energy expressions that are monotoni-
cally nondecreasing in real time, integrating the derivative to get an integral bound on spatial
derivative terms, and then applying the evolution equation.

In section 3 we consider vacuum spacetimes or, equivalently, Einstein flows, without any
assumed symmetries. The spacetime is diffeomorphic to (0, 7y] x X, where X is compact. In
this introduction we take dim(X) = 3, although some of the results are true for general dimen-
sion. We assume that there is a crushing singularity as  — 0, meaning that there is a sequence
of compact Cauchy hypersurfaces going toward the end at {0} x X whose mean curvatures
approach —oo uniformly. From Gerhardt’s paper [14], there is a foliation near the end by
constant mean curvature (CMC) compact spatial hypersurfaces, whose mean curvatures H

approach —oo. We then take f = —%, the Hubble time, which ranges in an interval (0, #y].
The spacetime metric can be written as g = —L?df> + h(t), where h(Z) is a Riemannian metric
on X.

Fischer and Moncrief showed that the quantity #~3vol(X, 4(¢)) is monotonically nonincreas-
ing in ¢, and is constant if and only if the spacetime is a Lorentzian cone over a hyperbolic

3
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3-manifold [15]. (A similar result was proven by Anderson [16].) This had implications for
the long-time behavior of expanding spacetimes that live instead on [#y, c0), and gave rise to
the intuition that most of such a spacetime, in the sense of volume, should approach such
a Lorentzian cone; a precise statement is in [17, section 2.2]. In this paper we are concerned
with the behavior in the shrinking direction, as ¢ — 0. It turns out that #~'vol(X, A(?)) is a partial
analog to the Fischer—Moncrief quantity.

Theorem 3. We have
d, 1
@ (t vol(X, h(t))) =-3 XLR dvoly,. @)

Hence

o dvolyy di
/ /(—tzR)L oo & . (8)
0 X t t

One sees from (7) that r~'vol(X, h(f)) is monotonically nondecreasing in ¢ provided that the
spatial scalar curvature R is nonpositive. The next result characterizes the equality case.

Theorem 4. Suppose that R<0 and ;' vol(X,h(t))) = t, ' vol(X, h(t2)), for some
1) < tp. Suppose that X is orientable and that there is an aspherical component in the prime
decomposition of X. Then the Einstein flow is a Kasner solution.

There is a natural rescaling (99) of a CMC Einstein flow. Using theorem 3, one can show
thatif R < 0 then as one approaches the singularity, there is Kasner-like geometry in an integral
sense, relative to a limiting measure. Namely, put dvoly = lim,_t ! dvoly; this limit exists
as a measure, although it may be zero. Let K denote the second fundamental form of the spatial
hypersurfaces.

Theorem 5. Suppose that R < 0. Given A > 1, we have

. 1 . > 9 .
limn Ls—gl—lﬂﬂm ~ 2|~ limlR[ =0 ®

in L' ([A™", A] x X, dudvolp).

The analogy between —3vol(X, h()) (for the expanding direction) and #~'vol(X, h(1)) (for
the shrinking direction) is only partial. First, #~'vol(X, h(¢)) is only monotonic when R < 0.
Second, r3vol(X, A(1)) is invariant under rescaling, whereas ¢~ vol(X, h(¢)) is not.

The remaining results of the paper involve a curvature assumption. Let |Rm|7 denote the
norm of the spacetime curvature, as given in (102). Following Ricci flow terminology, we
define a type-I Einstein flow to be a CMC Einstein flow for which there is some C < oo
so that |[Rm|7 < Ct~2 for all ¢ € (0, #]. We show that except for a clear counterexample, the
normalized spatial diameters in a type-I Einstein flow go to infinity as  — 0.

Theorem 6. Suppose that a type-I Einstein flow & satisfies liminf,_ ¢~ diam(X, h(1)) < oo.
Then & is a Lorentzian cone over a compact hyperbolic 3-manifold.

Let By (x, 1) denote the time-¢ spatial metric ball of radius ¢ around x € X. We say that a
CMC Einstein flow & is noncollapsed if there is some vy > 0 so that for all (z,x) € (0,1)] x X,

4
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we have vol (B;,(t) (x, t)) > vor?. Since we have mentioned the two dichotomies shrink-
ing/expanding and collapsed/noncollapsed, let us clarify the difference. As H is negative, we
are considering flows for which the volume of the time-7 slice is shrinking as # — 0 and expand-
ing as t — oo. In contrast, the notion of collapsed/noncollapsed is based on the normalized
volumes of metric balls in the time slices. There are many examples of Einstein flows that are
collapsed in the expanding direction, as discussed in [17]. In contrast, Einstein flows tend to
be noncollapsed in the shrinking direction.

In this paper we focus on noncollapsed type-I Einstein flows. The motivation comes from
looking at examples of crushing singularities. There may be crushing singularities that are not
type-1, or are type-I but collapsed. If there are such examples then the methods of [17, sections 3
and 4] would give some information about them.

Noncollapsed type-I Einstein flows have the technical advantage that one can take rescaling
limits. In view of the BKL conjectures [2, 18], the possible existence of particle horizons is
relevant for understanding initial singularities. One question is whether there are distinct points
Xx1,Xx> € X so that for ¢ sufficiently small, the causal pasts J_(xy, f) and J_(x», ) are disjoint. In
general, this need not be the case. However, we show that except for a clear counterexample,
if ¢ is small enough then there are many points whose causal pasts are mutually disjoint on a
relatively long backward time interval.

Theorem 7. Let £ be a noncollapsed type-I CMC Einstein flow. Then either

(a) & is a Lorentzian cone over a compact hyperbolic 3-manifold, or

(b) Given N € Z+, A > 1 and X' € X, there is some t € (0, ty] with the following property.
Given t € (0,1), there are N points {xj}y:l in X, with x; = x, so that if j # j then the
causal pasts J~(x;,t) and J~ (xy, 1) are disjoint on the time interval [A~ ', 7).

One can localize the preceding result to an arbitrary open subset of X.

Theorem 8. Let £ be a noncollapsed type-I CMC Einstein flow. Given N € 7, A > 1,
€>0, ae(0,1), an open set U C X and a point X € U, there is some T €(0,19] with the
following property. For t € (0,1), either

(a) The rescaled pointed flow & on (X,X') is e-close in the pointed C'*-topology to a
Lorentzian cone over a region in a hyperbolic 3-manifold, having U as a bounded subset
of the approximation region, or

(b) Thereare N points {x;}" | in U, withx, = X, so that if j # J then the causal pasts J~(x;, f)
and J~(xy,t) are disjoint on the time interval [A~'s,1].

There is also a measure theoretic version (proposition 16).

The structure of the paper is the following. In section 2 we prove theorems 1 and 2. In
section 3 we prove the remaining theorems. More detailed descriptions are at the beginnings
of the sections.

I thank the referees for helpful comments.

2. Torus symmetries

In this section we prove the results about TV-actions. In subsection 2.1 we recall results about
the geometry of spacetimes with free isometric TV-actions (possibly globally twisted). In
subsection 2.2 we prove theorem 1 and in subsection 2.3 we prove theorem 2.

5
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2.1. Geometric setup

We begin with the geometric setup of [19, section 4.1], to which we refer for more details.
Let G be an N-dimensional abelian Lie group, with Lie algebra g. Let & be a local system on
B of Lie groups isomorphic to G. There is a corresponding flat g-vector bundle ¢ on B; see
[19, section 4.1].

Let M be the total space of an E-twisted principal G-bundle with base B, in the sense of
[19, section 4.1]. (An example is when € is the constant local system and M is the total space
of a TV-bundle on B.) We write dim(B) = n + 1 and dim(M) =m =N +n + 1.

Let g be a Lorentzian metric on M with a free local isometric E-action. We assume that the
induced metrics on the E-orbits are Riemannian. In adapted coordinates, we can write

N n+1
g =) Gy +ANdx +A)+ > gasdbdb’. (10)

1J=1 a.f=1

Here Gy, is the local expression of a Euclidean inner product on e, ZZEIZI 8ap dbdb” is the
local expression of a Lorentzian metric gz on B and A’ = Y A’ db are the components of a

[e'amme’

local e-valued 1-form describing a connection A on the twisted &-bundle M — B.
Put F! ; = 0,A}, — 93AL. Ata given point b € B, we can assume that A'(b) = 0. We write

G108 = Groas — '3 Gy, (1D

where {I'?, ;} are the Christoffel symbols for the metric g,5 on B.
From [19, section 4.2], the Ricci tensor of g on M is given in terms of the curvature tensor
Rays of B, the 2-forms F? ; and the metrics Gy by

e 1 af 1 af 1 af
Rj; =— 58 PGiras — 18 PG Gy oGy + 58 PG* Gk oGy g (12)

|
4 Zg(l') g56 G[KGJLF(ISQF{YI(S

RS, :%ng,KF(’;,;g + %gW‘SG,KWF{; + %g”‘sGlmGKLGKLWF(’;g
RS, =RS, — %G”Glmﬁ - }tG”GJK,aGKLGu,g - %g“”Gqungg.
The scalar curvature is
RS =R® — g G Gy + % gPGY Gy o GKL Gy 5

1 1 .
- ZgaﬁGHGu,a G Grrp — nggﬁo GuFysF;. (13)

In what follows we will assume that the flat vector bundle e has holonomy in SL(N, R), so
that In det G is globally defined on B. We have

V. Indet G = GGy, (14)

and
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Ay Indet G = g’ GY Gy — 87 GV G o GX-Gr 5. (15)
Writing
|F|* = Guyg*’g" F., Fls. (16)

the first equation in (12) gives
Y 1 1 af 1 2
G"Ryy = _EAg In det G — 18 (V4 In det G)(Vj In det G) + Z|F\ . (17

Note that |F|? need not be nonnegative.
Given a foliation of B by compact spacelike hypersurfaces Y, we can write the metric g on
B as

g=—L*dr + Z hijdy' dy’. (18)

ij=1
Here L = L(y, 1) is the lapse function and we have performed spatial diffeomorphisms to kill

the shift vectors.
Suppose hereafter that det G is spatially constant, i.e. only depends on 7 [4]. Then

¢*%(V, In det G)(V3 In det G) = — L™2(9, In det G)? (19)
and
1 —1
By lndet G =~ |t (L7 Vdeth(@, In det G) ). (20)

If F;‘_’J = 0 then (17) becomes

o, (L*I\/det G(0, In det G)V/det h) + %L\/det G|F|*V/det h = 0. 1)

More invariantly,

1
) (L*I\/det G(9, In det G)dvolh(,)) = — JLVdet GIFdvoly. (22)
In particular, if F = 0O then
p =L~ 'Vdet G(9; In det G)dvoly, (23)

is a t-independent smooth positive density on Y.
We suppose in the rest of this section that dim(B) = 2, i.e. dim(Y) = 1. We write g locally
(in Y) as —L*df> + hdy”.

2.2. Gowdy spacetime

In this subsection we assume that F = 0. (This is automatic, for example, if X is a three
dimensional Sol-manifold [17, p 2288].) Let x be the t-independent density on Y defined
in (23).
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Put

Ldvol  (24)

o f el 5)) (e 5)
(o) )5

Still assuming that F' = 0, if 1_3% = 0 then equation (12) gives the matrix equation

dy.

-L*G'G,-G'GG'G)+h (GG, - G'G,G'Gy) (25)
1
+L°LG G+ L '"h'L,G'G, — EL—Zh—‘h,c;—‘G,
1, —1 1 —1
= h GGy = L7 (In det G)G™'G, = 0.

Suppose that (Indet G), > 0. Using (25) and the ¢-independence of ;i, one finds

& (In det G), 1 . 2
T /Y ((m det Gy, 20 G)f> L 4T ((G7'G,)°) dy (26)

(In det G),; 1 11 12
MY g L'hzT
+/y<(1n GGy 5l det G)t) h? r((G G, ) dy

B (In det G),, 1 1 12
_ / ((m det G, T 5 In det G),) Lh Tr((G G,) ) dvol

(In det G),; 1 1 1 2
SRet e LT L
+ /Y ( (v det G~ n det G)t) r((67'G)") avo

A scale invariant quantity that is monotonically nonincreasing in ¢ is given by

E@). 27)

. 1
E) =
@ (In det G);\/det G

Using (26), one finds

d& _ 1 —1 —1,~\2
7= /YL 1 ((G1G)") dvol. (28)

Since € is nonincreasing in time, it can be used to understand the long time behavior of
a Gowdy solution. In order to understand the short time behavior, we want a quantity that is
monotonically nondecreasing in time. To find such a quantity, note that the right-hand sides
of (24) and (28) have a roughly similar term. This suggests using a different prefactor of &£, as
compared to (27). For this reason, we put

5. VdetG
E@) = mg(t). (29)

Using (26), one finds
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de = Vdet G/

_ _ 2
= iz 1Tr((G 'G,) )dvol. (30)

Hence & is monotonically nondecreasing in 7. Note that the right-hand side of (28) involves a
time derivative, whereas the right-hand side of (30) involves a spatial derivative.

Remark 1. If N = 2 and the Gowdy spacetime is polarized then the expression & from (29)
is essentially the same as the expression ¢V from [6, (19)].

Remark 2. We correct a couple of equations in [17]. Equation (A.18) should not have the %
on the right-hand side. The right-hand side of (A.20) should be multiplied by two.

As € is nonnegative and nondecreasing in ¢, it follows from (30) that for any 79 > 0,
fo
/ /\/det GLh'Tr ((G7'Gy)”) dvoldr < o. 31)
o Jy
As we will use the fact that G~ %GyG‘ Yisa symmetric matrix, we rewrite (31) as
fo | 1\ 2
/ / Vdet GLh~'Tr ((G‘ ieNen 7) ) dvoldr < oo. (32)
o Jy
‘We can rewrite (25) as

8, (\/ML*%%G*G,) =9, (\/Mur %G*IG),) . (33)

Let o be a self-adjoint endomorphism of the vector bundle e, with compact support in
(0,19) x Y. Locally,

ol = GoG™ . (34)

We note that G~'G, and G’le are self-adjoint in this sense. We write o, for 0,0, and similarly
for o,. Multiplying (33) by o, taking the trace and integrating by parts gives

) 0]
/ / Tr (a,\/det GL*lh%(G*IG,)) dyds = / / Tr (Uy\/det GLh~ %(G*Gy)) dydr.
0 Y 0 Y

(35)

In terms of the density p from (23), this says

) 0]
/ / ¥Tr (0(G7'Gy)) dpdr = / / Vdet GLh™'Tr (0,(G™'G,)) dvoldt.  (36)
o Jy(n det G), o Jyr ’

Now
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1
=Tr (2 ((G%%G*%) + (G%ayG*%) T) (G* 5G,G™ é)) ,

(37)

where we use the symmetry of G~ %GyG‘ > in the last step. Differentiating (34) with respect
to y, one can check that

% ((G%ayc— D+ (6haG i)T> :% ((620,G 1) + (6a7GH))
G

where

1 —1
Dyo =0y + 5 GGy, 0]. (39)

From (38), G2(Dyo)G~ 7 is symmetric, which implies that D, is self-adjoint in the sense of
(34). Combining (36)—(38) gives

) 1 y
/0 /ym“ (0/(G™'Gy)) dpdr
) 1 | | |
— / /\/MLh—lTr ((GZ(Dya)G— 7) (G‘ 7GyGi)) dvoldr.  (40)
0 Y

By the Cauchy—Schwarz inequality, and letting ¢ denote the square root of the left-hand
side of (32), we have

/Ofo /Y\/MLhilTr ((G%(D),J)G7 %) (G* %GyG%)) dvoldt

I
<c \/ / / Vdet GLh~"Tr ((G%(DyU)G’ %)2) dvoldr
0 Y

T
:c\/ / / Vdet GLh~'Tr ((Dy0)?) dvoldr. (41)
0 Y
We can write
to o Tr ((Dy0)?) dy?
/ / Vdet GLh"Tr ((Dyo)?) dvoldr = / / (det G)(In det G),M dr. (42)
o Jy i o Jy H

To put this in a more invariant way, write

10
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Tr(Dyo®Dyo) = Tr ((Dy0)*) dy*, (43)

a 2-density on Y. Then M is a density on Y and (40)—(43) give

Tr (0/(G~'G))) dpdt (44)

, (In det G),

v Tr (D D
c \/ / /(det G)(In det G)tr(+ ®Dyo) d
o Jy

We choose the time parameter ¢ so that det G = V. Then (44) becomes

3\// /Tr(DyU®Dy0)%. s)

Next, we define 7 by = e~ 7, so that approaching the singularity corresponds to 7 — co. Define
To by to = e~ 0. Then (45) becomes

1Tr (0/(G'G))) dudt| <
Y

Tr (0-(G™'G,)) dpdr
Y

<N%c / e_NT/Tr(DyO'®DyO') dr.
0 Y 1%

(46)

or

Tr (0(G 'G,),) dudr| <
Y

Mo \/ / /Tr(Dya®DyU)

(47)

From (40), (G™'G,), is orthogonal to Ker(Dy) at all times 7. Define a time-7 norm ||-|| H!

on square-integrable self-adjoint sections of e by

Tr (DyPeDyn
177l] 4,1 = sup (/Tr(nﬁ)du> /\// (Tr(ﬁz)dwrir( e ym). (48)
070 Y Y

where 7] ranges over smooth time-7 self-adjoint sections of e. Note that ||-| bl depends on

G(7) through the notion of self- adjomtness but only depends on L(7) and /’Z(T) through the
7-independent density 1. Let Hy | be the metric completion with respect to ||| bl Let H be

the weighted Hilbert space of measurable maps f with f(7) € H, ! such that

/‘ I dr < o (49)
0
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Proposition 1.

/ eNT||(G—‘GT)T\|frl dr < . (50)
0 Y,r
Proof. Equation (47) implies that (G~'G;), € H. The theorem follows. [l

2.3. NonGowdy spacetime

We now assume that F' # 0. If R;‘_’Q = 0 then from the second equation in (12), one finds that
the R¥-valued vector

C/=L"'h™* det GGy F (51)

is locally constant on the two dimensional spacetime. More precisely, it is a locally constant
section of the flat vector bundle e* (using our assumption that e is unimodular).

We now restrict to the case when N = 2 and the flat RZ-bundle ¢ has holonomy 7, around the
circle Y, lying in SL(2, R). When 7 = 1d, the components of C are called the ‘twist quantities’
in [4] and subsequent papers such as [10]. We mostly follow the notation of [10, p 1256—1283],
with coordinates (R, ) for the two dimensional base. We use linear coordinates x', x> for the
R2-fiber. In that paper, R = v/det G and 6 is the local coordinate for the spacelike hypersurface
Y. The coordinates x! and x? are chosen so that C; = 0 and C, = K, where K is a positive
constant. The Lorentzian metric on (0, c0) X Y can be written as

g = 2" V(—dR* + a2dA*) + *V(dx' + Adx* + (G + AH)dA)* + e 2UR*(dx* + HdH)>.
(52)
The variables 7, U, a, A, G and H are functions of R and 6. To relate to (10), the inner product
G[] is
2U 2U
e e“A
( VA e2UA2 4 e—ZUR2> (53)

and the connection A’ is

Gdo
< Hd 9> . (54)
The analog of the density x from (23) is 2a~'d#); it is no longer independent of the time
parameter R.
Put
1
D=a U +aU; + ZR*Ze“U(a*lA,% + aAl) (55)
and
= 1
Ex(R) = / (D + ZKZR_4e2”a_l> do. (56)
Y

Then from [10, p 1283],

12
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d€ 1
K _ _op! / a'Up + ~R %e*aA} ) d) — K*R / a'e®ds.  (57)
dR Y 4 ¥

(There were some incorrect terms in [17, (A.25) and (A.27)].)
Put

~ ~ 1
Ex = R*Ex + 5K / H dé. (58)
Y

As seen from (54), the term [yH df is the holonomy of the twist component of the
connection A’.
Proposition 2. We have

d€x

1
"= 2R / (aUg + ZRZe“Ua‘A,i) dé. (59)
Y

Proof. Using (58) and (59),

d /= dEx

L (r? ) —R [ EEK L op 60

dR ( Ex ( iR TR ek (©0)

1
=2R [ (aUj + R%“%‘A,i) do — EKZR*3 / a~'e? df.
Y Y

From [10, (4.28)],

OH -3 _-1.2

—— = KR m, 1

R ale (61)
The proposition follows. (]

Proposition 2 is also valid if the holonomy 7T is such that 7~ is unipotent; see [17, section
A.3.2].

Suppose that [ yH d6 is uniformly bounded below as R — 0. Then E is uniformly bounded
below and proposition 2 implies that

/ORO /y (RaUg + iRlewalA,%) dfdR < . (62)

From [10, (4.22)],
(Ra™'Up)r — (RaUy)y = %R"ew (a™'Aj — aAj) . (63)
Let o be a smooth function with compact support in (0, Ry) x S'. Multiplying (63) by ¢ and

integrating gives

13
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Ro 1 1
/ / o ((RalUR)R — Ezrle‘*Ucf‘A,ze + 2R1e4UaAg> dfdr (64)
0 Y

Ro Ro
=/ /O'(RaUg)g dfdR = —/ /O’eRaUe dfdR.
0 Y 0 Y

Letting ¢ denote the square root of the left-hand side of (62), the Cauchy—Schwarz inequality
gives

Ro 1 1
/ / o (a(Ra_lUR)R — ER—le“UAﬁ + 5R—le”*UaZA;> a"dﬁdR’ (65)
0 Y

Ro
<c / /Razag a-1dfdR.
o Jy

Changing variable by R = e " gives

o 1 1
/ /a (a(a_lUT)T — —eZTewAi + —e4Ua2A§> a 'dodr
0 Y 2 2

o0
<c / /e*zTazag a='do dr.
0 Y

Define a time-7 norm ||~HH;1 on L*(Y;a 'df) by

[ — ( / aaa-lda) / ¢ [ G+ aap)are, 67
7 G40 Y Y

where & ranges over smooth functions on Y. Let Hy, ! be the metric completion with respect

to ||-||,;-1 . Let H be the weighted Hilbert space of measurable maps f with f(7) € Hy ! such
Y. ’

that

(66)

/ e [lf (M2 _, dr < oo. (68)
70 Y.
Then (66) implies that
-1 Looravyo 1 av 240
ala”'U,); — Ee e Al + Ee aAy € H. (69)

The AVTD asymptotics for U are that a(a~'U,); — 1e*"e*VA2 goes to zero as 7 — 0o
[11, 12]. The next theorem gives a sufficient condition for AVTD asymptotics to hold for U,
in an integral sense.

Proposition 3. If [, H df is bounded below as T — oo and
e*VaPA2 e H (70)

then

14
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1
a(a” Uz, — Je'eAT €. (71)
Proof. This follows from (69). O

Remark 3. The formal large-7 asymptotics from [11, (3.8)—(3.13)] say

Uer.8) e — 1 — k(0)

T+ U0+ ..., (72)

AT, 0) ~ AL (0) + An(B)e 4O 1
a(r.0) ~a0) + -
H(r,0) ~H(0) + -

where k(6) determines the Kasner parameters. Without further assumptions, one sees that (70)
should not always hold. On the other hand, if we assume that A, is constant in 6, the half-
polarized condition, then e*Ya?A} ~ e~*" and (70) holds. This is consistent with the finding in
[11] that the half-polarized condition is needed for the Fuchsian method to work.

Without the half-polarized condition, it appears from (69) that the right generalization of
the AVTD asymptotics for U would be thata(a~'U;), — 1e?"e*VAZ + 1e*Va?A goes to zero
as T — oo. For general T?-symmetric vacuum spacetimes, numerics indicate a Mixmaster-type
behavior [13]. Of the two conditions in proposition 3, we do not know which ones are violated
in such a case.

3. CMC Einstein flows

In this section we consider expanding vacuum spacetimes with a CMC foliation. In subsec-
tion 3.1 we discuss the quantity #~'vol(X, h(¢)), and prove theorems 3—5. In subsection 3.2 we
define noncollapsing type-I Einstein flows and their rescalings. Subsection 3.3 has the proof of
theorem 6. In subsection 3.4 we prove theorems 7 and 8. Subsection 3.5 has an improvement
of theorem 5 in the case of a noncollapsed type-I Einstein flow.

3.1. Monotonic quantities

Definition 1. Let / be an interval in R. An Einstein flow £ on an n-dimensional manifold X
is given by a family of nonnegative functions {L(¢) },c; on X, a family of Riemannian metrics
{h(#)}+e; on X, and a family of symmetric covariant 2-tensor fields {K(#)},; on X, so that if
H = h'K;;and K° = K — £} then the constraint equations

1

R—|K°|2+(1—;>H2:0 (73)
and

V,'Kij - VJH == O, (74)
are satisfied, along with the evolution equations

6}1,']‘

—Y = _2LK;; 75

ot I (75)

and

15
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aK,'j
ot

= LHK;; — 2Lh"KyK); — L + LR;;. (76)

For now, we will assume that X is compact and connected, and that all of the data is smooth.
At the moment, L is unconstrained; it will be determined by the elliptic equation (83) below.
We will generally want L(f) to be positive.

An Einstein flow gives rise to a Ricci-flat Lorentzian metric

g =—L*d" + h(@t) (77)

on [ x X, for which the second fundamental form of the time-z slice is K(f). Conversely, given
a Lorentzian metric g on a manifold with a proper time function #, we can write it in the form
(77) by using the flow of WV# to identify nearby leaves. Letting K(#) be the second fundamental
form of the time- slice, the metric g is Ricci-flat if and only if (L, i, K) is an Einstein flow.

Definition 2. [20, 21] There is a crushing singularity as t — 0 if there is a sequence of
compact Cauchy surfaces going out the end at {0} x X whose mean curvatures approach
—oo uniformly.

From [14], if there is a crushing singularity then there is a foliation near the end by
constant mean curvature (CMC) compact spatial hypersurfaces, whose mean curvatures
approach —oo.

Definition 3. A CMC Einstein flow is an Einstein flow for which H only depends on .

We will assume that there is a crushing singularity as ¢t — 0; in particular, X is compact.
So we can assume we have a CMC Einstein flow with I = (0, #9] (or I = (0, ty)), and that H is
monotonically increasing in ¢ and takes all values in (—oo, Hy) for some Hy < 0.

Example 1. We give some relevant examples of crushing singularities.

(a) A Lorentzian cone over a Riemannian Einstein n-manifold (X, hg;,) with Einstein constant
—(n — 1). The metric is

g = —dr + Phgp. (78)

(b) The product of the previous example, in dimension n — n/, with a flat torus (T"/, haat). The
metric is

g = —df* + Phgin + haa. (79)

(c) A Kantowski—Sachs solution with X diffeomorphic to S? x S'. The metric is a Z-quotient
of the interior of the event horizon in a Schwarzschild solution, after switching the usual
t and r variables:

2
o= — Zm_ldt2+(7m—l> d? + Pge. (80)

Here t € (0, 2m) and the Z-quotienting is in the r-variable.
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(d) A Kasner solution on a flat n-manifold. After possibly passing to a finite cover of X, the
metric is

1
g=——dff +(d»'AMdx. (81)
n

Here M is a symmetric (n X n)-matrix with Tr(M) = Tr(M?) = 1. We have written the
metric so that# = — . Then

1 2
L=-, R=0, KP=m?="

. 82
" 2 (82)
End of example.
Returning to general expanding CMC Einstein flows, equation (76) gives
OH 2 o Loom
o —/N\yL+LH” +LR=—-/,L+ LIK"|" + —LH". (83)
n
The maximum principle gives
n OH
L) € —— 84
)< 135 (84)

Proposition 4. [15] Let £ be an expanding CMC Einstein flow. The quantity
(—H)"vol(X, h(t)) is monotonically nonincreasing in t. It is constant in t if and only if, tak-
ing t = — &, the Einstein flow & is a Lorenizian cone over a Riemannian Einstein manifold
with Einstein constant —(n — 1).

One proof of proposition 4 uses the pointwise identity

0 OH
o ((—H)"dvoly) = (—H)"! (L — I—Z&t) dvoly. (85)

From (84), it follows that (—H)"dvoly is pointwise monotonically nonincreasing in ¢, and
hence (—H)"vol(X, h(t)) is monotonically nonincreasing in ¢. In fact,

d
o (—H)"vol(X, h())) = —n(—H)""! / |K°|2L dvol,. (86)
X
If n > 1, we can use (73) to write the monotonic quantity itself as
(—H)"vol(X, h(1)) = n”—l(—H)"*2 / (—=R" + |K°|?) dvol,. (87)
- X

The monotonic quantity (—H)"vol(X, h(t)) gives information about the large time behavior
of the expanding solution [15, 17]. To get information about the small time behavior, we want
a quantity that is instead monotonically nondecreasing in ¢. As discussed in subsection 2.2, we
can try to play the right-hand sides of (86) and (87) against each other. The right quantity turns
out to be (—H)vol(X, h(t)).

17
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Proposition 5. We have

% ((—H)dvol,) = H? (L - % 8;) dvoly,. (88)
Proof. This follows from (75). O
Corollary 1.

% ((—H)vol(X, h(1))) = —/XLR dvoly,. (89)

Proof. From (83) and proposition 5, we have

g (=H)vol(X, h(1))) = /(AhL — LR)dvol, = —/LR dvol,. (90)
dr X X

This proves the claim. (]

Note that as in subsection 2.2, the time derivative on the right-hand side of (86) turns into
the spatial derivatives on the right-hand side of (89).

Corollary 2. [ft; < 1, then

(—H(1))vol(X, h(tr)) — (—H(t1))vol(X, h(t))) = — / ’ / LRdvoly, dr.  (91)

1 X

Corollary 3.

0]
—/ /LR dvoly dt < oo. (92)
0 Jx

Proof. This follows from (91) by taking #, =#y) and #; — 0, along with the fact that
(=H(t)vol(X, h(1)) = 0. O

Corollary 4. IfR < 0 then (—H(t))vol(X, h(t)) is monotonically nondecreasing in t.

Example 2. If dim(X) = 3 and X is aspherical then a locally homogenous Einstein flow on
X has R < 0, since X admits no metric of positive scalar curvature, so corollary 4 applies.

Proposition 6. IfR < 0thenL > ., 9.
Proof. This follows from (83) and the weak maximum principle. (]

We now improve corollary 4 to a pointwise statement.

Corollary 5. IfR < 0 then (—H)dvoly) is monotonically nondecreasing in t.
Proof. This follows from propositions 5 and 6. O
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Proposition 7. IfR < 0 and L(x,1) = -5 %2 for some x and t, then L = %2 R = 0 and

H? Ot H2 01’
|K|> = H>.
Proof. Equation (83) and the strong maximum principle imply that L = ﬁ %—’f and R = 0.
Equation (73) gives |K|> = H? O

Remark 4. The conclusion of proposition 7 does not use the compactness of X, or even the
completeness of (X, h(?)).

Proposition 8. If R<0 and (—H(t)))vol(X, h(t))) = (—H(t2))vol(X, h(ty)), for some

t <t thenL = 7% R=0and |K|> = H.

Proof. From propositions 5 and 6, we know that L = # %—’f. The other claims follow from
proposition 7. U

Proposition 9. Under the hypotheses of proposition 8, suppose that X is an orientable
3-manifold and that there is an aspherical component in the prime decomposition of X. Then
up to time reparametrization, the Einstein flow is a Kasner solution.

Proof. We know that R = 0. Running the Ricci flow with initial condition A(z), either the
scalar curvature becomes immediately positive or /(7) is Ricci-flat. One knows that X admits
no metric with positive scalar curvature [22]. Hence A(?) is Ricci-flat. Because dim(X) = 3, the
metric h(?) is flat.

In matrix notation, equations (75) and (76) become

dh
dr
dK
dr

— 2IK, (93)

=LHK — 2LKh"'K.

Then 4K satifies

d 1 dH

—(h'K)=LHh 'K = — ——h"'K, 94

dt( ) H dr 4
with the general solution

h 'K = HM, (95)

where M is a time-independent self-adjoint section of End(7X). Equation (73) gives
Tr(M?) = 1. Also, the fact that H = Tr(h~'K) gives Tr(M) = 1. Since X is flat, equation (74)
means that M is locally constant. Then

dh 1 dH
— = -2LK=-2——hM
dr H dt hM, 96)

with the general solution
h = h(—H)"M 97)

for some time-independent metric . on X. This is a Kasner solution. (]
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For s > 1, the Lorentzian metric s2g is isometric to
gs = —L*(su) du® + s 2h(su). (98)
Hence we put
Lo(u) = L(su), hg(u) = sfzh(su), Kqij(u) = silKij(su), (99)
H(u) = sH(su), Kgij

Ryij(u) = Rij(su), Ry(u) = s*R(su).

(u) = s_lKg»(su), IK°|2(u) = szKij(su),

The variable u will refer to the time parameter of a rescaled Einstein flow, or a limit of such.
‘We now take t = — %, the Hubble time, with 7 ranging in an interval (0, #o]. Equation (92)

becomes
) 1
/ /(—tzR)LMg<oo. (100)
o Jx t ot

If R < 0 then equation (84) and proposition 6 say 1 < L < 1.
Lemma 1. IfR < 0 then vol(X, h(t)) = O(t) as t — O.

Proof. This follows from corollary 2. O
Definition 4. If R < 0, put dvoly = lim,o((—H)dvol,)).

From corollary 5, the definition of dvol, makes sense. It is a nonnegative absolutely
continuous measure on X. It could be zero.

The next proposition says that in an L'-sense, rescaling limits are similar to Kasner
solutions; cf (82).

Proposition 10. Suppose that R < 0. Given A > 1, we have

1 2
lim |Z, — —| = lim |[|K,* = 5| = lim|R,| = 0 (101)
5s—0 n 5s—0 u s—0
inL! ([A_l, A] x X, dudvoly).
Proof. The proof is similar to that of [17, proposition 2.36]. We omit the details. (]

3.2. Rescaling limits

Let £ be an Einstein flow. Let g be the corresponding Lorentzian metric. Put ey = T = %%, a

unit timelike vector that is normal to the level sets of #. Let {e;}_, be an orthonormal basis for
n
ey . Put

(102)

Let £ = (L*>°, h*, K*) be a CMC Einstein flow on a pointed n-manifold (X*°, x*>), with
complete time slices, defined on a time interval /°°. For the moment, # need not be the Hubble
time. Take p € [1,00) and « € (0, 1).
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Definition 5. The flow £ is W*P-regular if X*° is a W*-manifold, L and h> are locally
W?P-regular in space and time, and K™ is locally W'”-regular in space and time.

Note that the equations of definition 1 make sense in this generality.
Let E® = {p®, KW L®}>  be smooth CMC Einstein flows on pointed n-manifolds
{(x®,x0) 322, defined on time intervals /Y.

Definition 6. We say that lim;_,,,£® = £ in the pointed weak W>”-topology if

e Any compact interval S C I is contained in I® for large k, and

e Forany compactinterval S C I and any compact n-dimensional manifold-with-boundary
W™ C X* containing x*, for large k there are pointed time-independent W3”-regular
diffeomorphisms ¢gwx: W — W® (with WO ¢ X®) so that

s 1imy 00y L = L™ weakly in W>P on S x W™,
s limy 00y AY = > weakly in W>P on S x W™ and
1Mooy K® = K> weakly in W' on § x W™,

We define pointed (norm) C'“-convergence similarly.

Definition 7. Let S be a collection of pointed CMC Einstein flows defined on a time inter-
val I*°. We say that a sequence {€®}2 | of pointed CMC Einstein flows approaches S as
k — oo, in the pointed weak W*P-topology, if for any subsequence of {£®}2° |, there is a
further subsequence that converges to an element of S in the pointed weak W>”-topology.

Definition 8. LetS be a collection of pointed CMC Einstein flows defined on a time interval
I°°. We say that a 1-parameter family {E®} <, of pointed CMC Einstein flows approaches
S, in the pointed weak W>”-topology, if for any sequence {5}, in (0, so] with lim_,. s = 0,
there is a subsequence of the flows {£¥}2° , that converges to an element of S in the pointed
weak W2P-topology.

We define ‘approaches S’ in the pointed (norm) C'“~topology similarly. The motivation for
these definitions comes from how one can define convergence to a compact subset of a metric
space, just using the notion of sequential convergence. In our applications, the relevant set S
of Einstein flows can be taken to be sequentially compact.

Definition 9. We say that a pointed CMC Einstein flow £! is e-close to a pointed CMC
Einstein flow £2 in the pointed C'“-topology if they are both defined on the time interval
(e, 1) and, up to applying time-independent pointed diffeomorphisms, the metrics are e-close
in the C"*“-norm on (¢, € ') x Bj,(1h(x@, e ).

We do not make a similar definition of closeness for the pointed weak W2”-topology because
the weak topology is not metrizable.
We now take t = — 7, with # ranging in an interval (0, #o].

Definition 10. A type-I Einstein flow is a CMC Einstein flow for which there is some C < oo
so that [Rm|; < Ct2 for all ¢ € (0, o).

Example 3. The Einstein flows in example 1 are all type-I.
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Consider a locally homogeneous Einstein flow with a crushing singularity. As the space-
time Ricci tensor vanishes, the curvature tensor is determined by the spacetime Weyl curvature.
When dim(X) = 3, the Weyl curvature is expressed in terms of ‘electric’ and ‘magnetic’ tensors
[23, section 1.1.3]. After normalization by the Hubble time, the tensor components can be writ-
ten as polynomials in the Wainwright-Hsu variables ¥ ,>_,N.,N_,N; [23, (6.37)]. Hence
the Einstein flow will be type-I provided that these variables remain bounded as one approaches
the singularity. From [24], this is the case for homogeneous Einstein flows of Bianchi type IX,
i.e. flows of left-invariant data on SU(2) [23, section 6.4], some of which exhibit Mixmaster
behavior.

Let By (x, t) denote the time-¢ metric ball of radius # around x.

Definition 11. If £ is a CMC Einstein flow then a sequence {(x;,%)}2, in X x (0,#] is
noncollapsing if vol (By,(xi, 1)) = vot? for all i, and some vy > 0. We say that £ is non-
collapsed if there is some vy > 0 so that for all (x,7) € X x (0, 7], we have vol (Bh(,)(x, t))
2 1)01‘".

Recall the rescaling from (99). We write the rescaled Einstein flow as &;. It is also type-1,
with the same constant C.

Proposition 11. Let £ be a type-I Einstein flow on an n-dimensional manifold X. Suppose
that it is defined on a time-interval (0,ty] and has complete time slices. Let {(x;, 1,)}2, be a
noncollapsing sequence in X x (0, to] with lim;_, t; = 0. Then after passing to a subsequence,
which we relabel as {t;}3°, and {x;}32,, there is a limit lim,_ &, = % in the pointed weak
W2P-topology and the pointed C'*-topology. The limit flow £ is defined on the time inter-
val (0, 00). Its time slices {(X°°, h™°(u)) }u=o are complete. Its lapse function L™ is uniformly
bounded below by a positive constant.

The proof of proposition 11 is essentially the same as that of [17, corollary 2.54], which
is based on [16]. It relies on the fact that the curvature bound, along with the noncollapsing,
implies uniform bounds on the local geometry in the pointed W??-topology or the pointed
C"-topology [25, 26].

Example 4. For example 1(a), £* = £. For example 1(b), £ is the product of R" with
the Lorentzian cone on the (n — n’)-dimensional Einstein manifold. For example 1(c), £* is a
Kasner solution on R?® with M = diag (%, 3, — 1). For example 1(d), £~ is a Kasner solution
on R” with the same matrix M as the original flow.

Example 5. Suppose that £ is a Mixmaster flow of Bianchi type IX [23, section 6.4.3].
As mentioned in example 3, it is a type-I Einstein flow. We don’t know if it is necessarily
noncollapsing, but let’s suppose that it is noncollapsing. We expect that any pointed rescaling
limit £ will be a Kasner solution or a Bianchi type II Taub solution [23, section 9.2.1]. A
priori, the rescaling limit could also be a Mixmaster solution. However, numerical evidence
indicates that the mixing slows down as t — 0; see [27, figure 12], which shows the evolution
as a function of log(—log?). (The authors of [27] inform me that the vertical axis of figure 12
should be labeled by log N instead of Z.)
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3.3. Diameter bounds

Let S be the collection of Einstein flows that generate Lorentzian cones over compact
n-dimensional Riemannian Einstein manifolds with Einstein constant —(n — 1). They are
defined on the time interval (0, co).

Proposition 12. Suppose that a type-I Einstein flow £ has liminf, o t~'diam(X, h(f)) < oc.
Then there is a sequence {t;}22, with lim;_,» t; = 0 so that as i — oo, the rescaled Einstein
flows &, approach S in the weak W*P-topology and the C'*-topology.

Proof. Choose asequence {#;}°, withlim; . #; = O and #; "diam(X, h(t;)) < D, forall i and
some D < oo. As t~"vol(X, h(t)) is monotonically nonincreasing in ¢, it is uniformly bounded
below on (0, #9] by some positive constant. Let {x;}7°, be a sequence of points in X. Then by the
Bishop—Gromov inequality, the sequence of points {(x;, #;)}7°, is noncollapsing for £. After
passing to a subsequence, we can extract a rescaling limit lim; ,, & = £ on a manifold X>°
that is compact, since D < oo. In particular, X*° is diffeomorphic to X.

From the monotonicity of the normalized volume of &, it follows that u~"vol(X>°, h*°(u)) is
independent of u € (0, c0). The claim now follows from proposition 4, whose proof works for
W?P-regular metrics. O

Corollary 6. If dim(X) = 3 then under the hypotheses of proposition 12, the original
flow & is a Lorentzian cone over a compact Riemannian 3-manifold with constant sectional
curvature —1.

Proof. By proposition 12, there is a hyperbolic metric 2°°(1) on X, unique up to isometry by
Mostow rigidity. From the constraint equation (73), the scalar curvature R(zy) of h(ty) satisfies

R(19) > — <. Then from Perelman’s work [28, section 93.4],
)

15> vol(X, h(tp)) = vol(X, h**(1)). (103)
From the existence of the limiting flow in the proof of proposition 12,

lim ;3 vol(X, h(t) = vol(X, h**(1)). (104)

Since t~3vol(X, A(t)) is nonincreasing in ¢, it follows that t~3vol(X, A(t)) = vol(X, h>°(1)) for
all t € (0, tp]. The claim now follows from proposition 4. (]

3.4. Causal pasts

Givenx € X and ¢ € [0, 1), let J_(x, ¢) denote the causal past of (x, 7), i.e. the spacetime points
that can be reached from past-directed timelike or null curves starting from (x, f). The next
result is fairly standard but we include it for completeness.

Proposition 13. Let £ be a CMC Einstein flow, defined for Hubble time t € (0, 1].
fo _dr

Suppose that there is some continuous function f:(0,1] — RT, with fo o < 0%
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so that h(t) > f2(Oh(ty) forallt € (0,1y). Then forany x' € X, the causal past J_(xX, t) satisfies
lim,_o diam(J_(x', ©), h(ty)) = 0.
dx dx

Proof. A past causal curve y(s) = (x(s), s) satisfies —L* + h (3, §¥) < 0. By (84), we have

hs (§£,$) < L* < 1. The length of  with respect to A(fo) satisfies

ds’ ds
g:/t h (d_x d_x>ds:/’ hy (5 &) hs(fl_x %)M " ds
0 O\ ds’ ds o\ s (£.5) ds’ ds o f(s)

(105)

Hence diam(J_(X/, 1), h(tp)) < é %. The proposition follows. U

Example 6. The Kasner solution of example 1(d) satisfies the hypotheses of proposition 13
provided that the eigenvalues of M are strictly less than one.

Under the assumptions of proposition 13, for any distinct x, X' € X, if 7 is small enough then
J_(x,1) and J (X, r) are disjoint. This is not true for general CMC Einstein flows. However, we
show that one can often find many points whose causal pasts are disjoint on a relatively long
time interval.

Proposition 14. Let & be a noncollapsed type-I CMC Einstein flow with
lim,_ =" diam(X, h(f)) = oo. Given N € Z+, A > 1 and X' € X, there is some t € (0, to] with
the following property. Given t € (0,1), there are N points {x;}¥, in X, with x; = X, so that if
J # J then the causal pasts J~(x;,t) and J ™ (xp,1) are disjoint on the time interval [A~'2,1].

Proof. Given &, suppose that the proposition fails. Then for some N € Z* and A > 1, there
is a sequence of times {#;}7°, with lim;_,», #; = 0 so that the proposition fails for ¢ = #;. After
passing to a subsequence, we can take a pointed rescaling limit lim;_,, &, = £, that exists for
times u € (0, c0). By the diameter assumption, X*° is noncompact. Because of the uniformly
bounded C!*-geometry of £ on the time interval [A !, 1] (see the comments after proposition
11), there is some R < oo so thatif p, p € X have dj1)(p, p) = RthenJ (p, 1)andJ~(p/, 1)
are disjoint on the time interval [A~!, 1]. Choose points {p j}f}’: | in X, with p; = x>, so that
dpy(pj» py) = 2R for j # j'. For large i, let {x,-,j}l}':l be points in (X, t,-‘zh(ti)) that are Gro-
mov—Hausdorff approximants to the points {p;}’_; in (X, (1)), with x;; = x’. From the
C'“-convergence when taking the rescaling limit, we conclude that for large i, if j # j then
the causal pasts J ™ (x; j, #;) and J ™ (x; y, t;) are disjoint on the time interval [A"'%;,¢]. Thisis a
contradiction. O

In the three dimensional case, we can strengthen the conclusion of proposition 14.
Corollary 7. Letr £ be a noncollapsed type-I CMC Einstein flow with dim(X) = 3. Then

either

(a) & is a Lorentzian cone over a compact Riemannian 3-manifold with constant sectional
curvature —1, or
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(b) Given N € Z+, A > 1 and X' € X, there is some t € (0, 1] with the following property.
Given t € (0,1], there are N points {xj}l};l in X, with x; =X, so that if j # j then the
causal pasts J~(x;,t) and J~ (xj,t) are disjoint on the time interval [A~'t,1].

Proof. This follows from corollary 6 and proposition 14. O

Example 7.

(a) If £ is a Lorentzian cone over a compact hyperbolic 3-manifold X then there is some
A > 0 so that for any x € X and any ¢ € (0, #y], the intersection of J~ (x, ) with the slice
at time A~ 't is all of X. This shows that the two cases in the conclusion of corollary 7 are
distinct.

(b) Suppose that £ is a Kasner solution as in example 6. Using the spatial homogeneity, we
can strengthen the conclusion of corollary 7 to say that J~(x;, ) and J~ (xy, t) are disjoint
on the time interval (0,7]. As N — co, we can assume that the points {xj}l}’:l become
uniformly distributed on X.

(c) Suppose that £ is the product of T? with the Lorentzian cone over a circle. Given a
point x = (x;2, x51) € X, we can take the points {x;}__, to lie on 72 x {xg } and we can
strengthen the conclusion of corollary 7 to say that J~ (x;,7) and J~ (xy, f) are disjoint on
the time interval (0, #].

(d) Let & be the product of R? with the Lorentzian cone over R. Let I" be a lattice in R3
with irrational entries. Let £ be the I'-quotient of £, an Einstein flow on T3. We cannot
strengthen the conclusion of corollary 7 to say that J~(x;, ) and J~ (x;, f) are disjoint on
the time interval (0, 7].

‘We now localize proposition 14 to an arbitrary open subset U of X.

Proposition 15. Let £ be a noncollapsed type-1 CMC Einstein flow. Given N € Z, A > 1,
€>0, ae(0,1), an open set U C X and a point X' € U, there is some T €(0,19] with the
following property. For t € (0,7),

(a) The rescaled pointed flow & on (X,x') is e-close in the pointed C'*-topology to a
Lorentzian cone over a Riemannian Einstein metric with Einstein constant —(n — 1),
having U as a bounded subset of the approximation region, or

(b) There are N points {x;}" | in U, withx; = X, so thatif j # j then the causal pasts J~ (x;, 1)
and J~ (xy,t) are disjoint on the time interval [A~'2,1].

Proof. Given &, suppose that the proposition fails. Then for some N € ZT, A > 1, ¢ > 0,
a € (0,1),U C Xandx' € U, thereis asequence of times {7}, with lim, . #; = 0 so that the
proposition fails for = #;. In particular, for each i, the rescaled pointed flow &;, is not e-close
to a Lorentzian cone as described in case (a).

Suppose first that lim inf; . ;' diam(U, A(t;)) < co. Choose D < oo so that after passing to
a subsequence, we have ¢, ! diam(U, h(t;)) < D for all i. With the basepoint X', after passing to
a subsequence, we can take a pointed rescaling limit lim; ., &, = £, that exists for times
u € (0,00). For large i, the Gromov—Hausdorff approximants of (U, 2h(;)) lie in
B(x*,2D) C (X*°,h™(1)). Hence there is a uniform upper bound 7, " vol(U, h(;)) < V < oo.
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Now ¢~ "dvoly; is pointwise nonincreasing in ¢, on U. From the monotone convergence
theorem, there is some X € U so that lim,_o 1" dvolp)(x) < oo. It follows from the strong max-
imum principle, as in [17, proposition 3.5], that £% is a Lorentzian cone over a Riemannian
Einstein metric on U with Einstein constant —(n — 1). Then for large i, the rescaled pointed
flow &, is e-close to the Lorentzian cone, which is a contradiction.

Hence lim; ¢, Vdiam(U, h(t;)) = co. We can now apply the argument in the proof of
proposition 14. Hence for large i, case (b) is satisfied. This is a contradiction. (|

We now prove a measure-theoretic version.

Proposition 16. Let £ be anoncollapsed type-1 CMC Einstein flow. Given A > 1, a € (0, 1)
and e > 0, there are some’t € (0,1y] and ' < oo with the following property. Choose t € (0,1]
and x € X. Let V be the set of points y € X such that the causal pasts J~(x,t) and J~(y,t)
intersect on the time interval [A='t, t]. Then

(a) vol(V, h(ty)) < etj, or

(b) There are some ¢ € [t,N't] and y € V so that the rescaled pointed flow E/ on (X,y) is
e-close in the pointed C'“-topology to a Lorentzian cone over a Riemannian Einstein
metric with Einstein constant —(n — 1).

Proof. Given &, suppose that the proposition fails. Then for some A > 1, « € (0, 1) and € >
0, there is a sequence of points {x;}°, and times {#;}°°, with #; < i~'#y so that the proposition
fails if we take x = x;, = t; and A’ = i. That is, for all i,

(a) vol(V;, h(ty)) > ety and

(b) Thereareno? € [, it;] andy € V; so that the rescaled pointed flow &, on (X, y) is e-close
in the pointed C'*-topology to a Lorentzian cone over a Riemannian Einstein metric with
Einstein constant —(n — 1).

From the uniformly bounded geometry (see the comments after proposition 11), there is
some D < oo so that for all i, the corresponding subset V; lies in By, (x;, Dt;). In particular,
there is some V' < oo so that for all i, we have ;" vol(V;, h(t;)) < V.

Now
fo” dvoliag
fVi £, " dvolyy dVOlh(ti) _ tan vol(Vi, h(to)) > ¢ (106)
fv,.dvolh(tf) " vol(Vi h(t)) TV

Thus there is some y; € V; with

fo" dvoliy) (i) € (107)
" dvolyy(vi) ~ Y

From the monotonicity of the normalized volume, we also have

(uty) " dvolyuuy(vi) _ €
! > — 108
£ dvolpg, (vi) vV (108)

forall u [1 ’—0]

1
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After passing to a subsequence, we can assume that the &,’s, on the pointed spaces (X, y;),
have a pointed limit £%°. The limit of (108) gives

1 dvobew®) o, € (109)

dVOlhOC(l)(yOO) 1%
for all u > 1. From [17, proposition 3.5], there is some A’ < oo so that SXO, on (X*°,y>) is
%e-close in the pointed C'“-topology to a Lorentzian cone as in case (b). Then for large i,
Epry, on (X, y;) is e-close in the pointed C L@_topology to such a Lorentzian cone. This is a
contradiction. O

3.5. Kasner-type limits

In theorem 5 we showed that if R < 0 and dvoly # 0 then as r — 0, there is Kasner-like behav-
ior in an integral sense. We now improve this to a pointwise statement under the additional
assumption that the flow is noncollapsed and type-1.

Let S be the collection of pointed Einstein flows with L = 1, R = 0 and |K|> = H?, defined
on the time interval (0, co); cf (82).

Proposition 17. Let £ be a type-I CMC Einstein flow. Suppose that R < 0. Let x € X be such
that dvoly(x) = lim,_o t~! dvol,(x) # 0. Suppose that the flow is noncollapsing at x as t — 0,
i.e. that there is a uniform lower bound vol(By(x, 1)) = vot" for some vy > 0. Then as s — 0,
the rescaled Einstein flows &, pointed at x, approach S in the pointed weak W>P-topology and
the pointed C"“-topology.

Proof. From proposition 6 and corollary 5, we know that L > %, and t"dvol;,(,)(x) 1S mono-
tonically nondecreasing in #. Let {s;}?°, be a sequence converging to zero. After passing
to a subsequence, we can assume that there is a limit lim;_, &, = £ in the pointed weak
W2P-topology and the pointed C'*-topology. Equation (88) implies that

) —1
n/ (L—l>g:InM<oo. (110)
0

n)t dvolg(x)

It follows that L™ (x, u) = % for all u € (0, 00). As in [17, proof of proposition 3.5], the strong

maximum principle implies that L™ = % and R = 0. Then the constraint equation (73) gives
K> = H>. O

Remark 5. If we omit the noncollapsing assumption then the conclusion of proposition
17 still holds, provided that we take the limit flow to live on an étale groupoid; see [17,
proposition 3.5].

Example 8. Let £ be a Bianchi-VIII NUT solution on a circle bundle over a higher genus
surface [23, section 9.14]. Then the hypotheses of proposition 17 are satisfied. As t — 0, the
diameter of the quotient surface approaches a constant, while the diameter of the circle fiber
goes like 7. The pointed rescaling limit £ is R? times a Lorentzian cone over a circle.

Example 9. As mentioned in example 2, Mixmaster solutions of Bianchi type VIII have
R < 0. However, we expect that proposition 17 does not give additional information. That is,
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we expect that dvoly = 0. The reason is the infinite number of Taub Bianchi-II transitions [29,
30], which we expect will drive t’ldvolh(,) to zero as t — 0; see (88).

4. Discussion

In section 2 of the paper we considered the initial behavior of vacuum spacetimes with a toral
symmetry. We showed that Gowdy spacetimes in arbitrary dimension have AVTD-like behav-
ior for the G-component of the metric. This complements earlier results of Ringstrom [5].
We also considered four dimensional nonGowdy spacetimes with a 72-symmetry. We again
showed AVTD-like behavior under certain assumptions. Since such spacetimes probably do not
have AVTD-like behavior in general, it would be interesting to clarify the borderline between
these two types of behavior. One could also consider other symmetry classes.

Section 3 of the paper was devoted to vacuum spacetimes with a CMC foliation. We obtained
results about the initial geometry using a normalized volume functional, which is monotoni-
cally nondecreasing in time when the spatial slices have nonpositive scalar curvature. One
question is whether there are other relevant monotonic functionals. We also considered CMC
vacuum spacetimes that are type-I and locally noncollapsed, as one approaches an initial sin-
gularity. One can ask how widely these assumptions hold. When they do hold, we used rescal-
ing and compactness arguments to say something about causal pasts. It is possible that such
rescaling and compactness methods can be combined with other techniques to obtain further
results.
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