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Abstract

Understanding the mechanisms by which mutations affect fitness and the distribution of
mutational effects are central goals in evolutionary biology. Mutation accumulation (MA)
lines have long been an important tool for understanding the effect of new mutations on
fitness, phenotypic variation, and mutational parameters. However, there is a clear gap in
predicting the effect of specific new mutations to their effects on fitness. In an attempt to
directly connect the effect of spontaneous mutations to their fitness effects, we quantified
the metabolic expression of 386 known compounds in primary and secondary metabolism
in Arabidopsis thaliana MA lines that had consistently higher and lower relative fitness
than the progenitor. The high and low fitness lines do not have a difference in the aver-
age number of mutations and share the same types of metabolic pathways disrupted. How-
ever, compared to the progenitor, low fitness lines have significantly more metabolic sub-
pathways disrupted than lines with higher fitness. These results suggest that the effect of
a new mutation on fitness depends less on the specific metabolic pathways disrupted and
potentially more on the number of disrupted pathways. We fail to identify any direct con-
nection of mutations in or near well annotated genes to their effect on well-characterized
biochemical pathways, possibly due to incomplete annotations of molecular function or to
non-genetic variation controlling metabolic expression. Our findings indicate that organ-
isms can explore a considerable amount of physiological space with only a few mutations.
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Introduction

Adaptation requires mutations that both beneficially affect a trait under selection and,
importantly, do not have large deleterious effects on other traits (Fisher 1930). With the
practically unlimited sequencing data now available, the challenge to predicting the effect
of spontaneous mutations now rests in understanding the distribution of mutational effects
and the likelihood that mutations disrupt important biological processes and fitness. Recent
advances in metabolomics technology (in both separation techniques in liquid and gas
chromatography and detection via mass spectroscopy (Tebani et al. 2018)) have made the
qualitative and quantitative measurement of low molecular weight metabolites possible
and have the potential to improve our understanding of the connection between genotypic
differences and cellular physiology.

An important tool for examining the connection of genotype and phenotype, and the
types and effects of new spontaneous mutations are mutation accumulation (MA) lines
(Halligan and Keightley 2009). MA lines are created when sublines of an original progeni-
tor are allowed to accumulate spontaneous mutations in the absence of selection through
many generations. These lines have shed light on the distribution of phenotypic effects
(Chang and Shaw 2003; Shaw et al. 2002; Weng et al. 2021), the mutational spectrum
(Weng et al. 2019; Schrider et al. 2013; Denver et al. 2006; Monroe et al. 2020; Nguyen
et al. 2020), and the average fitness effect of new mutations (Rutter et al. 2018; Rutter et al.
2012; Roles et al. 2016; Rutter et al. 2010) (reviewed in (Katju and Bergthorsson 2019;
Eyre-Walker and Keightley 2007)).

The Arabidopsis thaliana MA lines (Chang and Shaw 2003; Shaw et al. 2002) offer
an opportunity to connect mutation to fitness through physiology. These lines have been
fully sequenced (Weng et al. 2019) and their fitness measured in field trials (Rutter et al.
2018; Rutter et al. 2012). However, there has been little use of this resource to examine
the mutational effect of fitness through metabolism and physiology. With these high and
low fitness lines and their associated mutations, we ask, are there qualitatively different
changes in metabolic output in the low fitness lines compared to the high fitness lines? We
expect high fitness lines will have less metabolic disruption or have disruption in pathways
with less importance to fitness. Here, we identified a trend where high fitness lines have
fewer changes to their metabolic pathways than the low fitness lines. Contrary to our initial
assumptions, although we identify mutations in or flanking well-annotated genes that have
known effects in well-annotated processes, we find no clear connection between the muta-
tions and their expected effect on metabolism.

Materials and methods
Choice in plants to grow and analyze

Of the 107 total A. thaliana mutation accumulation (MA) lines (Chang and Shaw 2003;
Shaw et al. 2002), we chose lines that showed relative fitness that was higher and lower
in most environments compared to the unmutated Col-0 progenitor (Rutter et al. 2018) for
metabolic analysis (Supplementary Table 1).

There is abundant evidence that de novo mutations in A. thaliana are frequently benefi-
cial. One greenhouse study with A. thaliana MA lines showed an average decline of fitness

@ Springer



Evolutionary Ecology (2022) 36:845-857 847

(Schultz et al. 1999), but did not report the full distribution of MA line performance rela-
tive to the founder. In contrast, four other greenhouse studies demonstrated significant MA
line effects but no average decline in fitness among the MA lines compared to the founder;
thus, beneficial mutations must be of high frequency (R. G. Shaw et al. 2000; MacKenzie
et al. 2005; Rutter et al. 2010). Fifteen field studies with A. thaliana found that MA line
average performance and founder performance were not significantly different (Rutter et al.
2018; Rutter et al. 2010; Weng et al. 2021; Roles et al. 2016), or that under stressful con-
ditions a significant minority of MA lines outperformed the founder (Stearns and Fenster
2016; Weng et al. 2021).

The focal MA lines in this study (line numbers 44, 53, 61, 73, 75, and 119) are num-
bered based on the original propagation line numbers (Chang and Shaw 2003; Shaw et al.
2002). Briefly, in a previous study, Rutter et al. (2018), all MA lines were grown in four
temporal environments at a single field site and plant fitness of the MA lines was compared
to the unmutated progenitor. While most lines displayed genotype-by-environment depend-
ent fitness, for this study we chose lines that consistently ranked among the highest or low-
est in relative fitness compared to the progenitor (Supplementary Table S1). As defined
in this manuscript, the “high fitness lines” (numbers 53, 61, and 119) had higher relative
fitness than the progenitor in at least three of four environments and the "low fitness lines"
(lines 44, 73, and 75) had lower relative fitness than the progenitor in at least three of four
environments (Rutter et al. 2018). These lines have accumulated an average of 17 muta-
tions over 30 generations of mutation accumulation (Weng et al. 2019).

GO Term Enrichment comparison in high and low fitness lines

To identify whether there were gene ontology terms that might be over- or under-repre-
sented in the high or low fitness lines, we entered the A. thaliana gene model names for
mutations (or the gene model names surrounding intergenic mutations) into the Protein
Analysis Through Evolutionary Relationships (PANTHER) resource, GO Ontology data-
base DOI: 10.5281sen0do.4495804 Released 2021-02-01 (Mi et al. 2021) (gene names
found in Supplementary Table S2). We compared the set of mutations in the high and low
fitness lines for biological processes, molecular function complete, and cellular component
complete with the Fisher’s exact test with Bonferroni correction for multiple testing. The
analyses were performed separately on the set of three high and three low fitness lines of
focus in this study.

We also conducted GO term analysis for pairs of genes with intragenic mutations
between them. We repeated the analysis and submitted only genes either containing muta-
tions with a mutation within 1500 bp of the start codon or 500 bp downstream of the stop
codon (Korkuc et al. 2014). Finally, we conducted the same GO term analysis for the addi-
tional 15 lines that had average relative fitness that was higher and 8 with relative fitness
lower than the progenitor (Rutter et al. 2018). When we repeated the GO term analysis on
the mutations in each line, none had significant enrichment. Here we report all of the sig-
nificant enrichment results we identified.

Plant growth and tissue harvest
Individual seeds from the 25th generation of mutation accumulation were sown on mois-

tened soil (Promix BX with Osmocote fertilizer added per manufacturer’s instructions),
randomized in a 24-cell pallet and allowed to imbibe. The seeds were placed in the dark
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for 3 days at 4 °C to stratify and overcome dormancy. Plants were grown for 3 weeks under
long day conditions (16 h light) at 18 °C. The plant rosettes at time of harvest were vigor-
ous and did not display any obvious signs of stress or growth defects. To control for the
developmental stage, all above-ground tissue was harvested before the plant began bolting
and was immediately frozen on liquid nitrogen. Each of the high and low fitness lines had
four biological replicates and the progenitor had six. The tissue was stored at -80 C until
further processing. Frozen leaves were pulverized on liquid nitrogen and added to a frozen
collection tube and stored at -80 C until shipment. Samples were shipped on dry ice to
Metabolon Inc. (North Carolina). Frozen samples were lyophilized and each sample was
standardized with dry weight.

Metabolon sample extraction and metabolite identification

Briefly, Metabolon Inc. extracted the samples with the MicroLab STAR System (Hamilton
Company) with the internal standards. Each extract was divided into five fractions: two
were analyzed using acidic positive ion conditions (one optimized for hydrophilic com-
pounds, one for hydrophobic), two used basic negative ion conditions (one optimized for
hydrophilic compounds, one for hydrophobic), and one used for a backup. Metabolomic
analyses were performed using Ultra High Performance Liquid Chromatography-Tandem
Mass Spectroscopy (UPLC MS/MS). These methods utilized a Waters Aquity UPLC and
Q-Exactive high resolution mass spectrometer (Thermo Scientific) with a heated electro-
spray ionization (HESI-II) source. The MS analysis used dynamic exclusion, alternating
between MS and data-dependent MS", and varied between 70 and 1000 m/z. The MS/MS
scores were derived from a comparison of the ions in the experimental samples and the
ions in a known library spectrum (within the Metabolon LIMS system. The MS/MS scores
(forward and reverse), retention time/index, and molecular mass (m/z) were all processed
using Metabolon’s software and compared to purified standards within the internal library
to identify each metabolite. Peaks were quantified by integrating the area-under-the-curve.
Samples analyzed over multiple days were corrected in run-day blocks and normalization
based on internal standards.

Identification of disrupted metabolites and pathways

A total of 386 known compounds were identified in this dataset. Missing data points were
given the minimum observed value for each compound and all data were log transformed.
The dry weight of each starting tissue was also used for normalization. Each metabolite
was categorized into one of nine super pathways (e.g. Amino Acid, Carbohydrate, Peptide,
Secondary Metabolite) and into one of 58 subpathways (e.g. Serine family amino acid,
TCA cycle, Dipeptide, Benzenoids) (Supplementary Table 3) (Kanehisa and Goto 2000).

To identify whether there was significant among-line variance in metabolites, we ran
a linear mixed-effects models with the log normalized Metabolite (MetaboliteValue) as
a fixed effect and both Line and the metabolite identity (MetaboliteIdentity) as random
effects (MetaboliteValue ~ 1 + (1ILine) + (1/Metaboliteldentity)) compared to a second
model without line as a random effect (MetaboliteValue ~ 1+ (1/Metaboliteldentity))
(Imer() in the Ime4 version 1.1-29 package in R version 4.1.1). We then compared the
models with ANOVA is significant (anova(), stats package version 4.1.1).

Biological replicate measures of each metabolite were compared to the value in the
progenitor with Welch’s two-sample t-test. A metabolite was judged to be different from
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the progenitor in a certain line if its value was significantly different from the value in
the progenitor based on the t-test at an alpha value of 0.05.

We took two approaches to identify enrichment in metabolic subpathway disrup-
tion to balance Type I and Type II errors. With a pathway enrichment metric (Xia and
Wishart 2011), the number of significant (p <0.05) compounds were calculated for indi-
vidual metabolic subpathways. The Enrichment score (Xia and Wishart 2011) compares
the ratio of significant metabolites in a pathway (k) to total detected metabolites in that
pathway (m), and standardized it by considering the total number of significant metabo-
lites in the entire dataset (n) and the total metabolites detected in the dataset (N) (Eq. 1)
(results averages in Table 1 and calculations in Supplementary Table S4).

Equation 1 Enrichment score = (k/m) / ((n-k)/(N-m)).

Due to the complex nature of biological interactions, and the small sample size
used in this study, the traditional enrichment score is likely conservative (Nguyen et al.
2019). The traditional enrichment score ignores individual pathways with many metabo-
lites that approach significance in the Welch’s two-sample t-test (p <0.1). As a less con-
servative test, we also calculated an expanded enrichment score that includes metabo-
lites that approach significance (Table 1, Supplementary Table S4). This test allowed us
to identify metabolic subpathways that have sets of metabolites that are disrupted and
share common biological function. The trend that lines with relatively low fitness have
more disruption is consistent across the traditional enrichment analysis, the extended
analysis, and the number of metabolites.

Comparison of up and down regulation of metabolic pathways

We compared the number of metabolites that were significantly up- or down-regulated
as compared to the Col-0 progenitor with a Chi-square statistic. The null expectation is
that spontaneous mutations will cause an equal number of up- and down-regulation in
metabolites.

Table 1 The number of enriched metabolic subpathways and individual metabolites calculated in a com-
parison between a specific A. thaliana MA line and the progenitor Col-O that met the 0.05 significance
threshold and those that met the 0.1 threshold

Line number Relative fitness Enriched subpath- Enriched subpath- Total metabo-  Total

ways p<0.05 ways p<0.1* lites p <0.05 metabolites
p<0.1
44 Low 10 21 13 37
73 20 29 32 60
75 12 25 13 39
53 High 14 17 16 25
61 10 14 18 35
119 7 15 9 25

Significant difference between the number of enriched subpathways that reach the p <0.1 threshold denoted
with * (p <0.05 unpaired t-test)
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Results and discussion

The ways in which mutations affect organismal fitness is of great interest in evolutionary
biology and molecular evolution. Mutations have been used to identify metabolic pathways
for over eighty years (Beadle and Tatum 1941). However, we lack an empirical and general
understanding relating mutations to alterations of metabolic pathways and in turn these
effects on individual fitness. In our analyses, we attempted to quantify effect of mutations
on organismal metabolism and to identify the composition of spontaneous mutations in A.
thaliana MA lines with high and low relative fitness (measured under field conditions).

Spontaneous mutations affect metabolism in varied ways

The effect of new spontaneous mutations on metabolism is varied (Figs. 1 and 2) and sug-
gests that the mutations accumulated in these lines are idiosyncratic with respect to effect
on metabolic pathways. In a comparison of a linear mixed-effects model we confirmed
there was significant among-line variance with a nested ANOVA of metabolite identity and
line as random effects compared to a model with only line as a random effect (p <2.2e-16),
In a comparison of all measured metabolites in the seven lines (the Col-0 progenitor and
the three high and three low fitness lines) with PCA (Fig. 2) the high and low fitness lines
are intermixed suggesting that there are not consistent changes to the types of metabolic
disruption that led to high or low fitness. These results are also consistent with the heatmap
generated from the log-fold data for all metabolites (Supplementary Fig. S1). These results
suggest that the spontaneous mutations were indeed random with respect to their effect on
metabolism (Fig. 3).

Fig.1 Log fold change of all —
significant and near significant 1
metabolites. The columns from
left to right are the low fitness
lines (44, 73, 75) and high fitness Amino acids 0.5
lines (53, 61, 119). The rows
are ordered based on superpath-
way (full data in Supplemental 0
Table 3) e
Carbohydrates
-0.5
Cofactors
[ -1
Log fold
. = change
Lipids = L
Nucleotides
Peptides|
Secondary

Metabolites Low fitness  High fitness
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Fig.3 Graphical depiction of disruption in the low and high fitness lines. Up-regulation (light and dark
red) and down-regulation (light and dark blue) if metabolites (small boxes) in their super pathways context
(labeled on top of each large enclosing box) with subpathways (small boxes in large enclosing boxes) for A.
thaliana MA lines (low fitness lines 44, 73, 75; high fitness lines 53, 61, 119). Lighter colored boxes repre-
sent metabolites that approach significance (p <0.1) and darker colors for p <0.05 following a Welch’s two-
sample t-test. We excluded hormone metabolism and partially characterized molecules metabolism from
this figure that did not show any significant or near-significant differences. A key of this metabolite map for
each metabolite is found in Supplementary Fig. S2

Spontaneous mutations cause excess down-regulation of metabolic pathways

We found that overall, mutations caused significantly more down-regulation to meta-
bolic pathways than up-regulation in both the high and low fitness lines when compared
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to the progenitor (Fig. 1, blue indicates down-regulation, red is up-regulation, Chi-square
p<0.007). Down-regulated metabolites are 4-times more common than up-regulated
metabolites and there was no significant difference in the number of up- and down-regu-
lation in a comparison of the high and low fitness lines. It is possible that mutations are
more likely to lead to down-regulation because mutations tend to disrupt steps in metabolic
pathways consistent with the general thought that mutations are deleterious (Keightley and
Lynch 2003).

While it might be reasonable to assume that general degradation of metabolic function
is deleterious, there are many instances of loss of function alleles contributing to adapta-
tion (Stower 2013; Xu et al. 2019; Monroe et al. 2020; Monroe et al. 2018). In A. thaliana,
loss-of-function alleles are common in coding genes, and an estimated 1% of loss-of-func-
tion alleles are under positive selection (Xu et al. 2019). Therefore, without further meas-
ure of allele frequency changes in the MA lines following selection, it is not possible to
speculate on the evolutionary importance in an overall reduction in metabolic activity and
it is likely that some of the down-regulation has adaptive potential.

Metabolic disruption in high and low fitness lines

We find a consistent trend of more metabolic subpathways disruption in the low fitness
lines than in the high fitness lines. While the high and low fitness lines have no average
difference in the number of mutations outside of transposable elements (average of 8.7 for
high fitness and 8 for low fitness lines, two-tailed t-test, p=0.84, Supplementary Table S1),
there is considerable variance in the number of mutations among the lines. There is no
relationship between the number of mutations and the number significantly disrupted meta-
bolic subpathways (F-statistic 0.017, p=0.9026). On average, each mutation affects mul-
tiple metabolic pathways. Mutations in four of the six lines affect 1.5-3.5 metabolic sub-
pathways per mutation (Supplementary Table S1). High fitness line 119 has an average of
fewer than one metabolic subpathways per mutation.

The low fitness lines have an average of 25 disrupted subpathways compared to an aver-
age of 15.3 disrupted subpathways in the high fitness lines when we consider all metabo-
lites that approach significance (two-sided unpaired t-test, p-value=0.02) (Table 1, Sup-
plementary Table S3). This pattern of a higher average number of disrupted metabolites
in low fitness lines is consistent at the super pathway, subpathway, and individual metabo-
lite levels, regardless of whether we include only metabolites that reach a the typical sig-
nificance threshold p <0.05 or metabolites that approached significance (0.05<p<0.10
(Table 1, Supplementary Table S4). Overall, these results suggest that the mutations in the
low fitness lines change flux through more metabolic pathways than the mutations in high
fitness lines.

Based on these data, it appears that A. thaliana can explore a considerable amount of
physiological space with only a few mutations. Our analyses indicate overall erosion of
metabolic function and previous research could indicate that a side-effect of metabolic deg-
radation could be specialization to specific environments. In E. coli, spontaneous mutations
contribute to metabolic specialization due to the erosion of unneeded pathways (Leiby and
Marx 2014) with genetic drift strengthening this effect (Aguilar-Rodriguez et al., 2019).
In heterogeneous temperature environments, E. coli have impaired growth on all carbon
resources at low temperatures, but little or no growth defects at higher temperatures (Chu
and Zhang 2021), suggesting that the average effect of mutations depends on the specific
environment.
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High fitness lines are enriched in mutations in or near genes with transcription
regulator activity

In a Gene Ontology (GO) term analysis for molecular function (Mi et al. 2021) we found
genes in the high fitness lines submitted for metabolomics in this study have a 7.7-fold
enrichment (Fisher’s Exact Test with Bonferroni correction, p <0.01) in transcription regu-
latory activity (8 of the 16 mapped gene IDs and represent between 25 and 50% of the
mutations in each line). In this initial analysis, if a mutation were intergenic, we included
both flanking genes in this analysis. Our logic was that if the mutation was impacting the
expression of only one of the flanking genes, including both in the GO analysis would most
likely dilute any patterns and make it less likely for us to detect an effect. Thus, identifying
the enrichment suggests that mutations in the high fitness lines are more often in or in the
intergenic region around genes with transcriptional regulation.

We repeated this same GO term analysis for all 18 high fitness MA lines (Supplemen-
tary Table S2) and found that together they also have a greater than 3.1-fold enrichment for
transcription regulator activity (p <0.001, 21 of 114 mapped gene IDs have transcription
regulator activity). We identified no other significant enrichment in the genes in the high
fitness lines. The same analyses on all 11 low fitness lines revealed no enrichment in any
activity and only one out of 32 genes with mutations in the low fitness lines has transcrip-
tional regulatory activity.

Although most gene regulatory elements are within 0.5 to 2 kb of the transcription start
site (and A. thaliana has a more restricted 500 bp upstream and 250 bp downstream), it is
well documented that regulatory elements far from the promoter can impact gene expres-
sion (Benfey and Chua 1989). When we modify our GO analysis, only including genes in
the analysis if the mutation lies within 1500 bp of the transcription start site, we retain only
half of the genes with transcription regulatory activity and the enrichment in transcrip-
tional regulatory activity does not pass a false discovery rate correction.

While these results are conflicting, the possible enrichment of genes with mutations
in or in the intergenic region flanking genes encoding transcriptional regulatory proteins
make up a substantial portion of the mutational spectrum in MA lines with high relative
fitness and are less prevalent in lines with low fitness. Proteins with transcriptional regu-
latory activity assemble into varied complexes consisting of other proteins and cis-regu-
latory sequences in a combinatorial fashion to tightly control the timing and location of
gene expression (Brkljacic and Grotewold 2017). In this way, a small handful of transcrip-
tion factors can control the expression of a wide variety of genes. The vast majority of the
mutations in our mutation accumulation lines are intergenic, and thus these mutations may
affect the regulation of the identified proteins with transcription regulatory activity (the
mutations are in the cis-regulatory regions or in trans enhancers or repressors. The combi-
natorial nature of these regulatory networks have led many to hypothesize that mutations
that affect gene regulation could play an outsized role in adaptive evolution (Jeong et al.
2008; Wray et al. 2003). The evolutionary genetics literature has many examples impli-
cating mutations in proteins with transcriptional regulatory activity in adaptations, includ-
ing flower color evolution (Streisfeld et al. 2011; Wessinger and Rausher 2013; Lin and
Rausher 2021; Quattrocchio et al. 1999; Whittall et al. 2006), adaptation to high tempera-
ture (Koini et al. 2009), cold acclimation (Buskirk et al., 2006), drought (Haake et al. 2002;
Leng and Zhao 2020; Jan et al. 2019), Zinc deficiency (Inaba et al. 2015), the interface
between stress and growth response (Danisman 2016) and many more. Given the purported
role of proteins with transcriptional regulatory activity (Wagner and Lynch 2008), and their
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prevalence in the mutational spectrum in lines with high relative fitness, these mutations
are readily available for adaptation.

The potential and limitations of metabolomics studies in understanding the effects
of spontaneous mutations

In this study, we used metabolomic measurements to try to close the gap between know-
ing the identity of a mutation and understanding and predicting its effect on fitness (Eyre-
Walker and Keightley 2007). We find that although our results are consistent across all
metrics of metabolic change, our sample size is small and we base our connections between
metabolic disruption and fitness based primarily on consistent trends in the number of dis-
ruptions (and not on strong statistical or large fold-change effects) in the comparison of the
lines with high relative fitness and low relative fitness. In retrospect, this is unsurprising
given each mutation accumulation line has only a small number of mutations and many
are intergenic. We expected to find larger effects given the consistent trends in relative fit-
ness observed across environments in these lines (Supplemental Table S1). Nonetheless,
we believe these results are a valuable step toward integrating metabolomics experiments
into evolutionary analyses. The cost of metabolomics experiments still limits the number
of biological replicates and developmental time points that can be measured for a large
number of samples. Thus applying these untargeted metabolomics analyses to all MA lines
or to large genome-wide studies is a large investment. As prices continue to decline, this
methodology is poised to provide hundreds of physiological measures that can link ques-
tions of fitness effects to the abundance of available sequencing data.

Even with hundreds of metabolites measured in this study and many mutations in well-
known pathways in the well-annotated A. thaliana genome (Lamesch et al. 2012) we failed
to infer any direct connections between mutations either in the coding region or in the
intergenic region flanking genes that code for enzymes with an effect on metabolism (full
list of AT TAIR numbers and functional annotation available in Supplementary Table S2).
There could be several reasons for this pattern. For example, epimutations measured in
mutation accumulation lines contribute substantial variation and their effects can outweigh
mutational variance (Becker et al. 2011; Daves et al. 2016). Further studies could evaluate
the contribution of epimutations to metabolomic variance. Additionally, many of the muta-
tions in the MA lines in this study are intergenic and may have direct or indirect effects on
the expression on distal genes. That the small number of mutations failed to disrupt any
known pathways or pathways measured in this study in a predictable way suggests that our
annotations of gene function are woefully incomplete.

This study measures the metabolic effects in leaf tissue at one time point on only six of
the 107 A. thaliana MA lines, so the conclusions should be viewed in that light. We also
chose lines that showed consistent relative fitness in field trials (Rutter et al. 2018); how-
ever, most of the lines had strong genotype-by-environment effects. Additionally, studies on
the effect of new, spontaneous mutations on transcriptional expression have shed light on
some of the biases of the mutational spectrum (Zalts and Yanai 2017; Huang et al. 2016),
but lack fitness measures to connect genotypic changes to fitness effects. Future work that
includes transcriptional studies combining metabolic effects with sampling of additional
tissues and an analysis of more lines under many conditions will further elucidate the effect
of spontaneous mutations on gene expression, fitness, and physiology. This more compre-
hensive metabolomics data, we could begin to understand whether there are higher levels
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of polymorphism in regions with lower disruption of the metabolome or if mutations under
positive selection are overall less disruptive of cellular physiology.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10682-022-10210-8.
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