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Abstract
Understanding the mechanisms by which mutations affect fitness and the distribution of 
mutational effects are central goals in evolutionary biology. Mutation accumulation (MA) 
lines have long been an important tool for understanding the effect of new mutations on 
fitness, phenotypic variation, and mutational parameters. However, there is a clear gap in 
predicting the effect of specific new mutations to their effects on fitness. In an attempt to 
directly connect the effect of spontaneous mutations to their fitness effects, we quantified 
the metabolic expression of 386 known compounds in primary and secondary metabolism 
in Arabidopsis thaliana MA lines that had consistently higher and lower relative fitness 
than the progenitor. The high and low fitness lines do not have a difference in the aver-
age number of mutations and share the same types of metabolic pathways disrupted. How-
ever, compared to the progenitor, low fitness lines have significantly more metabolic sub-
pathways disrupted than lines with higher fitness. These results suggest that the effect of 
a new mutation on fitness depends less on the specific metabolic pathways disrupted and 
potentially more on the number of disrupted pathways. We fail to identify any direct con-
nection of mutations in or near well annotated genes to their effect on well-characterized 
biochemical pathways, possibly due to incomplete annotations of molecular function or to 
non-genetic variation controlling metabolic expression. Our findings indicate that organ-
isms can explore a considerable amount of physiological space with only a few mutations.
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Introduction

Adaptation requires mutations that both beneficially affect a trait under selection and, 
importantly, do not have large deleterious effects on other traits (Fisher 1930). With the 
practically unlimited sequencing data now available, the challenge to predicting the effect 
of spontaneous mutations now rests in understanding the distribution of mutational effects 
and the likelihood that mutations disrupt important biological processes and fitness. Recent 
advances in metabolomics technology (in both separation techniques in liquid and gas 
chromatography and detection via mass spectroscopy (Tebani et al. 2018)) have made the 
qualitative and quantitative measurement of low molecular weight metabolites possible 
and have the potential to improve our understanding of the connection between genotypic 
differences and cellular physiology.

An important tool for examining the connection of genotype and phenotype, and the 
types and effects of new spontaneous mutations are mutation accumulation (MA) lines 
(Halligan and Keightley 2009). MA lines are created when sublines of an original progeni-
tor are allowed to accumulate spontaneous mutations in the absence of selection through 
many generations. These lines have shed light on the distribution of phenotypic effects 
(Chang and Shaw 2003; Shaw et  al. 2002; Weng et  al. 2021), the mutational spectrum 
(Weng et al. 2019; Schrider et al. 2013; Denver et al. 2006; Monroe et al. 2020; Nguyen 
et al. 2020), and the average fitness effect of new mutations (Rutter et al. 2018; Rutter et al. 
2012; Roles et  al. 2016; Rutter et  al. 2010) (reviewed in (Katju and Bergthorsson 2019; 
Eyre-Walker and Keightley 2007)).

The Arabidopsis thaliana MA lines (Chang and Shaw 2003; Shaw et  al. 2002) offer 
an opportunity to connect mutation to fitness through physiology. These lines have been 
fully sequenced (Weng et al. 2019) and their fitness measured in field trials (Rutter et al. 
2018; Rutter et al. 2012). However, there has been little use of this resource to examine 
the mutational effect of fitness through metabolism and physiology. With these high and 
low fitness lines and their associated mutations, we ask, are there qualitatively different 
changes in metabolic output in the low fitness lines compared to the high fitness lines? We 
expect high fitness lines will have less metabolic disruption or have disruption in pathways 
with less importance to fitness. Here, we identified a trend where high fitness lines have 
fewer changes to their metabolic pathways than the low fitness lines. Contrary to our initial 
assumptions, although we identify mutations in or flanking well-annotated genes that have 
known effects in well-annotated processes, we find no clear connection between the muta-
tions and their expected effect on metabolism.

Materials and methods

Choice in plants to grow and analyze

Of the 107 total A. thaliana mutation accumulation (MA) lines (Chang and Shaw 2003; 
Shaw et al. 2002), we chose lines that showed relative fitness that was higher and lower 
in most environments compared to the unmutated Col-0 progenitor (Rutter et al. 2018) for 
metabolic analysis (Supplementary Table 1).

There is abundant evidence that de novo mutations in A. thaliana are frequently benefi-
cial. One greenhouse study with A. thaliana MA lines showed an average decline of fitness 
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(Schultz et al. 1999), but did not report the full distribution of MA line performance rela-
tive to the founder. In contrast, four other greenhouse studies demonstrated significant MA 
line effects but no average decline in fitness among the MA lines compared to the founder; 
thus, beneficial mutations must be of high frequency (R. G. Shaw et al. 2000; MacKenzie 
et al. 2005; Rutter et al. 2010). Fifteen field studies with A. thaliana found that MA line 
average performance and founder performance were not significantly different (Rutter et al. 
2018; Rutter et al. 2010; Weng et al. 2021; Roles et al. 2016), or that under stressful con-
ditions a significant minority of MA lines outperformed the founder (Stearns and Fenster 
2016; Weng et al. 2021).

The focal MA lines in this study (line numbers 44, 53, 61, 73, 75, and 119) are num-
bered based on the original propagation line numbers (Chang and Shaw 2003; Shaw et al. 
2002). Briefly, in a previous study, Rutter et al. (2018), all MA lines were grown in four 
temporal environments at a single field site and plant fitness of the MA lines was compared 
to the unmutated progenitor. While most lines displayed genotype-by-environment depend-
ent fitness, for this study we chose lines that consistently ranked among the highest or low-
est in relative fitness compared to the progenitor (Supplementary Table  S1). As defined 
in this manuscript, the “high fitness lines” (numbers 53, 61, and 119) had higher relative 
fitness than the progenitor in at least three of four environments and the "low fitness lines" 
(lines 44, 73, and 75) had lower relative fitness than the progenitor in at least three of four 
environments (Rutter et al. 2018). These lines have accumulated an average of 17 muta-
tions over 30 generations of mutation accumulation (Weng et al. 2019).

GO Term Enrichment comparison in high and low fitness lines

To identify whether there were gene ontology terms that might be over- or under-repre-
sented in the high or low fitness lines, we entered the A. thaliana gene model names for 
mutations (or the gene model names surrounding intergenic mutations) into the Protein 
Analysis Through Evolutionary Relationships (PANTHER) resource, GO Ontology data-
base DOI: 10.5281senodo.4495804 Released 2021-02-01 (Mi et  al. 2021) (gene names 
found in Supplementary Table S2). We compared the set of mutations in the high and low 
fitness lines for biological processes, molecular function complete, and cellular component 
complete with the Fisher’s exact test with Bonferroni correction for multiple testing. The 
analyses were performed separately on the set of three high and three low fitness lines of 
focus in this study.

We also conducted GO term analysis for pairs of genes with intragenic mutations 
between them. We repeated the analysis and submitted only genes either containing muta-
tions with a mutation within 1500 bp of the start codon or 500 bp downstream of the stop 
codon (Korkuc et al. 2014). Finally, we conducted the same GO term analysis for the addi-
tional 15 lines that had average relative fitness that was higher and 8 with relative fitness 
lower than the progenitor (Rutter et al. 2018). When we repeated the GO term analysis on 
the mutations in each line, none had significant enrichment. Here we report all of the sig-
nificant enrichment results we identified.

Plant growth and tissue harvest

Individual seeds from the 25th generation of mutation accumulation were sown on mois-
tened soil (Promix BX with Osmocote fertilizer added per manufacturer’s instructions), 
randomized in a 24-cell pallet and allowed to imbibe. The seeds were placed in the dark 
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for 3 days at 4 °C to stratify and overcome dormancy. Plants were grown for 3 weeks under 
long day conditions (16 h light) at 18 °C. The plant rosettes at time of harvest were vigor-
ous and did not display any obvious signs of stress or growth defects. To control for the 
developmental stage, all above-ground tissue was harvested before the plant began bolting 
and was immediately frozen on liquid nitrogen. Each of the high and low fitness lines had 
four biological replicates and the progenitor had six. The tissue was stored at -80 C until 
further processing. Frozen leaves were pulverized on liquid nitrogen and added to a frozen 
collection tube and stored at -80 C until shipment. Samples were shipped on dry ice to 
Metabolon Inc. (North Carolina). Frozen samples were lyophilized and each sample was 
standardized with dry weight.

Metabolon sample extraction and metabolite identification

Briefly, Metabolon Inc. extracted the samples with the MicroLab STAR System (Hamilton 
Company) with the internal standards. Each extract was divided into five fractions: two 
were analyzed using acidic positive ion conditions (one optimized for hydrophilic com-
pounds, one for hydrophobic), two used basic negative ion conditions (one optimized for 
hydrophilic compounds, one for hydrophobic), and one used for a backup. Metabolomic 
analyses were performed using Ultra High Performance Liquid Chromatography-Tandem 
Mass Spectroscopy (UPLC MS/MS). These methods utilized a Waters Aquity UPLC and 
Q-Exactive high resolution mass spectrometer (Thermo Scientific) with a heated electro-
spray ionization (HESI-II) source. The MS analysis used dynamic exclusion, alternating 
between MS and data-dependent MSn, and varied between 70 and 1000 m/z. The MS/MS 
scores were derived from a comparison of the ions in the experimental samples and the 
ions in a known library spectrum (within the Metabolon LIMS system. The MS/MS scores 
(forward and reverse), retention time/index, and molecular mass (m/z) were all processed 
using Metabolon’s software and compared to purified standards within the internal library 
to identify each metabolite. Peaks were quantified by integrating the area-under-the-curve. 
Samples analyzed over multiple days were corrected in run-day blocks and normalization 
based on internal standards.

Identification of disrupted metabolites and pathways

A total of 386 known compounds were identified in this dataset. Missing data points were 
given the minimum observed value for each compound and all data were log transformed. 
The dry weight of each starting tissue was also used for normalization. Each metabolite 
was categorized into one of nine super pathways (e.g. Amino Acid, Carbohydrate, Peptide, 
Secondary Metabolite) and into one of 58 subpathways (e.g. Serine family amino acid, 
TCA cycle, Dipeptide, Benzenoids) (Supplementary Table 3) (Kanehisa and Goto 2000).

To identify whether there was significant among-line variance in metabolites, we ran 
a linear mixed-effects models with the log normalized Metabolite (MetaboliteValue) as 
a fixed effect and both Line and the metabolite identity (MetaboliteIdentity) as random 
effects (MetaboliteValue ~ 1 + (1|Line) + (1|MetaboliteIdentity)) compared to a second 
model without line as a random effect (MetaboliteValue ~ 1 + (1|MetaboliteIdentity)) 
(lmer() in the lme4 version 1.1–29 package in R version 4.1.1). We then compared the 
models with ANOVA is significant (anova(), stats package version 4.1.1).

Biological replicate measures of each metabolite were compared to the value in the 
progenitor with Welch’s two-sample t-test. A metabolite was judged to be different from 
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the progenitor in a certain line if its value was significantly different from the value in 
the progenitor based on the t-test at an alpha value of 0.05.

We took two approaches to identify enrichment in metabolic subpathway disrup-
tion to balance Type I and Type II errors. With a pathway enrichment metric (Xia and 
Wishart 2011), the number of significant (p ≤ 0.05) compounds were calculated for indi-
vidual metabolic subpathways. The Enrichment score (Xia and Wishart 2011) compares 
the ratio of significant metabolites in a pathway (k) to total detected metabolites in that 
pathway (m), and standardized it by considering the total number of significant metabo-
lites in the entire dataset (n) and the total metabolites detected in the dataset (N) (Eq. 1) 
(results averages in Table 1 and calculations in Supplementary Table S4).

Equation 1 Enrichment score = (k/m) / ((n-k)/(N-m)).
Due to the complex nature of biological interactions, and the small sample size 

used in this study, the traditional enrichment score is likely conservative (Nguyen et al. 
2019). The traditional enrichment score ignores individual pathways with many metabo-
lites that approach significance in the Welch’s two-sample t-test (p < 0.1). As a less con-
servative test, we also calculated an expanded enrichment score that includes metabo-
lites that approach significance (Table 1, Supplementary Table S4). This test allowed us 
to identify metabolic subpathways that have sets of metabolites that are disrupted and 
share common biological function. The trend that lines with relatively low fitness have 
more disruption is consistent across the traditional enrichment analysis, the extended 
analysis, and the number of metabolites.

Comparison of up and down regulation of metabolic pathways

We compared the number of metabolites that were significantly up- or down-regulated 
as compared to the Col-0 progenitor with a Chi-square statistic. The null expectation is 
that spontaneous mutations will cause an equal number of up- and down-regulation in 
metabolites.

Table 1   The number of enriched metabolic subpathways and individual metabolites calculated in a com-
parison between a specific A. thaliana MA line and the progenitor Col-0 that met the 0.05 significance 
threshold and those that met the 0.1 threshold

Significant difference between the number of enriched subpathways that reach the p < 0.1 threshold denoted 
with * (p < 0.05 unpaired t-test)

Line number Relative fitness Enriched subpath-
ways p < 0.05

Enriched subpath-
ways p < 0.1*

Total metabo-
lites p < 0.05

Total 
metabolites 
p < 0.1

44 Low 10 21 13 37
73 20 29 32 60
75 12 25 13 39
53 High 14 17 16 25
61 10 14 18 35
119 7 15 9 25
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Results and discussion

The ways in which mutations affect organismal fitness is of great interest in evolutionary 
biology and molecular evolution. Mutations have been used to identify metabolic pathways 
for over eighty years (Beadle and Tatum 1941). However, we lack an empirical and general 
understanding relating mutations to alterations of metabolic pathways and in turn these 
effects on individual fitness. In our analyses, we attempted to quantify effect of mutations 
on organismal metabolism and to identify the composition of spontaneous mutations in A. 
thaliana MA lines with high and low relative fitness (measured under field conditions).

Spontaneous mutations affect metabolism in varied ways

The effect of new spontaneous mutations on metabolism is varied (Figs. 1 and 2) and sug-
gests that the mutations accumulated in these lines are idiosyncratic with respect to effect 
on metabolic pathways. In a comparison of a linear mixed-effects model we confirmed 
there was significant among-line variance with a nested ANOVA of metabolite identity and 
line as random effects compared to a model with only line as a random effect (p < 2.2e-16), 
In a comparison of all measured metabolites in the seven lines (the Col-0 progenitor and 
the three high and three low fitness lines) with PCA (Fig. 2) the high and low fitness lines 
are intermixed suggesting that there are not consistent changes to the types of metabolic 
disruption that led to high or low fitness. These results are also consistent with the heatmap 
generated from the log-fold data for all metabolites (Supplementary Fig. S1). These results 
suggest that the spontaneous mutations were indeed random with respect to their effect on 
metabolism (Fig. 3).   

Fig. 1   Log fold change of all 
significant and near significant 
metabolites. The columns from 
left to right are the low fitness 
lines (44, 73, 75) and high fitness 
lines (53, 61, 119). The rows 
are ordered based on superpath-
way (full data in Supplemental 
Table 3)
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Spontaneous mutations cause excess down‑regulation of metabolic pathways

We found that overall, mutations caused significantly more down-regulation to meta-
bolic pathways than up-regulation in both the high and low fitness lines when compared 

Fig. 2   Principal component anal-
ysis (PCA) of the fold-change 
metabolomics data with the 
percentage of variance explained 
by each principal component 
noted in parentheses. The lines 
with high relative fitness (dark 
gray points) and the lines with 
low fitness (light gray points) do 
not group according to fitness

Fig. 3   Graphical depiction of disruption in the low and high fitness lines. Up-regulation (light and dark 
red) and down-regulation (light and dark blue) if metabolites (small boxes) in their super pathways context 
(labeled on top of each large enclosing box) with subpathways (small boxes in large enclosing boxes) for A. 
thaliana MA lines (low fitness lines 44, 73, 75; high fitness lines 53, 61, 119). Lighter colored boxes repre-
sent metabolites that approach significance (p < 0.1) and darker colors for p < 0.05 following a Welch’s two-
sample t-test. We excluded hormone metabolism and partially characterized molecules metabolism from 
this figure that did not show any significant or near-significant differences. A key of this metabolite map for 
each metabolite is found in Supplementary Fig. S2
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to the progenitor (Fig. 1, blue indicates down-regulation, red is up-regulation, Chi-square 
p < 0.007). Down-regulated metabolites are 4-times more common than up-regulated 
metabolites and there was no significant difference in the number of up- and down-regu-
lation in a comparison of the high and low fitness lines. It is possible that mutations are 
more likely to lead to down-regulation because mutations tend to disrupt steps in metabolic 
pathways consistent with the general thought that mutations are deleterious (Keightley and 
Lynch 2003).

While it might be reasonable to assume that general degradation of metabolic function 
is deleterious, there are many instances of loss of function alleles contributing to adapta-
tion (Stower 2013; Xu et al. 2019; Monroe et al. 2020; Monroe et al. 2018). In A. thaliana, 
loss-of-function alleles are common in coding genes, and an estimated 1% of loss-of-func-
tion alleles are under positive selection (Xu et al. 2019). Therefore, without further meas-
ure of allele frequency changes in the MA lines following selection, it is not possible to 
speculate on the evolutionary importance in an overall reduction in metabolic activity and 
it is likely that some of the down-regulation has adaptive potential.

Metabolic disruption in high and low fitness lines

We find a consistent trend of more metabolic subpathways disruption in the low fitness 
lines than in the high fitness lines. While the high and low fitness lines have no average 
difference in the number of mutations outside of transposable elements (average of 8.7 for 
high fitness and 8 for low fitness lines, two-tailed t-test, p = 0.84, Supplementary Table S1), 
there is considerable variance in the number of mutations among the lines. There is no 
relationship between the number of mutations and the number significantly disrupted meta-
bolic subpathways (F-statistic 0.017, p = 0.9026). On average, each mutation affects mul-
tiple metabolic pathways. Mutations in four of the six lines affect 1.5–3.5 metabolic sub-
pathways per mutation (Supplementary Table S1). High fitness line 119 has an average of 
fewer than one metabolic subpathways per mutation.

The low fitness lines have an average of 25 disrupted subpathways compared to an aver-
age of 15.3 disrupted subpathways in the high fitness lines when we consider all metabo-
lites that approach significance (two-sided unpaired t-test, p-value = 0.02) (Table 1, Sup-
plementary Table S3). This pattern of a higher average number of disrupted metabolites 
in low fitness lines is consistent at the super pathway, subpathway, and individual metabo-
lite levels, regardless of whether we include only metabolites that reach a the typical sig-
nificance threshold p ≤ 0.05 or metabolites that approached significance (0.05 < p < 0.10 
(Table 1, Supplementary Table S4). Overall, these results suggest that the mutations in the 
low fitness lines change flux through more metabolic pathways than the mutations in high 
fitness lines.

Based on these data, it appears that A. thaliana can explore a considerable amount of 
physiological space with only a few mutations. Our analyses indicate overall erosion of 
metabolic function and previous research could indicate that a side-effect of metabolic deg-
radation could be specialization to specific environments. In E. coli, spontaneous mutations 
contribute to metabolic specialization due to the erosion of unneeded pathways (Leiby and 
Marx 2014) with genetic drift strengthening this effect (Aguilar-Rodríguez et  al., 2019). 
In heterogeneous temperature environments, E. coli have impaired growth on all carbon 
resources at low temperatures, but little or no growth defects at higher temperatures (Chu 
and Zhang 2021), suggesting that the average effect of mutations depends on the specific 
environment.
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High fitness lines are enriched in mutations in or near genes with transcription 
regulator activity

In a Gene Ontology (GO) term analysis for molecular function (Mi et al. 2021) we found 
genes in the high fitness lines submitted for metabolomics in this study have a 7.7-fold 
enrichment (Fisher’s Exact Test with Bonferroni correction, p < 0.01) in transcription regu-
latory activity (8 of the 16 mapped gene IDs and represent between 25 and 50% of the 
mutations in each line). In this initial analysis, if a mutation were intergenic, we included 
both flanking genes in this analysis. Our logic was that if the mutation was impacting the 
expression of only one of the flanking genes, including both in the GO analysis would most 
likely dilute any patterns and make it less likely for us to detect an effect. Thus, identifying 
the enrichment suggests that mutations in the high fitness lines are more often in or in the 
intergenic region around genes with transcriptional regulation.

We repeated this same GO term analysis for all 18 high fitness MA lines (Supplemen-
tary Table S2) and found that together they also have a greater than 3.1-fold enrichment for 
transcription regulator activity (p < 0.001, 21 of 114 mapped gene IDs have transcription 
regulator activity). We identified no other significant enrichment in the genes in the high 
fitness lines. The same analyses on all 11 low fitness lines revealed no enrichment in any 
activity and only one out of 32 genes with mutations in the low fitness lines has transcrip-
tional regulatory activity.

Although most gene regulatory elements are within 0.5 to 2 kb of the transcription start 
site (and A. thaliana has a more restricted 500 bp upstream and 250 bp downstream), it is 
well documented that regulatory elements far from the promoter can impact gene expres-
sion (Benfey and Chua 1989). When we modify our GO analysis, only including genes in 
the analysis if the mutation lies within 1500 bp of the transcription start site, we retain only 
half of the genes with transcription regulatory activity and the enrichment in transcrip-
tional regulatory activity does not pass a false discovery rate correction.

While these results are conflicting, the possible enrichment of genes with mutations 
in or in the intergenic region flanking genes encoding transcriptional regulatory proteins 
make up a substantial portion of the mutational spectrum in MA lines with high relative 
fitness and are less prevalent in lines with low fitness. Proteins with transcriptional regu-
latory activity assemble into varied complexes consisting of other proteins and cis-regu-
latory sequences in a combinatorial fashion to tightly control the timing and location of 
gene expression (Brkljacic and Grotewold 2017). In this way, a small handful of transcrip-
tion factors can control the expression of a wide variety of genes. The vast majority of the 
mutations in our mutation accumulation lines are intergenic, and thus these mutations may 
affect the regulation of the identified proteins with transcription regulatory activity (the 
mutations are in the cis-regulatory regions or in trans enhancers or repressors. The combi-
natorial nature of these regulatory networks have led many to hypothesize that mutations 
that affect gene regulation could play an outsized role in adaptive evolution (Jeong et al. 
2008; Wray et  al. 2003). The evolutionary genetics literature has many examples impli-
cating mutations in proteins with transcriptional regulatory activity in adaptations, includ-
ing flower color evolution (Streisfeld et  al. 2011; Wessinger and Rausher 2013; Lin and 
Rausher 2021; Quattrocchio et al. 1999; Whittall et al. 2006), adaptation to high tempera-
ture (Koini et al. 2009), cold acclimation (Buskirk et al., 2006), drought (Haake et al. 2002; 
Leng and Zhao 2020; Jan et  al. 2019), Zinc deficiency (Inaba et  al. 2015), the interface 
between stress and growth response (Danisman 2016) and many more. Given the purported 
role of proteins with transcriptional regulatory activity (Wagner and Lynch 2008), and their 
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prevalence in the mutational spectrum in lines with high relative fitness, these mutations 
are readily available for adaptation.

The potential and limitations of metabolomics studies in understanding the effects 
of spontaneous mutations

In this study, we used metabolomic measurements to try to close the gap between know-
ing the identity of a mutation and understanding and predicting its effect on fitness (Eyre-
Walker and Keightley 2007). We find that although our results are consistent across all 
metrics of metabolic change, our sample size is small and we base our connections between 
metabolic disruption and fitness based primarily on consistent trends in the number of dis-
ruptions (and not on strong statistical or large fold-change effects) in the comparison of the 
lines with high relative fitness and low relative fitness. In retrospect, this is unsurprising 
given each mutation accumulation line has only a small number of mutations and many 
are intergenic. We expected to find larger effects given the consistent trends in relative fit-
ness observed across environments in these lines (Supplemental Table S1). Nonetheless, 
we believe these results are a valuable step toward integrating metabolomics experiments 
into evolutionary analyses. The cost of metabolomics experiments still limits the number 
of biological replicates and developmental time points that can be measured for a large 
number of samples. Thus applying these untargeted metabolomics analyses to all MA lines 
or to large genome-wide studies is a large investment. As prices continue to decline, this 
methodology is poised to provide hundreds of physiological measures that can link ques-
tions of fitness effects to the abundance of available sequencing data.

Even with hundreds of metabolites measured in this study and many mutations in well-
known pathways in the well-annotated A. thaliana genome (Lamesch et al. 2012) we failed 
to infer any direct connections between mutations either in the coding region or in the 
intergenic region flanking genes that code for enzymes with an effect on metabolism (full 
list of AT TAIR numbers and functional annotation available in Supplementary Table S2). 
There could be several reasons for this pattern. For example, epimutations measured in 
mutation accumulation lines contribute substantial variation and their effects can outweigh 
mutational variance (Becker et al. 2011; Daves et al. 2016). Further studies could evaluate 
the contribution of epimutations to metabolomic variance. Additionally, many of the muta-
tions in the MA lines in this study are intergenic and may have direct or indirect effects on 
the expression on distal genes. That the small number of mutations failed to disrupt any 
known pathways or pathways measured in this study in a predictable way suggests that our 
annotations of gene function are woefully incomplete.

This study measures the metabolic effects in leaf tissue at one time point on only six of 
the 107 A. thaliana MA lines, so the conclusions should be viewed in that light. We also 
chose lines that showed consistent relative fitness in field trials (Rutter et al. 2018); how-
ever, most of the lines had strong genotype-by-environment effects. Additionally, studies on 
the effect of new, spontaneous mutations on transcriptional expression have shed light on 
some of the biases of the mutational spectrum (Zalts and Yanai 2017; Huang et al. 2016), 
but lack fitness measures to connect genotypic changes to fitness effects. Future work that 
includes transcriptional studies combining metabolic effects with sampling of additional 
tissues and an analysis of more lines under many conditions will further elucidate the effect 
of spontaneous mutations on gene expression, fitness, and physiology. This more compre-
hensive metabolomics data, we could begin to understand whether there are higher levels 
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of polymorphism in regions with lower disruption of the metabolome or if mutations under 
positive selection are overall less disruptive of cellular physiology.
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