COMPARISON GEOMETRY OF HOLOMORPHIC
BISECTIONAL CURVATURE FOR KAHLER
MANIFOLDS AND LIMIT SPACES

JOHN LOTT

Abstract

We give an analogue of triangle comparison for Kdihler manifolds with a lower
bound on the holomorphic bisectional curvature. We show that the condition passes
to noncollapsed Gromov-Hausdorff limits. We discuss tangent cones and singular
Kdhler spaces.

1. Introduction
Holomorphic bisectional curvature is a Kéhler analogue of Riemannian sectional cur-
vature. We recall the definition in Section 3. There is a well-developed theory of
Riemannian manifolds with lower sectional curvature bounds, including such topics
as triangle comparison, Gromov—Hausdorff limits, and Alexandrov spaces. The goal
of this paper is to give Kihler analogues.

To state the first main result, we define a modified distance-squared function.
Given d > 0 and K € R, define dg > 0 by

—% log cos(d \/g) if K >0,
dg =1d? if K=0, (1.1

%logcosh(d,/%) if K <0.

(If K > 0, then we restrict to d < J%’) Let M be a complete Kéhler manifold.
Given p e M and K € R, let d, € C(M) be the distance from p, and define dg,,
using (1.1), replacing the d on the right-hand side by d,.

We write BK > K if the holomorphic bisectional curvatures of M are bounded
below by K € R. We prove the following analogue of triangle comparison.
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THEOREM 1.2

Let M be a complete Kdihler manifold. Given K € R, the manifold M has BK > K
if and only if it satisfies the following property. Let i : D2 — M be an embedding of
a disk into M that is holomorphic on D?. Let . be the image of i. Let d A denote the
area form on . Let z be the local coordinate on D?, and let 0 € [0,21) be the local
coordinate on dD2. Then

2 1
dg o>—//1 dA —/ dg ,(0)db, 1.3
ko0 2 [ towlzldas o | a0 (13)
where the “0” on the left-hand side denotes i(0), the center of X.

Next, we consider noncollapsing sequences of complete pointed Kéhler mani-
folds with BK > K. Lee and Tam [22] showed that after passing to a subsequence,
there is a pointed Gromov—Hausdorff limit that is a complex manifold. Regarding its
geometry, we show that (1.3) holds on the limit.

THEOREM 1.4

Let {(M;, pi. gi)}72, be a sequence of pointed n-dimensional complete Kéhler man-

ifolds with BK > K. Suppose that there is some vy > 0 so that for all i, we have

vol(B(p;i, 1)) > vg. Then after passing to a subsequence, there is a pointed Gromov-

Hausdorff limit (X0, Poo» doo) With the following properties.

(1) Xoo is a complex manifold.

2) Embedded holomorphic disks ¥ in X satisfy (1.3), where dA is now the
2-dimensional Hausdor{f measure coming from do.

Some simple examples of such limit spaces come from 2-dimensional length
spaces with Alexandrov curvature bounded below. The proof of Theorem 1.4 uses
local Ricci flow techniques as developed by Bamler, Cabezas-Rivas, and Wilking [1],
Hochard [16], Lee and Tam [21], and Simon and Topping [38].

The content of the article is as follows. In Section 2 we briefly recall some
facts about Riemannian manifolds with nonnegative sectional curvature, and their
Gromov—Hausdorff limits. In Section 3 we show that:

. a complete Kihler manifold has BK > K if and only if ~/—1 agdé, p/2=w

as currents;
. Theorem 1.2 holds;
. if a Hermitian manifold satisfies (1.3), then it must be Kihler;
. a domain M in a model space (of constant holomorphic sectional curvature)

satisfies (1.3) if and only if the length metric on M is the same as the restricted
metric from the model space.
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Section 4 is about noncollapsed pointed Gromov—Hausdorff limits. We prove
Theorem 1.4 and construct local Kihler potentials {¢, } on the limit space.

In Section 5 we give a notion of “BK > K” (enclosed in quotation marks to dis-
tinguish it from the condition BK > K for smooth Kéhler manifolds) for possibly
singular complex spaces. We use the notion of Kéhler spaces from [31], which is for-
mulated in terms of local potential functions {¢q}. We define metric Kéhler spaces
and an associated complex Gromov—Hausdorff convergence, which may be of inde-
pendent interest. We say that a metric Kéhler space has “BK > K if ¢ — d12<’ » /2
is plurisubharmonic for all « and p. For normal complex spaces, this is equivalent to
(1.3) being satisfied. The following properties hold.

. Given a sequence of metric Kédhler spaces with “BK > K.’ if it converges
in the pointed complex Gromov—Hausdorff sense, then the limit space has
“BK>K”

. Under the assumptions of Theorem 1.4, a subsequence converges in the
pointed complex Gromov—Hausdorff sense.

. If a Kihler orbifold has “BK > K in the sense of curvature tensors, then its

underlying length space has “BK > K.”
Section 6 is about tangent cones of the limit spaces from Theorem 1.4. We show
that:
. a tangent cone is a Kihler cone that is biholomorphic to C";
. when the distance function from the vertex is radially homogeneous on C”,
the tangent cone is an affine cone over a copy of CP"~! with “BK >2.” in
the sense of the previous section.

2. Some facts from Riemannian comparison geometry

Let (M, g) be a complete Riemannian manifold. We consider lower sectional curva-
ture bounds; for simplicity, we assume that (M, g) has nonnegative sectional curva-
ture. Given p € M, let d, € C(M) denote the Riemannian distance from p. Then

Hess(d}/2) < g 2.1)

away from the cut locus C,, of p.
Let {y(¢)}se[0,2] be a unit-speed geodesic in M — C,,. For brevity, we write d, (t)

for d,(y(t)). It follows from (2.1) that (dz(t)/Z) < 1, that is, W(dz(t)/Z -
12/2) < 0. In other words, d2(1) — 1* is concave on [0, L]. Then

a2~ = (d2(L) — 17) + (1= ) d2(0) 22)
or

420z +a2(L) + (1= ) a2 — (L —1). (23)
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Toponogov’s theorem says that (2.3) remains true without the restriction that y lies in
M —Cp.

Remark 2.4

We state some facts without proof.

(1)  Equation (2.3), when applied to minimizing geodesics, passes to pointed
Gromov—Hausdorff limits. That is, such a limit is a complete length space
with nonnegative Alexandrov curvature.

(2) A noncollapsed limit is a topological manifold (see [34]).

(3) A tangent cone of a noncollapsed limit is a metric cone. Its link has Alexan-
drov curvature bounded below by 1 (see [2, Corollary 7.10]) and is homeo-
morphic to a sphere (see [17, Theorem 1.3]).

(@) A Finsler manifold with nonnegative Alexandrov curvature is a Riemannian
manifold.

5) A polytope in Euclidean space, that is, a connected finite union of top-
dimensional simplices, has nonnegative Alexandrov curvature, with respect to
the length metric, if and only if it is convex.

3. Comparison geometry for Kéhler manifolds with lower bounds on holomor-
phic bisectional curvature

3.1. Holomorphic bisectional curvature
Let M be an n-dimensional Kihler manifold. We let @ denote its Kihler form. In
terms of holomorphic normal coordinates at a point p, we have w(p) =
YoLSdziad7

Suppose that n > 2. Given p € M, if 0 and ¢’ are J-invariant 2-planes
(i.e., complex lines) in T,M, write ¢ = span(X,JX) and o’ = span(Y,JY)
for unit vectors X and Y. The holomorphic bisectional curvature of o and o’ is
H(o,0')=R(X,JX,Y,JY).If 0 = ¢’, then the holomorphic sectional curvature of
o is H(o,0). From the Bianchi identity,

R(X,JX,Y,JY)=R(X,Y, X, Y)+ R(X,JY,X,JY). (3.1)
In particular,

(sect. curv. > const.) = (holo. bisec. curv. > const.)

= (Ricci curv. > const.) (3.2)

where the constants are related by n-dependent factors. Given K € R, we say that
BK > K if all of the holomorphic bisectional curvatures are bounded below by K.
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We use the curvature notation of [20, Chapter 9]. In particular, if {e;,e;} are ele-
ments of a unitary frame, then the corresponding holomorphic bisectional curvature
is —R;; 7. (Note the minus sign.) Hence BK > K if and only if we have

—RX.X.Y.Y)= K((X, X)(Y.Y) + (X, Y)(Y. X)) (3.3)

forall X,Y e T-O M . (If n = 1, then to be consistent with (3.3), we say that BK >
K if the holomorphic sectional curvatures are bounded below by 2K .)
The metric on CP" with constant holomorphic sectional curvature ¢ is

4 c
g7 = ~0:0; log(1+ 5121 (3.4)
c 4
with curvature tensor
c
R = _E(gifgkf + 8,18k7)- (3.5
[+
1 Z '
vatures lie in [£, ¢]. The diameter is w¢~2. (If n = 1, then the Riemannian sectional

The Riemannian sectional curvatures lie in [£, ¢]. The holomorphic bisectional cur-

curvature and the holomorphic bisectional curvature are ¢, and the diameter is nc_% )

If BK > K > 0, then diam(M) < \/% (see [23]). It seems to be open whether
equality implies that (M, g) is the Fubini—Study metric on CP", up to a constant (see
(28], [40D.

A compact Kéhler manifold with positive holomorphic bisectional curvature is
biholomorphic to a complex projective space (see [33], [39]). The nonnegative case
was described in [32]. Alternative proofs of these results, along with extensions to
transverse Sasakian geometry, are in [14] and [15].

3.2. Differential inequality for smooth Kdihler manifolds
We now give a Kihler analogue of (2.1), for BK > K.

For p € M, let d,, denote the distance function from p, and define dg, , using
(1.1), with d replaced by d,.

PROPOSITION 3.6
Let M be a complete Kdhler manifold. If BK > K, then forall p e M,
V—-180dg ,/2 <o 3.7)
as currents on M.
Proof

Suppose that BK > K. (If K > 0, then we initially restrict to the case when
diam(M) < J%‘) It follows from [40, Theorem 2.1], along with some calculation,
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that (3.7) is satisfied smoothly away from the cut locus of p. Given ¢ € M — {p}, let
¢ be a local Kihler potential in a neighborhood U of ¢, that is, w = +/—130¢. We
can assume that p ¢ U. To prove (3.7), we wish to show that ¢ — d12<’p/2 is plurisub-
harmonic. For this, it suffices to show that it is subharmonic on any embedded
holomorphic disk ¥ in U, that is, that AEdI%’ » < 4 as measures on X.

Given m € X, we will construct a barrier function at m. Let y : [0,d(p,m)] - M
be a minimizing unit-speed geodesic from p to m. Let Fx be the function appearing
on the right-hand side of (1.1), so d2 = Fg od. Then Fg > 0and Fg > 0. For small
€ > 0, consider Fk o (dy () + €). Its value at m is dIZ(’p(m). Asdyy+e€>dp, it
follows that Fk o (dy) +€) > di .

Since m is not in the cut locus of y(€), we now know that

Ax(Fgodye) <4 (3.8)
in a neighborhood of m in . As
Ax(Fx 0 dy) = (Fg 0 dy@)|Vsdy* + (Fg 0 dye) Axdy o), 3.9)
it follows that
(Fg o dye) Asdye) <4 — (Fg 0 dyo)|Vsdyo|* < 4, (3.10)
S0

Asdye) < 3.11)

Fg odye’

where the denominator is strictly positive in a neighborhood of m.
Similarly,

AZJ(FK o (dy(e) + 6))
= (Fg o (dy( + ) IVedy * + (Fg o (dy() + ) Axdye.  (3.12)
Combining with (3.10) and (3.11) gives

As(Fg o (dye) +€))
< ((Fg o (dy(e) + €)) = (Fg 0 dy()) [Vzdy o) |
+ ((Fg o (dye) +€) = (Fg 0 dy(9)) Dxdye + 4
= ((Fg © (dy() + ) = (Fg 0 dy(e)))
+ ((Fg o (dye) +6) = (Fg 0 dy(9)) Axdye) + 4
= ((Fg o (dy(e) + ) — (Fg 0 dy(e)))
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4
+ ((Fg o (dy(e) + €)) — (Fg 0 dy(e)) =———— + 4. (3.13)
Fyody
Given €’ > 0, using the continuity of F and Fg, by choosing € small enough we
can ensure that Ax(Fk o (dy) + €)) < 4 + € in a neighborhood of m in X. Thus
Azdlz{, » = 4 in the barrier sense, hence in the viscosity sense and in the distributional
sense. This means that ¢ — d12<’ /2 1s subharmonic on X. Thus (3.7) holds.

Now suppose that K > 0 and diam(M) = J% Given A € (0, 1), the metric g

also has BK > A% K, while diam(M) < «/ﬁ Hence ¢ + ﬁ logcos(Ad)p \/g) is
plurisubharmonic, that is, A%¢ + % logcos(Ad) \/g ) is plurisubharmonic. Using the
fact that % logcos(Ad) \/g) is monotonically nonincreasing in A as A — 1, we can

pass to the limit to conclude that ¢ + % logcos(d, \/g) is plurisubharmonic (cf. [8,
Proofs of Theorems 1.4.15 and 1.5.4]). This proves the proposition. O

Remark 3.14
If K =0, then Proposition 3.6 was proved in [3] by very different means.

3.3. Integral comparison inequality

We now wish to give an analogue of (2.3). Comparing (3.7) with (2.1), it is clear that
instead of integrating over geodesics—that is, real curves—we should now integrate
over 2-dimensional objects, that is, complex curves.

PROPOSITION 3.15

Let M be a complete Kihler manifold. Given K € R, the manifold M has BK > K
if and only if it satisfies the following property. Let i : D2 — M be an embedding of
a disk into M that is holomorphic on D?. Let ¥ be the image of i. Let d A denote the
area form on X. Let z be the local coordinate on D?, and let 6 € [0,21) be the local
coordinate on dD2. Then

2 1
2 2
dK,p(O)Z;[LlOg|Z|dA+E/aEdK’p(9)d0, (316)
where the “0” on the left-hand side denotes i(0), the center of X.

Proof

Suppose that BK > K. From Proposition 3.6, or more precisely its proof, we know
that \/—183d12(,p/2 < wy as currents on X. The solution to +/—130 f/2 = wy on X,
with f sy = d,z(,p|3>; has
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_2 L )
f(0)= n//210g|z|dA+2n /aZdK,p(G)dG. (3.17)

As f —d} p 18 subharmonic on X, and vanishes on 9%, inequality (3.16) follows.
Now suppose that the inequality BK > K is violated at some point p. In complex
normal coordinates around p, the metric is

1 -
87 =05+ ERifkiZkZl +o(lz). (3.18)
where Ri7k7 is evaluated at p. Correspondingly,
1 . | . .
w= 5\/_1 dz' AdZ' + Z«/—uR,.;,Jzkz’ dz' AdZ! + o(|z]?). (3.19)

In general, d?(py, p1) is the minimum over y of the energy
1 d i d i
v ay
E(y) = i ————dt, 3.20

where y : [0, 1] = M has y(0) = po and y(1) = py. If y is a unique minimizer and
we perturb the metric by §g, then to leading order, the squared distance changes by

1 d i d i
y ay
8d*(po, =/ 8gi; —— ——dt. 3.21
(po. p1) . &ij di di ( )
In our case, for the flat metric the minimizer between 0 € C” and z € C" is
y(t) = tz. Treating the second term in (3.18) as the perturbation, the change in
squared distance is
1

1
- 1 -
_/ R~ 7227 (tz%) (7 dt = R, 72'27 ¥ 2. (3.22)
2 Jo i 6 i

Hence since p = 0 in the local coordinates,

1 o
d2(z) =z + gRl.jk;z’szkzl +o(|z]*). (3.23)

From (1.1),

1
dip=dy+ 5 Kdy+o(dy), (3.24)
SO
1 I

d,%,p(z) =z + gRﬁij’Z’Zkzl + EK|Z|4 + 0(|z|4). (3.25)

This gives
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_ 1 . , 1 - . .
V—100d} ,/2 = SV-ldz ndZ 4 g«/—lRifkizkzl dz' Adz
1 - , X
+ EV—IKE’Z/ dz' And7Z/
1 . .
+ Ex/—lKlzlzdz‘ AdZ' +o(|z[?). (3.26)
Equations (3.19) and (3.26) give
_ 1 - .
V=100d% /2 —w = E\/—1R;mz"zl dz' AdZ' +o(|z]?), (3.27)
where

R;WJ = Rifki + K(8i75k7 + 81-787](). (3.28)

If ¥ is an embedded holomorphic disk in M, then

2 1
d,%’p(O)—;//Elog|z|dA—E/aEd12<jp(9)d9
2 _
Z;// log |z|(vV—183d ,/2 — o). (3.29)
x

Since M does not have BK > K at p, there are unit vectors X,Y € TISI’O)M SO
that R'(X,X,Y,Y) > 0. (Recall the minus sign in (3.3).)

Given 0 < €] < €3 < 1, consider a holomorphic disk 7 : D2 M given in com-
plex normal coordinates by i(w) = e;wX + €,Y. Let X be the image of i. Using
(3.27), the right-hand side of (3.29) is approximately

1 _
—¢—1efe§(1ogez)R’(X,X,Y,Y)// dw A dw
61 D2

1 —
= —efeg(logez)R’(X,X,Y,Y)// dAp>. (3.30)
37 D2

Since loge, < 0, we conclude that
dz (0) 2// log|z|d A 1[ dZ (0)df <0 (3.31)
K,p T 5 g o . K,p ’ .
contradicting (3.16). O

Remark 3.32
There is an analogy between (2.3), with = £, and (3.16), where 3(d%(L) + d2(0))

is replaced by 5= [, dg ,(0)d0 and —LTZ is replaced by 2 [[5,log|z|dA.
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For any point ¢ in the disk, there is an inequality similar to (3.16) with O replaced
by ¢, obtained by performing a holomorphic automorphism of the disk.

Note that the area form d A in (3.16) can also be described as the 2-dimensional
Hausdorff measure on X. Hence the statement of (3.16) only depends on the complex
structure and the metric d.

3.4. Hermitian manifolds

One can ask when (3.16) holds more generally in the setting of Hermitian manifolds,
rather than Kihler manifolds. It turns out that if (3.16) holds for a Hermitian manifold,
then it is forced to be Kdhler. We now give an analogue of Remark 2.4(4), in which
Finsler manifolds are replaced by Hermitian manifolds, and Riemannian manifolds
are replaced by Kéhler manifolds.

PROPOSITION 3.33
If a Hermitian manifold M satisfies (3.16), for all p € M and all holomorphic disks
>, then it is Kdhler.

Proof
Choose complex coordinates around p. After a change of coordinates, we can write
the metric locally as

g=dz'dz' + Ty 2/ dz%d7' + T; 1 7/ dz8 dz' + 0()z)P). (3.34)

Here T; ;; is a constant times the torsion tensor at p, and is antisymmetric in j and k.

We first compute the leading-order terms in d, 2 using (3.21). For the flat metric
the minimizer between 0 € C" and z € C" is y(¢) = tz. Treating the second and third
terms in (3.34) as the perturbation, the change in squared distance is

/ (T ]k)(tzf)zkz dt + complex conjugate. (3.35)

This would be the O(|z|?)-term in d2, but it vanishes because of the (jk)-
antisymmetry of T5,,. Hence dj(z) = |z|*> + O(|z|*). From (3.24), it follows
that dlz{’p(z) =z + O(|z|%).

Then

_ 1 , >
V—100dy ,/2 = 5«/—1 dz' AdZ' + 0(|z]?). (3.36)
On the other hand,

:—«/ 1dz' AdZ + = \/ T]szdz AdZ

+ - v Tjkz/dz Adz' 4+ 0(|z]?), (3.37)
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SO

_ 1 . )
V=100dR /2 — 0 = = V1T 2! dzF A a7
1 — :

—~ 5\/—1T;jsz dz8¥ ndz' + 0(|z]?).  (3.38)

Suppose that M is non-Kihler, so it has a nonzero torsion tensor at some point p.
Let b € C" be such that }; b T; jk 18 a nonzero matrix in (i,k). Let a € C" be

such that 3, ; aib’ T jkak # 0. Multiplying b by a constant, we can assume that

. atb/T:. a* is a negative real number. Given 0 < €; < €, < 1, consider a
i,j.k ijk g

small disk i : D2 — M given by i (w) = eqwd + ezl;. Let ¥ be the image of i. As in
the proof of Proposition 3.15, it follows from (3.38) that the right-hand side of (3.29)
is approximately

—4ederlog(ealbl) Y aib! T; ak <o. (3.39)
i,j.k
Thus (3.16) is violated for X, which is a contradiction. Ol

3.5. Domains in model spaces

We now give an analogue of Remark 2.4(5). That is, we look at regions in C” or,
more generally, in model spaces of constant holomorphic sectional curvature. Since
we want to characterize when (3.16) holds, we need a complex structure everywhere.
For that reason, we do not allow boundary, but simply consider when a domain in
the model space satisfies (3.16). One might initially expect that it has something with
pseudoconvexity of the domain. However, the latter notion is invariant under biholo-
morphisms, whereas we have a metric d in addition. It turns out that the answer is
essentially given by convexity in the usual sense.

Given K € R, let Mk be the complete simply connected Kihler manifold with
constant holomorphic sectional curvature 2K . Its metric is given by (3.4), with ¢ =
2K. One can check that equality is achieved in (3.7), away from the cut locus of p if
K >0.

PROPOSITION 3.40

Let M be a connected open subset of Mg. Let d be the length metric on M. Then
M satisfies (3.16) if and only if d coincides with the restriction D of the metric from
Mg.

Proof
If d = D, then (3.16) follows immediately from the corresponding inequality for
Mk.
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Suppose that (3.16) is satisfied for M, but d # D. Let m;,m, € M be points
such that d(mq,mz) > D(my,my). If K > 0, let D denote the cut locus of my, a
copy of CP"~!, By continuity of the distance functions, we can assume that m, ¢ D.

Let y : [0,1] = M be a smooth embedding with y(0) = m and y(1) = m,. If
K > 0, then we can assume that y is disjoint from D. By approximation, we can
assume that y is real analytic. We can then extend y to a real analytic embedding
y :[—€,1+ €] - M for some € > 0.

We claim that after possibly reducing ¢, there is some ¢’ > 0, and a continuous
embedding T : [—€,1 + €] X [—€’,€'] — M that is holomorphic on the interior, so
that I'(z,0) = y(¢) for all # € [—€, 1 + €]. To see this, suppose first that K = 0, so
Mg =C". Let {y" (¢)}7_, be the components of y. As y' is real analytic, it extends to
a holomorphic function I' : (—e, 1 4 €) x (—€/, /) — C for some €/ > 0. Taking €’ =
min; €], the functions {F"};’=1 combine to give a holomorphic map I": (—e, 1 4 €) X
(—€',€’) — C". The image of d I'; ) is the span of () and J y’(¢), a 2-dimensional
space. Hence by reducing € and €', we can ensure that I" is a continuous embedding
from [—e, 1 + €] x [—€’, €] to M, which is holomorphic on the interior.

If K <0, then the underlying complex structure of Mg is the unit ball in C", so
the same argument can be applied. If K > 0, then Mg — D is biholomorphic to C",
so again the same argument can be applied.

As I'" reparameterizes to a holomorphic disk 7 : D2 —> M with image X, by a
holomorphic automorphism of the disk we can assume that i (0) = m. The equality
case of (3.7) with p = m; implies that

g

2 1
oz—// log|z|dA+—/ Di m, (0)d6. (3.41)
) 2 Jog

Note that the 2-dimensional Hausdorff measure d A is the same for d and D. Since
d(my,mz) > D(my,my), if € and € are small enough, then dg ,, (0) > D, (0)
for some 6. By continuity of the distance functions, this will also be true for all 6 in
some open interval. Thus

2 1
0<=[[1 dA+— | dZ, (6)de, 3.42
<2 [[roettaas - [ i (3.42)
which contradicts (3.16). O

4. Noncollapsed Gromov-Hausdorff limits

We consider a noncollapsed pointed Gromov—Hausdorff limit of a sequence of com-
plete Kédhler manifolds with BK > K. Lee and Tam [22] proved that the limit has the
structure of a complex manifold. This extends earlier results of Liu in [25] and [26],
and is an analogue of Remark 2.4(2). We wish to study the geometry of the limit.
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Although the metric d on the limit is generally not smooth, we show that it satisfies
the comparison inequality (3.16). This is an analogue of Remark 2.4(1).

The method of proof is by running the Ricci flow on the approximants and passing
to a limiting Ricci flow that exists for positive time (locally). Then one is reduced to
understanding the ¢+ — O limit of a single Ricci flow, as opposed to a sequence of
Riemannian manifolds. This approach has been applied in many other contexts. Since
we are not assuming an upper curvature bound, we apply recent results on local Ricci
flow.

The proof also relies on local Kéhler potentials. We actually prove the existence
of local Kéhler potentials, of a certain regularity, on the limit space.

PROPOSITION 4.1

Let {(M;, pi, gi)}72, be a sequence of pointed n-dimensional complete Kéhler man-

ifolds with BK > K. Suppose that there is some vo > 0 so that for all i, we have

vol(B(pi, 1)) > vg. Then after passing to a subsequence, there is a pointed Gromov—

Hausdorff limit (X e, Poos doo) With the following properties.

(D Xoo is a complex manifold and d is locally bi-Holder-equivalent to the dis-
tance metric of a smooth Riemannian metric on X oo.

2) There is an open covering {Uy}aea of Xoo and plurisubharmonic potentials
¢o € C(Uy), locally Lipschitz with respect to deo, S0 that ¢ — ¢p is pluri-
harmonic on Uy N Ug, and the following holds. Let X be a holomorphic disk
in Xeo. Let ¢po|znu, be the restriction of ¢po to N Uy, and put weo|s =
V—=130¢4 |5, a globally defined measurable (1,1)-form on . Then weo|x
equals the 2-dimensional Hausdorff measure [ coming from deo|s.

3) We have

2 1
dg ,(0) = ;/Elog|z|d,uoo + Z/ag dg. ,(6)db. (4.2)

Proof
(1) We claim first that there are nondecreasing sequences oy, Bz > 1 and a nonincreas-
ing sequence Sy > 0 such that for any i, there is a Kidhler—Ricci flow g; (¢) defined on
Ure,(Bg, (pi,2k) x [0, S]) with g;(0) = g;, such that

[Rm(g: ()] = —. (4.3)

Ric(gi (1)) = —Pk. 4.4)

Ok
t

and

inj,. ) = o 'V 4.5)
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on Bg, (pi,2k) x [0, Sk]. This follows from the pyramid Ricci flow constructed in [22,
Theorem 1.2] (see also the proofs of [21, Theorem 5.1] and [30, Theorem 1.3]).

From distance distortion estimates as in [18, Section 27], there is then a constant
Cj. < o0 so that for t; <t,, we have

dg;t) — Ce(Wiz = V1) S dg; (1) < P27 dy o)y (4.6)

on Bg, (p;,2k) x [0, Sk].

Using a local version of Hamilton compactness [18, Appendix E], after pass-
ing to a subsequence of the i’s, there is a pointed smooth manifold (X0, pso) and
an exhaustion of X, by precompact open sets {Vj}72 , containing peo, along with
a limiting pointed Ricci flow goo(+) defined on (7=, (Vi % (0, Sk)) (cf. [30, Theo-
rem 1.5]). More precisely, for each k € Z™T, for large i there is a pointed embedding
®ik - Vi = M; so that

8oo() = lim ¢y () (4.7)

on compact subsets of Vj x (0, Sg), in the smooth topology.

The distance distortion estimate (4.6) passes to the limiting Ricci flow. It fol-
lows that there is a pointed Gromov—Hausdorff limit lim;—¢(Xoo, Poo, §oo(t)) =
(Xoo0s Poos doo) for some complete metric doo. It then follows that lim; o (M;, p;,
gi) = (X0, Poos doo) in the pointed Gromov—Hausdorff topology. We can take Vj to
be the metric ball B(poo, k) with respect to deo, SO

dgoo(t) — Co (VT2 — V1) S dgoyi) < P27V d,_ o)) (4.8)

on B(peo, k) x (0, Sk). Also,
IRm(g0o (1)) | < “t—" 4.9)

on B(poo, k) x (0, Sk).

From [38, Lemma 3.1], for any ¢ € (0, S ), the metric ball B(pso, k) C Xoo With
the metric do is bi-Holder homeomorphic to the same ball with the metric goo (7).

Given k € Z* and considering the time interval (0, S ), since the complex struc-
tures J; on Bg, (pi,2k) C M; satisfy Vg, ()Ji = 0, after passing to a subsequence
of i’s we can assume that they converge to a complex structure Joo ¢ 0n B(poo, k)
that satisfies Vg (1)Joo,k = 0. After passing to a further subsequence of i’s, we
obtain a complex structure Jo, on X that, on B(peo, k), satisfies Vg (1)Joo =0
fort € (0, Sg). Let w(¢) denote the corresponding Kihler form.

(2) Fix k € Z, and fix t' € (0, S ). For ¢ € (0,¢'], put

t’ n
u(?) =—/ log &) 4 (4.10)
t

o (1) s.
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Then
w(t) = o(t’) — (t — ') Ric(w(t')) + v—130u(?), 4.11)
as can be seen by differentiating in ¢.
Since
dw .
T —Ric(w(1)), (4.12)
the estimate (4.9) implies that
" (s) ¢’
‘log o (1) < const. log n (4.13)

for s € (0,¢'], where “const.” is an n-dependent factor times oy . Then
123 t/

Iu(tl) - u(t2)| < const.[ log —ds
S

13}

= const.((t2 — 11) log(t') — 2 log(t2) + t1 log(t1)). (4.14)

Hence {u(1//)} is a uniformly Cauchy sequence and has a limit #(0) € C(B(peo,k)).

Given x € B(poo,k), let U be a neighborhood of x that is biholomorphic to the
unit ball in C”. There are vy, wy € C*(U) so that we can write w(¢’) on U as
V—133vy, and we can write Ric(w(t’)) on U as ~/—130wy. Doing the same for
another point p’ € B(peo. k), we have ~/—109(vy — vyr) = 0 and ~/—109(wy —
wy’) =0on U NU'. Fort €0, Sg), put

Py (1) =vy —(t —thwy +u@)|v. (4.15)

If t > 0, then (4.11) gives v—130¢y (1) = w(t), so v/—130(¢y (1) — ¢y (1)) = 0 on
UNU' Letne Q" " 1(U NU’) be a smooth compactly supported form. Then

| @o =g @) AT = [ VT30 0= o) A1
=0. (4.16)
Using the uniform convergence lim;_, u(¢) = u(0), it follows that

/X (¢ (0) — Py (0)) A V—133n =0, 4.17)

s0 v/—100(¢y (0) — ¢y (0)) = 0 as a current. That is, ¢y (0) — ¢y (0) is plurihar-
monic. Similarly, if 7 has compact support in U and is strongly positive in the sense
of [8, Chapter 3], then for t > 0, we have
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/ ¢U(I)A\/—_185n=/ \/—_185¢U(t)/\r}=/ w)An=>0. (4.18)
Xoo Xoo

oo

Passing to the limit as t — 0 gives

du (0) A v/—199n > 0. (4.19)

Xeo

Hence ~/—193¢y (0) > 0 in the sense of currents, that is, ¢y (0) is plurisubharmonic.

From [7, Theorem 6], there is a bound on |V¢y (¢)| in terms of K and the oscilla-
tion of ¢y (), the latter of which is uniformly bounded in ¢. Hence ¢y (¢) is uniformly
Lipschitz in ¢, with respect to dg__ ;). This passes to the limit, to show that ¢y (0) is
Lipschitz with respect to doo.

Taking an open cover {U,} of X by such neighborhoods, we obtain such
plurisubharmonic functions ¢y = ¢y, (0) € C(Uy) so that ¢, — g is pluriharmonic
on Uy NUg.

Fixing k, for ¢ € (0, S¢) put d; = e Prtd,_ (). From (4.8), we know that dy is
nonincreasing in . In addition, it follows from (4.8) that

dy <doo < eP¥'d, + Cr /. (4.20)

Let ¥ be a holomorphic disk in B(peo,k). Then for t € (0, Sg), the 2-
dimensional Hausdorff measure ji; on ¥ coming from c/f, |5 is e 2Pk times w(1)|x =
V—=130¢y (1)|x. It follows that lim, ¢ fi; equals v—133¢y (0)|x = weo|s.

We claim that lim;_o [i; also equals [0, the 2-dimensional Hausdorff measure
coming from d |5 . To see this, let K C X be a compact set lying in some B(poo, k).
Then jioo(K) = limg_,q Hjoo,g (K), where

H}_ 5(K) = T inf ) (diamg,, W)2, @21
1

and {W;} ranges over finite covers of K by open sets W; C X with diam,__ (W}) < 6.
The definition of [i; is similar, using d;. Note that H joo s (K) is nonincreasing in J.

Since c/i; is monotonically nondecreasing as ¢t — 0, with limit d, it follows from
(4.21) that [, (K) is monotonically nondecreasing as ¢ — 0, and lim,_,o i (K) <
oo (K). To show equality, suppose first that (oo (K) < co. Givent, §, and €, let {W;}
be a finite open cover of K with

s .
" Y (diamg W)* < Hgt K te (4.22)
1

and diamgr W; < § for each [. Now
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% 3 (diamg, Wh)? < % > (Pt diamg Wy + Cv/1)? (4.23)
1 !

and diamgz__ W < ePrt§ 4+ Cy /1 for each [. Since { W} is finite, if 7 is small enough,
then

g s
n D (P diamg Wi + Cpv1)* < 7 > (diamjz Wp)* + . (4.24)
) 1

Put §' = ePx'§ + C /1. Then

Hj 5(K)< Hi 5 (K) +2€ < 1 (K) +2€ < lim e (K) + 2e. (4.25)
5 R [N

As € is arbitrary, this shows that Hjoo,S’(K) < limy—o s (K). A similar argument
shows that if (e (K) = 00, then limy/ ¢ &y (K) = 00. Hence ftoo < limy/—q [y.

(3) Given p € Xwo, let d, € C(Xs) be the distance function from p. Given
X € Xoo, choose k € Z* so that x € B(poo,k/2). Let U C B(poo.k/2) be a ball
neighborhood of x on which the potential function ¢ (0) € C(U) is defined.

Using the comparison maps in (4.7), we can assume that each Ricci flow g; (-) is
defined on B(poo, k) X (0, Sg). As lim; o0 J; = Joo smoothly (say, relative to goo(¢')
for a given t’ € (0, Sk)), there is a sequence of holomorphic maps w; : (U, Joo) —
(B(poo, k), Ji), for large i, with {; }$2, smoothly approaching the identity map (see
[13]). The pullback Ricci flows {17 g; (-)}$2, live on U and are all Kihler relative to
the fixed complex structure Jo.

Let {p;}72, be a sequence of points, with p; € M;, that converges to p in the
Gromov—-Hausdorff sense. We first show that lim; o it; dp; = d, uniformly on U.
To see this, we apply (4.6) with #; = 0 and #, = to get that for all ¢ € U, we have

e Pl dy (g, 16(@) < di (9. 14 (@) < dg; 0y (9. i (@) + C V1. (4.26)

For fixed ¢, we have lim; o0 dg, 1)(¢. i (g)) = O uniformly in ¢g. Taking ¢ to zero,
we conclude from (4.26) that lim; o0 d; (¢, i (¢)) = 0 uniformly in g. Now

|(fdp) (@) — dp(q)| = |di (Pi- 11i (@) — doo(p.q)]
< |di(pi.9) — doo(p.9)| + |di(q. 11i (@))|.  (4.27)

Using the Gromov—Hausdorff convergence of d; to do, relative to the identity com-
parison map, equation (4.27) gives that lim; o ;' dp; = d, uniformly on U'.

We will show that there are local Kihler potentials {n;} on M; so that
lim; 00 4] i = ¢y (0) uniformly on U. Pulling back by u;, it suffices to con-
struct such Kéhler potentials for the pullback metrics on U, which we again denote
by gi, that are compatible with J.
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Construct u; (+) as in the proof of part (2) of the proposition, except for the flow
gi () instead of goo(+). From (4.10), we have

1 (0) —u(0) = — / log &) 4. (4.28)
0 w; ;' (s)
Then
14 (0) = ()| ¢y < / t/Hlo @”(5) H ds (4.29)
‘ cw = [, gwf(s) cw) '

Using (4.13) and dominated convergence, it follows that lim;_, o #; (0) = u(0) uni-
formly on U.

Recall the functions vy and wy constructed in part (2), using the 99-lemma.
Construct functions v; and w; analogously for the metric g;. From the smooth con-
vergence of {g;(¢')}$2, t0 goo(t), and the explicit proof of the 99-lemma (see [8,
Lemma 1.(3.29) and Proposition IIL(1.19)]), we can assume that {v; }?2, converges
smoothly to veo, and {w; }72; converges smoothly t0 Weo. Put

¢i(0)=v; + t'w; + u; (0). (4.30)

By construction, ¢; (0) is a Kahler potential for w; on U or, more precisely, for 7 w;.
We have shown that lim; . ¢; (0) = ¢y (0) uniformly on U'. Finally, for large i, put
= (17 ")*¢i (0). Then n; is a smooth local Kihler potential for g; on u; (U ).

We momentarily exclude the case when K > 0 and diam(X o, dso) = ﬁ' We

know that 1; — dé i /2 is plurisubharmonic. As
lim (i — di ,/2) = du (0) — di /2 4.31)

uniformly on U, it follows that ¢y (0) — d 12( /2 1s plurisubharmonic on U.

If K >0 and diam(Xoo, dxo) = JL_ then we use the fact that BK > A2K for

A €(0,1), and diam(X o, dso) < Aﬁ so ¢y (0) — )LZK,p/Z is plurisubharmonic
on U. We take the limit as A — 1, as in the proof of Proposition 3.6, to again conclude
that ¢y (0) — d 12( /2 1s plurisubharmonic on U..

Given the holomorphic disk ¥ € X,. we know that the restriction of ¢¢(0) —
d 12( »/2t0o XN U is subharmonic. Hence

V=100d} ,lznu /2 < V=100¢y (0)|snu = Koolznu - (4.32)
Then
V—=100d ,|5/2 < oo (4.33)

globally, as measures on .
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. 1 . p2
Given € € (0, 1), define fe : D* — R by

log(e) + ¢ if0<r <e,
fe(re’®y=log(r)+ € ife<r<e, (4.34)

0 ife ¢ <r<l.

Then log(|z]) < fi(z) <0, and +/—190 f, exists as a measure. We have
_ 1 2n 1
[ Fiasodz, =5 [ [ s, f)ak ,.00dr as
by o Jo

2 1
:% /0 /0 (85(1’) — 8p—e (V))dIZ{,p(r, 0)drdo

1

27
25/0 (di, (€. 0) —di ,(e7<,6)) . (4.35)

Let ﬁ € C2(D?) be a smooth nonpositive approximation to f, obtained by

rounding out the corners at r = € and r = e~ €. Since f¢ is nonpositive, equation
(4.33) gives

1 [ ~ _ ~
> /E fe-V—130dg , > /E Jedpioo. (4.36)

Passing to a limit as ﬁ approaches f, it follows from (4.35) that

1 2n
Z[ (dlz(’p(e,é)—dlz(jp(e_e,G))dGZj;zféd,uooZLlog|Z|d/Loo. (4.37)
0

Taking the limit as € — 0 gives

%d,z(,p(O) —% Oz,, d% (%) d6 = /E log |2|d oo (4.38)
or
1 (2" . 2
dg ,(0)> 2 ), d,%,l,(e’(’)d9+;/>zlog|z|duoo. (4.39)
This proves the proposition. O
Remark 4.40

In the collapsing case, that is, if lim; o, vol(B(p;, 1)) = 0, there is no direct analogue
of Proposition 4.1 since the limit space need not be Kéihler, even if it is smooth. For
example, a sequence of flat 2-tori can converge in the Gromov—Hausdorff sense to a
circle.



3058 JOHN LOTT

If there are uniform two-sided sectional curvature bounds, then one can take a
limit in the sense of étale groupoids (see [29, Section 5]), even in the collapsing case.
The conclusion is that there is a W27 -regular Kihler metric on the unit space of the
groupoid, with BK > K.

Natural examples in which there is collapsing with a Kéhler limit space arise in
the long-time behavior of the Kédhler—Ricci flow.

As a consequence of Proposition 4.1, we see that if a noncollapsed pointed
Gromov—Hausdorff limit of a sequence of Kahler manifolds happens to be a smooth
Riemannian manifold, and if the Kdhler manifolds in the sequence have BK > K,
then the limit is a Kdhler manifold with BK > K.

COROLLARY 4.41

Let {(M;, pi,gi)}i2, be a sequence of pointed n-dimensional complete Kihler
manifolds with BK > K, that converges in the pointed Gromov-Hausdorff topol-
0gy to a smooth pointed n-dimensional Riemannian manifold (M, Poo, &c0)- Then
(Moo, go0) is a Kdhler manifold with BK > K.

Proof
This follows from Propositions 3.15 and 4.1. ([

As an example of what the limits in Proposition 4.1 look like, consider the case
of two real dimensions. A smooth oriented surface with a Riemannian metric is also
a Kidhler manifold. A lower bound on the sectional curvature is equivalent to a lower
bound on the holomorphic bisectional curvature. Hence one would expect that ori-
ented surfaces with lower curvature bounds, in the Alexandrov sense, could also be
limits in the sense of Proposition 4.1.

PROPOSITION 4.42

Let (X,d) be a compact boundaryless 2-dimensional length space with Alexandrov
curvature bounded below by 2K. It follows that X is a topological manifold; assume
that it is oriented. Then X satisfies the conclusions of Proposition 4. 1.

Proof

One knows that X acquires a conformal structure (see [36, Theorem 7.1.2]). From
[37], there is a smooth Ricci flow g(-) on X x (0,T], preserving the conformal
structure, so that the sectional curvature of g(¢) is bounded below by 2K, and
lim;—o(X, g(¢)) = (X,d) in the Gromov—-Hausdorff topology. Hence the proof of
Proposition 4.1 applies. O
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Remark 4.43

The examples in Proposition 4.42 show the sharpness of the regularity estimates
in Proposition 4.1. Consider a conical metric on R? given by ds? = r=2%(dr? +
r2d6?), with a € (0, 1). A Kihler potential is ¢p = const. 72~2%, which is only Holder
continuous with respect to the standard metric on R2. On the other hand, the distance

function from the origin is do = const.7!™%, so ¢ is Lipschitz regular with respect
to d.

5. Singular spaces with lower bounds on holomorphic bisectional curvature

In Section 4 the underlying topological spaces were manifolds, both in the noncol-
lapsing sequences and in the limit spaces. In analogy with Alexandrov geometry, it is
natural to ask if there is a notion for singular spaces of a lower bound on the holomor-
phic bisectional curvature.

5.1. Metric Kdihler spaces

In the proof of Proposition 4.1, an important role was played by local Kéhler poten-
tials. This fits well with the notion of Kéhler spaces, which are defined using local
potentials on possibly singular complex spaces.

Let X be a reduced complex space of pure dimension n (see [8, Chapter 2.5]).
For each x € X, there is a neighborhood U, of x and an embedding e, : U, — CNx
so that e(Uy) is the zero set of a finite number of analytic functions defined on an
open set V,, C CNx,

If X; and X, are complex spaces, then a map F : X; — X5 is holomorphic if
for each x € X, there are such Uy and Up(y), with F(Ux) C Up(y), so that the
composite map eg(x) o Fly, : Uy — CNF@ equals Fo ey, where F: Vi — CNF
is holomorphic (see [12, Section 1.3]).

A function ¢ on Uy is plurisubharmonic if it is the pullback under e, of a
plurisubharmonic function on V, € C¥x. A pluriharmonic function on Uy is defined
similarly. If X is normal and ¢ € C(Uy) is plurisubharmonic on Uy N Xy, then it is
plurisubharmonic on Uy (see [10]).

Asin [9] and [31], a (semi)-Kdhler space consists of a complex space with a cov-
ering {U; }?":1 by such open sets, along with continuous plurisubharmonic functions
¢; on Uj, so ¢; — ¢ is pluriharmonic on each U; N U;s # @. Two such collec-
tions {(U;,¢;)} and {(Uk. ¢x)} are equivalent if ¢; — Pr is pluriharmonic on each
U;n (/J\k # 0. (In the papers [9] and [31], the functions ¢; are taken to be smooth and
strictly plurisubharmonic, but there is clearly some flexibility in the definitions.)

We wish to define a metric Kihler space, meaning a Kéhler space with a metric d.
Naturally, we want some compatibility between the Kéhler space structure and the
metric structure. If the Kdhler potentials are smooth, then there is a corresponding
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Riemannian metric and one can require that d be the corresponding length metric. If
the Kéhler potentials are only continuous, then it is not clear how to construct a length
metric (see, however, [24, Theorem 1.3]).

An indication of a reasonable compatibility condition for us comes from the use
of d A in (3.16). In the smooth setting d A is both the restriction of the Kéhler form to
a holomorphic disk, and its 2-dimensional Hausdorff measure. Again in the smooth
setting, the complex structure and the 2-dimensional Hausdorff measure determine
the Kéhler form and the Riemannian metric. Based on this, we make the following
definition.

Definition 5.1
A metric Kdhler space is a Kéhler space X equipped with a metric d that induces
the topology of the complex space X, so that if ¥ is an embedded holomorphic disk,
then for all j, v/—130¢ j|x equals the 2-dimensional Hausdorff measure on each
2NU;#09.

We now define a notion of “BK > K for metric Kéhler spaces, which we put
in quotes in order to distinguish it from the condition BK > K for smooth Kihler
manifolds.

Definition 5.2
A metric Kéhler space X has “BK > K” if forevery p € X and every j, ¢; — d12<’p/2
is plurisubharmonic on U;.

If S is a subset of X and dg denotes the distance to S, then we define dg s in
terms of dg as in (1.1). The next lemma will be used in Section 6.

LEMMA 5.3
If X has “BK > K,” then for any S C X, the function ¢; — dlz(,S/Z is plurisubhar-
monic on U;.

Proof

As ds = infpes dp, it follows that dg s = infpes dk,, and ¢; — d,%,S/Z =
Sup pes5(Pj — dlz(, »/2). Now the supremum of a family of plurisubharmonic func-
tions, when upper semicontinuous, is also plurisubharmonic (see [8, Chapter 1,
Theorem 5.7]). As ¢; —d 12( /2 is continuous, it is hence plurisubharmonic. O

We now show the essential equivalence between “BK > K and (3.16).
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PROPOSITION 5.4
If X has “BK > K,” then for all embedded holomorphic disks ¢ in X, equation
(3.16) holds. If X is normal, then the converse is true.

Proof
If X has “BK > K, then by [10, Theorem 5.3.1], ¢; — dIZ{,p/Z is subharmonic on
U; N'Z. Hence ~/—130d pl%/2 < dA globally on X. As in the proof of Proposi-
tion 4.1(3), it follows that (3.16) holds.

Suppose that X is normal and (3.16) holds. Taking embedded holomorphic disks
Y in Uj N Xy, it follows that ¢; — dlz(,p/Z is plurisubharmonic on U; N X,,. As
dj— d12<, » /2 is continuous on U}, it is then also plurisubharmonic on U . O

We show that if a Kidhler orbifold has BK > K, in the sense of curvature ten-
sors, then the underlying length space has “BK > K.” For a summary of the relevant
topology and geometry of orbifolds, we refer to [19, Section 2].

PROPOSITION 5.5

If O is a smooth effective Kdihler orbifold with BK > K, in terms of the curvature
tensor on local coverings, then the underlying topological space |O| with the length
metric has “BK > K.”

Proof
Given x € |0], let Gy be its local group. There is a local model (U, Gy) around x,
where U is an open subset of C" containing 0, and G acts effectively by holomorphic
isometries on U while ﬁxing 0.PutU =0 / G, aneighborhood of x, with projection
n:U—>U. By shrmkmg U if necessary, we can assume that there is a Kéhler poten-
tial gb on it. Averaging <;5 over Gy, we can assume that it is Gx-invariant. Then there
is a unique ¢ € C(U) with 7*¢ = ¢. This gives |@] the structure of a Kihler space.
With the natural length space structure on ||, it becomes a metric Kihler space.

The regular subset |@ |, consists of the points with trivial local group. It is con-
vex in the sense that if x1, x5 € |@|g, then any minimizing geodesic in |@| from x;
to x5 lies in |0 |reg, as follows for example from [35, Corollary of Theorem 1.2(A)].
Given p € |0/, and a local potential ¢ defined on an open set U, the convexity
and the fact that BK > K on ||, implies that ¢ — d /2 is plurisubharmonic on
U N |O|eq.- Since |@] is a normal complex space (see [4]), it follows that ¢ — d,zg » /2
is plurisubharmonic on U .

For any p € |@], we can find a sequence {p;} in |Q|., converging to p. As each
¢ — dlz(’ ; /2 is plurisubharmonic on U, we can pass to the limit and deduce that
¢ — d12<’p/2 is plurisubharmonic on U. Hence |@| has “BK > K.’ O
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Remark 5.6

Proposition 5.5 shows that quotient singularities can occur as singularities of metric
Kihler spaces with a lower bound on the holomorphic bisectional curvature. We do
not know what other singularities can occur.

5.2. Complex Gromov—Hausdorff convergence

We now give a notion of Gromov—Hausdorff convergence that is adapted to met-
ric Kéhler spaces. One’s first inclination may be to require the Gromov—Hausdorff
approximants to be holomorphic. However, requiring this globally would be too
restrictive. Instead we consider Gromov—Hausdorff approximants in the usual sense,
which in turn can be locally approximated by holomorphic maps.

Definition 5.7

A collection {(X;, pi.d;)}{2, of pointed complete metric Kihler spaces converges

to a pointed complete metric Kihler space (Xoo, Poo,doo) in the pointed complex

Gromov-Hausdorff topology if for every k € Z™, there is a covering of B(po.k) by

bounded open sets {U, ; } and associated plurisubharmonic functions {¢,; } so that

for every € > 0, if 7 is sufficiently large, then there are

. a pointed e-Gromov-Hausdorff approximation %; : B(peo,k) — B(pi, k),
and

. holomorphic maps r; ; : Us,; — M; that are e-close to h; on U, j N
B(poo.k), so that r; ;(Ux,;) is contained in a set V; ; with an associated
plurisubharmonic function ¢;_;, and

. r;";#i,j is uniformly e-close t0 ¢oo, ;-

Note that in Definition 5.7, the limit space can have lower dimension than the
approximants. In using Definition 5.7, we allow ourselves to pass to equivalent
choices of {(V;,;.¢i,;)} on M;.

We now show that the “BK > K” condition is preserved under complex
Gromov—Hausdorff limits.

PROPOSITION 5.8
If lim; 00 (Xi, pi,di) = (Xoo, Poosdoo) in the pointed complex Gromov—Hausdorff
topology, and each (X;,d;) has “BK > K,” then (X, poo) has “BK > K.”

Proof
Fix k. Given p € X0, let {m;} be points that approach it relative to the Gromov—
Hausdorff convergence. Given Uw,; as in Definition 5.7, we have

i 77 (@i = AR, /2) = boou — dF /2 (59)
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in L%(Ux, ;). As r;,j is holomorphic, it follows that ¢oo,j — d,%’p/Z is plurisubhar-
monic. O

Finally, in the setting of Proposition 4.1, a subsequence converges in the complex
Gromov—Hausdorff sense.

PROPOSITION 5.10
Let {(M;, pi.gi)}i2, be a sequence of pointed n-dimensional complete Kihler
manifolds with BK > K. Suppose that there is some vy > 0 so that for all i,
vol(B(pi, 1)) = vo. Then a subsequence converges in the pointed complex Gromov—
Hausdorff topology.

Proof
This follows from the proof of Proposition 4.1(3). O

6. Tangent cones
In this section, we prove an analogue of Remark 2.4(3).

6.1. Tangent cones as Kdhler cones
We first characterize tangent cones of noncollapsed limit spaces.

PROPOSITION 6.1

Let (Xoo, Poo» doo) be a limit space from Proposition 4.1. Let Ty Xoo be a tangent
cone of Xoo at Poo. Then T), o X is a Kdhler cone that is biholomorphic to C", with
r2/2 as a Kiihler potential. It has “BK > 0.”

Proof

As X is a noncollapsed limit of Riemannian manifolds with a uniform lower Ricci
bound, T, X is a metric cone of the same dimension whose link has diameter
at most w (see [6, Theorem 5.2]). After passing to a subsequence, we can write
(Tpoo X0, 0) = lim; 00 (M;, pi. ,uizg,-), a pointed Gromov-Hausdorff limit, where
lim; o0 i; = 00. Hence (7)., Xoo,0) is a noncollapsed pointed limit of manifolds
with the lower bound on BK going to zero. Proposition 4.1 implies that it satisfies
(3.16) with K = 0.

Since a neighborhood of xo, € X is biholomorphic to aball in C*, and T, X0
is a blowup limit, it makes sense that it should be biholomorphic to C". To show this,
we first construct the complex structure on 7 X0, using the Kihler—Ricci flow.

By definition, (7., Xoo.0) = limg 00 (Xoo, Poos Akdeo) as a pointed Gromov—
Hausdorff limit, where limg_, o, Ax = 00. Let goo(+) be the Kéhler—Ricci flow con-
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structed as in the proof of Proposition 4.1, with ¢ — 0 limit given by (X0, dso). The
estimates (4.3)—(4.5) are valid for g (). Define the parabolically rescaled Ricci flows
8oo k(1) = Alzcgoo(kgzu). After passing to a subsequence of the k’s, we can assume
that there is a pointed Cheeger—Hamilton limit

(TpOo X0, 0, goo,oo(‘)) = klinolo(Xom Poo> 8o,k ()) (6.2)

on the time interval (0, 00). Letting B(0,[) denote the /-ball around the vertex O in
T poo X oo, in taking the limit there are implicit embeddings oy ; : B(0,/) - X for
large k so that geo,00(-) = limg_, oo O—]:’]goo,k (-)on [I71,1]x B(0,1). In particular, oy ;
decreases distances by approximately Az, when going from 7, Xoo t0 (Xoo, doo)-

As in the proof of Proposition 4.1, after passing to a subsequence, the pullbacks
o,’:JJoo converge, as k — oo, to a complex structure on B(0,/) (say, relative to the
metric geo,00(1)). Applying a diagonal argument, we obtain the complex structure
Joo,00 0N T Xoo.

Let {z%}"_, be local complex coordinates around p, for X.. Note that
>, |z%|* is strictly plurisubharmonic near peo. Put iy = 0,:"12“, which for
large k is a function on B(0,/) that is holomorphic relative to 0,:‘71 Joo and har-
monic relative to o;:J 8o,k (1). After a linear transformation, we can assume that

a b _ . . .
fB(O,l)Zk,le,l diu = 84p, wWhere dy is the n-dimensional Hausdorff measure on

Tpoo Xoo-

After passing to a subsequence of k’s, there is a limit Z‘olo,l = limg_, ZZ,I’
where {Zgo,l}zzl are holomorphic functions on B(0,[) with fB(o,l) zgo’lzé’o’l du =
84b. By a diagonal argument, we obtain independent holomorphic functions {z& }” _;
on Ty Xeo. Let F: Tp  Xoo — C" be given by F(q) = {z& (q)}7—,. One sees by
approximation that F is a proper holomorphic map of degree 1, and the level sets of
| F|? are Stein domains. The preimage F~!(w) of a point w € C" is a compact sub-
variety in 7 X0, S0 by the Stein property it is a finite set of points. It now follows
from [11, Proposition 14.7, p. 87] that F is biholomorphic. Proposition 5.4 implies
that 7). X has “BK > 0.”

To see that r2/2 is a Kihler potential, we use an argument similar to [25, Sec-
tion 4]. Let (M;, p;, gi) be a sequence as in the beginning of the proof. Put g; = ,uiz gi
and in = p;dp,. Given 0 <a < b < oo and € > 0, by [5, Proposition 4.38, Corol-
lary 4.42, Corollary 4.83] there is a smooth approximate distance-squared function p;
for (M;, p;,'g;), defined on the metric annulus c?;il (a,b), so that

722 .0
loi = dp, 1172 = 0(™),

IVpi = VdZ 12, = 0(i®). (6.3)

=0(i9).

— 1 ~
HHessm ——(Api)gi
n L!




COMPARISON GEOMETRY FOR KAHLER MANIFOLDS AND LIMIT SPACES 3065

From [5, (4.25), Proposition 4.35], we also have

18 pi =n] L1 = 0(i). (6.4)
Hence
[Fessp; — Zill L1 = 0(°). (6.5)
In particular,
IV=193p; — @; [l 1 = 0(i®). (6.6)

From Proposition 5.10, after passing to a subsequence, lim; oo (M;, pi, g;) =
(Tpoo X0, 0) in the pointed complex Gromov—Hausdorff topology. It follows from
(6.6) that if ¢ is a local Kihler potential for T, Xoo, supported away from
0, then /—1 85(% — @) = 0 as a current. Hence % is a Kihler potential for
Tpoo Xoo — 0.

There is some continuous Kéahler potential ¢¢ defined in a neighborhood Uy of 0.
Then % — ¢ is continuous on Uy and pluriharmonic on Uy — 0. Thinking of it as a

Lo . . 2 .
function in a neighborhood of 0 € C”, it follows that %- — ¢ extends to a continuous

pluriharmonic function on Uy (which is then actually smooth). Hence % is a Kahler

potential on T Xoo. O

6.2. Curvature of the CP"! quotient

We denote the generator of radial rescaling on 7., Xoo by 79,. From [27, Proof of
Proposition 15], 79, and Joo,00(rd,) generate 1-parameter groups that are holomor-
phic on an open dense subset of C" = T, Xoo. The 1-parameter group {o;} gen-
erated by Joo,00(70,) acts isometrically on T, Xoo and preserves level sets of the
distance function dy from the vertex poo. Following terminology about Sasaki man-
ifolds, we say that the structure is regular if {o;} comes from a free S!-action. Then
the quotient of 7, X by the group action is a cone over a manifold.

In order to put ourselves in the setting of a regular structure, we assume that d
is a radially homogeneous function on C” = T}, X. That is, letting { : C* — 0 —
CP"! denote the quotient map, we assume that there are a number § > 0 and a
function H € C(CP"™!) so that

do(z) = |z|" H({(2)) (6.7)

on C" — 0. (As an example, this is the case for a 2-dimensional cone.) Then

ro, = 8—1(Xn: %050 + iz‘*aga) (6.8)
a=1 a=1
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and {0y} is the Hopf action on the level sets of dy. The quotient of the link d )=
§2n=1 by the Hopf action is CP"~!, with a possibly nonstandard quotient metric
dcpn-1.

Let T be the tautological complex line bundle over C P"~!, whose fibers are lines
through the origin in C". The complement of the zero section in 7 is biholomorphic
to C" — 0. We will also let { : T — CP"~! denote the projection map from T to
the base. Consider a local holomorphic trivialization of 7', and let w be the fiber
coordinate, with w = 0 corresponding to the vertex 0 € Tp., Xoo. Then di = h|w|?®
for some locally defined continuous function 4 on the base. We put a Kihler space
structure on C P"~! by saying that %logh is a local potential.

PROPOSITION 6.9
We have that (CP"™!,dpn—1) is a metric Kéhler space with “BK > 2.”

Proof
Let 7 : §2"~1 — CP"~! be the quotient map. Fix z/ € CP" !, and let S C C" be
the corresponding complex line.

LEMMA 6.10
Let (r, s) denote a point in the metric cone T, Xoo Where r >0 and s € S2n=1 pys

z =7(s). Then d((r,s),S) = rsin(dgpn-1(z,2")).

Proof
By the definition of the metric cone,

d((r,s).(r',s") = \/rz + (r")2 = 2rr’ cos(dgan—1(s.s")). (6.11)
Minimizing over r’ gives

d((r.s),S)=r min sin(dg2n—1(s.5")). (6.12)

s’esSns§2n—1

As the S1-action is isometric, the lemma follows from the definition of the quotient
metric. Ol

From Lemma 5.3, we know that
1
¢—di/2= Erzg* cos>d2 (6.13)

is plurisubharmonic on 7 Xoo — 0= C" —0.
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Working locally on CP"~! and putting
Dw = 8dw + wh™'9h,
DW =8§dw +wh™'dh, (6.14)
Q= +/—13dlogh,
one finds that
or? = |w|28hw_1Dw,
ar? = |w/*hw ! Dw, (6.15)
V=139r? = V=1|w]*?®VhDw A DW + |w|?’ hQ

as currents.

To show that (CP"~!, dipn—1) is a metric Kihler space, it remains to show that
if ¥ is a holomorphic disk in the domain of /, then %\/—_1 8510gh|D0m(h)m; equals
the 2-dimensional Hausdorff measure dA on Dom(h) N X. Put I = {71(X), a 4-
dimensional submanifold of 7. Xoo — 0. Let # denote the 4-dimensional Hausdorff
measure on I'. As in the proof of Proposition 6.1, there is a Kéhler—Ricci flow whose
pointed Gromov—Hausdorff limit as t — 0 is 7}, Xoo. Let #; be the 4-dimensional
Hausdorff measure on I' coming from d;|r. It equals %(\/—_13% (t))2, where ¢ (¢) is
a local Kihler potential for the flow. Using [8, Chapter 3.3] and proceeding as in the
proof of Proposition 4.1(2), it follows that lim; o #; = %(ﬁaﬁrz/z)z. Also as in
the proof of Proposition 4.1(2), we have lim;_.o #; = J¢. Hence

1 - 1
H = E(«/—183r2/2)2 = Zx/—1|w|48_2h2Dw ADWAQ (6.16)

as a measure on .
From (6.15), the area form on a preimage of { is

1
Ex/—152|w|2(8_1)hdw A dW. 6.17)

Since the area of a level set of w is proportionate to |w|?®, doing a fiberwise inte-
gration on I' gives

1
/ J(’z(/ 52|z|43_2-—«/—1dz/\d3)h2dA. (6.18)
wl<1 B2 2
On the other hand, from (6.16),

1 1
/ 7 = (/ 121972 V=Tdz ndZ) - S 12Q. (6.19)
jwl<1 B> 2 2
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Thus dA = %Q on Dom(h) N X. Since Q equals /—133logh, this shows that
(CP"™ !, depn—1) is a metric Kihler space.

Finally, put C = cosd, € C(CP"™!), which we will identify with its pullback
to 7', and put

Dcw = Dw + wC™23C?,

_ (6.20)
Dcw = Dw +wC~29C?,
One finds that
V=1C200(r2C?)
=vV=1|w|?bYhDcw A Dcw 6.21)
+ w2 h(Q + V=1C7200C2 — V=1C~*39C* A DC?),
as equalities of currents. Hence from (6.13), it follows that
Q + V—1C7233C% — V/-1C*C? A 3C? >0 (6.22)
or
—V/—1891ogC? < Q. (6.23)

Equivalently, 3 logh —d3 _,/2 is plurisubharmonic, where d3 _, is defined in (1.1),

which means that (CP"~!, d:pn—1) has “BK >2." O

Acknowledgments. 1 thank Man-Chun Lee, Gang Liu, and Song Sun for helpful com-
ments, and especially Man-Chun Lee for pointing out a gap in an earlier version of
the manuscript. Thanks are also due the referees for their numerous useful remarks.

Lott’s work was partially supported by National Science Foundation grant DMS-
1810700.

References

[1] R. H. BAMLER, E. CABEZAS-RIVAS, and B. WILKING, The Ricci flow under almost
non-negative curvature conditions, Invent. Math. 217 (2019), no. 1, 95-126.
MR 3958792. DOI 10.1007/s00222-019-00864-7. (3040)

[2] Y. BURAGO, M. GROMOV and G. PERELMAN, A. D. Alexandrov spaces with curvatures
bounded below, Russian Math. Surveys 47 (1992), no. 2, 1-58. MR 1185284.
DOI 10.1070/RM1992v047n02ABEH000877. (3042)

[31] H.-D. CAO and L. NI, Matrix Li-Yau-Hamilton estimates for the heat equation on
Kdihler manifolds, Math. Ann. 331 (2005), no. 4, 795-807. MR 2148797.
DOI 10.1007/s00208-004-0605-3. (3045)



COMPARISON GEOMETRY FOR KAHLER MANIFOLDS AND LIMIT SPACES 3069

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

H. CARTAN, “Quotient d’un espace analytique par un groupe d’automorphismes” in
Algebraic Geometry and Topology, Princeton Univ. Press, Princeton, 1957,
90-102. MR 0084174, (3061)

J. CHEEGER and T. H. COLDING, Lower bounds on Ricci curvature and the almost
rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189-237.
MR 1405949. DOI 10.2307/2118589. (3064, 3065)

, On the structure of spaces with Ricci curvature bounded below, 1, J.
Differential Geom. 46 (1997), no. 3, 406—480. MR 1484888.

DOI 10.4310/jdg/1214459974. (3063)

S.-Y. CHENG and S.-T. YAU, Differential equations on Riemannian manifolds and their
geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354.
MR 0385749. DOI 10.1002/cpa.3160280303. (3054)

J.-P. DEMAILLY, Complex analytic and differential geometry, preprint, 2012,

http://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf. (3045,
3053, 3056, 3059, 3060, 3067)

P. EYSSIDIEUX, V. GUEDJ, and A. ZERIAHI, Singular Kdhler-Einstein metrics, J. Amer.
Math. Soc. 22 (2009), no. 3, 607-639. MR 2505296.

DOI 10.1090/S0894-0347-09-00629-8. (3059)

J. E. FORNAESS and R. NARASIMHAN, The Levi problem on complex spaces with
singularities, Math. Ann. 248 (1980), no. 1, 47-72. MR 0569410.

DOI 10.1007/BF01349254. (3059, 3061)

H. GRAUERT, T. PETERNELL, and R. REMMERT, eds., Several Complex Variables, VII:
Sheaf-Theoretical Methods in Complex Analysis, Encyclopaedia Math. Sci. 74,
Springer, Berlin, 1994. MR 1326617. DOI 10.1007/978-3-662-09873-8. (3064)

G.-M. GREUEL, C. LOSSEN, and E. SHUSTIN, Introduction to Singularities and
Deformations, Springer Monogr. Math., Springer, Berlin, 2007. MR 2290112.
(3059)

R. S. HAMILTON, Deformation of complex structures on manifolds with boundary, I:
The stable case, J. Differential Geom. 12 (1977), no. 1, 1-45. MR 0477158.

DOI 10.4310/jdg/1214433844. (3055)

W. HE and S. SUN, The generalized Frankel conjecture in Sasaki geometry, Int. Math.
Res. Not. IMRN 2015, no. 1, 99-118. MR 3340296. DOI 10.1093/imrn/rnt185.
(3043)

, Frankel conjecture and Sasaki geometry, Adv. Math. 291 (2016), 912-960.
MR 3459033. DOI 10.1016/§.2im.2015.11.053. (3043)

R. HOCHARD, Théorémes d’existence en temps court du flot de Ricci pour des variétés

non-completes, non-éffondrées, a courbure minorée, preprint, 2019,
http://tel.archives-ouvertes.fr/tel-02092609/document. (3040)

V. KAPOVITCH, Regularity of limits of noncollapsing sequences of manifolds, Geom.
Funct. Anal. 12 (2002), no. 1, 121-137. MR 1904560.
DOI 10.1007/s00039-002-8240-1. (3042)

B. KLEINER and J. LOTT, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5,
2587-2855. MR 2460872. DOI 10.2140/gt.2008.12.2587. (3052)



3070

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

JOHN LOTT

, Geometrization of three-dimensional orbifolds via Ricci flow, Astérisque 365
(2014), 101-177. MR 3244330. (3061)

S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. 11, Wiley,
New York, 1969. MR 0238225. (3043)

M.-C. LEE and L.-F. TAM, Chern-Ricci flows on noncompact complex manifolds, J.
Differential Geom. 115 (2020), no. 3, 529-564. MR 4120818.

DOI 10.4310/jdg/1594260018. (3040, 3052)

, Kdhler manifolds with almost non-negative curvature, to appear in Geom.
Topol., preprint, arXiv:1910.02531v2 [math.DG]. (3040, 3050, 3052)

P. LI and J. WANG, Comparison theorem for Kdhler manifolds and positivity of
spectrum, J. Differential Geom. 69 (2005), no. 1, 43-74. MR 2169582.

DOI 10.4310/jdg/1121540339. (3043)

Y. LI, On collapsing Calabi-Yau fibrations, J. Differential Geom. 117 (2021), no. 3,
451-438. MR 4255068. DOI 10.4310/jdg/1615487004. (3060)

G. LIU, Gromov-Hausdorff limits of Kdhler manifolds with bisectional curvature lower
bound, Comm. Pure Appl. Math. 71 (2018), no. 2, 267-303. MR 3745153.

DOI 10.1002/cpa.21724. (3050, 3064)

, On Yau’s uniformization conjecture, Camb. J. Math. 7 (2019), no. 1, 33-70.
MR 3922359. DOI 10.4310/CJM.2019.v7.nl.a2. (3050)

G. LIU and G. SZEKELYHIDI, Gromov-Hausdorff limits of Kéihler manifolds with Ricci
curvature bounded below, II, Comm. Pure Appl. Math. 74 (2021), no. 5,
909-931. MR 4230063. DOI 10.1002/cpa.21900. (3065)

G.LIU and Y. YUAN, Diameter rigidity for Kdhler manifolds with positive bisectional
curvature, Math. Z. 290 (2018), no. 3—4, 1055-1061. MR 3856844.

DOI 10.1007/s00209-018-2052-y. (3043)

J. LOTT, On the long-time behavior of type-11I Ricci flow solutions, Math. Ann. 339
(2007), no. 3, 627-666. MR 2336062. DOI 10.1007/s00208-007-0127-x. (3058)

A.D. MCLEOD and P. M. TOPPING, Pyramid Ricci flow in higher dimensions, Math. Z.
296 (2020), no. 1-2, 511-523. MR 4140751. DOT 10.1007/s00209-020-02472-1.
(3052)

B. G. MOISHEZON, “Singular Kéhlerian spaces” in Manifolds—Tokyo 1973 (Tokyo,
1973), Univ. Tokyo Press, Tokyo, 1975, 343-351. MR 0379909. (3041, 3059)

N.-M. MOK, The uniformization theorem for compact Kéihler manifolds of nonnegative

holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2,
179-214. MR 0925119. DOI 10.4310/jdg/1214441778. (3043)

S. MORI, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110
(1979), no. 3, 593-606. MR 0554387. DOI 10.2307/1971241. (3043)

G. PERELMAN, Alexandrov’s spaces with curvatures bounded from below, 11, preprint
1991, http://anton-petrunin.github.io/papers/alexandrov/perelmanASWCBFB2+.
pdf. (3042)

A. PETRUNIN, Parallel transportation for Alexandrov space with curvature bounded
below, Geom. Funct. Anal. 8 (1998), no. 1, 123-148. MR 1601854,
DOI 10.1007/s000390050050. (3061)



COMPARISON GEOMETRY FOR KAHLER MANIFOLDS AND LIMIT SPACES 3071

[36] Y. G. RESHETNYAK, “Two-dimensional manifolds of bounded curvature” in Geometry
1V, Encyclopaedia Math. Sci. 70, Springer, Berlin, 1993, 3-163, 245-250.
MR 1263964. DOI 10.1007/978-3-662-02897-1_1. (3058)

[37] T. RICHARD, Canonical smoothing of compact Aleksandrov surfaces via Ricci flow,

Ann. Sci. Ec. Norm. Supér. (4) 51 (2018), no. 2, 263-279. MR 3798303.
DOI 10.24033/asens.2356. (3058)

[38] M. SIMON and P. M. TOPPING, Local mollification of Riemannian metrics using Ricci
flow, and Ricci limit spaces, Geom. Topol. 25 (2021), no. 2, 913-948.
MR 4251438. DOI 10.2140/gt.2021.25.913. (3040, 3052)

[39] Y.-T. SIU and S.-T. YAU, Compact Kdhler manifolds of positive bisectional curvature,
Invent. Math. 59 (1980), no. 2, 189-204. MR 0577360.
DOI 10.1007/BF01390043. (3043)

[40] L.-F. TAM and C. YU, Some comparison theorems for Kihler manifolds, Manuscripta
Math. 137 (2012), no. 3-4, 483-495. MR 2875289.
DOI 10.1007/s00229-011-0477-2. (3043)

Department of Mathematics, University of California, Berkeley, Berkeley, California, USA;
lott@berkeley.edu



	Introduction
	Some facts from Riemannian comparison geometry
	Comparison geometry for Kähler manifolds with lower bounds on holomorphic bisectional curvature
	Noncollapsed Gromov–Hausdorff limits
	Singular spaces with lower bounds on holomorphic bisectional curvature
	Tangent cones
	References
	Author's addresses

