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1. Introduction

In [11] we proved the following result, in which a lower bound on scalar curvature
gives a restriction on the existence of distance-nonincreasing maps of nonzero degree.
Let R denote scalar curvature and let H denote mean curvature.

Theorem 1.1. Let N and M be compact connected Riemannian manifolds-with-boundary
of the same even dimension. Let f : (N,ON) — (M,0M) be a smooth spin map and let
af : ON — OM denote the restriction to the boundary. Suppose that
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o f is A2 -nonincreasing and Of is distance-nonincreasing,

e M has nonnegative curvature operator and OM has nonnegative second fundamental
form,

o Ry > f*Ry and Hony > (Of)*Hom,

e M has nonzero Euler characteristic and

e f has nonzero degree.

Then RN = f*RM and H()N = (af)*HaM
Furthermore,

e If0 < Ricy < %RMgM then f is a Riemannian covering map.
e IfRicys > 0 and f is distance-nonincreasing then f is a Riemannian covering map.
o If M is flat then N is Ricci-flat.

In particular, the lower scalar curvature bound Ry > f*Rjs means that it is im-
possible for f and df to be distance-decreasing (i.e. have Lipschitz constant less than
one), with f having nonzero degree, and to also have Hyy > (0f)*Hgpr. Theorem 1.1
follows earlier work by Llarull [8] and Goette-Semmelmann [4]; we refer to [11] for back-
ground and generalizations. The first main result of the present paper is a converse
and shows that the lack of a lower bound on the scalar curvature implies that such
distance-decreasing maps do exist.

Theorem 1.2. Givenn > 1 and K € R, let Z be an n-dimensional Riemannian manifold
and let z € Z be a point where the scalar curvature is R, < n(n — 1)K. Then for any
neighborhood U of z, there are

(1) A codimension-zero compact submanifold-with-boundary N C U containing z that is
diffeomorphic to a ball,

(2) A codimension-zero compact submanifold-with-boundary M in the n-dimensional
model space of constant curvature K, diffeomorphic to a ball,

(3) A smooth map f : (N,ON) — (M,0M) of nonzero degree so that f and Of are
distance-decreasing, and the mean curvatures satisfy Hon > (Of)*Hanr, and

(4) Numbers 6,1 > 0 so that for alln € ON and t € [0,1), one has f(exp,(tvan)) =
exprin) (1 — 8)tvan), where von and von are the inward unit normals to ON and
OM, respectively.

If K <0 then we can take M to be strictly convez.

Together, Theorems 1.1 and 1.2 essentially give a metric characterization of lower
scalar curvature bounds. While the geometric meaning of scalar curvature may be hard
to understand, the metric characterization is in terms of mean curvature, which is more
tractable.
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The proof of Theorem 1.2 is by induction on n, as in the proof of a related result by
Gromov in [6]. Item (4) in the conclusion of the theorem is just for technical convenience,
in order to simplify the induction argument. In the induction step, it is fairly easily to
obtain cylindrical regions that satisfy the conclusions of the theorem, along the lines of
[6], but have codimension-two singularities. The main technical issue is to smooth the
singularities while simultaneously maintaining the distance-decreasing property and the
inequality on mean curvatures. Given Theorem 1.2, one can somewhat simplify Gromov’s
proof of the preservation of lower scalar curvature bounds under C°-limits of smooth
Riemannian metrics [6].

The second main result of the paper is about the existence of a limiting scalar curva-
ture measure, as t — 0, for a Ricci flow coming out of a metric space. If there is going to
be a finite limiting measure then by looking at the total scalar curvature along the flow,
one sees that the finiteness of fOT S (R? — 2| Ric |?) dvoly( dt is a necessary condition
(equation (3.25)). The next theorem essentially says that it is also sufficient.

Theorem 1.3. Let (M,g(t)), t € (0,T], be a Ricci flow solution on a compact n-
dimensional manifold M satisfying

(1) |Rmyy| < 2 for some A < oo and all t,
(2) Ricgyyy > Eg(t) for some E > —oo and all t, and
(3) R* —2|Ric|? € L*((0,T] x M;dtdvoly).

Then there is a limit lim;_o Ry dvolyy = po in the weak-x topology.

One’s first approach to proving Theorem 1.3 might be to fix a test function f and
consider the time evolution of f a S Rg(t) dvoly(sy. This turns out to not be useful. Instead
we let f evolve by a backward heat equation and use heat kernel estimates from [2].

Using Theorem 1.3, we show the existence of a subsequential limiting scalar curvature
measure on a class of Ricci limit spaces. Recall that a Riemannian manifold has 2-
nonnegative curvature operator if at each point, the sum of the two lowest eigenvalues
of the curvature operator is nonnegative.

Theorem 1.4. Given D,;l\ < oo and vy > 0, let {(M;,g;)}2, be a sequence of compact
n-dimensional Riemannian manifolds, n > 4, such that
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Then after passing to a subsequence, there is a Gromov-Hausdorff limit (X oo, dso) with
a measure o, along with continuous Gromov-Hausdorff approximations n; : M; — X,
such that

(1) limi oo (m:), (R, dvoly,) "= g, and

(2) There is a smooth 1-parameter family of Riemannian metrics {g(t)}ieo,r) 0n Xoo,
with 2-nonnegative curvature operator, so that limy_o(Xoo, g(t)) & (Xoo,ds) and
. weak—*
hmt_>0 Rg(t) dVOlg(t) = Mo -

Condition (4) in the Theorem (for some //1\) may in fact follow from the other three
conditions. From the hypotheses of Theorem 1.4, the subsequential existence of a limiting
metric space (in the Gromov-Hausdorff topology) and a limiting scalar curvature measure
(in the weak-x topology) is automatic. The content of the theorem is that the metric
space and the scalar curvature measure also arise as a continuous limit, coming from a
Ricci flow.

I thank Antoine Song for discussions and the referee for helpful comments.

2. Proof of Theorem 1.2

It would be unwieldy to write out equations for all the steps in the proof of Theo-
rem 1.2, so we give the main ingredients. The proof is by induction on n, as in [6, Section
4.9].

Lemma 2.1. The theorem is true in dimension two.
Proof. If n = 2, choose normal coordinates (r,0) around z and (/,0") around a point

m € M. Given a € (0, 1], let N be given by r < r¢ and let M be given by ' < r{ = ary.
In the normal coordinates, to leading order,

1
gn ~dr* +1r%(1 — ngr“‘)dQQ, (2.2)

gut ~ (@r')? + (1= S GP) o',

1 1
Hon ~ — — = R.ro,
To 6
1 1
HBM ~ % — gK'I"(I)

Define a Lipschitz function F' by F(r,0) = (ar,6). Then

1
F*gn ~ a2dr? + o?r?(1 — §Ka27°2)d927 (2.3)
1

1
OFY*Hyyy ~ — — =Karg.
(OF)"Hom arg 3 aro
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For small rg, if & = 1 then F' is distance-nonincreasing, JF is distance-decreasing and
Hyn > (OF)*Hypr. By continuity, if « is slightly less than one then F and OF will be
distance-decreasing and we will still have Hyy > (OF)*Hpps. If f is the result of slightly
smoothing F' near z then it will satisfy the conclusion of the theorem. 0O

Now suppose that n > 2 and the theorem is true in dimension n — 1.

Lemma 2.4. There is a (small) minimal hypersurface V. C U containing z and a unit
normal vector v € T, Z so that

o The second fundamental form A, at z has |A,| < 1,
» Ric(v,v) < (n— 1)K, and
o The scalar curvature of V at z satisfies R, < (n —1)(n — 2)K.

Proof. Multiplying gz by a large constant A, the geometry of a unit ball around z
becomes closer and closer to Euclidean. Given a unit vector w € T,Z, consider the
foliation of the rescaled ball of radius two given by hyperplanes perpendicular to w with
respect to the Euclidean metric in the normal coordinates. The leaves are minimal with
respect to the Euclidean metric. Consider the part of the foliation whose height varies
between —1.5 and 1.5. Using stability results as in [15,16], if A is large enough then there
is a small C*-perturbation of the foliation by minimal hypersurfaces that preserves the
intersections of the leaves with the sphere of radius two. This restricts to a minimal
foliation of the unit ball with arbitrarily small second fundamental form, if X\ is large
enough. Let a(w) be the choice of unit normal, to the leaf at z, that is close to w.
For sufficiently large A, the map o : S~ ! — S"~! is a local diffeomorphism, hence is
surjective. We will take w = a~!(v) for an appropriately chosen v that is specified below
and let V' be the corresponding minimal leaf through z.
From the Gauss-Codazzi equation, the scalar curvature R’ of z in V is given by

R, = R, — 2Ric(v,v) + (Tr(A))? — Tr(A?). (2.5)
Put
Ric = Ric —(n — 1)Ky, (2.6)

with trace R = R — n(n —1)K. Let ]?211 < §22 <...< Enn be the eigenvalues of EEZ.
If R, <0, let v be a corresponding unit eigenvector. Then Ric(v,v) < (n — 1)K and

R,—2 RiC(U, ’U) =Riy1+...+ Rn,Q’n,Q + (Rnfl’nfl — Rnn) (27)
<Ryui+...+ Rn—2,n—2 < (n — 1)(71 — 2)K

If R = 0, let v be a unit vector that is a slight perturbation from Ker(ﬁ%). Then
Ric(v,v) < (n — 1)K and we still have R, — 2Ric(v,v) < (n — 1)(n — 2)K.
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Fig. 1. Cylindrical regions.

If ]/%nn > () then the quadratic form Ric is indefinite and for any ¢ > 0, we can find a
unit vector v so that —¢ < Ric(v,v) < 0. Then

(n—1)K — § < Ric(v,v) < (n— 1)K, (2.8)

so R, — 2Ric(v,v) < R, —2(n — 1)K + 2§. Taking ¢ small enough, we can ensure that
R, — 2Ric(v,v) < (n—1)(n —2)K.

In any case, we can achieve a negative upper bound on R,—2 Ric(v,v)—(n—1)(n—2)K
that is independent of ). Finally, taking A large enough to ensure that |(Tr(A))%—Tr(A?)|
is small, we obtain from (2.5) that R, < (n —1)(n—2)K. O

With reference to the V' of Lemma 2.4, let N’ be an (n — 1)-dimensional compact
submanifold-with-boundary of V' containing z obtained by applying the induction hy-
pothesis, with corresponding submanifold M’ of the (n — 1)-dimensional model space of
constant curvature K, and with map f’ : N’ — M’ of nonzero degree so that f’ and
Jf’ are distance-decreasing, and Hgn > (0f")*Hopr. Taking N’ small enough, we can
assume that the unit normal vector vy satisfies Ric(vys,vn') < (n — 1)K on N'.

For small € > 0, let N(? be the cylindrical region {exp(uvy’) : |u| < €} in Z. Sim-
ilarly, put M® = {exp(uvas) : |u| < (1 — n+)€e} in the n-dimensional model space
of constant curvature K, where vy is a unit normal field to M’ and dx- is the pa-
rameter appearing in the induction hypothesis. See Fig. 1, which illustrates the case
K = 0. In what follows we can always reduce Iy and §y-. Define f? : N2 — M) by
F@ (exp,, (uvy)) = exp /() ((1 = dn7)uvarr). Note that ON®) has a top face and a bot-
tom face, both diffeomorphic to N’; and an annular region diffeomorphic to [—¢, €] x ON'.
The annular region meets the top face orthogonally in a codimension-two stratum dif-
feomorphic to ON’, with a similar statement for the bottom face. The maps f and
df? are distance-decreasing.

Along the geodesics in N(®) normal to N’, we have

dH

7 Tr(A?) = — Ric(vy', 7). (2.9)
For small ¢, if N’ is taken small enough then |A,| < 1 and on the top and bottom faces
of N, we have H ~ —eRic(vy-,vy-). Similarly, on the top and bottom faces of M),
we have H ~ —(n —1)e (1 — dn/) K. Including the annular region over ON’, if € and Jn-
are small then Hyne > (0f )V Hypre .
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We can assume that the parameter [/ in the induction assumption is less than the
focal radius of ON' € N, and Iy < e. Given € < Iy, let N®) be the points inside of
N®) that have distance at least ¢ from ON®). Let N* be the ¢’-neighborhood of N®)
in Z. Do a similar construction for M, to obtain M%),

The boundary ON® is C''!-regular and has a decomposition into a top face FW

bottom face F£4), an annular belt A® an upper tube Tf) and a lower tube T™. See
Fig. 2. There is a similar decomposition of dM ¥,

) Tt has two boundary components 8T§_%)1 and

)

Consider the top tubular region Tj_4
8Ti4’)2, with 8TJ(3)1 also being a boundary component of FJ(F4 and BTﬁ)Q also being a
boundary component of A®.

Let p: N — N’ be projection onto the second factor in the diffeomorphism N2 =
[—e,¢] x N'. Let p : M® — M’ be the analogous map on M), Given n/ € N,
put L, = {exp,, (tvon:) : 0 <t < In/} C N’ and put G,y = p~(L,). Put FEL/ =
Fj(;l) NG, Tf,zv = Tf) NG, and AS) = AW NG, . See the left-hand picture in Fig. 3,

which illustrates G,y N N®. Define Gy, FS0 T and A% similarly for M@,

m'?
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We define a map 9f@ : ON®H — gM® as follows. Given n’ € IN’, we first send the
curve Tﬁzl, U Agﬁ) U TSZL, to T\—E-Afzaf')(n’) U A\Eg)f')(n') U fg)(af')(n') piecewise linearly with
respect to arc length. Next, given the point z = 3TJ(3)1 NGy, write p(z) as exp,, (ThVon')
for some 7,,» € (0,1n+). The parameter 7, is comparable to €. Define 7(/)(,,y similarly
for M'. Let A/ be the increasing linear bijection from [7,,/, In7] to [T(af/)(nry, (1 =0n7)In7].
Given t € [7,,In/], let y; be the point in Fﬁgl,
(Df W) (y;) be the point in ﬁj—?af')(n') whose image under p is expg /() (Aw (t)von ).

Define 9f* on the remaining points of FJ(F4) to be the same as df(?). Finally, define

’
n

with p(y:) = exp,, (tvan’) and let

df® on FE‘%L, by a similar construction.

The lengths of TEZL, and ff)m, are 75 +0((¢)°) as € — oo. The Lipschitz constant of
Of W is 1+ O(¢'). We can extend 9f® to a map f®* : N® — M@ sending G,,, NN®
to é(af/)(n') N M® | whose Lipschitz constant is 1 + O(€’).

By tube formulas, the mean curvature on Tf) is 5 + O(€¢'), and similarly for the tube
regions of 9M @) [5, Theorem 9.23]. We now perturb N4 to increase the mean curvature
onT f). To do so, we effectively borrow some of the mean curvature from Ff) and A®

We do some preliminary calculations. Let ¢ : [0,00) — R be a smooth nonnegative
function such that ¢(0) = 0, ¢’(0) = 1 and ¢(x) vanishes when = > 2. Given constants
c,c > 0so that clys > 1 and ce’ < 1, and L < oo, define ur, € CH1(R) by

CQI—CLd)(—cx) <0
ur = %/x(x—L) 0<z<L (2.10)

Then

C/%ngﬁ”(—cx) x<0
up =q¢ 0<z<L (2.11)

C'%Lgb”(c(x — L) x>L.

Let d; be the intrinsic distance function on AN from 8Ti4,)1 and let dy be the
intrinsic distance function on ON@ from oT f)z Let m : ON®W — aTﬁ)l be nearest
point projection with respect to the intrinsic distance on IN®), and similarly for 7s. (In
the application, the nearest point will be unique.) Define a function V, € CH1(ON™)
by
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— Cdidy on T

£ (daom) dledr) on FLY
" (2.12)
So(d1oms) p(cda) on Agf)

0 on TW U FW,

Define V_ € CH1(ON®) similarly, replacing T_E_4) by TW. Put V = V. + V_. Deform
ON® by distance V in the inward normal direction. See the right-hand picture in Fig. 3,
where the deformation is indicated by dashed lines. Let N (®) be the region bounded by the
ensuing hypersurface, i.e. 9N®) is the image of the C*!'-diffeomorphism D : IN®) —
ON®) given by D(x) = exp,(V(z)vsyw ). Note that the deformation is outward on
Tf), of magnitude comparable to ¢/(¢/)?, and inward on the rest of ON¥), of magnitude
comparable to ¢’c ¢,

The first variation formula for mean curvature is

H' = AV + (JA]? + Ric(u, 1)) V. (2.13)

If x denotes the length variable on a minimal arc in T_(f) between g € 8TJ(:)2 and 71(q) €
8T_(f,)1 then on TJ(F4)7 to leading order AV ~ %V and |A|? ~ (¢/)72. From (2.11), we
deduce that on T f) the change in H roughly ranges between ¢’ (1 — g—;) and ¢’. On

the rest of IN¥ | the change in H is bounded in magnitude by const. de(c+c71). Put
MO = M@

Define subsets of IN® by F®) = D(FY), TP = D(TY) and A®) = D(AW).
Define 9f5) : ONG) — aM®) by 9 = (9f®) o D1, On TS, the map 9f®) has
a Lipschitz bound comparable to that of df®), namely 1 + O(¢'), using the fact that

the perturbation on Tf) is outward. (It may seem paradoxical that ff) lies outside

of Tf) but has a higher mean curvature. One way to understand this is by looking at

Fig. 3 and comparing the total turning angle of TSZL

, with the total turning angle of
the corresponding dotted segment on the right.) If the Lipschitz bound of 9 is 1 — o,
where ¢ > 0, then the Lipschitz bound of 8 f®) on the rest of IN®) is 1 — o + const. c’¢’.
In sum, 0f®) has a Lipschitz bound that is 1 + O(¢'). We can extend 9f®) to a map
f®): NGO — M®) which also has a Lipschitz bound that is 14 O(€’). We can assume
that f®) maps normal geodesics to normal geodesics, in a small neighborhood of N ).

On vazl,, the ratio W;ﬂ% is bounded below by (1+const. €/¢’). If ¢¢/(c+c71) <

1 then on the rest of 9N there is a uniform lower bound for the ratio that is greater
than one, coming from ON(?). Hence by taking ¢’ sufficiently large and then €’ sufficiently

small, we can ensure that the Lipschitz constant of f() is strictly less than the minimum

H 5
of aN(5) .
(Of®)*Hy, (5

Put N©® = N®) Taking normal coordinates around f®(z) € M®), let M©) be
the result of a slight radial shrinking of M®). If f(©) . N(©) — M) is the composite
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map then we can ensure that £ and 9f©) are distance-decreasing, while Hyy ) >
(O O)*Hopreo-

We run the mean curvature flow on AN and OM©) for a time 7 < (€)% (cf.
[3]) to obtain smooth hypersurfaces ON and OM, and hence N and M. As the mean
curvature obeys a diffusion-type equation under mean curvature flow, the main effect on
the mean curvature at a point will be to average the mean curvature with respect to a
Gaussian centered at the point with scale on the order of /7. In particular, if 7 is small
enough then for the map df : 9N — dM, obtained from f(®) by following the flows, the
inequalities will be preserved. We can then extend it to a smooth distance-decreasing
map f: N — M. By construction, after choosing orientations on N and M (which are
diffeomorphic to balls), the degree is nonzero. Finally, after a small perturbation of f,
we can assume that there are numbers 4,/ > 0 so that for all n € 9N and t € [0,1), one
has f(exp,, tran) = exp ) ((1 — d)tvanm).

If K < 0 then for sufficiently small 7, the preceding steps preserve the strict convexity
of M. If K = 0 then they preserve the convexity of M and we can slightly perturb M
at the end, for example by the mean curvature flow, to make it strictly convex.

3. Proof of Theorem 1.3

Lemma 3.1. There is a constant C' = C'(n, A) < oo so that if 0 < s <t then

dy = C' (Vi=V5) < dy < P00, (3.2)

Proof. This follows from distance distortion estimates for Ricci flow, as in [7, Remark
27.5 and Corollary 27.16]. O

Corollary 3.3. The diameter of (M, g(t)) is uniformly bounded above in t.
Lemma 3.4. There are some vg, A’ > 0 so that for all (z,t) € M x (0,T],

(1) voly(s) (Bg(t)(,1)) > vo, and
(2) VOlg(t) (Bg(t) (IL‘, \/Z)) > Altn/?

Proof. From the evolution of volume under Ricci flow,

d
7 Vol(M, g(t)) = f/Rg(t) dvoly ) < —nE Vol(M, g(t)). (3.5)
M

It follows that Vol(M, g(t)) > e"P(T=) Vol(M, g(T)). The lower Ricci curvature bound,
the diameter bound from Corollary 3.3 and Bishop-Gromov comparison now give num-
bers vg, A’ as in the statement of the lemma. O
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Lemma 3.6. Let F' be a solution of the backward heat equation
OtF = —AF. (3.7)
Then max |F| and e~ 2P max |VF| are nondecreasing in t.

Proof. From the maximum principle, max |F'| is nondecreasing in ¢. Next, we have

O|VF|? = 2Ric(VF,VF) — 2(VF,VAF) (3.8)
and
AIVF|* = 2(VF,VAF) + 2| Hess F|? + 2Ric(VF,VF). (3.9)
Hence
(0; + N)|VF|? > 4Ric(VF,VF) > 4E|VF|?, (3.10)
or
(0 + L) (e *PHVE?) > 0. (3.11)

4Et

By the maximum principle, e~*¥*max |V F|? is nondecreasing in t. This proves the

lemma. O

Lemma 3.12. Given f € C*°(M), there is a function o : (0,T] — RY with lim;_,o «(t)
0 having the following property. Given t € (0,T], let F be the solution to (3.7) on (0,
with F(t) = f. If s € (0,t/2] then ||F(s) — f|loo < a(t).

E

Proof. Let G(z,t;y,s), 0 < s < t, be the Green’s function for (3.7), meaning that for
fixed (z,t), the function G(z,t;-,-) satisfies

(B + Dy )G, 85, ) = 0, (3.13)

and limg_,; G(z,t;y,s) = 6,(y). Then G is positive and for given (y, s), one has

/G(x,t;y,s) dvoly(z) = 1. (3.14)
M
Also,
Fly,s) = / Gz, E:9,5) f(z) dvol, (). (3.15)

M



12 J. Lott / Advances in Mathematics 408 (2022) 108612

By [2, Proposition 3.1], there is a constant C' = C(n, A) < oo so that

2.
dg (z,y)

Gz, t;y,s) < Ct™ ze” ot (3.16)
whenever s < %
Given L < 0o, we have
Fly:) — ) = [ Glantin.s) (1) — () dvol, (@) .17

By (y,LVT)
/ G Ty, s) (f() — £(3)) dvol g (x),
MﬁBg(Q(y’L\/z)

SO

|F(y,s) = fly)l < max  |f(z) = f(y)l+ (3.18)

z€B(p (y,LV't)

n a2 (z,y)

2(max | f|) / Ct%e” ci dvolyg ().

M—B ) (y,LV1)

From Lemma 3.6,

max If(z) — f(y)] < LVTmax V@ < LVTeEET) max IV flgery- (3.19)
chBg(a (y,L\/g)

From (3.2), we have d2(x,y) > eQE(tA’S)d%(sc, y) > e’2|E|fdtg(x,y). Then Bishop-Gromov
comparison gives

~ n _ 42w
/ Ct™2e” ~oi dvol 3 (2) < (3.20)
M—Bq (y,LVT)

o n—1
-~ _ n 672|E‘{7‘2 1
Ct™ 2 vol(S"™1) / e 0 (ﬁ sinh(r+/ |E|)> dr =
LVt

n—1

n —Z\E\t 2 1 Py

Cvol(S"1) /e = sinh(u\/|Et du <
L VIEl

(o)

Cvol(S™ 1) /e_u_c (sinh(u))" ™" du
L
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for ¢ small. Taking L = ¢~ 3, the lemma follows from (3.18), (3.19) and (3.20). O

Lemma 3.21. If F' is a solution of (5.7) then

%/FR dvol = —/F (R* — 2| Ric|?) dvol. (3.22)
M M

Proof. We have

ddvol> (3.23)

d oF OR
E/FR dvol—/ (ERdVOI-FFEdVOI—FFR
M M

_ / (~(AF)Rdvol + F(AR + 2| Ric |2) dvol — FR? dvol)
M
=— /F (R* - 2|Ric|*) dvol.
M

This proves the lemma. 0O
Lemma 3.24. There is a C"” < 0o such that |[Ry||rr < C” for allt € (0,T].

Proof. Taking F' =1 in (3.22) gives

T
/ Ry(r) dvoly(ry — / R, dvol gy = — / / (R* — 2| Ric|?) (z,t) dvoly (z)dt. (3.25)
M M i M

As Ricy g = Eg(t), it follows that R 3 > nE. The lemma now follows from (3.25). O

With the hypotheses of Lemma 3.12, from (3.22) we obtain

i
/ fR i dvol, iy — / F(s)Ry(s) dvolys) = — / F(t) (R* - 2|Ric |*) dvoly dt. (3.26)
M M

S

Now

/ng(a dvoly 4 _/ng(s) dvolys)| < (3.27)
M M

/ T Bg(q) dvolys) = / F(s)Ry(s) dvolys) | +
M M
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/ (F(s) = )Ry dvolygs)|

M

From Lemma 3.6 and (3.26),

P
/ FRy g dvolyq) — / F(s)Ry(s) dvoly(s)| < (max|f]) / |R? — 2| Ric [*| dvoly(y dt.
M 0

M
(3.28)
From Lemmas 3.12 and 3.24,
/ (F(s) — f)Ry) dvolye)| < C"ad). (3.29)
M
Hence
/ng(f) dVOlg(a —/ng(S) dVOlg(S) < (3.30)
M M

t
(max|f|)/|R2—2|Ric\2|dvolg(t) dt + C"a(t).
0

From (3.30), the sequence { [}, [ Ry2-ir) dvolya-i7)}52, is a Cauchy sequence and
so has a limit My € R. Then from (3.30), limy_ [,, fRg(t) dvolgy = Mj.
Given f, f' € C*(M), we have

/ng(t) dVOlg(t) - / f/Rg(t) dVOlg(t) § C”Hf — leoo. (3.31)
M M

It follows that the map f — M/ extends to a bounded linear function on C(M), and so
defines a Borel measure po on M.
This proves Theorem 1.3.

Example 3.32. In dimension two, R2—2| Ric|? = 0. Let  be a compact boundaryless two
dimensional Alexandrov space. It is known that there is a Ricci flow solution (M, g(¢)),

defined for an interval (0, T, that satisfies the assumptions of Theorem 1.3 and for which

lim; (M, g(t)) Ay, [14]. Theorem 1.3 reproduces the canonical curvature measure on

¥, as defined in [13].

Remark 3.33. The scalar curvature measure pg is defined using the Ricci flow. We do
not know if it just depends on the Gromov-Hausdorff limit lim; (M, g(¢)). There are
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examples of distinct Ricci flows coming out of a cone [1]; however those Ricci flows do
not have a lower bound on the Ricci curvature.

If the time slices (M, ¢g(t)) have nonnegative curvature operator then by the uniqueness
result of [9], the scalar curvature measure g agrees with the measure constructed there,
and hence only depends on the limit space.

4. Proof of Theorem 1.4

Note that if (M, g) has 2-nonnegative curvature operator then it has nonnegative Ricci
curvature.
The next lemma is probably well known; we give the direct proof.

Lemma 4.1. Let H be a finite dimensional real inner product space and let S be a sym-
metric operator on H. Let A\ < Ao < ... be the eigenvalues of S, listed with multiplicity.
If J is a j-dimensional subspace of H, let P; be orthogonal projection onto J. Then

Tr (P;SP)) > i A (4.2)

i=1

Proof. By continuity and the compactness of the Grassmannian of j-planes in H, there
is some J that minimizes the left-hand side of (4.2). Suppose that J is a minimizer.
If U € O(H) then Py; = UP;U!, so Tr (SPy) < Tr (SUP;U~!). Considering one-
parameter subgroups of O(H), it follows that

0 = Tr (S[n, Ps]) = Tr (n[Py, S]) (4.3)

for all skew-symmetric 7. As [Py, S] is skew-symmetric, it must vanish. If H = @, H,
is the spectral decomposition of S into eigenspaces of distinct eigenvalue then we must
have J = @, Wi, where W), C Hy,. Considering J’s just of this form and minimizing
Tr (PySPj), the lemma follows. O

Lemma 4.4. Suppose that

(1) n =3 and (M, g) has nonnegative sectional curvature, or
(2) n>4 and (M, g) has 2-nonnegative curvature operator.

Then R? — 2| Ric|?> >0
Proof. We have
R? — 2| Ric|* = Tr (Ric(Rg — 2 Ric)). (4.5)

Let {e;} be an orthonormal basis of T;,, M that diagonalizes Ric. Then
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R? —2|Ric[> =) Ri;(Rg — 2Ric);;. (4.6)
Now
(Rg — 2RiC)ii =R-— 2Ricii = Z Rjkjk -2 Z Rijij = Z Rjkjk~ (47)
3k J 3rk#i

If (M, g) has nonnegative sectional curvature then the last term in (4.7) is clearly non-
negative. Suppose that (M, g) has 2-nonnegative curvature operator. The last term in
(4.7) is

Z Ripjr =2 Z <€j N ek,R(ej N ek)>. (4.8)
ki j ki
i<k

We apply Lemma 4.1 with H = A*(T}, M) and J = span{e; A ey} k2. We conclude that
i<k

("z")
Z (ej Neg,R(e; Nex)) > Z Al (4.9)
=1

Jk#i
J<k

n—1
If n > 4 then ("51) > 2 and Zl(:i ) Al > A1 + A2 > 0. This proves the lemma. O

Corollary 4.10. Let (M,g(t)), t € (0,T], be a Ricci flow solution on a compact n-
dimensional manifold M. Suppose that

(1) [Rmy | < 4,

(2) n = 3 and each (M, g(t)) has nonnegative sectional curvature, or n > 4 and each
(M, g(t)) has 2-nonnegative curvature operator, and

(3) There is a uniform upper bound on [,, Ry dvolyy).

Then there is a limit limy_,o Ry(;) dvolyyy = po in the weak-x topology.

Proof. From Lemma 4.4 and (3.25), it follows that R? — 2|Ric|?> € L((0,T] x
M; dt dvolg ). The corollary now follows from Theorem 1.3. O

We now prove Theorem 1.4. There is a uniform existence time [0, T'] for the Ricci flow
solutions (M;, g;(t)) with initial condition g;(0) = g¢; [2]. The flows have 2-nonnegative
curvature operator and satisfy | Rmg, ;) | < % for some A < co. By (3.25) and Lemma 4.4,
/ M, Ry, 1) dvolg, sy < A. By Cheeger-Hamilton compactness, after passing to a subse-
quence there are

(1) A smooth manifold X,
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(2) A Ricci flow solution (X, goo(t)) defined for ¢t € (0,7 and
(3) Diffeomorphisms ¢; : Xoo — M;

so that for any [a,b] C (0,7), lim; ¢fg; = goo smoothly on [a,b] X Xo. Then
goo(t) has 2-nonnegative curvature operator, and satisfies |Rmg, )| < % and
ono Ry 1) dvoly_() < A, for all t € (0,T]. From Lemma 3.1, there is a Gromov-
Hausdorfl limit lim;—0(Xoo, goo(t)) = (Xeo,ds). By Corollary 4.10, there is a limit
lim; 0 Ry__(¢) dvoly__ (1) = po in the weak-x topology.

The proof of Theorem 1.3 can be made uniform in the underlying geometry. Hence

given f € C(X), it follows that

Jim [ (670), (Ry,r) dvolg, o) = (4.11)
Xoo

JLim / f B g2y dvolys g,y = / [ Ry dvoly_ ),
Xoo Xoo

uniformly in ¢ and ¢ € (0,7]. Thus

lm [ f (67Y). (R, dvoly,) = / Fdyo, (4.12)
71— 00
Xoo .
which means that lim;_, (qbi_l)* (Ry, dvoly,) weak—x iy

Remark 4.13. There is a conjecture that for any n € Z* and v > 0, there is some
A = A(n,v) < oo so that if (M,g) is a complete n-dimensional Riemannian manifold
with Ric > —(n — 1)g, and B(m, 1) is a unit ball in M with vol(B(m,1)) > v, then

~

/. B(m,1) R dvoly < A. This conjecture is known to be true if M is a polarized Kéhler
manifold [10, Proposition 1.7] or if M has sectional curvature bounded below by —1 [12].
If the conjecture holds then condition (4) in Theorem 1.4 follows from the first three

conditions.
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