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Abstract—An efficient implicit representation of an n-vertex
graph G in a family F of graphs assigns to each vertex of G
a binary code of length O(log n) so that the adjacency between
every pair of vertices can be determined only as a function of
their codes. This function can depend on the family but not on
the individual graph. Every family of graphs admitting such a
representation contains at most 2O(n log(n)) graphs on n vertices,
and thus has at most factorial speed of growth.

The Implicit Graph Conjecture states that, conversely, every
hereditary graph family with at most factorial speed of growth
admits an efficient implicit representation. We refute this con-
jecture by establishing the existence of hereditary graph families
with factorial speed of growth that require codes of length nΩ(1).

Index Terms—Implicit Graph Conjecture, Hereditary Graph
Family, Universal Graph, Adjacency Labeling Scheme

I. INTRODUCTION

This article aims to refute the implicit graph conjecture with
a short and simple proof. The implicit graph conjecture, posed
as a question in 1988 by Kannan, Naor, and Rudich [KNR88]
and reformulated to a conjecture by Spinrad [Spi03], is
one of the most well-known problems regarding efficient
representations of graphs. Informally speaking, it states that
if a hereditary family of graphs does not contain too many
graphs (i.e., its speed is 2O(n log(n))), then every graph in the
family has a (local) implicit representation that requires storing
only O(log(n)) bits on each node.

Many natural families of graphs are small and thus fall in the
framework of this conjecture: forests, planar graphs, bounded
degree graphs, intersection graphs, disk graphs, and more
generally all semi-algebraic families of graphs. The latter is a
rich class that includes most natural geometric constructions
of graphs on bounded-dimensional real spaces.

The implicit graph conjecture speculates the existence of
space-efficient representations for all small hereditary graph
families. Such representations typically allow answering edge
queries in only poly-logarithmic time in the size of the
network. These space and time efficiencies are highly de-
sirable for the design of networks. Therefore, the implicit
graph conjecture has seen much attention by both mathe-
maticians and computer scientists [KNR92], [Spi03], [Alo17],
[FK16], [AKTZ19], and it has been verified for numer-
ous restricted classes of hereditary graph families [ADK17],
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[Sch99], [AR02], [GL07], [ACLZ15], [DEG+21], [BGK+21],
[HWZ22], [MM13].

The notion of an implicit representation was for-
mally defined by Müller [Mul88] and Kannan, Naor, and
Rudich [KNR88], [KNR92]. Let F be a family of (labeled)
finite graphs, and let Fn denote the n-vertex graphs in F with
vertex set [n] := {1, . . . , n}. For a function w : N → N, an
implicit representation with code-length w(n) for an n-vertex
graph G in F is an assignment of a w(n)-bit code to each
vertex of G, together with a decoder function that takes two
vertex-codes and returns whether or not they are adjacent in
G. Here, the decoder function may depend on F , but it is
independent of the individual graph G.

Note that even the family of all graphs can be represented
using codes of length n + dlog ne, since every vertex can be
labeled with the corresponding row of the adjacency matrix
along with the index of the row. This can be improved to
code-length n

2 + O(1), which is essentially optimal [Alo17],
[Moo65]. We call an implicit representation efficient if its
code-length is w(n) = O(log n). The literature often refers
to efficient implicit representations simply as implicit rep-
resentations. However, in this article, we are interested in
obtaining lower bounds on the code-length, and therefore, we
have chosen to allow implicit representations to have arbitrary
code-lengths.

The original definitions of [Mul88], [KNR92] require that
the decoder function is computable by a polynomial-time algo-
rithm. However, as these computational matters are irrelevant
to our lower bound, we do not require them here.

Example I.1. Let T be the family of all forests. Given any
G ∈ Tn, we can turn each connected component of G to
a rooted tree by choosing an arbitrary root, and assign to
every vertex of G, the index of its parent (if it exists). Note
that the adjacency of a pair of vertices can be decided given
their dlog ne-length codes, and thus T has an efficient implicit
representation.

A sequence (Un)n∈N of graphs is said to be a sequence
of universal graphs for a graph family F , if for every
n and F ∈ Fn, there exists a graph embedding πF :
V (F ) → V (Un). The family F is said to be representable
by polynomial-size universal graphs if these universal graphs
satisfy |V (Un)| = nO(1). Universal graphs were initially
defined with the purpose of representation of the family of



all graphs [Rad64], [Moo65], and were extensively studied
for various families of graphs [CG78], [CG79], [BCE+82],
[Wu85], [BCLR89], [Mul88], [KNR92], [BT81], [AKTZ19],
[BEGS21]. Efficient implicit representations are equivalent to
polynomial-size universal graphs [Mul88], [KNR92]. To see
the equivalence, note that given an efficient implicit represen-
tation, one can take V (Un) to be the set of all O(log(n))-bits
codes and define the edges of Un according to the decoder
function. For the converse direction, one can assign a unique
O(log(n))-bit code to each of the nO(1) vertices of Un, and
use the functions πF to assign the codes of the vertices of
each F ∈ Fn accordingly.

A simple counting argument shows that families of graphs
with efficient implicit representations cannot be very large.
Indeed, if F has an efficient implicit representation, then
every graph in Fn can be described using O(n log n) bits,
and thus we must have |Fn| ≤ 2O(n logn). In the terminology
of [Ale97], [BBW00] such families are said to have at most
factorial speed of growth.

A graph family F is called hereditary if it is closed under
taking induced subgraphs. More precisely, for every m ≤ n,
injection σ : [m] → [n], and G ∈ Fn, the graph F with
the vertex set [m] and the edge set {ij : σ(i)σ(j) ∈ E(G)}
belongs to F . Note that taking m = n in this definition ensures
that F is closed under graph isomorphism. The hereditary
closure of a family F , denoted by cl(F), is the set of
all induced subgraphs of every G ∈ F . It is the smallest
hereditary family that contains F .

Next, we discuss why in the study of implicit representa-
tions, it is more natural to consider hereditary graph families.
Let F be representable by the sequence of polynomial-size
universal graphs Un. Let ε > 0 be a fixed constant, and let
U ′n be the disjoint union U ′n = U1∪ . . .∪Un. Let Fε ⊆ cl(F)
be obtained from F by including all induced subgraphs of
size at least nε of every G ∈ Fn for every n. Since the size
of U ′n is polynomial nε, the family Fε is representable by
the universal graphs U ′n. This observation shows that for F
to have an efficient implicit representation, not only F must
have at most factorial speed of growth, but more generally, the
families Fε must also have at most factorial speed of growth.

Example I.2. (See also [Spi03]) Let F be the set of all graphs
with at least n −

√
n isolated vertices. Note that the speed

of F is at most
(
n√
n

)
2(
√
n
2 ) = 2O(n), which is subfactorial.

On the other hand, F1/2 contains all graphs and thus has
the super-factorial growth speed of 2Θ(n2). Hence F does
not admit an efficient implicit representation despite having
at most factorial growth speed.

Note that Fε ⊆ cl(F). In light of these observations, the
implicit graph conjecture speculates that if cl(F) has at most
factorial speed of growth, then F admits an efficient implicit
representation.

Conjecture I.3 (Implicit Graph Conjecture [KNR88],
[KNR92], [Spi03]). Every hereditary graph family of at most
factorial speed has an efficient implicit representation.

We disprove this three-decades-old conjecture via a proba-
bilistic argument.

Theorem I.4 (Main Theorem). For every δ > 0, there is a
hereditary graph family F that has at most factorial speed of
growth, but every implicit representation of F must use codes
of length Ω(n

1
2−δ).

Theorem I.4 not only refutes the existence of O(log(n))-bit
codes, but it shows that there are factorial hereditary graph
families that require code-lengths that are polynomial in n.

Proof overview.

First, note that the number of polynomial-size universal
graphs is 2n

O(1)

, and each such graph can represent at most
nO(n) graphs of size n. Since there are 2Ω(n2) graphs on
n vertices, a simple counting argument shows that, with
high probability, a random collection of nω(1) graphs on
n vertices cannot be represented by any universal graph of
size nO(1). It is thus tempting to construct F by randomly
selecting nω(1) graphs for each n. Then, as desired, with high
probability, cl(F) does not have a polynomial-size universal
graph representation, but unfortunately, taking the hereditary
closure will expand the family to contain all graphs and thus
cl(F) will have growth speed 2Ω(n2). Indeed for every n, for
sufficiently large m, even a single random graph on m vertices
will, with high probability, contain all graphs on n vertices as
induced subgraphs.

The key idea to overcome this issue is to consider slightly
sparser random graphs. We will select the initial graphs F
from the set of graphs that have n2−ε number of edges for
some ε > 0. There are still many such graphs; thus, the
same counting argument shows that, with high probability,
polynomial-size universal graphs cannot represent this family.
Regarding the growth speed of cl(F), note that every n-vertex
graph F ∈ cl(F) is an induced subgraph of some randomly
selected graph G ∈ Fm where m ≥ n. If m is much larger
than n, then F is a small subgraph of the random sparse graph
G, and thus it has a simple structure. We will show that due
to these structural properties, the number of such graphs is at
most factorial. On the other hand, if m is not much larger than
n, there are only mn possible ways of choosing F inside G,
and thus the number of such graphs F can be upper-bounded
by the sum of mn|Fm| for m = nO(1). Since also |Fm| is
not very large as a function of m, this sum will be at most
2O(n log(n)).

II. PRELIMINARY LEMMAS

Denote by B(n,m) for 0 ≤ m ≤ n2, the set of all bipartite
graphs with equal parts {1, . . . , n} and {n+ 1, . . . , 2n}, and
exactly m edges. Recall that a graph is said to be k-degenerate
if all its induced subgraphs have a vertex of degree at most k.

Lemma II.1. Suppose 0 ≤ ε′ < ε < 1 are fixed constants.
Consider the random graph G chosen uniformly at random
from B(n,m) with m = bn2−εc. Then, for sufficiently large
n, with probability 1−o(1), every induced subgraph of G with
at most nε

′
vertices is (c− 1)-degenerate where c = 4

ε−ε′ .



Proof. Let F be an induced subgraph of G with at most nε
′

vertices. Let A and B denote the set of the vertices of F in the
first part and the second part, respectively, and denote a = |A|
and b = |B|. The case when a = 0 or b = 0 is trivial, so we
may assume a, b > 0. We have a, b ≤ nε

′
. We call F bad if

its minimum degree is at least c.
The probability that every vertex in A has degree at least c

is bounded from above by(
b
c

)a(n2−ac
m−ac

)(
n2

m

) ≤
(
b

c

)a (m
n2

)ac
≤
(
mb

n2

)ac
=

(
b

nε

)ac
.

Similarly the probability that every vertex in B has degree
at least c is at most

(
a
nε

)bc
. Thus, by a union bound, the

probability that a bad F with parts of size a and b, with a <
b ≤ nε′ , exists is at most(

n

a

)(
n

b

)( a
nε

)bc
≤ n2b

( a
nε

)bc
=

(
n2 · a

c

ncε

)b
≤
(

n2

nc(ε−ε′)

)b
= o(n−2),

where we used the assumption that c = 4
ε−ε′ . A similar bound

holds for the case b < a ≤ nε′ . Thus, by a union bound, since
there are at most n2 choices for a and b, the probability that
G has a bad induced subgraph with parts of size a, b ≤ nε′ is
o(1).

It follows that with probability 1 − o(1), every induced
subgraph of G with at most nε

′
vertices contains a vertex

of degree less than c. Consequently, every induced subgraph
of G with nε

′
many vertices is (c− 1)-degenerate.

Lemma II.2. The number of c-degenerate n-vertex graphs is
at most 2O(cn logn).

Proof. By deleting the vertices of degree at most c in turn,
one obtains an ordering of the vertices such that every vertex
has at most c neighbours in the subsequent vertices. Hence,
the number of such graphs is at most

O(n!(nc)n) = 2O(cn logn).

III. EXISTENCE OF COUNTER-EXAMPLES

We are now ready to prove Theorem I.4. Call an n-vertex
bipartite graph good if it is a positive instance of Lemma II.1
with n′ = n

2 , ε = 1
2 + δ

2 , and ε′ = 1
2 . Let G be the family of

all good graphs. Note that all good graphs are bipartite graphs
with even number of vertices, and bipartition {1, . . . , n2 } and
{n2 + 1, . . . , n}. We consider hereditary families that are
constructed by picking small subsets Mn ⊆ Gn and taking
the hereditary closure of M = ∪n∈NMn. To this end, we
first prove that as long as Mn are not too large, the resulting
hereditary family will have at most factorial speed.

Claim III.1. For every n, let Mn ⊆ Gn be a subset with
|Mn| ≤ 2

√
n. The hereditary closure of ∪n∈NMn has at most

factorial speed.

Proof. Let F denote the hereditary closure of ∪nMn. For an
n-vertex graph G ∈ F , let m be the smallest integer such
that G ∈ cl(Mm). We consider two cases, based on whether
n ≤

√
m/2. If n ≤

√
m/2, then since the graphs inMm are

good, G is c-degenerate for c = 4
ε−ε′ = 8δ. By Lemma II.2,

the number of graphs G of this type is bounded by 2O(n logn).
The number of graphs G, with n >

√
m/2 is bounded by

2n2∑
m=n

mn|Mm| =
2n2∑
m=n

mn2
√
m

≤ 2n2 · (2n2)n · 2
√

2n2

= 2O(n logn).

We will focus our attention to even n. Define kn = d2
√
ne.

We will show that there is an Mn as in the assumption of
Claim III.1 that does not have a universal graph representation
of size u ≤ 2n

1
2
−δ

. Combined with Claim III.1, the closure
of ∪n∈NMn is a hereditary family of at most factorial speed
that does not have a 2n

1
2
−δ

-size universal graph representation.
Equivalently there is no implicit representation of this family
with codes of length at most n

1
2−δ , refuting the Implicit Graph

Conjecture.
Suppose U is a u-vertex graph. The number of n-vertex

graphs that can be represented by U is at most un. Thus
the number of collections of kn graphs on n-vertices that are
simultaneously represented by U is at most unkn .

Since the number of distinct u-vertex graphs U is at most
2u

2

, the number of collections of kn graphs on n-vertices that
have a u-vertex universal graph is at most

2u
2

· unkn . (1)

On the other hand, let us first estimate |Gn|. The number of
graphs in the support of B(n2 , b(

n
2 )2−εc) is( n2

4

b(n2 )2−εc

)
≥ 2Ω(n2−ε logn).

Hence by Lemma II.1, |Gn| is also at least 2Ω(n2−ε logn). As a
result, the number of choices of Mn ⊆ Gn with |Mn| = kn
is at least

2Ω(knn
2−ε logn).

We finally observe that for sufficiently large n, this is larger
than (1):

log(2u
2

· unkn) = u2 + nkn log(u)

≤ 22n
1
2
−δ

+ nd2
√
nen 1

2−δ

= O(2
√
nn

3
2−δ),

while

log(2Ω(knn
2−ε logn)) = Ω(knn

2−ε log n)

= Ω(2
√
nn2−ε log n)

= Ω(2
√
nn

3
2−

δ
2 log n).



Thus, there exist collections Mn ⊆ Gn with |Mn| ≤ kn
such that Mn cannot be represented by any universal graph
of size u. This combined with Claim III.1 concludes the proof
of Theorem I.4.

IV. CONCLUDING REMARKS

Theorem I.4 shows that for any δ > 0, there is a hereditary
graph family F with speed 2O(n logn) such that any implicit
representation of F must have code-length Ω(n

1
2−δ). A natural

question is whether this lower-bound can be improved beyond√
n. In fact, regarding upper bounds, we do not even know

whether there exists a universal constant ε > 0 such that
every hereditary graph family with speed 2O(n logn) admits
an implicit representation with code-length O(n1−ε).

Shortly after we posted an earlier preprint of this paper on
arXiv, Noga Alon proved that if we allow ε to depend on the
speed, such a bound holds even under weaker assumptions.

Theorem IV.1 (Alon [Alo22]). For every growth function
f(n) = 2o(n

2), there exists εf > 0 such that every hereditary
family F of graphs with speed |Fn| ≤ f(n) admits an implicit
representation with code-length O(n1−εf ).

The refutation of the Implicit Graph Conjecture leaves the
problem of determining whether there is a simple character-
ization of hereditary graph properties with efficient implicit
representations wide open. A problem of similar nature in
the area of communication complexity is to characterize the
hereditary classes of Boolean matrices that have randomized
communication complexity O(1). Indeed, [HWZ22] used a
derandomization argument to show that every such class
must admit an efficient implicit representation. These connec-
tions to communication complexity, as explored in [HWZ22],
[HHH21], provided the initial inspiration for our work.
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[BGK+21] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan
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