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a b s t r a c t

We refute the Probabilistic Universal Graph Conjecture of Harms, Wild, and Zamaraev,
which states that a hereditary graph property admits a constant-size probabilistic
universal graph if and only if it is stable and has at most factorial speed.

Our counter-example follows from the existence of a sequence of n × n Boolean
matrices Mn, such that their public-coin randomized communication complexity tends to
infinity, while the randomized communication complexity of every

√
n ×

√
n submatrix

of Mn is bounded by a universal constant.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The field of communication complexity studies the amount of communication required to solve the problem of
omputing discrete functions when the input is split between two or more parties. In the most commonly studied
ramework, there are two parties, often called Alice and Bob, and a communication problem is defined by a Boolean
atrix M = [mij]n×n, where Boolean means that the entries are either 0 or 1. Alice receives a row number, and Bob

receives a column number j. Together, they should both compute the entry mij by exchanging bits of information in turn,
ccording to a previously agreed-on protocol. There is no restriction on their computational power; the only measure we
are to minimize is the number of exchanged bits.
A deterministic protocol π specifies how the communication proceeds. It specifies what bit a player sends at each

tep. This bit depends on the input of the player and the history of the communication so far. It is often assumed that the
ast communicated bit must be the output of the protocol. A protocol naturally corresponds to a binary tree as follows.
very internal node of the tree is associated with either Alice or Bob. If an internal node v is associated with Alice, then
t is labeled with a Boolean function av , which prescribes the bit sent by Alice at this node as a function of her input
. Similarly, the nodes associated with Bob are labeled with Boolean functions of j. Each leaf is labeled by 0 or 1 which
orresponds to the output of the protocol at that leaf.
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We denote the number of bits exchanged on the input (i, j) by costπ (i, j), which is precisely the length of the path
rom the root to the corresponding leaf. The communication cost of the protocol is simply the depth of the protocol tree,
hich is the maximum of costπ (i, j) over all inputs (i, j).

CC(π ) := max
i,j

costπ (i, j).

We say that π computes M if π (i, j) = mij for all (i, j), where π (i, j) denotes the protocol’s output on the input (i, j).
he deterministic communication complexity of M , denoted by D(M), is the smallest communication cost of a protocol that
omputes M . It is easy to see that D(M) ≤ ⌈log(n)⌉ + 1 as Alice can use ⌈log(n)⌉ bits to send her entire input to Bob, and
ob knowing the values of both i and j, can send back mij.
It is well-known that if the deterministic communication complexity of a matrix is bounded by a constant c , then

he matrix is highly structured — its rank is at most 2c , and it can be partitioned into at most 2c all-zero and all-one
ubmatrices [9]. These facts characterize the family of matrices that satisfy D(M) = O(1). A fundamental problem in
ommunication complexity, with connections to harmonic analysis and operator theory [4], is to obtain a characterization
f families of matrices that have O(1) randomized communication complexity.
A (public-coin) randomized protocol πR of cost c is simply a probability distribution over the deterministic protocols of

ost c . Given an input (i, j), to compute mij, Alice and Bob use their shared randomness to sample a deterministic protocol
rom this distribution, and execute it.

We say that the error probability of πR is at most ϵ if Pr[πR(i, j) ̸= mij] ≤ ϵ for every input (i, j). For ϵ ∈ (0, 1/2), let
ϵ(M) denote the smallest cost of a randomized protocol that computes M with error probability at most ϵ. Note that
= 1/2 can be easily achieved by outputting a random bit; hence it is crucial that ϵ is defined to be strictly less than

/2. It is common to take ϵ =
1
3 . Indeed, the choice of ϵ is not important as long as ϵ ∈ (0, 1/2), since the probability

of error can be reduced to any constant ϵ′ > 0 by repeating the same protocol independently for some O(1) times, and
outputting the most frequent output. We denote R(M) := R1/3(M).

It is well-known that the n× n identity matrix In satisfies R(In) ≤ 3 and D(In) = ⌈log(n)⌉ + 1. Hence, in contrast to
the deterministic case, there are matrices with R(M) = O(1) that have arbitrarily large rank.

There are very few known nontrivial examples of matrix classes that have randomized communication complexity
O(1) [4–6]. Let M = (Mn)n∈N be a sequence of n × n Boolean matrices Mn, and define R(M) : n ↦→ R(Mn). Let us look at
ome necessary conditions for M to satisfy R(M) = O(1).
Let cl(M) denote the closure of M, defined as the set of all square matrices that are a submatrix of some Mn. Note

that cl(M) is the smallest such hereditary property that contains all the matrices in M, where a set of square matrices is
called hereditary if it is closed under taking square submatrices.

Let GTk denote the k×k Greater-Than matrix defined as GTk(i, j) = 1 if and only if i ≤ j. The sequence M is called stable,
if there exists k ∈ N such that GTk ̸∈ cl(M). It is well-known [11,14] that R(GTk) = Ω(log log k) which tends to infinity
as k grows. Hence, if R(M) = O(1), then M must be stable. The term stability is coined due to Shelah’s unstable formula
theorem in model theory which characterizes unstable theories by the nonexistence of countably infinite half-graphs [12],
where half-graphs are the graphs with biadjacency matrix GTk for some k. Stable graph families are known to have useful
properties such as strong regularity lemmas [10] and the Erdős–Hajnal property [3].

The second necessary condition for R(M) = O(1) follows from a bound on the number of matrices with O(1)
randomized communication complexity. A standard derandomization argument, Proposition 2.3, shows that the number
of such n × n matrices is bounded by 2O(n log n). Consequently, if R(M) = O(1), then | cl(M)n| ≤ 2O(n log n), where cl(M)n
denotes the set of n× n matrices in cl(M). Thus, in the terminology of graph theory [1,2], the speed of growth of cl(M)
is at most factorial.

Connections between randomized communication complexity and implicit graph representations were discovered
in [5,6]. Inspired by the Implicit Graph Conjecture [8,13] and its connection to the growth rate of hereditary graph
properties, Harms, Wild and Zamaraev [6] formulated a probabilistic version of the Implicit Graph Conjecture, which
translates to the following statement in communication complexity (See [6, Conjecture 1.2 and Proposition 1.6]). We
refer the readers to [6] for an in-depth discussion of connections between communication complexity and implicit
representations of graphs. As discussed above, for R(M) = O(1) to hold, it is necessary that M is stable and that cl(M)
has at most factorial speed of growth. Harms, Wild, and Zamaraev [6] conjecture that these latter two conditions are also
sufficient.

Conjecture 1.1 (Probabilistic Universal Graph Conjecture [6]). Let M be a sequence of n × n Boolean matrices. Then
R(M) = O(1) if and only if M is stable and | cl(M)n| ≤ 2O(n log n).

It is shown in [6] that Conjecture 1.1 is true for matrix sequences corresponding to restricted classes of hereditary
graph families such as monogenic bipartite families, interval graphs, and families of bounded twin-width.

In this article, we prove the following theorem which refutes Conjecture 1.1.

Theorem 1.2 (Main Theorem). There exists a stable sequence M of Boolean matrices (Mn)n∈N such that R(Mn) = Θ(log(n))
and | cl(M)n| ≤ 2O(n log n).
118
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Note that every n×nmatrixM satisfies R(M) = O(log n). In particular, the above construction shows that this maximum
is achievable even for stable hereditary matrix families of speed at most factorial.

Furthermore, as a consequence of Conjecture 1.1, [6] speculates that the randomized communication complexity of
every hereditary property of Boolean matrices M with at most factorial speed has a gap behavior, either R(M) = O(1)
or R(M) = Ω(log log n). We refute this weaker conjecture as well. In particular, Theorem 3.1, proved in Section 4, shows
that for every growing function w(n) < 10−3 log n, there exists a matrix sequence M = (Mn)n∈N such that R(Mn) = w(n),
and every

√
n×

√
n submatrix F of Mn satisfies R(F ) = O(1). As the proof of Theorem 1.2 demonstrates, if we take w(n)

o be any function that is ω(1) and o(log log(n)), then cl(M) is a hereditary matrix property with factorial speed and
R(M) = Θ(w(n)).

We present the proof of Theorem 1.2, which builds on Theorem 3.1, in Section 3.

elated work. Shortly after this paper was written, in a follow-up paper, [7] combined the ideas of this paper with an
nformation-theoretic counting argument to refute the Implicit Graph Conjecture.

. Preliminaries

All logarithms in this article are in base 2. For a positive integer n, we denote [n] = {1, . . . , n}. We use the standard
Bachmann–Landau asymptotic notations: O(·), Ω(·), Θ(·), o(·), and ω(·).

The Cartesian product A×B of two sets A, B ⊆ [n] is called a combinatorial rectangle. We will need the following lower
bound on randomized communication complexity.

Definition 2.1. Let M be an n × n Boolean matrix, and let µ be a probability distribution on [n] × [n]. The discrepancy
of a combinatorial rectangle R ⊆ [n] × [n] under µ is defined as

Discµ(M, R) =
⏐⏐⏐⏐Prµ [mij = 1 and (i, j) ∈ R] − Pr

µ
[mij = 0 and (i, j) ∈ R]

⏐⏐⏐⏐ .
The discrepancy of M under µ is defined as Discµ(M) = maxR{Discµ(M, R)}, where the maximum is over all combinatorial
rectangles R.

Theorem 2.2 ([9, Proposition 3.28]). Let M be an n× n Boolean matrix, and let µ be a probability distribution on [n] × [n].
Then for every ϵ > 0,

R 1
2−ϵ

(M) ≥ log
2ϵ

Discµ(M)
.

n particular,

R(M) ≥ log
1

3Discµ(M)
. (1)

As discussed in the introduction, stability is a necessary condition for a matrix sequence to satisfy R(M) = O(1). The
next proposition proves a second necessary condition: an upper bound on | cl(M)n|.

Proposition 2.3. The number of n× n matrices M with R(M) ≤ c is 2O(2cn log n).

Proof. Let M be an n× n Boolean matrix with R(M) ≤ c . For every such M , there is a distribution µM over deterministic
protocols π of cost c such that

Pr
π∼µM

[M(i, j) = π (i, j)] ≥
2
3

for all i, j.

By the Chernoff bound, the error probability of the protocol can be reduced to strictly less than 1
n2

by sampling O(log n)
independent samples from µM and outputting the majority outcome. Thus by union bound, there exists t = O(log n)
eterministic protocols π1, . . . , πt , each of cost c , such that for every i and j,

M(i, j) = majority{π1(i, j), . . . , πt (i, j)}. (2)

Next, we show that the number of deterministic protocols of cost c is at most 2O(2cn). Every such protocol corresponds
o a binary tree of depth at most c , which has O(2c) nodes. Every node is associated with one of the two players, and
he communicated bit is determined by the input of the corresponding player according to a function [n] → {0, 1}. Thus
here are 2n+1 possible choices for each node of the tree. Overall, this bounds the number of such protocols by 2O(2cn).

Finally, since every matrix M can be described in the form of Eq. (2), and there are 2O(2cn) choices for each πi, the
umber of such matrices is at most 2O(2cn log n). □
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. Proof of Theorem 1.2

The proof will rely on the following theorem, which involves a probabilistic argument presented in Section 4.

heorem 3.1. Let w : N → N be a non-decreasing function satisfying w(n) → ∞ and w(n) ≤ 10−3 log(n). For every
ufficiently large n, there exists an n× n Boolean matrix M with the following properties.

(i) R(M) = w(n).
(ii) Every

√
n×

√
n submatrix F of M satisfies R(F ) = O(1).

Let w(n) = ⌊10−3 log(n)⌋, and for every sufficiently large n, let Mn be the matrix that is guaranteed to exist by
Theorem 3.1. For smaller values of n, let Mn be an arbitrary n × n Boolean matrix and let M denote the corresponding
sequence. By Theorem 3.1(i), we have R(M) = Θ(log(n)), and by Theorem 3.1 (ii), M is stable.

It remains to bound | cl(M)|n. Let F be an n× n matrix in cl(M). There are two cases to consider:

1. F is a submatrix of an Mk for k > n2. In this case, by Theorem 3.1 (ii), R(F ) = O(1). So by Proposition 2.3, the
number of such matrices is bounded by 2O(n log n).

2. F is a submatrix of an Mk with n ≤ k ≤ n2. The number of such matrices is at most

n2
(
n2

n

)2

= 2O(n log n).

We conclude that the total number of n× n matrices in cl(M) is 2O(n log n) as desired.

4. Proof of Theorem 3.1

We will use a probabilistic argument to show the existence of an n × n matrix M that satisfies R(M) ≥ w(n), and
the property (ii). Note that modifying a row of a matrix can change its randomized communication complexity by at
most 1. Hence, to guarantee R(M) = w(n), we can replace the rows of M to all-zero rows, one by one, until we achieve
R(M) = w(n). We will also show that for our construction, (ii) will remain valid under such modifications.

Let M = [mij]n×n be selected uniformly at random from the set of all Boolean n × n matrices that have exactly rn
number of 1’s where r = 23w(n)

≤ n0.01. Denote p =
rn
n2

=
r
n to be the fraction of 1’s.

Similarly, let M ′
= [m′

ij]n×n be the Boolean matrix with independent entries, where each entry m′

ij = 1 with probability
p.

Lower-bounding R(M). Let ϵ =
1

3·2w(n) . We will show that with high probability, the discrepancy of M is bounded by ϵ,
nd thus R(M) is large.
Let M0 = {(i, j) | mij = 0} and M1 = {(i, j) | mij = 1}, and define M ′

0 and M ′

1 similarly from the entries of M ′. Define
the probability distribution µ on [n] × [n] as

µ : (i, j) ↦→
{ 1

2rn mij = 1
1

2(n−r)n mij = 0

Note that µ is defined so that it assigns a total measure of 1
2 uniformly to each of M0 and M1.

Consider a fixed a× b combinatorial rectangle R ⊆ [n] × [n]. Then,

Discµ(R) =
⏐⏐⏐⏐ |R ∩M1|

2rn
−

|R ∩M0|

2(n− r)n

⏐⏐⏐⏐ = ⏐⏐⏐⏐ |R ∩M1|

2rn
−

|R| − |R ∩M1|

2(n− r)n

⏐⏐⏐⏐
=

⏐⏐⏐⏐n|R ∩M1| − r|R|
2nr(n− r)

⏐⏐⏐⏐ = ⏐⏐⏐⏐ |R ∩M1| − p|R|
2r(n− r)

⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐ |R ∩M1| − abp
rn

⏐⏐⏐⏐ .
Therefore,

Pr
[
Discµ(R) ≥ ϵ

]
≤ Pr [||R ∩M1| − abp| ≥ ϵrn] (3)

Note that

Pr[|R ∩M1| ≥ abp+ ϵrn] ≤ Pr
[
|R ∩M ′

1| ≥ abp+ ϵrn
⏐⏐ |M ′

1| ≥ rn
]

≤
Pr
[
|R ∩M ′

1| ≥ abp+ ϵrn
]

Pr[|M ′

1| ≥ rn]

≤ exp

(
−Ω

(
( ϵrn
abp )

2
· abp

2+ ϵrn
abp

))
= 2−Ω(ϵ2rn),
120
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here the last inequality is the Chernoff bound Pr[|R ∩M ′

1|−µ ≥ δµ] ≤ e
−δ2µ
2+δ applied with parameters δ = ϵrn/abp and

µ = abp. Similarly,

Pr[|R ∩M1| ≤ abp− ϵrn] ≤ Pr
[
|R ∩M ′

1| ≤ abp− ϵrn
⏐⏐ |M ′

1| ≤ rn
]

≤
Pr
[
|R ∩M ′

1| ≤ abp− ϵrn
]

Pr[|M ′

1| ≤ rn]

≤ 2−Ω(ϵ2rn),

where we applied the Chernoff bound Pr[|R ∩M ′

1| − µ ≤ δµ] ≤ e
−δ2µ

2 with the same parameters as above. Taking the
nion bound over the 22n rectangles R, and combining it with Eq. (3) and the bounds above, we obtain

Pr
[
Discµ(R) ≥ ϵ

]
≤ 22n2−Ω(ϵ2rn)

= o(1),

where we used the fact that ϵ =
1

3·2w(n) , r = 23w(n), and w(n) → ∞. Namely, n = o(ϵ2rn). Finally, applying the discrepancy
ower bound of Eq. (1), we obtain that for sufficiently large n,

Pr [R(M) ≤ w(n)] = Pr
[
R(M) ≤ log

1
3ϵ

]
≤ Pr[Discµ(M) ≥ ϵ] = o(1).

erifying (ii). We prove that with probability 1 − o(1), for every a, b ≤
√
n, every a × b submatrix of M contains a row

r a column with at most four 1’s. Note that the statement is trivial when min(a, b) ≤ 4, and hence, we fix a, b > 4.
If a ≥ b, then the probability that there is an a× b submatrix such that each of its a rows contains at least five 1’s is

ounded by(
n
a

)
·

(
n
b

)
·

(b
5

)a(n2−5a
rn−5a

)(n2
rn

) ≤ na+b
·

(
rnb
n2

)5a

≤ n2a
(

b
n0.99

)5a

≤ n(2−5×0.49)a
= o

(
1
n

)
.

where we used r = 23w(n) < n0.01 and a > 4. Similarly, if a < b, then the probability that there is an a× b submatrix such
hat each of its b columns contains at least five 1’s is bounded by o

( 1
n

)
.

Thus by a union bound over the n choices of a, b ≤
√
n, the probability that there is a, b ∈ [

√
n] and an a×b submatrix

here every column or row contains at least five 1’s is bounded by o(1).
Now suppose that every a × b submatrix F of M contains a row or a column with at most four 1’s. We will show by

induction on a, b that in this case, every such F corresponds to the biadjacency matrix of a disjoint union of four bipartite
graphs that are all forests. The base case of a, b ≤ 2 is trivial. Consider a row (or a column) with at most four 1’s, and
let e1, e2, e3, e4 be the edges corresponding to these (at most) four entries. Removing this row from F will result in a
smaller submatrix, which by induction hypothesis, can be written as the union of four forests F1,F2,F3,F4. Now F can
be decomposed into the union of four forests Fi ∪ {ei} for i ∈ [4].

The bound R(F ) = O(1) follows by first observing that each forest is an edge-disjoint union of two graphs, each a
vertex-disjoint union of stars. Hence, it suffices to show that the biadjacency matrix of any vertex-disjoint union of stars
has O(1) randomized communication complexity. Suppose that G is a union of vertex-disjoint stars S1, . . . , Sk, with a
bipartition (U, V ). Alice receives u ∈ U and Bob receives v ∈ V , and they want to decide whether (u, v) ∈ E(G), which is
equivalent to whether u and v belong to the same star. To solve this problem, Alice maps her input u to the index i such
that u ∈ Si. Similarly, Bob maps v to j such that v ∈ Sj. Now they can use the randomized communication protocol for Ik
to check whether i = j. This verifies (ii).

Finally, note that if F is a union of four forests, then replacing a row of F with an all-zero row will not violate this
property.
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