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1. Introduction

The field of communication complexity studies the amount of communication required to solve the problem of
computing discrete functions when the input is split between two or more parties. In the most commonly studied
framework, there are two parties, often called Alice and Bob, and a communication problem is defined by a Boolean
matrix M = [mjjlaxn, Where Boolean means that the entries are either 0 or 1. Alice receives a row number, and Bob
receives a column number j. Together, they should both compute the entry m;; by exchanging bits of information in turn,
according to a previously agreed-on protocol. There is no restriction on their computational power; the only measure we
care to minimize is the number of exchanged bits.

A deterministic protocol r specifies how the communication proceeds. It specifies what bit a player sends at each
step. This bit depends on the input of the player and the history of the communication so far. It is often assumed that the
last communicated bit must be the output of the protocol. A protocol naturally corresponds to a binary tree as follows.
Every internal node of the tree is associated with either Alice or Bob. If an internal node v is associated with Alice, then
it is labeled with a Boolean function a,, which prescribes the bit sent by Alice at this node as a function of her input
i. Similarly, the nodes associated with Bob are labeled with Boolean functions of j. Each leaf is labeled by 0 or 1 which
corresponds to the output of the protocol at that leaf.
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We denote the number of bits exchanged on the input (i, j) by cost,(i, j), which is precisely the length of the path
from the root to the corresponding leaf. The communication cost of the protocol is simply the depth of the protocol tree,
which is the maximum of cost, (i, j) over all inputs (i, j).

CC(mr) := max cost, (i, j).
ij

We say that = computes M if 7 (i, j) = my for all (i, j), where (i, j) denotes the protocol’s output on the input (i, j).
The deterministic communication complexity of M, denoted by D(M), is the smallest communication cost of a protocol that
computes M. It is easy to see that D(M) < [log(n)] + 1 as Alice can use [log(n)] bits to send her entire input to Bob, and
Bob knowing the values of both i and j, can send back m;;.

It is well-known that if the deterministic communication complexity of a matrix is bounded by a constant c, then
the matrix is highly structured — its rank is at most 2¢, and it can be partitioned into at most 2¢ all-zero and all-one
submatrices [9]. These facts characterize the family of matrices that satisfy D(M) = O(1). A fundamental problem in
communication complexity, with connections to harmonic analysis and operator theory [4], is to obtain a characterization
of families of matrices that have O(1) randomized communication complexity.

A (public-coin) randomized protocol mg of cost c is simply a probability distribution over the deterministic protocols of
cost c. Given an input (i, j), to compute m;;, Alice and Bob use their shared randomness to sample a deterministic protocol
from this distribution, and execute it.

We say that the error probability of my is at most € if Pr[mg(i, j) # m;] < € for every input (i, j). For € € (0, 1/2), let
R.(M) denote the smallest cost of a randomized protocol that computes M with error probability at most €. Note that
€ = 1/2 can be easily achieved by outputting a random bit; hence it is crucial that € is defined to be strictly less than
1/2. It is common to take ¢ = % Indeed, the choice of € is not important as long as € € (0, 1/2), since the probability
of error can be reduced to any constant € > 0 by repeating the same protocol independently for some O(1) times, and
outputting the most frequent output. We denote R(M) := Ry/3(M).

It is well-known that the n x n identity matrix I, satisfies R(I,;) < 3 and D(I,) = [log(n)] + 1. Hence, in contrast to
the deterministic case, there are matrices with R(M) = O(1) that have arbitrarily large rank.

There are very few known nontrivial examples of matrix classes that have randomized communication complexity
0(1) [4-6]. Let M = (M;)nen be a sequence of n x n Boolean matrices My, and define R(M) : n — R(M,). Let us look at
some necessary conditions for M to satisfy R(M) = O(1).

Let cl(M) denote the closure of M, defined as the set of all square matrices that are a submatrix of some M,. Note
that cl(M) is the smallest such hereditary property that contains all the matrices in M, where a set of square matrices is
called hereditary if it is closed under taking square submatrices.

Let GTy denote the k x k Greater-Than matrix defined as GT(i, j) = 1 if and only if i < j. The sequence M is called stable,
if there exists k € N such that GTy & cl(M). It is well-known [11,14] that R(GT,) = £2(loglog k) which tends to infinity
as k grows. Hence, if RQCM) = 0O(1), then M must be stable. The term stability is coined due to Shelah’s unstable formula
theorem in model theory which characterizes unstable theories by the nonexistence of countably infinite half-graphs [12],
where half-graphs are the graphs with biadjacency matrix GT, for some k. Stable graph families are known to have useful
properties such as strong regularity lemmas [10] and the Erd6és-Hajnal property [3].

The second necessary condition for R(LM) = O(1) follows from a bound on the number of matrices with O(1)
randomized communication complexity. A standard derandomization argument, Proposition 2.3, shows that the number
of such n x n matrices is bounded by 2°"'°¢™_Consequently, if RGAM) = O(1), then | cl(M),| < 291°8™ where cl(M),
denotes the set of n x n matrices in cl(M). Thus, in the terminology of graph theory [1,2], the speed of growth of cl(M)
is at most factorial.

Connections between randomized communication complexity and implicit graph representations were discovered
in [5,6]. Inspired by the Implicit Graph Conjecture [8,13] and its connection to the growth rate of hereditary graph
properties, Harms, Wild and Zamaraev [6] formulated a probabilistic version of the Implicit Graph Conjecture, which
translates to the following statement in communication complexity (See [6, Conjecture 1.2 and Proposition 1.6]). We
refer the readers to [6] for an in-depth discussion of connections between communication complexity and implicit
representations of graphs. As discussed above, for R(M) = O(1) to hold, it is necessary that M is stable and that cl(M)
has at most factorial speed of growth. Harms, Wild, and Zamaraev [6] conjecture that these latter two conditions are also
sufficient.

Conjecture 1.1 (Probabilistic Universal Graph Conjecture [6]). Let M be a sequence of n x n Boolean matrices. Then
R(M) = 0(1) if and only if M is stable and | cl(M),| < 20mlegn),

It is shown in [6] that Conjecture 1.1 is true for matrix sequences corresponding to restricted classes of hereditary
graph families such as monogenic bipartite families, interval graphs, and families of bounded twin-width.
In this article, we prove the following theorem which refutes Conjecture 1.1.

Theorem 1.2 (Main Theorem). There exists a stable sequence M of Boolean matrices (My)nen Such that R(IM,) = ©(log(n))
and | cl(M),| < 20(nlosm),
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Note that every nxn matrix M satisfies R(M) = O(log n). In particular, the above construction shows that this maximum
is achievable even for stable hereditary matrix families of speed at most factorial.

Furthermore, as a consequence of Conjecture 1.1, [6] speculates that the randomized communication complexity of
every hereditary property of Boolean matrices M with at most factorial speed has a gap behavior, either R(M) = O(1)
or R(M) = £2(log log n). We refute this weaker conjecture as well. In particular, Theorem 3.1, proved in Section 4, shows
that for every growing function w(n) < 1073 logn, there exists a matrix sequence M = (M, )sen Such that R(M,,) = w(n),
and every /n x +/n submatrix F of M, satisfies R(F) = O(1). As the proof of Theorem 1.2 demonstrates, if we take w(n)
to be any function that is w(1) and o(loglog(n)), then cl(M) is a hereditary matrix property with factorial speed and
R(M) = O(w(n)).

We present the proof of Theorem 1.2, which builds on Theorem 3.1, in Section 3.

Related work. Shortly after this paper was written, in a follow-up paper, [7] combined the ideas of this paper with an
information-theoretic counting argument to refute the Implicit Graph Conjecture.

2. Preliminaries

All logarithms in this article are in base 2. For a positive integer n, we denote [n] = {1, ..., n}. We use the standard
Bachmann-Landau asymptotic notations: O(-), £2(-), ©(-), o(-), and w(-).

The Cartesian product A x B of two sets A, B C [n] is called a combinatorial rectangle. We will need the following lower
bound on randomized communication complexity.

Definition 2.1. Let M be an n x n Boolean matrix, and let u be a probability distribution on [nn] x [n]. The discrepancy
of a combinatorial rectangle R C [n] x [n] under u is defined as

Disc, (M, R) = |Pr[m; = 1 and (i, j) € R] — Pr[m; = 0 and (i, j) € R]| .
" "

The discrepancy of M under p is defined as Disc, (M) = maxg{Disc, (M, R)}, where the maximum is over all combinatorial
rectangles R.

Theorem 2.2 ([9, Proposition 3.28]). Let M be an n x n Boolean matrix, and let u be a probability distribution on [n] x [n].
Then for every € > 0,

2¢
R%_G(M) > log m
In particular,
1
3Disc, (M)

As discussed in the introduction, stability is a necessary condition for a matrix sequence to satisfy R(M) = O(1). The
next proposition proves a second necessary condition: an upper bound on | cl(M),].

R(M) > log (1)

Proposition 2.3. The number of n x n matrices M with R(M) < ¢ is 202 nlogn),

Proof. Let M be an n x n Boolean matrix with R(M) < c. For every such M, there is a distribution w,; over deterministic
protocols 7 of cost ¢ such that

2
Pr [M(i,j) =n(i,j)] > = for all i, j.
T~ M 3

By the Chernoff bound, the error probability of the protocol can be reduced to strictly less than niz by sampling O(log n)
independent samples from wuy and outputting the majority outcome. Thus by union bound, there exists t = O(logn)
deterministic protocols 74, ..., m;, each of cost c, such that for every i and j,

M(i, j) = majority{m1(i, j), . . ., (i, )} (2)

Next, we show that the number of deterministic protocols of cost ¢ is at most 202", Every such protocol corresponds
to a binary tree of depth at most ¢, which has O(2¢) nodes. Every node is associated with one of the two players, and
the communicated bit is determined by the input of the corresponding player according to a function [n] — {0, 1}. Thus
there are 2"*! possible choices for each node of the tree. Overall, this bounds the number of such protocols by 2002

Finally, since every matrix M can be described in the form of Eq. (2), and there are 202 choices for each 7, the
number of such matrices is at most 202°1logn
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3. Proof of Theorem 1.2
The proof will rely on the following theorem, which involves a probabilistic argument presented in Section 4.

Theorem 3.1. Let w : N — N be a non-decreasing function satisfying w(n) — oo and w(n) < 1073 log(n). For every
sufficiently large n, there exists an n x n Boolean matrix M with the following properties.

(i) RIM) = w(n).
(ii) Every i/n x /n submatrix F of M satisfies R(F) = O(1).

Let w(n) = [10~3log(n)], and for every sufficiently large n, let M, be the matrix that is guaranteed to exist by
Theorem 3.1. For smaller values of n, let M, be an arbitrary n x n Boolean matrix and let M denote the corresponding
sequence. By Theorem 3.1(i), we have R(M) = ®(log(n)), and by Theorem 3.1 (ii), M is stable.

It remains to bound | cl(M)],. Let F be an n x n matrix in cl(M). There are two cases to consider:

1. F is a submatrix of an Mj for k > n?. In this case, by Theorem 3.1 (ii), R(F) = 0(1). So by Proposition 2.3, the
number of such matrices is bounded by 20("logm,
2. F is a submatrix of an M, with n < k < n?. The number of such matrices is at most

2\ 2
n2 (n ) — ZO(nlogn)'
n

We conclude that the total number of n x n matrices in cl(M) is 20187 35 desired.
4. Proof of Theorem 3.1

We will use a probabilistic argument to show the existence of an n x n matrix M that satisfies R(M) > w(n), and
the property (ii). Note that modifying a row of a matrix can change its randomized communication complexity by at
most 1. Hence, to guarantee R(M) = w(n), we can replace the rows of M to all-zero rows, one by one, until we achieve
R(M) = w(n). We will also show that for our construction, (ii) will remain valid under such modifications.

Let M = [m;jlnxn be selected uniformly at random from the set of all Boolean n x n matrices that have exactly rn
number of 1's where r = 23*(W < %01 Denote p = & =L to be the fraction of 1's.

Similarly, let M’ = [mlfj],,xn be the Boolean matrix with independent entries, where each entry mlfj = 1 with probability
p.

Lower-bounding R(M). Let € =
and thus R(M) is large.

Let My = {(i,j) | mj = 0} and M; = {(i,j) | mj = 1}, and define Mj and M similarly from the entries of M'. Define
the probability distribution u on [n] x [n] as

%. We will show that with high probability, the discrepancy of M is bounded by e,

1
wo (i) = { 2y
2(n—r)n

m; =1
m,'j=0

Note that u is defined so that it assigns a total measure of % uniformly to each of My and M.
Consider a fixed a x b combinatorial rectangle R C [n] x [n]. Then,

IRAMq| R — [RN M|

. [RNMq|  [RN Mol
Disc,(R) = - =
2rn 2(n—r1)n 2rm 2(n—r1)n
n|RN M;| — r|R| _ [RN M| — p|R| < |[R N My| — abp
2nr(n —r) 2r(n —r) - m '
Therefore,
Pr [Disc,(R) > €] < Pr[|[RN M| — abp| > ern] (3)
Note that

Pr[|[R N M| = abp + ern] < Pr[[RNM;| > abp + ern | [M;] = m]
- Pr[|RN M| > abp + ern]
Pr[|M;| = m]

(55 )2 -abp
=< exp -2 @ €rmn = Z—Q(szm)’
24+ abp
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m
where the last inequality is the Chernoff bound Pr[[RNMj| —u > 8u] < ez applied with parameters § = ern/abp and
= abp. Similarly,
Pr[|[RN M| < abp — ern] < Pr[[RNMj| < abp —ern | IM}| < ]
- Pr[|RN M| < abp — ern]
- Pr[|M]] < ]
< Z—Q(szrn)

where we applied the Chernoff bound Pr[[RNMj| — n < éu] < e~z with the same parameters as above. Taking the
union bound over the 22" rectangles R, and combining it with Eq. (3) and the bounds above, we obtain

Pr [Disc,(R) > €] < 227272(™ — o(1),

where we used the fact that € = ;—=, r = 2°™, and w(n) — oc. Namely, n = o(¢*rn). Finally, applying the discrepancy

w(n) *

lower bound of Eq. (1), we obtain that for sufficiently large n,
1
Pr[R(M) < w(n)] = Pr [R(M) <log 3:| < Pr[Disc, (M) > €] = o(1).
€

Verifying (ii). We prove that with probability 1 — o(1), for every a, b < /n, every a x b submatrix of M contains a row
or a column with at most four 1's. Note that the statement is trivial when min(a, b) < 4, and hence, we fix a, b > 4.

If a > b, then the probability that there is an a x b submatrix such that each of its a rows contains at least five 1’s is
bounded by

am2_5q a a
n ) n . (g) (rnfga) < na+b X @ ° < nza b >
a b (nz) = 2 = 12099
< p2-5x049 _ <1> )
n

where we used r = 23*(W < n%01 and g > 4. Similarly, if a < b, then the probability that there is an a x b submatrix such

that each of its b columns contains at least five 1's is bounded by o (4).

Thus by a union bound over the n choices of a, b < /n, the probability that there is a, b € [+/n] and an a x b submatrix
where every column or row contains at least five 1’s is bounded by o(1).

Now suppose that every a x b submatrix F of M contains a row or a column with at most four 1’s. We will show by
induction on a, b that in this case, every such F corresponds to the biadjacency matrix of a disjoint union of four bipartite
graphs that are all forests. The base case of a, b < 2 is trivial. Consider a row (or a column) with at most four 1’s, and
let eq, e,, e3, e4 be the edges corresponding to these (at most) four entries. Removing this row from F will result in a
smaller submatrix, which by induction hypothesis, can be written as the union of four forests 7y, 7, 73, 4. Now F can
be decomposed into the union of four forests F; U {e;} for i € [4].

The bound R(F) = 0O(1) follows by first observing that each forest is an edge-disjoint union of two graphs, each a
vertex-disjoint union of stars. Hence, it suffices to show that the biadjacency matrix of any vertex-disjoint union of stars
has O(1) randomized communication complexity. Suppose that G is a union of vertex-disjoint stars Sy, ..., S, with a
bipartition (U, V). Alice receives u € U and Bob receives v € V, and they want to decide whether (u, v) € E(G), which is
equivalent to whether u and v belong to the same star. To solve this problem, Alice maps her input u to the index i such
that u € S;. Similarly, Bob maps v to j such that v € S;. Now they can use the randomized communication protocol for Iy
to check whether i =j. This verifies (ii).

Finally, note that if F is a union of four forests, then replacing a row of F with an all-zero row will not violate this
property.
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