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Abstract

Adventitious agents present significant complications to biopharmaceutical manufacturing. Adventitious
agents include numerous lifeforms such as bacteria, fungi, viruses, mycoplasma, and others that are
inadvertently introduced into biological systems. They present significant problems to the stability of cell
cultures and the sterility of manufacturing products. In this review, detection methods for bacteria,
viruses, and mycoplasma are comprehensively addressed. Detection methods for viruses include
traditional culture-based methods, electron microscopy studies, in vitro molecular and antibody assays,
sequencing methods (massive parallel or next generation sequencing), and degenerate PCR (polymerase
chain reaction). Bacteria, on the other hand, can be detected with culture-based approaches, PCR, and
biosensor-based methods. Mycoplasma can be detected via PCR (including specific kits), microbiological
culture methods, and enzyme-linked immunosorbent assays (ELISA). This review highlights the
advantages and weaknesses of current detection methods while exploring potential avenues for further
development and improvement of novel detection methods. Additionally, a brief evaluation of the
transition of these methods into the gene therapy production realm with a focus on viral titer monitoring

will be presented.

Keywords: Adventitious Agent Detection, Mycoplasma, Virus, Bacteria, Biological products, Viral

vaccines, Product safety.
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Introduction:

The World Health Organization (WHO) defines adventitious agents as microorganisms that have
been unintentionally introduced into the manufacturing process of a biological medicine [1]. These
microorganisms can be introduced throughout the manufacturing process including through starting
materials and via human intervention [1]. Thus, regulatory agencies require testing for adventitious agents
at various stages of the process. If an adventitious agent is detected, it is important to determine its
species, origin, and evaluate its potential for human infection [1]. However, despite extensive efforts to
detect adventitious agents, some have still been found in pharmaceutical products such as the presence of
Porcine Circovirus 1 (PCV1) in a commercial rotavirus vaccine and novel rhabdovirus in the Sf9 cell line

[2-4]. Thus, it is still challenging to efficiently detect adventitious agents using conventional methods.

It is important to note that none of the currently available methods represents a true, “ideal”
detection method. The “ideal” detection method would be able to use minimal sample, detect all known
adventitious agents and be able to identify potentially unknown agents, have a small limit of detection, be
inexpensive, and be able to produce results in real-time or very rapidly. The required limit of detection
will depend upon the agent. For example, well known human pathogens must be detected at smaller
LODs to ensure patient safety and to meet regulatory requirements [1]. Thus, the development of novel,
sensitive detection methods is of paramount importance to the pharmaceutical industry. The aim of this
review is to assess traditional and novel detection methods for adventitious agents. These detection
methods will range from simplistic to highly developed techniques. In addition, the adaptation of these
methods from adventitious agent detection to use in other applications such as gene therapeutics

production will be briefly noted.

Traditional Detection Methods:
Traditionally, bacteria and mycoplasma have been detected by culturing a sample of supernatant
on agar medium [6]. Bacteria and mycoplasma may also be detected following the inoculation of

embryonic chicken eggs via the yolk sac route [7]. Viruses, however, have been traditionally detected via
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animal inoculation [5]. Additionally, cell culture may also reveal virus contamination if cytopathic effects
are observed. Finally, a hemadsorption (HAD) test may be performed, but this test can only be performed
on specific virus types [8, 9]. These traditional detection methods for viruses, mycoplasma, and bacteria
are slow, laborious processes. Furthermore, these methods often do not identify the contaminating agent
but simply confirm that an agent is present. Also, without the use of an established laboratory, labor and

equipment costs to perform cell culture or animal inoculation tests can become expensive.

Microscopy Detection Methods:

Microscopy techniques are often used in parallel to traditional methods as a complementary or
orthogonal detection method. Historically, bacteria have been directly observed using light microscopes
whereas the effect of viruses on cell phenology has been observed as an indirect detection method [11,
12]. Finally, mycoplasma cannot be seen when the optics of a light microscope are focused on the cell
monolayer but may be seen at the air/medium interface [12]. However, in recent years, more advanced
microscopy detection methods have been developed for the detection of bacteria, mycoplasma, and

viruses.

Electron Microscopy:

Electron microscopy has existed since the 1930s and has been used for the study of viruses since
that time [13]. Transmission electron microscopy (TEM) offers higher resolution than traditional light
microscopy and is the only imaging technique that allows for the direct visualization of viruses [14]. TEM
can be used to document the presence of retroviruses and retrovirus-like particles and gauge the
concentration of viral particles [14]. Thus, regulatory agencies have required the use of orthogonal
methods to confirm the presence of contaminants including the use of TEM [12, 14]. Additionally, TEM

has proven essential in identifying novel viruses and sub-types of viruses [12].

Images from TEM enable for exhaustive analysis for virus particles and present a “catch-all”

method for identifying adventitious viruses [13]. However, this analysis is labor intensive. Thus, a novel
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method presented by Ito et. al (2018) uses a fully convolutional neural network (FCN) approach to detect
viral particles from TEM images [13]. Based on Ito et. al (2018), this FCN detection method
outperformed similar methods used for the detection of viral particles within TEM images. As a
complementary technique to TEM, immuno-electron microscopy (IEM) can be used for virus
identification [15]. IEM can work directly with raw serum which minimizes sample preparation time.
Thus, electron microscopy provides a method for detection and identification of adventitious virus

particles.

However, microscopy techniques tend to have higher limits of detection and are highly dependent
on the homogeneity of the medium being sampled. Additionally, exceedingly small samples are used for
detection, and, therefore, only a small fraction (or none) of a specific contaminant may be in the field of
view if the concentration of the contaminant is exceptionally low. If, however, samples are
preconcentrated with membrane filtration or similar methods, this problem may be minimized. This
would increase the cost and time of this technique. Table 1 summarizes the historical methods and table 2

summarizes all the microscopy methods presented herein.

Fluorescence Microscopy and Other Optical Methods:

Technological developments in recent years have led to the development of portable microscopy
[16]. For example, a smartphone-based fluorescence microscopy method has been developed to enable
imaging of various fluorescently labeled objects such as viruses and bacteria [16]. Shrivastava et. al
(2018) has presented a smartphone fluorescent microscopy-based detection and quantification method for
bacteria from liquid samples [17]. Other smartphone-based detection methods for adventitious agents can
be performed based on colorimetric, turbidity, pH, or luminescence-based endpoints [16]. A unique
feature of these methods is that they can be used in real-time. Real-time detection can be implemented
using fluorescent measurements or bioluminescence detection and periodical measurements. These
smartphone detection methods have been applied in virus and bacteria detection and present a unique

platform for adventitious agent detection. Table 3 summarizes these smartphone-based detection methods.
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Immunoassays:

Immunoassays such as an enzyme-linked immunosorbent assays (ELISA) are a classical method
for detecting and identifying adventitious agents [18, 19]. Recent publications highlight the development
of novel immunoassays that present advantages over traditional ELISA. One such method, as presented
by Pankratov et. al (2020), uses a cellulase-linked immunomagnetic assay for bacterial analysis [18]. This
method, as described by the authors, could detect a single E. coli cell which shows the high sensitivity

and specificity of the method [18].

Other immunoassays include cell-based activation immunoassays, lateral flow test strip
immunoassays, immunochromatographic assays, and magnetophoretic immunoassays [15, 20]. These
assays present advantages in detecting adventitious agents. The immunochromatographic assay presented
by Li et. al (2018) was able to specifically detect E. coli cells in various sample types [21]. The cell-based
activation immunoassay presented by Bar-Haim et. al (2018) can detect various bacteria and virus types
faster than traditional ELISA [22]. Additionally, the lateral flow test strip immunoassays presented by
Tominga et. al (2018) could detect and distinguish 72 distinct types of bacteria [19]. Finally, the
magnetophoretic immunoassay presented by Kim et. al (2017) could detect the growth of a mycoplasma
strain with lower false positives than other methods [20]. The major limitation of ELISA and other
immunoassays is the need for prior knowledge of the adventitious agent. Table 4 summarizes the

immunoassays presented herein.

PCR Methods:

Over the last 20 years, polymerase chain reaction (PCR) has been accepted as a gold standard for
detecting various nucleic acid-based adventitious agents in pharmaceutical products [23]. Besides
traditional PCR, real-time PCR, Droplet Digital PCR (ddPCR), multiplex PCR, and microfluidic PCR
have been developed. Real-time PCR assays based on Primer-Probe Energy Transfer (PriProET) have
more robust diagnostic capability as they require a shorter conserved region for hybridization making it

less susceptible to single point mutations [24-26]. It is suitable for routine screening methods for raw
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materials, cell banks, viral and vector seeds bank and animal materials. A virus-specific PCR test just
prior to bioreactor harvest has successfully detected and identified a virus contaminant preventing further
virus spread and reducing the financial burden of a complete shut down [27-29]. However, prior
knowledge of the genome sequence of the virus, bacteria, or mycoplasma is essential to design specific

primers [30].

The development of multiplex real-time PCR has enabled differentiation and quantification of
viral or bacterial contaminants in a single assay. The risk of carrying-over contaminations is also reduced
[31]. It provides increased throughputs and an increase in the number of targets tested in a single reaction
by detecting co-infections [32, 33]. This PCR technique is often combined with other methods to detect
adventitious agents. Proximity ligation allows for the detection of infectious agents by recognizing an
antigen on the viral or bacterial surface with antibodies bound to DNA strands [29, 34]. Also, degenerate
oligonucleotide primed (DOP) PCR can be used for non-specific amplification of a DNA sample and is
often combined massive parallel sequencing [35, 36]. The digital droplet PCR (ddPCR) is a newly
developed PCR technique which enables absolute quantification of target nucleic acids without the need
of a standard curve [37, 38]. High throughput dd-PCR is available but needs better standardization and

validation.

In addition to PCR, developments in biosensors have presented a unique technique for the
detection of bacteria, mycoplasma, and viruses [39, 40]. The Ibis T5000 Universal Biosensor allows for
sensitive and specific identification of microbial contaminants [41]. The technology is based on the
coupling of broad-range PCR and electrospray ionization-mass spectrometry (ESI-MS) [40, 41]. DNA is
amplified using family-specific PCR primers targeting organisms of interest. The various nucleic acids
that exist in the sample are accurately measured by mass spectrometry and identified utilizing a database
of sequence base composition of known microorganisms [40-42]. This enables broad adventitious agent

investigation with PCR primers developed for a wide array of both known and unknown bacterial,
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mycoplasma, and viral species [43]. However, the method does not determine whether the contaminant is

viable or not and thus needs further validation [44, 45].

High Throughput Sequencing (HTS):

High-throughput sequencing (HTS) allows for comprehensive detection for potential microbial
contaminants including unknown viruses [46]. HTS detects the presence of any unexpected sequences
that exist in a sample via non-specific massive sequencing and identifies the detected sequence by
mapping the sequence to an existing database [47]. Multiple studies have proven that the sensitivity of
HTS was comparable to that of qPCR assays [48, 49]. However, HTS is a complicated technology which
involves various upstream sample handling process, different sequencing platforms, bioinformatic
analysis tools and databases; therefore, development of control and method standardization is an essential

requirement for future HT'S to be considered as an ideal detection method [50].

The sensitivity of HTS is often influenced by genomic size, structure, and relative efficiencies in
reverse transcription and cDNA synthesis in the case of RNA viruses [51, 52]. The difference in
sensitivity of viral detection demonstrated in the multicenter study highlights the importance of enhancing
sample preparation/processing strategies and the development of reference materials [50]. Furthermore,
infectivity assays need to be combined as the hits identified by HTS analysis does not confirm whether
the contaminant is viable or not. A comprehensive standardization in sample preparation, sequencing
platform, reference materials, bioinformatics, and databases are critical for the future of adventitious

agent detection [53-55].

Finally, a recent rise of Oxford Nanopore’s MinlON sequencing device has created a paradigm
shift. The sequencing is based on the measurement of changes in electrical conductivity generated by
different bases as the DNA strand is drawn to a nanopore. This affordable, pocket-sized MinlON provides
real-time long-read sequencing allowing for the detection of both known and unknown species [56-58].

With recent improvements in performance and further validation, it could be a viable option for
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adventitious agent detection where immediate action is required. A summary of the PCR methods, HTS,

and biosensors can be found in tables 4 and 5.

Discussion and Conclusions:

This review has presented both historical and more novel detection methods. From the presented
tables and figure 1, methods with lower specificity and lower sensitivity tend to have lower costs
associated with them whereas more robust, sensitive, and specific methods tend to have higher costs.
Thus, it is the burden of the researcher to choose whether to incur the higher costs of specific methods at
the price of reduced experimentation or to enjoy more experimentation with the risk of lower sensitivity.
Additionally, each method presents wildly different limits of detection. Without clear guidance from
regulatory agencies and given the fact that some adventitious agents may not be well understood, it is
difficult to know whether a low limit of detection is necessary and worth the cost of some of the more
sensitive methods. Thus, continuous efforts in improving detection methods including reducing costs,
expanding sensitivity and specificity, and gaining better insight on the requirements by regulatory

authorities is still of paramount importance in the pharmaceutical industry.

Currently, it appears that real-time PCR, high throughput sequencing, and some biosensors are
the closest to “ideal” detection methods and further development of these methods may be the future of
adventitious agent detection. The limited capability to detect a broad spectrum of both known and
unknown agents by PCR-based method needs to be addressed to become more effective and versatile.
High throughput platform development using the combination of family-specific primers and specific
primer sets can be devised to detect a wide range of agents in a single assay. Moreover, further
improvements in performance, speed, affordability, convenience, method standardization, and the

establishment of reference materials would make gene sequencing a more attractive approach.

With such a broad variety of detection methods available, it is possible to consider the adaptation
of these methods to other uses. As an example, some of the methods presented herein could be adapted

for use in the production of gene therapeutics. This transition could lead to better manufacturing
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techniques and yield significant opportunities for quality by design in gene therapeutic products.
Specifically, as gene therapeutics use lentiviral or other virus-type delivery platforms, the use of real-time
virus detection methods with quantification could lead to the ability to track the productivity of a gene
therapy manufacturing platform. The methods presented previously that could fit this description (with
some modification) include real time PCR, real-time immunoassays, and biosensors such as the Ibis
T5000 Universal Biosensor. The ability to accurately monitor the production of viral vectors for gene
therapeutics could enable for better process decisions and enhanced manufacturing techniques. Thus, the
continued development of detection methods for adventitious agents is not only beneficial for safety and
quality of pharmaceutical products, but it is also a potential avenue to enhance the manufacturing of

future therapeutic products such as gene therapeutics.
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Figure Legends

Figure 1: Comparison of Detection Techniques: The above chart shows the advantages of each of the
detection techniques (red box) described previously along with the pre-processed materials (blue box).
The chart shows that no one method has all the characteristics of an “ideal” detection method. Thus,
further development in detection techniques may be able to provide a detection method that is closer to an
“ideal” method.
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Figure 1: Comparison of Detection Techniques: The above chart shows the advantages of each of the
detection techniques described previously. The chart shows that no one method has all the characteristics
of an “ideal” detection method. Thus, further development in detection techniques may be able to provide
a detection method that is closer to an “ideal” method.



Table 1: Adventitious Agent Detection Methods

Method: Description Advantages Limitations Limit of Detection Cost? Time Reference(s)
Supernatant is added to | Simple; Time consuming
agar medium and Accepted by process; Does not
. : . . " _
Growth on Agar Medium a!lowed to |n.cubate regula.tory |denF|fy the 1 CFU (Sutton, 2011) $1.50-$2.50° per 12 hours — 14 67
either aerobically or agencies; Well species of the plate days
anaerobically for a studied and adventitious
period documented. agent
Animals (such as mice,
rats, rabbits, etc.) are .
inoculated with a small Effective; Ethical concerns; ii gZZZ’r\I;!:zsdbbased $475-$990° per
Animal Inoculation amount of virus Accepted by Expensive; Time ¥ test (rabbit 2-3 hours 5,89
- . . researcher (ERSA
containing material and FDA consuming . pyrogen test)
. journal)
observed for signs of
iliness
Culture medium is ) .
replaced with a Time consuming,
; no information on . $34 - $75 per test
suspension of tvoe of Dependent on viral (supplies and
Hemadsorption Test erythrocytes, and, if the | Well understood Yp particle and presence PP 1 hour 5
. . viruses/only can . L labor) (Newton,
cells are infected with . of viral hemagglutinin
. be used on certain 2002)
virus, the erythrocytes viruses
will adhere to the cells
s100-5100000
sus e?ted to be 1 CFU; Must be (depends on
Cell Culture conFt)aminated and Simple Time consuming estimated for specific available 2 — 14 days 5,6, 8-10
. experiments (Sutton) equipment and
observed for cytopathic .
supplies)

effects and turbidity.

2Price obtained from Thermo Fisher Scientific, Waltham, MA ®Price from Institute for In Vitro Sciences, Gaithersburg, MD




Table 2: Microscopy Methods

Method Description Advantages Limitations Limit of Detection Cost®® Time Reference(s)
200 nm size (Sutton
Specimens are observed No information .
P . . ) ) 2011) or 200,000 10-30 min.
. . under light microscope Simple, well on species of . $200 - $5,000° .
Light Microscopy . . . L particles per square . (depending on | 10-12
with or without oil understood contaminating . ) (for microscope) .
immersion agent millimeter (Forouhi preparation)
g 2020)
3 hours -14
. Allows for the $2,000,000° or
Specimens are observed . . . days for
. .. direct Expensive higher for the N
via a transmission . . . <10 nm (Sutton 2011) - fixation,
. visualization of equipment, . microscope, $200¢ .
. electron microscope . ; (specimens must be ; embedding,
Transmission Electron . viruses, can be complex, Time per specimen for o
. and a high voltage . . prepared) o . sectioning, 12-14
Microscopy - used with consuming fixation (off-site), L
electron beam is used . 10E7 pfu/mL staining, and
. difficult to detect | sample . $100-$200¢ for : .
to create an image of . (Rayjonec, 2019) . imaging (on-
. or unknown preparation use of microscope . .
the specimen. . . site or off-site
viruses (off-site) .
preparation)
$50,000 -
A sample is suspended 1,000,000° for
. p P . 3 . 3 hours -14
in a suitable medium Complex sample microscope davs for
(such as phosphate P . P $100 for specimen . 4 .
; . preparation, . fixation,
buffered saline) and Used extensively ) . preparation (off- .
. . . . previous 10° - 107 particles per . embedding,
Immunoelectron antiserum is added. The | for the diagnosis . site), $50-$65¢ for L
. . . o . knowledge of the | mL (Li 2013) or 10E4 ' sectioning, 14
Microscopy mixture is warmed, of viral infections . specimen L
. appropriate PFU/mL (Baca 2015) . staining, and
centrifuged, and the (est. 1940s) L mounting and ; .
antibodies to be imaging (on-

pellet is examined by
negative stain electron
microscopy.

used required

coating (off-site),
$100-$200¢ for
use of microscope
(off-site)

site or off-site
preparation)

2Price obtained from Olympus Life Sciences, Waltham, MA Price obtained from TSS Microscopy, Hillsboro, OR, “Price obtained from Indiana University, Bloomington, IN




Table 3: Smart-phone based and Biosensor-based Methods

Method Description Advantages Limitations Limit of Detection Cost? Time Reference(s)
Samples are fixed and
stained on glass slides
(using a fluorescent-in-
situ-hybridization
approach with pre- _
designed rRNA- Detection Smin =1
Smartphone-based targeting PNA probes) Compact, limitations, 10 CFU/mL hour
. lightweight, cost- . ! A $2,000 or greater? (Young- 17
Fluorescence Microscopy and then are analyzed . X requires PNA (Shrivastava, 2018) -
. effective, simple Ho Shin et
directly on the probes al 2021)
smartphone screen. The
smartphone is
integrated with a 3D
printed optomechanical
attachment.
Smartphone-based
Optical Methods rely on
certain endpoints such
as pH, turbidity, color,
etc. for a measurement Low-throughout
to be determined. With ughput, S5min—1
each of these methods Compact, low sensitivity, hour
Smartphone-based Optical o ’ ) - additional 20 CFU/mL (Nelis,
something like a lightweight, $2,000 or greater? (Young- 16
Methods . components 2020) .
smartphone microplate portable . Ho Shin et
sometimes
reader or other . al 2021)
required

connected/accessory
device may be used to
quantify the desired
endpoint based on a
picture.

aPrice obtained from ioLight, Hicksville, NY




Table 4: Immunoassays

Method:

Description

Advantages

Limitations

Limit of Detection

Costbed

Time

Reference(s)

Cellulase-linked
immunomagnetic assay

This assay utilizes a
sandwich antibody
(Ab/aptamer-bacterium-
Ab/aptamer) labelled
with cellulase assembled
on a micrometer sized
magnetic bead applied to
a nitrocellulose-
modified-film. The
cellulase then digests the
nitrocellulose film which
changes the electrical
properties of the
electrodes. This change
can be measured.

High sensitivity,
high specificity

Needs to be
assessed for more
species

Detection of a Single
E. Coli cell [25]

$515/100 assays®

15 min-3
hours (RB
Jamal
2020)

18

Cell-Based Activation
Immunoassay

B- or T- lymphocytes or
monocytes and
granulocytes are used to
detect and quantify
specimens in samples.

Quick, high
specificity

Prior information
required, complex

10° CFU/mL

$300 - $700¢

24 hours

22

Lateral Flow Test Strip
Immunoassay/ Immuno-
chromatographic Assay

A liquid moves via
capillary action through
polymeric strips on
which molecules that can
interact with the analyte
are attached.

Low cost, simple,
rapid

Low sensitivity

10%-10° CFU/mL
(Zieglar 2020)

$110/10 assays?
$1,660/100 tests®

15 min
(RB Jamal
2020)

19

Magnetophoretic
Immunoassay

An immunoassay (similar
to ELISA) that uses
magnetic beads,
radioisotopes, or
fluorescent labels to
detect a specific analyte.
A magnetic label is
conjugated to either the
antibody or antigen and
a magnetic reader is
used to record the
magnetic change
induced by the beads.

High specificity,
can be fully
automated, rapid

Required
conjugation of
magnetic beads

0.3 pM or 5-50
CFU/mL

$1,400 or greater*

<3 hours
(RB Jamal
2020)

20

3Price obtained from Thermo Fisher Scientific, Waltham, MA, Price obtained from Abcam plc., Cambridge, UK, °Price obtained from Tiger Medical, Inc, Irvington, NJ,

9Price obtained from RayBiotech, Inc, Peachtree Corners, GA




Table 5: PCR and HTS

Method Description Advantages Limitations Limit of Detection Cost Time Reference(s)

Processed sample is
amplified with specific
primer set and a probe, No unknown
and Ct value is assessed Sensitive, specific detection, no $15,0007 - $80,000° 30min—2

Real time-PCR for identification and . ! ’ | information on 1- 10 copies/pl $1-5/reaction 23-25
compared with quick infectivity, semi- hours
standards for semi- quantitative
quantification in real-
time.
With multiple non-
interfering primer sets, Primer

: . Increased . a b

PCR rear?'tlons targeting throughput, |n'te.rference, $15,090 - $80,009

Multiplex PCR for multiple sequ.en.ce Reduced carrying lef.lcu.lt . 10 - 30 copies/ul Reacthn cost varies 1-3 hours | 32,33
are performed within optimization and depending on the
the same well, which are over - validation, semi- number of targets

. contamination -

detected by different quantitative
probes.
A nucleic acid sample is
partitioned in water-in-
oil droplets in which PCR | Sensitive,
reactions occur. After reproducible,
PCR amplification, the Absolute More expensive,
S - Quote requested®

Droplet Digital PCR lndl.\/l.dual quoresc.ent quantitation, no n.10re hand.s-on 1 copy/ul $3-5/reaction 3 hours 37,38
positive and negative standard curve time, restricted
droplets are quantified required, dynamic range
via Poisson distribution insensitive to PCR
to determine the inhibitors
number of DNA copies in
the starting sample.
Samples are screened for Time consuming,
presence of any complicated,
unexpected sequence large breadth of standardization

. via non-specific massive detection, and reference . . . .

?;i:!:;%ugghpm sequencing and the unknown material 10 copies/reaction 258({,10(;80;12(;,000" ig;ﬁz 46-48, 50-54
detected sequence is detection, high establishment, ’
identified by mapping throughput No information
the sequence to the on contaminant
existing database. viability
Target DNA strand is Low cost, small 10 copies/reaction

. . . . . L Full: 6-10
drawn into nanopore, size, direct High quality and *LOD is inversely . . hours
. and each DNA base is sequencing, real high copy proportional to 1,000 - $285,455¢ .

MinlON Sequencer identified by measuring time data number required | turnaround time. With | $90 - 1,600/sample QL,“Ck:llo 56,57,58

different electrical collection and high-copy, quick hmc;zr_

conductivities.

analysis, fast

detection is possible




2Price obtained from Qiagen, Hilden, Germany, "Price obtained from Thermo Fisher Scientific, Waltham, MA, Price obtained from Bio-Rad Laboratories, Hercules, CA

dPrice obtained from lllumina, San Diego, CA, ¢Price obtained from Oxford Nanopore Technologies, Oxford, UK
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