1 Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma 2 3 Caitlin Morris\*,1, Yong Suk Lee\*,1, Seongkyu Yoon1,# 4 5 <sup>1</sup>Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 6 7 \*Both Authors Contributed Equally # Corresponding Author: 8 9 Seongkyu Yoon (Seongkyu\_Yoon@uml.edu) 1 University Ave, Lowell MA 01854 10 Phone: 978-934-4741 11 Fax: 978-934-3047 12 13

Abstract

Adventitious agents present significant complications to biopharmaceutical manufacturing. Adventitious agents include numerous lifeforms such as bacteria, fungi, viruses, mycoplasma, and others that are inadvertently introduced into biological systems. They present significant problems to the stability of cell cultures and the sterility of manufacturing products. In this review, detection methods for bacteria, viruses, and mycoplasma are comprehensively addressed. Detection methods for viruses include traditional culture-based methods, electron microscopy studies, in vitro molecular and antibody assays, sequencing methods (massive parallel or next generation sequencing), and degenerate PCR (polymerase chain reaction). Bacteria, on the other hand, can be detected with culture-based approaches, PCR, and biosensor-based methods. Mycoplasma can be detected via PCR (including specific kits), microbiological culture methods, and enzyme-linked immunosorbent assays (ELISA). This review highlights the advantages and weaknesses of current detection methods while exploring potential avenues for further development and improvement of novel detection methods. Additionally, a brief evaluation of the transition of these methods into the gene therapy production realm with a focus on viral titer monitoring will be presented.

- **Keywords:** Adventitious Agent Detection, Mycoplasma, Virus, Bacteria, Biological products, Viral
- 30 vaccines, Product safety.

#### Introduction:

The World Health Organization (WHO) defines adventitious agents as microorganisms that have been unintentionally introduced into the manufacturing process of a biological medicine [1]. These microorganisms can be introduced throughout the manufacturing process including through starting materials and via human intervention [1]. Thus, regulatory agencies require testing for adventitious agents at various stages of the process. If an adventitious agent is detected, it is important to determine its species, origin, and evaluate its potential for human infection [1]. However, despite extensive efforts to detect adventitious agents, some have still been found in pharmaceutical products such as the presence of Porcine Circovirus 1 (PCV1) in a commercial rotavirus vaccine and novel rhabdovirus in the Sf9 cell line [2-4]. Thus, it is still challenging to efficiently detect adventitious agents using conventional methods.

It is important to note that none of the currently available methods represents a true, "ideal" detection method. The "ideal" detection method would be able to use minimal sample, detect all known adventitious agents and be able to identify potentially unknown agents, have a small limit of detection, be inexpensive, and be able to produce results in real-time or very rapidly. The required limit of detection will depend upon the agent. For example, well known human pathogens must be detected at smaller LODs to ensure patient safety and to meet regulatory requirements [1]. Thus, the development of novel, sensitive detection methods is of paramount importance to the pharmaceutical industry. The aim of this review is to assess traditional and novel detection methods for adventitious agents. These detection methods will range from simplistic to highly developed techniques. In addition, the adaptation of these methods from adventitious agent detection to use in other applications such as gene therapeutics production will be briefly noted.

### Traditional Detection Methods:

Traditionally, bacteria and mycoplasma have been detected by culturing a sample of supernatant on agar medium [6]. Bacteria and mycoplasma may also be detected following the inoculation of embryonic chicken eggs via the yolk sac route [7]. Viruses, however, have been traditionally detected via

animal inoculation [5]. Additionally, cell culture may also reveal virus contamination if cytopathic effects are observed. Finally, a hemadsorption (HAD) test may be performed, but this test can only be performed on specific virus types [8, 9]. These traditional detection methods for viruses, mycoplasma, and bacteria are slow, laborious processes. Furthermore, these methods often do not identify the contaminating agent but simply confirm that an agent is present. Also, without the use of an established laboratory, labor and equipment costs to perform cell culture or animal inoculation tests can become expensive.

# Microscopy Detection Methods:

Microscopy techniques are often used in parallel to traditional methods as a complementary or orthogonal detection method. Historically, bacteria have been directly observed using light microscopes whereas the effect of viruses on cell phenology has been observed as an indirect detection method [11, 12]. Finally, mycoplasma cannot be seen when the optics of a light microscope are focused on the cell monolayer but may be seen at the air/medium interface [12]. However, in recent years, more advanced microscopy detection methods have been developed for the detection of bacteria, mycoplasma, and viruses.

## Electron Microscopy:

Electron microscopy has existed since the 1930s and has been used for the study of viruses since that time [13]. Transmission electron microscopy (TEM) offers higher resolution than traditional light microscopy and is the only imaging technique that allows for the direct visualization of viruses [14]. TEM can be used to document the presence of retroviruses and retrovirus-like particles and gauge the concentration of viral particles [14]. Thus, regulatory agencies have required the use of orthogonal methods to confirm the presence of contaminants including the use of TEM [12, 14]. Additionally, TEM has proven essential in identifying novel viruses and sub-types of viruses [12].

Images from TEM enable for exhaustive analysis for virus particles and present a "catch-all" method for identifying adventitious viruses [13]. However, this analysis is labor intensive. Thus, a novel

method presented by Ito et. al (2018) uses a fully convolutional neural network (FCN) approach to detect viral particles from TEM images [13]. Based on Ito et. al (2018), this FCN detection method outperformed similar methods used for the detection of viral particles within TEM images. As a complementary technique to TEM, immuno-electron microscopy (IEM) can be used for virus identification [15]. IEM can work directly with raw serum which minimizes sample preparation time. Thus, electron microscopy provides a method for detection and identification of adventitious virus particles.

However, microscopy techniques tend to have higher limits of detection and are highly dependent on the homogeneity of the medium being sampled. Additionally, exceedingly small samples are used for detection, and, therefore, only a small fraction (or none) of a specific contaminant may be in the field of view if the concentration of the contaminant is exceptionally low. If, however, samples are preconcentrated with membrane filtration or similar methods, this problem may be minimized. This would increase the cost and time of this technique. Table 1 summarizes the historical methods and table 2 summarizes all the microscopy methods presented herein.

#### Fluorescence Microscopy and Other Optical Methods:

Technological developments in recent years have led to the development of portable microscopy [16]. For example, a smartphone-based fluorescence microscopy method has been developed to enable imaging of various fluorescently labeled objects such as viruses and bacteria [16]. Shrivastava et. al (2018) has presented a smartphone fluorescent microscopy-based detection and quantification method for bacteria from liquid samples [17]. Other smartphone-based detection methods for adventitious agents can be performed based on colorimetric, turbidity, pH, or luminescence-based endpoints [16]. A unique feature of these methods is that they can be used in real-time. Real-time detection can be implemented using fluorescent measurements or bioluminescence detection and periodical measurements. These smartphone detection methods have been applied in virus and bacteria detection and present a unique platform for adventitious agent detection. Table 3 summarizes these smartphone-based detection methods.

## Immunoassays:

Immunoassays such as an enzyme-linked immunosorbent assays (ELISA) are a classical method for detecting and identifying adventitious agents [18, 19]. Recent publications highlight the development of novel immunoassays that present advantages over traditional ELISA. One such method, as presented by Pankratov et. al (2020), uses a cellulase-linked immunomagnetic assay for bacterial analysis [18]. This method, as described by the authors, could detect a single *E. coli* cell which shows the high sensitivity and specificity of the method [18].

Other immunoassays include cell-based activation immunoassays, lateral flow test strip immunoassays, immunochromatographic assays, and magnetophoretic immunoassays [15, 20]. These assays present advantages in detecting adventitious agents. The immunochromatographic assay presented by Li et. al (2018) was able to specifically detect *E. coli* cells in various sample types [21]. The cell-based activation immunoassay presented by Bar-Haim et. al (2018) can detect various bacteria and virus types faster than traditional ELISA [22]. Additionally, the lateral flow test strip immunoassays presented by Tominga et. al (2018) could detect and distinguish 72 distinct types of bacteria [19]. Finally, the magnetophoretic immunoassay presented by Kim et. al (2017) could detect the growth of a mycoplasma strain with lower false positives than other methods [20]. The major limitation of ELISA and other immunoassays is the need for prior knowledge of the adventitious agent. Table 4 summarizes the immunoassays presented herein.

#### PCR Methods:

Over the last 20 years, polymerase chain reaction (PCR) has been accepted as a gold standard for detecting various nucleic acid-based adventitious agents in pharmaceutical products [23]. Besides traditional PCR, real-time PCR, Droplet Digital PCR (ddPCR), multiplex PCR, and microfluidic PCR have been developed. Real-time PCR assays based on Primer-Probe Energy Transfer (PriProET) have more robust diagnostic capability as they require a shorter conserved region for hybridization making it less susceptible to single point mutations [24-26]. It is suitable for routine screening methods for raw

materials, cell banks, viral and vector seeds bank and animal materials. A virus-specific PCR test just prior to bioreactor harvest has successfully detected and identified a virus contaminant preventing further virus spread and reducing the financial burden of a complete shut down [27-29]. However, prior knowledge of the genome sequence of the virus, bacteria, or mycoplasma is essential to design specific primers [30].

The development of multiplex real-time PCR has enabled differentiation and quantification of viral or bacterial contaminants in a single assay. The risk of carrying-over contaminations is also reduced [31]. It provides increased throughputs and an increase in the number of targets tested in a single reaction by detecting co-infections [32, 33]. This PCR technique is often combined with other methods to detect adventitious agents. Proximity ligation allows for the detection of infectious agents by recognizing an antigen on the viral or bacterial surface with antibodies bound to DNA strands [29, 34]. Also, degenerate oligonucleotide primed (DOP) PCR can be used for non-specific amplification of a DNA sample and is often combined massive parallel sequencing [35, 36]. The digital droplet PCR (ddPCR) is a newly developed PCR technique which enables absolute quantification of target nucleic acids without the need of a standard curve [37, 38]. High throughput dd-PCR is available but needs better standardization and validation.

In addition to PCR, developments in biosensors have presented a unique technique for the detection of bacteria, mycoplasma, and viruses [39, 40]. The Ibis T5000 Universal Biosensor allows for sensitive and specific identification of microbial contaminants [41]. The technology is based on the coupling of broad-range PCR and electrospray ionization-mass spectrometry (ESI-MS) [40, 41]. DNA is amplified using family-specific PCR primers targeting organisms of interest. The various nucleic acids that exist in the sample are accurately measured by mass spectrometry and identified utilizing a database of sequence base composition of known microorganisms [40-42]. This enables broad adventitious agent investigation with PCR primers developed for a wide array of both known and unknown bacterial,

mycoplasma, and viral species [43]. However, the method does not determine whether the contaminant is viable or not and thus needs further validation [44, 45].

## High Throughput Sequencing (HTS):

High-throughput sequencing (HTS) allows for comprehensive detection for potential microbial contaminants including unknown viruses [46]. HTS detects the presence of any unexpected sequences that exist in a sample via non-specific massive sequencing and identifies the detected sequence by mapping the sequence to an existing database [47]. Multiple studies have proven that the sensitivity of HTS was comparable to that of qPCR assays [48, 49]. However, HTS is a complicated technology which involves various upstream sample handling process, different sequencing platforms, bioinformatic analysis tools and databases; therefore, development of control and method standardization is an essential requirement for future HTS to be considered as an ideal detection method [50].

The sensitivity of HTS is often influenced by genomic size, structure, and relative efficiencies in reverse transcription and cDNA synthesis in the case of RNA viruses [51, 52]. The difference in sensitivity of viral detection demonstrated in the multicenter study highlights the importance of enhancing sample preparation/processing strategies and the development of reference materials [50]. Furthermore, infectivity assays need to be combined as the hits identified by HTS analysis does not confirm whether the contaminant is viable or not. A comprehensive standardization in sample preparation, sequencing platform, reference materials, bioinformatics, and databases are critical for the future of adventitious agent detection [53-55].

Finally, a recent rise of Oxford Nanopore's MinION sequencing device has created a paradigm shift. The sequencing is based on the measurement of changes in electrical conductivity generated by different bases as the DNA strand is drawn to a nanopore. This affordable, pocket-sized MinION provides real-time long-read sequencing allowing for the detection of both known and unknown species [56-58]. With recent improvements in performance and further validation, it could be a viable option for

adventitious agent detection where immediate action is required. A summary of the PCR methods, HTS, and biosensors can be found in tables 4 and 5.

## Discussion and Conclusions:

This review has presented both historical and more novel detection methods. From the presented tables and figure 1, methods with lower specificity and lower sensitivity tend to have lower costs associated with them whereas more robust, sensitive, and specific methods tend to have higher costs. Thus, it is the burden of the researcher to choose whether to incur the higher costs of specific methods at the price of reduced experimentation or to enjoy more experimentation with the risk of lower sensitivity. Additionally, each method presents wildly different limits of detection. Without clear guidance from regulatory agencies and given the fact that some adventitious agents may not be well understood, it is difficult to know whether a low limit of detection is necessary and worth the cost of some of the more sensitive methods. Thus, continuous efforts in improving detection methods including reducing costs, expanding sensitivity and specificity, and gaining better insight on the requirements by regulatory authorities is still of paramount importance in the pharmaceutical industry.

Currently, it appears that real-time PCR, high throughput sequencing, and some biosensors are the closest to "ideal" detection methods and further development of these methods may be the future of adventitious agent detection. The limited capability to detect a broad spectrum of both known and unknown agents by PCR-based method needs to be addressed to become more effective and versatile. High throughput platform development using the combination of family-specific primers and specific primer sets can be devised to detect a wide range of agents in a single assay. Moreover, further improvements in performance, speed, affordability, convenience, method standardization, and the establishment of reference materials would make gene sequencing a more attractive approach.

With such a broad variety of detection methods available, it is possible to consider the adaptation of these methods to other uses. As an example, some of the methods presented herein could be adapted for use in the production of gene therapeutics. This transition could lead to better manufacturing

techniques and yield significant opportunities for quality by design in gene therapeutic products. Specifically, as gene therapeutics use lentiviral or other virus-type delivery platforms, the use of real-time virus detection methods with quantification could lead to the ability to track the productivity of a gene therapy manufacturing platform. The methods presented previously that could fit this description (with some modification) include real time PCR, real-time immunoassays, and biosensors such as the Ibis T5000 Universal Biosensor. The ability to accurately monitor the production of viral vectors for gene therapeutics could enable for better process decisions and enhanced manufacturing techniques. Thus, the continued development of detection methods for adventitious agents is not only beneficial for safety and quality of pharmaceutical products, but it is also a potential avenue to enhance the manufacturing of future therapeutic products such as gene therapeutics.

| 222 | Acknowledgment                                                                                  |
|-----|-------------------------------------------------------------------------------------------------|
| 223 | The study was supported by grants from NSF (1706731) and NSF/IUCRC AMBIC (1624718).             |
| 224 | <b>Author Contributions</b>                                                                     |
| 225 | Morris and Lee equally contributed to planning, manuscript writing, and review. Yoon was the    |
| 226 | project PI and provided the main supervision and guidance to the research work. All the authors |
| 227 | reviewed and approved the manuscript. The authors declare that they have no competing           |
| 228 | financial interests.                                                                            |

230 References

231

- 232 1. Klug, B., et al., Adventitious agents and live viral vectored vaccines: Considerations for
- archiving samples of biological materials for retrospective analysis. Vaccine, 2016. **34**(51): p. 6617-
- 234 6625.
- 235 2. Victoria, J.G., et al., Viral nucleic acids in live-attenuated vaccines: detection of minority
- 236 *variants and an adventitious virus.* J Virol, 2010. **84**(12): p. 6033-40.
- 237 3. Dubin, G., et al., *Investigation of a regulatory agency enquiry into potential porcine circovirus*
- 238 type 1 contamination of the human rotavirus vaccine, Rotarix: approach and outcome. Human vaccines
- 239 & immunotherapeutics, 2013. **9**(11): p. 2398-2408.
- 4. Ma, H., et al., *Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.* J Virol,
- 241 2014. **88**(12): p. 6576-85.
- 242 5. Kuzmin, I.V., Virus Inoculation in Animals: The Mouse Inoculation Test. Current Laboratories
- Techniques in Rabies Diagnosis, Research, and Prevention, 2015. 2: p. 13-23.
- 244 6. Nikfarjam, L. and P. Farzaneh, Prevention and detection of Mycoplasma contamination in cell
- 245 *culture*. Cell J, 2012. **13**(4): p. 203-12.
- 246 7. Guidance for Industry: Characterization and Qualification of Cell Substrates and Other
- 247 Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications,
- 248 C.f.B.E.a. Research, Editor. 2010, Food and Drug Administration.
- 249 8. Leland, D.S., and C.C. Ginocchio, Role of cell culture for virus detection in the age of
- 250 *technology*. Clin Microbiol Rev, 2007. **20**(1): p. 49-78.

- 9. Ilchmann, A., A.A. Armstrong, and R.F. Clayton, Schmallenberg virus, an emerging viral
- 252 pathogen of cattle and sheep and a potential contaminant of raw materials, is detectable by classical in-
- vitro adventitious virus assays. Biologicals, 2017. 49: p. 28-32.
- 254 10. Nims, R.W. and P.J. Price, Best practices for detecting and mitigating the risk of cell culture
- 255 *contaminants*. In Vitro Cell Dev Biol Anim, 2017. **53**(10): p. 872-879.
- 256 11. Roingeard, P., Viral detection by electron microscopy: past, present and future. Biol Cell,
- 257 2008. **100**(8): p. 491-501.
- 258 12. Roingeard, P., et al., Virus detection by transmission electron microscopy: Still useful for
- diagnosis and a plus for biosafety. Rev Med Virol, 2019. **29**(1): p. e2019.
- 260 This review of electron microscopy provides an in-depth evaluation of electron microscopy and highlights
- its importance today.
- 262 13. Ito, E., et al., Virus Particle Detection by Convolutional Neural Network in Transmission
- 263 Electron Microscopy Images. Food Environ Virol, 2018. 10(2): p. 201-208.
- 264 This article shows an interesting methodology for using statistical software to better understand images
- 265 captured by transmission electron microscopy.
- 266 14. Richert-Pöggeler, K.R., et al., Electron Microscopy Methods for Virus Diagnosis and High-
- 267 Resolution Analysis of Viruses. Frontiers in microbiology, 2019. **9**(3255).
- 268 This article reviews electron microscopy and details the resolution that can be obtained via this method. It
- also details information regarding how electron microscopy can be used for viral diagnosis.
- 270 15. Verma, J., S. Saxena, and S. Gosipatala, ELISA –Based Identification and Detection of
- 271 *Microbes*. Analyzing Microbes- Manual of Molecular Biology Techniques Springer Protocols, 2013.

- 272 16. Ding, X., et al., Interfacing Pathogen Detection with Smartphones for Point-of-Care
- 273 Applications. Anal Chem, 2019. **91**(1): p. 655-672.
- 274 This review provides an example of the use of a handheld device for adventitious agent detection. It
- details the use of handheld devices to detect both viruses and bacteria.
- 276 17. Shrivastava, S., W.I. Lee, and N.E. Lee, Culture-free, highly sensitive, quantitative detection of
- 277 bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens
- 278 Bioelectron, 2018. **109**: p. 90-97.
- This article details the use of a handheld device to detect bacteria from a sample that has not undergone
- 280 purification.
- 281 18. Pankratov, D., et al., Cellulase-Linked Immunomagnetic Microbial Assay on Electrodes: Specific
- and Sensitive Detection of a Single Bacterial Cell. Analytical Chemistry, 2020. 92(18): p. 12451-12459.
- 283 This article highlights a highly sensitive immunoassay technique that uses electrodes as a base for
- detection.
- 285 19. Tominaga, T., Rapid detection of Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella
- 286 ornithinolytica and other related bacteria in food by lateral-flow test strip immunoassays. J Microbiol
- 287 Methods, 2018. **147**: p. 43-49.
- 288 This article highlights the use of a lateral-flow test strip immunoassay that has been used in the food
- industry for the detection of bacteria. It is hypothesized that this same method could be easily translated to
- 290 the pharmaceutical industry.
- 291 20. Kim, J., et al., Early detection of the growth of Mycobacterium tuberculosis using
- 292 magnetophoretic immunoassay in liquid culture. Biosens Bioelectron, 2017. **96**: p. 68-76.

- 293 21. Li, Q., et al., Rapid detection of Escherichia coli O157:H7 by a fluorescent microsphere-based
- immunochromatographic assay and immunomagnetic separation. Anal Biochem, 2019. 564-565: p. 32-
- 295 39.
- 296 This article highlights the rapid detection of a common contaminant (E. Coli) via
- 297 immunochromatographic assays.
- 298 22. Bar-Haim, E., et al., Early Diagnosis of Pathogen Infection by Cell-Based Activation
- 299 *Immunoassay*. Cells, 2019. **8**(9).
- 300 This article highlights the use of a cell-based activation assay which is used to diagnosis pathogen
- infection within cell culture.
- 302 23. Kumar, D., et al., *Use of PCR-based assays for the detection of the adventitious agent porcine*
- 303 circovirus type 1 (PCV1) in vaccines, and for confirming the identity of cell substrates and viruses used in
- 304 *vaccine production.* J Virol Methods, 2012. **179**(1): p. 201-11.
- 305 24. Zhang, X.J., et al., Evaluation of a primer-probe energy transfer real-time PCR assay for
- detection of classical swine fever virus. J Virol Methods, 2010. **168**(1-2): p. 259-61.
- 307 25. Hakhverdyan, M., et al., Development of a real-time PCR assay based on primer-probe energy
- transfer for the detection of swine vesicular disease virus. Arch Virol, 2006. **151**(12): p. 2365-76.
- 309 26. Barfoed, A.M., et al., Development of a primer-probe energy transfer based real-time PCR for
- detection of Marek's disease virus. Journal of Virological Methods, 2010. **165**(1): p. 21-26.
- 311 27. Grillberger, L., et al., Emerging trends in plasma-free manufacturing of recombinant protein
- therapeutics expressed in mammalian cells. Biotechnol J, 2009. 4(2): p. 186-201.
- 313 28. Kozlowski, S. and P. Swann, Current and future issues in the manufacturing and development of
- 314 monoclonal antibodies. Adv Drug Deliv Rev, 2006. **58**(5-6): p. 707-22.

- 315 29. Barone, P.W., et al., Viral contamination in biologic manufacture and implications for emerging
- 316 *therapies*. Nat Biotechnol, 2020. **38**(5): p. 563-572.
- 317 This article highlights the importance of detecting and understanding the different viruses that may
- 318 contaminate biopharmaceutical products.
- 319 30. Farsang, A. and G. Kulcsár, Extraneous agent detection in vaccines--a review of technical
- 320 *aspects*. Biologicals, 2012. **40**(4): p. 225-30.
- 31. Pallás, V., J.A. Sánchez-Navarro, and D. James, Recent Advances on the Multiplex Molecular
- 322 Detection of Plant Viruses and Viroids. Front Microbiol, 2018. 9: p. 2087.
- 323 32. Laamiri, N., et al., A multiplex real-time RT-PCR for simultaneous detection of four most
- *common avian respiratory viruses.* Virology, 2018. **515**: p. 29-37.
- 325 This article highlights the use of a real-time PCR for the detection of multiple viruses.
- 326 33. Thonur, L., et al., *One-step multiplex real time RT-PCR for the detection of bovine respiratory*
- 327 syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3. BMC Vet Res, 2012. 8: p. 37.
- 328 34. Koos, B., et al., Analysis of protein interactions in situ by proximity ligation assays. Curr Top
- 329 Microbiol Immunol, 2014. 377: p. 111-26.
- 33. Blagodatskikh, K.A., et al., Improved DOP-PCR (iDOP-PCR): A robust and simple WGA method
- for efficient amplification of low copy number genomic DNA. PloS one, 2017. 12(9): p. e0184507-
- 332 e0184507.
- This article highlights the use of Degenerate oligonucleotide primed PCR using a novel WGA method.
- This method enables for amplification of low copy number genomic DNA.

- 335 36. McClenahan, S.D., C. Uhlenhaut, and P.R. Krause, Evaluation of cells and biological reagents
- for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine, 2014.
- **33**7 **32**(52): p. 7115-21.
- 338 37. Americo, J.L., P.L. Earl, and B. Moss, Droplet digital PCR for rapid enumeration of viral
- 339 genomes and particles from cells and animals infected with orthopoxviruses. Virology, 2017. 511: p. 19-
- 340 22.
- This article highlights the use of droplet digital PCR (low volume required) for the detection of a specific
- virus in animals.
- 343 38. Quan, P.L., M. Sauzade, and E. Brouzes, dPCR: A Technology Review. Sensors (Basel), 2018.
- **18**(4).
- This review highlights sensors that have been used for adventitious agent detection.
- 39. Bueno, J., Biosensors in Antimicrobial Drug Discovery: Since Biology until Screening Platforms.
- Journal of Microbial & Biochemical Technology, 2014. **S10**.
- 348 40. Jacob, D., et al., Rapid, and high-throughput detection of highly pathogenic bacteria by Ibis
- 349 *PLEX-ID technology*. PLoS One, 2012. **7**(6): p. e39928.
- 350 41. Ecker, D., et al., The Ibis T5000 Universal Biosensor: An Automated Platform for Pathogen
- 351 *Identification and Strain Typing*. Journal of the Association for Laboratory Automation, 2006. 11: p. 341-
- 352 351.
- 353 42. Lindsay, B., et al., Survey of culture, goldengate assay, universal biosensor assay, and 16S rRNA
- 354 *Gene sequencing as alternative methods of bacterial pathogen detection.* J Clin Microbiol, 2013. **51**(10):
- 355 p. 3263-9.
- 356 43. Ecker, D.J., et al., *Ibis T5000: a universal biosensor approach for microbiology*. Nature Reviews
- 357 Microbiology, 2008. **6**(7): p. 553-558.

- 358 44. Sheets, R., et al., Adventitious agents, new technology, and risk assessment, 19-20 May 2011,
- 359 *Baltimore*, *MD*. Biologicals, 2012. **40**(2): p. 162-7.
- 360 45. Bahadır, E.B. and M.K. Sezgintürk, Applications of commercial biosensors in clinical, food,
- *environmental, and biothreat/biowarfare analyses.* Analytical Biochemistry, 2015. **478**: p. 107-120.
- 362 46. Onions, D., and J. Kolman, Massively parallel sequencing, a new method for detecting
- *adventitious agents*. Biologicals, 2010. **38**(3): p. 377-80.
- 364 47. Shaman, J., et al., Adventitious Virus Contamination Testing: Massively Parallel Sequencing in a
- 365 Multimodal Solution for Biopharmaceutical Safety Testing. BioProcessing Journal, 2013. 12: p. 18-24.
- 366 48. Cheval, J., et al., Evaluation of high-throughput sequencing for identifying known and unknown
- *viruses in biological samples.* J Clin Microbiol, 2011. **49**(9): p. 3268-75.
- 368 49. Wylie, K.M., et al., Sequence analysis of the human virome in febrile and afebrile children. PLoS
- 369 One, 2012. **7**(6): p. e27735.
- 370 50. Khan, A.S., et al., A Multicenter Study To Evaluate the Performance of High-Throughput
- 371 Sequencing for Virus Detection. mSphere, 2017. 2(5).
- 372 This article provides studies from various research centers that were used to evaluate the ability of high-
- 373 throughput sequencing to detect viruses.
- 374 51. Paskey, A.C., et al., Enrichment post-library preparation enhances the sensitivity of high-
- 375 throughput sequencing-based detection and characterization of viruses from complex samples. BMC
- 376 Genomics, 2019. **20**(1): p. 155.
- 377 This article highlights the importance of post-library preparation to improve the sensitivity of high-
- 378 throughput sequencing.

- 379 52. Charlebois, R.L., et al., Sensitivity and breadth of detection of high-throughput sequencing for
- adventitious virus detection. npj Vaccines, 2020. **5**(1): p. 61.
- 381 This article highlights the sensitivity and ability of high throughput sequencing to detect both known and
- 382 unknown viruses.
- 383 53. Ng, S.H., et al., Current Perspectives on High-Throughput Sequencing (HTS) for Adventitious
- *Virus Detection: Upstream Sample Processing and Library Preparation.* Viruses, 2018. **10**(10).
- This review highlights the importance of both upstream sample preparation and library preparation for
- 386 high throughput sequencing to be successful.
- 387 54. Mee, E.T., et al., *Development of a candidate reference material for adventitious virus detection*
- in vaccine and biologicals manufacturing by deep sequencing. Vaccine, 2016. **34**(17): p. 2035-43.
- 389 55. Toohey-Kurth, K., S.D. Sibley, and T.L. Goldberg, Metagenomic assessment of adventitious
- 390 viruses in commercial bovine sera. Biologicals, 2017. 47: p. 64-68.
- 391 56. Lu, H., et al., Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics
- 392 Proteomics Bioinformatics, 2016. 14: p. 265–79
- 393 57. Tyler, A.D., et al., Evaluation of Oxford Nanopore's MinION Sequencing Device for Microbial
- Whole Genome Sequencing Applications. Scientific Reports, 2018. **8**(1).
- 395 58. Tyson J.R., et al., MinION-based long-read sequencing and assembly extends the Caenorhabditis
- 396 *elegans reference genome*. Genome Res. 2018. 28(2): p. 266-74.

# 397 Figure Legends

- Figure 1: Comparison of Detection Techniques: The above chart shows the advantages of each of the detection techniques (red box) described previously along with the pre-processed materials (blue box).
- 400 The chart shows that no one method has all the characteristics of an "ideal" detection method. Thus,
- 401 further development in detection techniques may be able to provide a detection method that is closer to an
- 402 "ideal" method.

|                                             | Simple   | Rapid | Inexpensive | Unknowns<br>Detectable | Sensitive   | Specific    | Real<br>Time |
|---------------------------------------------|----------|-------|-------------|------------------------|-------------|-------------|--------------|
| Growth on Agar<br>Medium                    | ✓        |       |             |                        |             |             |              |
| Cell Culture                                | <b>\</b> |       |             |                        |             |             |              |
| Light Microscopy                            | <b>✓</b> |       |             |                        | 8           |             | S            |
| Handheld<br>Devices                         | 1        |       | ✓           |                        |             |             | <b>&gt;</b>  |
| Lateral Flow Strip<br>Immunoassay           | <b>√</b> | ✓     | ✓           |                        |             |             |              |
| Cell Based<br>Activation<br>Immunoassay     |          | ✓     |             |                        |             | <b>√</b>    |              |
| Magnetophoretic<br>Immunoassay              |          | ✓     |             |                        |             | ✓           |              |
| Real-time PCR                               |          | ✓     | 2 4         |                        | <b>✓</b>    | <b>\</b>    | <b>✓</b>     |
| High Throughput<br>Sequencing               |          | >     | 0           | <b>√</b>               | >           | <b>&gt;</b> | Tr.          |
| Transmission<br>Electron<br>Microscopy      |          |       |             | <b>√</b>               | >           | >           | ė.           |
| Ibis T5000<br>Universal<br>Biosensor        |          |       |             | <b>√</b>               | <b>&gt;</b> | <b>✓</b>    |              |
| Cellulase-linked<br>Immunomagnetic<br>Assay | 9        |       |             |                        | <b>√</b>    | <b>√</b>    |              |
| Droplet Digital<br>PCR                      |          |       |             |                        | <b>√</b>    | <b>√</b>    |              |
| Immunoelectron<br>Microscopy                | ş 34.    |       |             |                        | ✓           | ✓           | 8            |
| Ideal Detection                             | 1        | 1     | ✓           | ✓                      | <b>√</b>    | 1           | 1            |

**Figure 1:** Comparison of Detection Techniques: The above chart shows the advantages of each of the detection techniques described previously. The chart shows that no one method has all the characteristics of an "ideal" detection method. Thus, further development in detection techniques may be able to provide a detection method that is closer to an "ideal" method.

Table 1: Adventitious Agent Detection Methods

| Method:               | Description                                                                                                                                        | Advantages                                                                           | Limitations                                                                                          | Limit of Detection                                                          | Costa                                                                          | Time                  | Reference(s) |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|--------------|
| Growth on Agar Medium | Supernatant is added to agar medium and allowed to incubate either aerobically or anaerobically for a period                                       | Simple;<br>Accepted by<br>regulatory<br>agencies; Well<br>studied and<br>documented. | Time consuming<br>process; Does not<br>identify the<br>species of the<br>adventitious<br>agent       | 1 CFU (Sutton, 2011)                                                        | \$1.50-\$2.50° per<br>plate                                                    | 12 hours – 14<br>days | 6,7          |
| Animal Inoculation    | Animals (such as mice, rats, rabbits, etc.) are inoculated with a small amount of virus containing material and observed for signs of illness      | Effective;<br>Accepted by<br>FDA                                                     | Ethical concerns;<br>Expensive; Time<br>consuming                                                    | 21 days; Limited based<br>on observation by<br>researcher (ERSA<br>journal) | \$475-\$990 <sup>b</sup> per<br>test (rabbit<br>pyrogen test)                  | 2-3 hours             | 5, 8, 9      |
| Hemadsorption Test    | Culture medium is replaced with a suspension of erythrocytes, and, if the cells are infected with virus, the erythrocytes will adhere to the cells | Well understood                                                                      | Time consuming,<br>no information on<br>type of<br>viruses/only can<br>be used on certain<br>viruses | Dependent on viral particle and presence of viral hemagglutinin             | \$34 - \$75 per test<br>(supplies and<br>labor) (Newton,<br>2002)              | 1 hour                | 5            |
| Cell Culture          | Cells are inoculated with a sample that is suspected to be contaminated and observed for cytopathic effects and turbidity.                         | Simple                                                                               | Time consuming                                                                                       | 1 CFU; Must be<br>estimated for specific<br>experiments (Sutton)            | \$100 - \$1,000,000°<br>(depends on<br>available<br>equipment and<br>supplies) | 2 – 14 days           | 5, 6, 8-10   |

<sup>&</sup>lt;sup>a</sup>Price obtained from Thermo Fisher Scientific, Waltham, MA <sup>b</sup>Price from Institute for In Vitro Sciences, Gaithersburg, MD

Table 2: Microscopy Methods

| Method                              | Description                                                                                                                                                                                                  | Advantages                                                                                              | Limitations                                                                                      | Limit of Detection                                                                              | Cost <sup>a,b</sup>                                                                                                                                                                                                        | Time                                                                                                                                   | Reference(s) |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Light Microscopy                    | Specimens are observed under light microscope with or without oil immersion                                                                                                                                  | Simple, well<br>understood                                                                              | No information on species of contaminating agent                                                 | 200 nm size (Sutton<br>2011) or 200,000<br>particles per square<br>millimeter (Forouhi<br>2020) | \$200 - \$5,000 <sup>a</sup><br>(for microscope)                                                                                                                                                                           | 10-30 min.<br>(depending on<br>preparation)                                                                                            | 10-12        |
| Transmission Electron<br>Microscopy | Specimens are observed via a transmission electron microscope and a high voltage electron beam is used to create an image of the specimen.                                                                   | Allows for the direct visualization of viruses, can be used with difficult to detect or unknown viruses | Expensive equipment, complex, Time consuming sample preparation                                  | < 10 nm (Sutton 2011)<br>(specimens must be<br>prepared)<br>10E7 pfu/mL<br>(Rayjonec, 2019)     | \$2,000,000 <sup>b</sup> or<br>higher for the<br>microscope, \$200 <sup>c</sup><br>per specimen for<br>fixation (off-site),<br>\$100-\$200 <sup>c</sup> for<br>use of microscope<br>(off-site)                             | 3 hours -14<br>days for<br>fixation,<br>embedding,<br>sectioning,<br>staining, and<br>imaging (on-<br>site or off-site<br>preparation) | 12-14        |
| Immunoelectron<br>Microscopy        | A sample is suspended in a suitable medium (such as phosphate buffered saline) and antiserum is added. The mixture is warmed, centrifuged, and the pellet is examined by negative stain electron microscopy. | Used extensively<br>for the diagnosis<br>of viral infections<br>(est. 1940s)                            | Complex sample preparation, previous knowledge of the appropriate antibodies to be used required | 10 <sup>5</sup> - 10 <sup>7</sup> particles per<br>mL (Li 2013) or 10E4<br>PFU/mL (Baca 2015)   | \$50,000 -<br>\$1,000,000b for<br>microscope<br>\$100 for specimen<br>preparation (off-<br>site), \$50-\$65c for<br>specimen<br>mounting and<br>coating (off-site),<br>\$100-\$200c for<br>use of microscope<br>(off-site) | 3 hours -14<br>days for<br>fixation,<br>embedding,<br>sectioning,<br>staining, and<br>imaging (on-<br>site or off-site<br>preparation) | 14           |

Price obtained from Olympus Life Sciences, Waltham, MA Price obtained from TSS Microscopy, Hillsboro, OR, Price obtained from Indiana University, Bloomington, IN

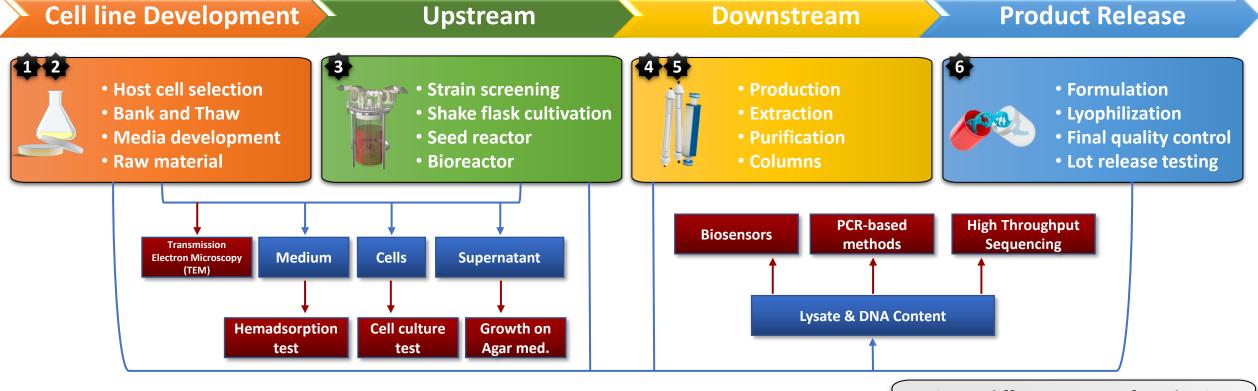
Table 3: Smart-phone based and Biosensor-based Methods

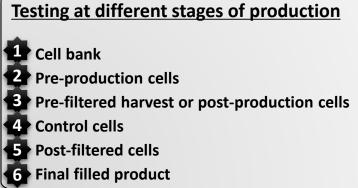
| Method                                      | Description                                                                                                                                                                                                                                                                                                      | Advantages                                          | Limitations                                                                              | Limit of Detection               | Costa                           | Time                                                  | Reference(s) |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------------------------------|--------------|
| Smartphone-based<br>Fluorescence Microscopy | Samples are fixed and stained on glass slides (using a fluorescent-insitu-hybridization approach with predesigned rRNA-targeting PNA probes) and then are analyzed directly on the smartphone is integrated with a 3D printed optomechanical attachment.                                                         | Compact,<br>lightweight, cost-<br>effective, simple | Detection<br>limitations,<br>requires PNA<br>probes                                      | 10 CFU/mL<br>(Shrivastava, 2018) | \$2,000 or greater <sup>a</sup> | 5min – 1<br>hour<br>(Young-<br>Ho Shin et<br>al 2021) | 17           |
| Smartphone-based Optical<br>Methods         | Smartphone-based Optical Methods rely on certain endpoints such as pH, turbidity, color, etc. for a measurement to be determined. With each of these methods, something like a smartphone microplate reader or other connected/accessory device may be used to quantify the desired endpoint based on a picture. | Compact,<br>lightweight,<br>portable                | Low-throughput,<br>low sensitivity,<br>additional<br>components<br>sometimes<br>required | 20 CFU/mL (Nelis,<br>2020)       | \$2,000 or greater <sup>a</sup> | 5min – 1<br>hour<br>(Young-<br>Ho Shin et<br>al 2021) | 16           |

<sup>a</sup>Price obtained from ioLight, Hicksville, NY

Table 4: Immunoassays

| Method:                                                                  | Description                                                                                                                                                                                                                                                                                                                           | Advantages                                            | Limitations                                  | Limit of Detection                                        | Cost <sup>a,b,c,d</sup>                                        | Time                                      | Reference(s) |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--------------|
| Cellulase-linked<br>immunomagnetic assay                                 | This assay utilizes a sandwich antibody (Ab/aptamer-bacterium-Ab/aptamer) labelled with cellulase assembled on a micrometer sized magnetic bead applied to a nitrocellulose-modified-film. The cellulase then digests the nitrocellulose film which changes the electrical properties of the electrodes. This change can be measured. | High sensitivity,<br>high specificity                 | Needs to be<br>assessed for more<br>species  | Detection of a Single<br>E. Coli cell [25]                | \$515/100 assays <sup>3</sup>                                  | 15 min - 3<br>hours (RB<br>Jamal<br>2020) | 18           |
| Cell-Based Activation<br>Immunoassay                                     | B- or T- lymphocytes or<br>monocytes and<br>granulocytes are used to<br>detect and quantify<br>specimens in samples.                                                                                                                                                                                                                  | Quick, high specificity                               | Prior information required, complex          | 10⁵ CFU/mL                                                | \$300 - \$700 <sup>d</sup>                                     | 24 hours                                  | 22           |
| Lateral Flow Test Strip<br>Immunoassay/ Immuno-<br>chromatographic Assay | A liquid moves via<br>capillary action through<br>polymeric strips on<br>which molecules that can<br>interact with the analyte<br>are attached.                                                                                                                                                                                       | Low cost, simple, rapid                               | Low sensitivity                              | 10 <sup>4</sup> -10 <sup>9</sup> CFU/mL<br>(Zieglar 2020) | \$110/10 assays <sup>a</sup><br>\$1,660/100 tests <sup>b</sup> | 15 min<br>(RB Jamal<br>2020)              | 19           |
| Magnetophoretic<br>Immunoassay                                           | An immunoassay (similar to ELISA) that uses magnetic beads, radioisotopes, or fluorescent labels to detect a specific analyte. A magnetic label is conjugated to either the antibody or antigen and a magnetic reader is used to record the magnetic change induced by the beads.                                                     | High specificity,<br>can be fully<br>automated, rapid | Required<br>conjugation of<br>magnetic beads | 0.3 pM or 5-50<br>CFU/mL                                  | \$1,400 or greater <sup>c</sup>                                | < 3 hours<br>(RB Jamal<br>2020)           | 20           |


Price obtained from Thermo Fisher Scientific, Waltham, MA, Price obtained from Abcam plc., Cambridge, UK, Price obtained from Tiger Medical, Inc, Irvington, NJ,


Table 5: PCR and HTS

| Method                        | Description                                                                                                                                                                                                                                                                          | Advantages                                                                                                                     | Limitations                                                                                                                | Limit of Detection                                                                                                | Cost                                                                                   | Time                                                | Reference(s) |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|
| Real time-PCR                 | Processed sample is amplified with specific primer set and a probe, and Ct value is assessed for identification and compared with standards for semiquantification in realtime.                                                                                                      | Sensitive, specific,<br>quick                                                                                                  | No unknown<br>detection, no<br>information on<br>infectivity, semi-<br>quantitative                                        | 1 - 10 copies/μl                                                                                                  | \$15,000° - \$80,000°<br>\$1-5/reaction                                                | 30min – 2<br>hours                                  | 23-25        |
| Multiplex PCR                 | With multiple non-<br>interfering primer sets,<br>PCR reactions targeting<br>for multiple sequence<br>are performed within<br>the same well, which are<br>detected by different<br>probes.                                                                                           | Increased<br>throughput,<br>Reduced carrying<br>over<br>contamination                                                          | Primer interference, Difficult optimization and validation, semi-quantitative                                              | 10 - 30 copies/μl                                                                                                 | \$15,000³ - \$80,000⁵<br>Reaction cost varies<br>depending on the<br>number of targets | 1-3 hours                                           | 32, 33       |
| Droplet Digital PCR           | A nucleic acid sample is partitioned in water-in-oil droplets in which PCR reactions occur. After PCR amplification, the individual fluorescent positive and negative droplets are quantified via Poisson distribution to determine the number of DNA copies in the starting sample. | Sensitive,<br>reproducible,<br>Absolute<br>quantitation, no<br>standard curve<br>required,<br>insensitive to PCR<br>inhibitors | More expensive,<br>more hands-on<br>time, restricted<br>dynamic range                                                      | 1 copy/μl                                                                                                         | Quote requested <sup>c</sup><br>\$3-5/reaction                                         | 3 hours                                             | 37, 38       |
| High Throughput<br>Sequencing | Samples are screened for presence of any unexpected sequence via non-specific massive sequencing and the detected sequence is identified by mapping the sequence to the existing database.                                                                                           | large breadth of<br>detection,<br>unknown<br>detection, high<br>throughput                                                     | Time consuming, complicated, standardization and reference material establishment, No information on contaminant viability | ~ 10 copies/reaction                                                                                              | \$200,000~400,000 <sup>d</sup><br>\$20 -1,500/GB                                       | 10-48<br>hours                                      | 46-48, 50-54 |
| MinION Sequencer              | Target DNA strand is drawn into nanopore, and each DNA base is identified by measuring different electrical conductivities.                                                                                                                                                          | Low cost, small<br>size, direct<br>sequencing, real<br>time data<br>collection and<br>analysis, fast                           | High quality and<br>high copy<br>number required                                                                           | 10 copies/reaction *LOD is inversely proportional to turnaround time. With high-copy, quick detection is possible | \$1,000 - \$285,455°<br>\$90 - 1,600/sample                                            | Full: 6-10<br>hours<br>Quick: 10<br>min – 1<br>hour | 56, 57, 58   |

<sup>a</sup>Price obtained from Qiagen, Hilden, Germany, <sup>b</sup>Price obtained from Thermo Fisher Scientific, Waltham, MA, <sup>c</sup>Price obtained from Bio-Rad Laboratories, Hercules, CA

<sup>d</sup>Price obtained from Illumina, San Diego, CA, <sup>e</sup>Price obtained from Oxford Nanopore Technologies, Oxford, UK



