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Abstract

We present new constructions of pseudorandom generators (PRGs) for two of the
most widely studied non-uniform circuit classes in complexity theory. Our main result
is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary
constant depth and super-linear size. This PRG fools circuits with depth d ∈ N and
n1+δ wires, where δ = 2−O(d), using seed length O(n1−δ) and with error 2−nδ

. This
tightly matches the best known lower bounds for this circuit class. As a consequence of
our result, all the known hardness for LTF circuits has now effectively been translated
into pseudorandomness. This brings the extensive effort in the last decade to construct
PRGs and deterministic circuit-analysis algorithms for this class to the point where any
subsequent improvement would yield breakthrough lower bounds.

Our second contribution is a PRG for De Morgan formulas of size s whose seed length
is s1/3+o(1) ·polylog(1/ε) for error ε. In particular, our PRG can fool formulas of sub-cubic
size s = n3−Ω(1) with an exponentially small error ε = exp(−nΩ(1)). This significantly
improves the inverse-polynomial error of the previous state-of-the-art for such formulas by
Impagliazzo, Meka, and Zuckerman (FOCS 2012, JACM 2019), and again tightly matches
the best currently-known lower bounds for this class.

In both settings, a key ingredient in our constructions is a pseudorandom restriction
procedure that has tiny failure probability, but simplifies the function to a non-natural
“hybrid computational model” that combines several computational models. As part of
our proofs we also construct “extremely low-error” PRGs for related circuit classes; for
example, we construct a PRG for arbitrary functions of s LTFs that can handle even the
extreme setting of parameters s = n/polylog(n) and ε = 2−n/polylog(n).
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1 Introduction

A pseudorandom generator (PRG) for a class F of functions {0, 1}n → R is an efficient
(deterministic) algorithm that maps a short random seed of length ` into a longer string
of length n such that for every f ∈ F ,∣∣∣ E

s∈{0,1}`
[ f (G(s)]− E

x∈{0,1}n
[ f (x)]

∣∣∣ ≤ ε ,

where ε is called the error of the PRG.
In this work we present new constructions of PRGs for two of the most widely studied

non-uniform circuit classes in complexity theory. Our main result is a construction of the first
non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear
size. Prior to this work no non-trivial PRGs or deterministic satisfiability algorithms were
known for LTF circuits of depth d ≥ 3, and our result builds on considerable efforts dedicated
to this challenge in the last decade. Moreover, our PRG is not only the first non-trivial one,
but in fact already tightly matches the best known lower bounds for LTF circuits in terms of size
and of error. Our second result is a PRG for De Morgan formulas of sub-cubic size that has
an exponentially small error, where this error significantly improves on the previous state-
of-the-art by [IMZ19]. In this setting too, the parameters of our PRG tightly match the best
known lower bounds and correlation bounds for De Morgan formulas. Thus, in both settings,
essentially any improvement in dependency of our PRGs on the circuit size or on the target
error would improve the best known lower bounds for the corresponding circuit class.

A common initial technical challenge that underlies both of our PRGs is that of
constructing pseudorandom restriction procedures that “simplify” the circuit with an exponentially
small failure probability. The obstacle here is that the natural (and well-known) definitions
of simplification do not yield such small failure probability, even if the restrictions were
completely random. To overcome this obstacle, following [Hås14; CSS18; ST17a; Tal17b], we
explore hybrid computational models that, despite being less natural, satisfy the following two
competing properties: (1) They are strong enough so that the circuits simplify to those hybrid
models except for an exponentially small probability; and (2) They are weak enough that we
can fool them using a PRG with a suitable seed length. Our proofs hinge on a careful balance
of this trade-off, as well as on PRG constructions for the corresponding hybrid model, both
of which significantly improve on known technical results.

1.1 A PRG for super-linear size LTF circuits

Recall that a linear threshold function (LTF) is a Boolean function of the form Φ(x) = 1 ⇐⇒
∑i wi · xi > θ, where w ∈ Rn and θ ∈ R. The class of constant-depth linear-threshold circuits (LTF
circuits) consists of circuits of constant depth whose gates can compute arbitrary LTFs. This
circuit class has been studied since the ‘80s, both since it serves as a natural simple model of
neural networks, and since it is a natural extension of circuit classes for which strong lower
bounds have already been proved, such as AC0 and AC0[p].

While the common belief is that the class TC0 of polynomial-sized constant-depth LTF

circuits1 is strictly weaker than the class NC1 (of polynomial-sized De Morgan formulas), at
the moment we do not even know of a function in EXPNP that is hard for TC0. In fact, we
do not even know lower bounds for LTF circuits of size (say) n1.1: The best currently-known
lower bounds against explicit functions were proved more than 25 years ago by Impagliazzo,
Paturi, and Saks [IPS93], who showed that the parity function is hard for LTF circuits of depth

1The class TC0 is sometimes defined using unweighted majority gates and sometimes defined using LTF gates.
Both definitions are equivalent up to polynomial overheads (see [GHR92; GK98]), but since we will be concerned
with precise size bounds we will use a specific definition. Note that our PRG fools the stronger class.
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d with n1+c−d
wires, for some constant c > 1.2 Despite the fact that no lower bounds for

larger LTF circuits are known, average-case lower-bounds for circuits of the same size (up to
the constant c) against functions in P were proved several years ago by Chen, Santhanam, and
Srinivasan [CSS18]. Also, for the special case of d = 2, Kane and Williams [KW16] proved
that Andreev’s function (which is in P) is hard for circuits with n2.49 wires.

In the last decade, a line of works pioneered by Williams (see, e.g. [Wil13; BSV14;
MW18; CLW20]) showed that lower bounds for a circuit class can be proved by constructing
non-trivial deterministic circuit-analysis algorithms for circuits from this class; that is, by
constructing algorithms for satisfiability or for CAPP3 that are faster than the trivial brute-
force algorithm. Following Williams’ [Wil11] breakthrough lower bounds for ACC0 circuits
that relied on this approach, the natural subsequent major challenge in complexity theory is
to try and finally prove better lower bounds for LTF circuits by constructing circuit-analysis
algorithms for such circuits – see, e.g., the first open problem in [Aar16], and also see [Wil13;
SW13; MW18; CW19]. However, a major shortcoming is that so far we have not even been able
to construct circuit-analysis algorithms that imply the existing lower bounds for LTF circuits
from 1993, let alone new lower bounds; in other words, so far we have not even been able to
“translate the known hardness into randomness”.

Accordingly, in the past decade an extensive research effort has been devoted to this
challenge, resulting in dozens of exciting works. For a single LTF (i.e., a single “gate”
in the circuit), a long line-of-works culminated in a PRG with near-optimal seed length
by Gopalan, Kane, and Meka (see [GKM18], following [DGJSV10; RS10; DKN10; Kan11;
KRS12; MZ13; Kan14; KM15]). Various works constructed PRGs for “simple functions”
of LTFs, for example for AND ◦ LTF (aka polytopes, see [GOWZ10; DKN10; HKM12;
ST17b; CDS19; OST19; KKLMO20]). For LTF circuits of depth two and subquadratic size,
a PRG with seed length n1−Ω(1) was constructed by Servedio and Tan [ST17a]; and a
satisfiability algorithm with running time 2n−nΩ(1)

was constructed by Alman, Chan, and
Williams [ACW16] (following [IPS13; Wil18; Tam16]; this algorithm also works for the larger
class AC0[m] ◦ LTFn2−Ω(1) ◦ LTF, see Section 3). However, despite these efforts, for circuits of
arbitrary depth d > 2, prior to this work no non-trivial deterministic satisfiability or CAPP

algorithm was known. The only known deterministic circuit-analysis algorithm for such
circuits was an algorithm for the relaxed version of CAPP called quantified derandomization
(see [Tel18]), algorithms for which are not known to imply lower bounds. We defer further
discussion of other relevant works to Section 3.

Building on the rich ideas developed in the last decade, in this paper we construct the
first non-trivial PRG for LTF circuits of arbitrary constant depth. Moreover, as we explain
below, our PRG construction tightly matches the best currently-known lower bounds for such
circuits – both the size lower bounds of [IPS93] and the average-case lower bounds of [CSS18].
Thus, our construction brings the extensive research effort described above to the point where
essentially further improvement would yield new lower bounds for LTF circuits.

Theorem 1.1 (PRG for super-linear LTF circuits). For any d ∈ N and δ ≤ 200−d, there exists a
polynomial-time computable ε-PRG for the class of LTF circuits of depth d with at most n1+δ wires,
whose seed length is O(n1−δ) and whose error is ε = 2−nδ

.

We comment that Theorem 1.1 holds also for super-constant values of d ∈ N (see
Theorem 6.25 for details). Parsing the parameters of our PRG, the seed length O(n1−δ) is

2Here, by “explicit” we mean that these lower bounds are against functions in P. There are also incomparable
lower bounds for general circuits (that in particular hold for LTF circuits) against functions that are “not very
explicit”, and in particular are not even known to be in NP (see, e.g., [Kan82; BFT98; San09]). We also note that
the precise value of the constant c > 1 in this expression turns out to be surprisingly important (see [CT19]).

3Recall that CAPP (the Circuit Acceptance Probability Problem) is the problem of distinguishing between circuits
with acceptance probability at most 1/3 and circuits with acceptance probability at least 2/3.
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“slightly non-trivial” (yielding a CAPP algorithm with running time 2O(n1−δ)), yet essentially
any improvement to this seed length would yield new size lower bounds for LTF circuits (see
Proposition 4.11). Also, the error of our PRG is exponentially small, and again essentially any
improvement to this error would imply new average-case lower bounds for LTF circuits (with
respect to a natural polynomial-time-samplable distribution; again, see Proposition 4.11). It
might seem surprising that the first non-trivial PRG already has such a small error, but this is
not a coincidence: As explained above, a key technical challenge underlying our techniques
is to reduce the error of certain auxiliary pseudorandom algorithms (i.e., of pseudorandom
restriction procedures and of PRGs for a related class; we elaboare on this in Section 2.1).

As part of our proof of Theorem 1.1 we also construct an “extremely-low-error” PRG for
an arbitrary function of a bounded number of LTFs. In particular, our PRG fools any function
of s = n.99 LTFs with error ε = 2−n.99

and seed length n1−Ω(1); this setting of parameters is
close to the maximal possible one (as there does not exist a non-trivial PRG for an arbitrary
function of n variables, or with error 2−n), and indeed we will use this PRG with such small
error ε ≈ 2−n.99

in our proof of Theorem 1.1. This significantly improves on the previous state-
of-the-art, which could handle functions of o(n2/5) LTFs and whose error is sub-exponential
(see Section 3 for details). To present this result, for any n, s ∈ N denote by ANYs ◦ LTFn the
class of functions {0, 1}n → {0, 1} of the form f (x) = g(Φ1(x), . . . , Φs(x)), where the Φi’s are
LTFs and g is arbitrary. We prove that:

Theorem 1.2 (low-error PRG for ANYs ◦ LTF). There exists an ε-PRG for ANYs ◦ LTFn that is
computable in time poly(n) with seed length Õ

(√
n · (s + log(1/ε))

)
.

One corollary of Theorem 1.2 is a PRG with seed length o(n) and error ε = 2−n/polylog(n)

for the class of LTF circuits with unbounded depth and at most n
polylog(n) gates (see Corollary 6.22).

The class of unbounded-depth LTF circuits has received less attention in recent years,
compared to TC0, and our PRG almost matches the Ω(n) lower bound that has been known
for this class since the early ‘90s (see [GT91; ROS94; Nis93]).

A stronger efficiency requirement and a new lower bound. The PRG in Theorem 1.1 in
fact meets a stronger efficiency requirement than just being computable in polynomial time.
Specifically, we show that the PRG can also be made strongly explicit (some sources use the
term “local”): Given a seed s and an index i ∈ [n], we can compute the ith output-bit of the
PRG G(s)i in time O(|s|) = O(n1−δ) (see Theorem 6.25).

The existence of PRGs meeting such a strong efficiency requirement implies that the fooled
circuit class cannot solve the Minimum Circuit Size Problem (MCSP) [KC00]. Thus, our results
imply the first unconditional lower bound for solving MCSP by LTF circuits of super-linear
size. (For context, recall that MCSP is widely believed to be hard even for P/poly, see [KC00;
RR97].) Moreover, our construction implies that such circuits cannot even solve the relaxed
problem gapMCSP[s1, s2]: In this promise problem we are given a truth-table f ∈ {0, 1}2` and
need to decide whether the circuit complexity of f is at most s1(`) or at least s2(`).

Corollary 1.3 (MCSP lower bound for LTF circuits of super-linear size; see Theorem 6.26 for
a more general statement). For any constant d ∈ N it holds that gapMCSP

[
2(1−400−d)·`, 2`−1/`

]
cannot be decided by LTF circuits of depth d with n1+400−d

wires.

The combination of Corollary 1.3 and of recent “hardness magnification” results reveals
a sharp threshold phenomenon for solving gapMCSP by LTF circuits of super-linear size.
Specifically, improving the unconditional lower bound in Corollary 1.3 to hold against slightly
larger circuits would imply dramatic lower bounds for all of TC0. This follows from the results
of Chen, Jin, and Williams [CJW19], which imply that for some constant c > 1, if for all β > 0

3



it holds that gapMCSP
[
2β·`, 2`−1/`

]
cannot be decided by LTF circuits of depth d′ = 2d with

n1+c−d′
wires, then NP is not contained in TC0

d[n
k] for any fixed k ∈ N. 4

This sharp threshold phenomenon adds to several very recent results that demonstrated
such a phenomenon for solving other problems by LTF circuits of super-linear size [CT19]
(specifically, for solving certain NC1 problems and for solving the problem of quantified
derandomization), and for solving MCSP (or the closely related problem MKtP) by other
circuit classes, including AC0 circuits, AC0[⊕] circuits, and polynomial-sized formulas
(see [OS18; OPS19; CJW19; CMMW19; CKLM19; GII+19]).

1.2 A low-error PRG for De Morgan formulas

Our second main result is a PRG for the class of De Morgan formulas, which consists of
formulas of fan-in 2 over the De Morgan basis (i.e., with AND, OR, and NOT gates). This class
has been widely studied since the early ‘60s, with a focus on the sub-class NC1 of polynomial-
sized formulas, which is a non-uniform analogue of computation in parallel logarithmic time.

A common conjecture is that NC1 cannot compute all functions in P. However, at the
moment, the best lower bounds that we know for NC1 against explicit functions hold for De
Morgan formulas of size n3

polylog(n) ; these were proved by Håstad [Hås98] (following [Sub61;
Khr71; And87; IN93; PZ93]), with subsequent log-factor improvements [Tal14; Tal17a]. These
bounds were extended to average-case lower bounds by Komargodski, Raz, and Tal [KRT17]
and Bogdanov [Bog18] (following [San10; KR13]; see also [IK17; Tal17a]), who showed that for
any parameter r ≤ n, De Morgan formulas of size n3

r2·polylog(n) cannot compute a corresponding

function in P with success probability more than 1/2+ 2−r; in particular, for r = nδ, this gives
an average-case lower bound of 1/2 + 2−nδ

for De Morgan formulas of size n3−2δ−o(1).
Almost a decade ago, Impagliazzo, Meka, and Zuckerman [IMZ19] were able to

essentially match the known formula size lower bounds with a polynomial-time computable
PRG, which has seed length s1/3+o(1), fooling De Morgan formulas of size s. While their PRG
matches the known size lower bounds, it unfortunately supports only inverse-polynomial
error and not exponentially small error,5 and therefore does not match the known average-case
lower bounds, which assert at most an exponentially small advantage. Later on, Kabanets,
Koroth, Lu, Myrisiotis, and Oliveira [KKLMO20, Theorem 2] constructed a PRG for De
Morgan formulas whose leaves are labeled by functions with low communication complexity.
Their PRG fools a more general class, and its seed length has logarithmic dependency on the
error parameter, but unfortunately the seed length is proportional to

√
s, and therefore this

PRG is non-trivial only when the formulas are of quadratic size rather than of cubic size.
In this work we construct a PRG that nearly matches the known lower bounds for De

Morgan formulas both in terms of formula size and in terms of the average-case hardness
(i.e., in terms of the error probability of the PRG). In more detail:

Theorem 1.4 (low-error PRG for De Morgan formulas). There exists a polynomial-time
computable ε-PRG for De Morgan formulas of size s on n variables with seed length(

s1/3 · log2/3(1/ε) + log2(1/ε)
)
· 2O(
√

log s) · polylog(n) = s1/3+o(1) · polylog(n/ε) .

As one particular setting of the parameters, our PRG yields a function in NP that
cannot be computed by De Morgan formulas of size n3−2δ−o(1) with success probability more

4In fact, their result is even stronger, and only requires a lower bound against the non-gap version of MCSP
for circuit-size 2β·` (see [CJW19, Theorem 1.1, Item 7]. Thus, intuitively, the difference between the unconditional
result in Corollary 1.3 and a result that would imply lower bounds for all of TC0 is even smaller.

5More precisely, the result statements in [IMZ19] assert an error of s−O(1), but a careful examination of their
analysis shows that an error of 1/so(log s)1/3

is possible with similar seed length s1/3+o(1). Nonetheless, when the
error is 1/sω(log s)1/3

the seed length becomes trivial.
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than 1/2 + 2n−δ
over a natural polynomial-time-samplable distribution, for any δ > 0 (see

Proposition 4.11). This essentially matches the best known average-case lower bounds for De
Morgan formulas by [KRT17; Bog18], which were mentioned above.

2 High-level proof overviews

We now present high-level overviews of our proofs. First, in Section 2.1, we will describe
the common high-level technical challenge underlying both constructions, and our general
approach for handling this challenge. Then in Section 2.2 we describe our construction of a
PRG for De Morgan formulas (i.e., Theorem 1.4), which is considerably simpler than our PRG
for LTF circuits and nevertheless showcases our approach. Finally, in Section 2.3, we move on
to the more involved construction of a PRG for LTF circuits (Theorem 1.1).

2.1 The common high-level technical approach

Like most of the known unconditional PRGs for circuit classes, our constructions are based on
pseudorandom restrictions that simplify every circuit in the class to a simpler circuit, with high
probability.6 There are many known frameworks for obtaining PRGs from pseudorandom
restrictions (see, e.g. [AW85; IMZ19; GMRTV12; CHHL19]), yet a common property is that
the error of the PRG crucially depends on the failure probability of each restriction (i.e., the
probability that the circuit does not simplify under restriction). In particular, when each
restriction fails with probability p or more (where p is the fraction of variables kept alive by
the restriction), we do not obtain any non-trivial PRG. (This is because these PRGs typically
involve at least p−1 applications of restrictions.)

In classical analyses of restrictions (e.g., in [Hås87; Hås98]), one aims to prove that every
circuit simplifies to a circuit from the same class that is shallower or of significantly smaller
size. The main problem for us is that such statements simply do not hold with very high
probability for LTF circuits or for De Morgan formulas. For example, a size-n De Morgan
formula might only depend on O(log n) variables. Under a random restriction, the formula
remains completely intact with probability pO(log n) > 2−O(log(n)2). For LTF circuits the
situation is even worse: Even a single majority gate fails to simplify with sufficiently high
probability; we would like the gate to become constant under the restriction, or at least
extremely biased, but the probability of that not happening is at least

√
p � p. This means

that we cannot hope to get any non-trivial PRG for LTF circuits using this approach, and this has
indeed been a main bottleneck prior to the current work.7

Our way to bypass this obstacle in both settings, generalizing ideas from [Hås14; CSS18;
ST17a; Tal17b], is to change the definition of what it means to “simplify”. Instead of trying
to claim that each circuit simplifies to a shallower or smaller circuit, as in classical results, we
will claim that the restricted circuit can be computed by a hybrid computational model, which
is an artificial combination of several models that is nevertheless “simpler” in some useful
sense. Indeed, in both settings this relaxation allows us to reduce the failure probability of
the restriction to be exponentially small. The trade-off, though, is that we will have to deal with
restricted functions that are more complicated than just simpler circuits from the same class
(i.e., they are computable by hybrid models). Our proofs will hinge on a careful balance of
this trade-off. For example, improving on a previous result of [CSS18], we will show that with
probability 1− exp(−nΩ(1)), restricted LTF circuits of super-linear size can be approximated

6Recall that a restriction is a partial assignment to the input variables. Following standard convention,
throughout the section the letter p will denote the probability that each variable remains alive (i.e., unassigned)
under a random or pseudorandom restriction.

7In fact, to materialize our approach and get a non-trivial PRG for LTF circuits we will have to show restrictions
that fail with exponentially small probability (which is indeed what we show); see Section 2.3 for details.

5



by a decision tree of depth significantly less than p · n whose nodes query both variables
and LTFs, and whose leaves are labeled by (small sets of) LTFs (see Proposition 2.2 and the
preceding explanation); indeed, the precise balance of parameters here is crucial for our PRG
construction.

To be more specific, in each of the two settings we will need three new technical results
to construct our PRG. First, we will show that a truly random restriction simplifies the circuit
to a suitable hybrid model with probability 1− exp(−nΩ(1)). Then, to use a restrictions-to-
PRG framework, we will derandomize the latter result, showing that a suitable pseudorandom
restriction also simplifies the circuit to the corresponding hybrid model with probability
1 − exp(−nΩ(1)).8 And lastly, we will have to fool the hybrid model in a way useful for
the particular restrictions-to-PRG framework; for LTF circuits we construct a new PRG for the
hybrid model (which will be a corollary of Theorem 1.2), whereas for De Morgan formulas
we will refine an extractor-based argument of [IMZ19] to work for the hybrid model.

We stress that our motivation for undertaking this approach is different in each of the two
settings. For De Morgan formulas, we want to improve the error of the previous state-of-the-
art PRG of [IMZ19]. However, for LTF circuits, as mentioned above, the failure probability of
previously-known restrictions was a bottleneck toward obtaining any PRG whatsoever. Our
motivation for reducing the failure probability is in order to construct the first non-trivial
PRG for this class.

We comment that this general approach is also useful for fooling other circuit classes. For
branching programs and for formulas over an arbitrary basis, it can provide PRGs with improved
dependence on error compared to the previous state-of-the-art by Impagliazzo, Meka, and
Zuckerman [IMZ19]. However, for these two classes, it turns out that a more elementary
approach gives even better parameters. We defer the details to Appendix B.

2.2 Low-error PRG for De Morgan formulas

For De Morgan formulas we will build on the PRG framework of Impagliazzo, Meka, and
Zuckerman [IMZ19], which they used to construct the previous state-of-the-art PRG. Loosely
speaking, their PRG framework combines t ≈ p−1 restrictions, and the PRG’s error suffers
a union-bound over the failure probability of these t restrictions. It is well-known that a
random restriction shrinks every size-s De Morgan formula to a formula of expected size
O(p2 · s) (see [Hås98; Tal14]), and in [IMZ19] they showed a concentration bound for this
result that also holds for a pseudorandom restriction: For p ≥ 1/

√
s, their restriction shrinks

every size-s De Morgan formula to a formula of size p2−o(1) · s with probability 1− s−O(1)

(see [IMZ19, Lemma 4.8]).
As mentioned in Section 2.1, it is impossible to improve the failure probability in their

result to be smaller than pO(log(n)) > 2− log(n)2
, since a De Morgan formula that is sensitive only

to O(log(n)) input variables does not simplify at all with such probability.9 Nevertheless, in
this counterexample, a small number of variables are the ones responsible for the function’s
failure to simplify: In fact, if we were allowed to make a small number of “queries” to
variables, the function would become trivial.

We show that in general, querying only a small number of variables helps us avoid almost
all possible failure scenarios for the restriction: For any De Morgan formula of size s, with
probability 1 − ε over a random restriction, the restricted formula can be ε-approximated
by a decision tree of depth so(1) · polylog(1/ε) whose leaves are labeled by formulas of size
p2−o(1) · s. Moreover, we show that this happens also for a suitable pseudorandom restriction:

8We note in advance that our technical result statements typically already assert the result for a pseudorandom
restriction (which is stronger than the corresponding result for a random restriction).

9Recall that (by a counting argument) for any c ∈ N there exist functions over O(log(n)) variables that require
formulas of size nc, so this counter-example holds also for polynomial-sized formulas.
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Proposition 2.1 (low-error pseudorandom restrictions for De Morgan formulas; informal,
see Theorem 5.7). For any n, s ∈ N, p ∈ (1/n, 1/2) and ε > 0, there exists a distribution
over restrictions ρ ∈ {0, 1, ?}n keeping each variable alive with marginal probability p′ ≥ p that
is samplable in time poly(n, s) with so(1) · polylog(n/ε) random bits and satisfies the following.
For every size-s De Morgan formula f , with probability at least 1 − ε the formula f �ρ can be ε-
approximated by a decision tree of depth so(1) · polylog(sn/ε) with formulas of size p2−o(1) · s at its
leaves.10

Let us first describe the main idea in the proof of Proposition 2.1. Recall that a De Morgan
formula is called read-k if each variable appears at most k times among the leaves. In [IMZ19]
they first showed that read-k formulas shrink with extremely high probability; specifically, for

k = pO(1)

log(s/ε)
· s, they showed that a pseudorandom restriction shrinks any read-k formula from

size s to size O(p2 · s), with probability 1− ε. This can indeed yield an exponentially small
error with seed length smaller than n, and the main part in their analysis that increases the
error to 1/poly(s) is a subtle reduction from the case of general De Morgan formulas to the
case of read-k De Morgan formulas. (Similarly, the analyses of [KR13; KRT17; CKKSZ15] also
had to handle the “heavy” variables in a non-trivial manner.)

Our key observation here is simple: Using a DT, we can just query all the “heavy” variables,
i.e., variables that appear more than k times, thereby reducing the case of a general De Morgan
formula to the case of a DT with read-k De Morgan formulas at its leaves. Since there are at
most s/k heavy variables, the depth of our DT will be at most s/k = poly(p−1) · log(s/ε).
While this does not yet achieve the parameters stated in Proposition 2.1, we follow [IMZ19] in
composing less than log(1/p) restrictions that each keep a q = s−o(1) fraction of live variables
such that their composition keeps a p fraction of live variables; the depth of our DT is thus
less than log(1/p) · poly(q−1) · log(s/ε) < so(1) · polylog(sn/ε), as stated in Proposition 2.1.

The trade-off, however, is that since we simplify a De Morgan formula to a hybrid model
rather than to a smaller De Morgan formula, a naive application of the PRG framework
of [IMZ19] would yield a trivial seed length: This is because the seed length in their analysis
is proportional to the description length of the restricted function, whereas our hybrid model
requires a very large description (exponential in its depth). To overcome this we modify their
analysis such that it can handle our hybrid model. Specifically, we show that if the restricted
function can be computed by a DT with m leaves, each labeled with a function of description
length s0, then we can replace an additive term of Õ(m · s0) in the seed length (which is too
much for us) with an additive term of Õ(s0 + log(m)), at the (mild) cost of multiplying the
final seed length by log(m/ε). We defer the full description to Section 5.4.11

2.3 PRG for super-linear LTF circuits

We now describe the proof of Theorem 1.1. For simplicity, in the high-level overview we think
of d ∈ N as a constant, and fix δ = 2−O(d), where the O hides a universal constant. We want
to construct a PRG for LTF circuits of depth d with at most n1+δ wires, which has seed length
n1−δ and error 2−nδ

. As part of this proof we will also describe the proof of Theorem 1.2 (our
PRG for ANYs ◦ LTFn), and a self-contained description of the latter appears in Section 2.3.3.

10To use this result in our PRG construction we actually need a stronger notion of approximation. In our
technical result we show that the formula is approximated with “zero-error” by the hybrid model, but for
simplicity we ignore this in the high-level overview (see Section 5 for details).

11In a nutshell, instead of treating the entire tree as a single computational device with exponential description
length, we express the tree as a sum over m functions, one per leaf. Then, to ε-fool the entire tree it suffices to
ε/m-fool every single path in the tree. Indeed, each path has a succinct description that fits the PRG framework
of [IMZ19], and the crucial point for us is that in this framework the seed length only increases logarithmically in
the error ε/m of “fooling” the restricted model. See Section 5.4 for further details.
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2.3.1 Overview: Basic ideas and main challenges

For this setting we will use the classical restrictions-to-PRG framework of Ajtai and
Wigderson [AW85]. The first component needed to instantiate this framework is a
pseudorandom restriction, or more specifically a pseudorandom way to choose ≈ p · n
variables such that for every LTF circuit with depth d and n1+δ wires, when fixing the rest of
the variables uniformly, with high probability the circuit simplifies to some class Csimple. The
second component that we need is a PRG for the class Csimple.

Random restrictions for LTF circuits of depth d with n1+δ wires were previously studied
in [IPZ01; CSS18]. In the most relevant result to our setting, Chen, Santhanam, and
Srinivasan [CSS18, Lemma 39] proved that a random restriction simplifies any such circuit to
a corresponding hybrid model with exponentially small failure probability (jumping ahead, the
hybrid model that we will use will be a refinement of their hybrid model). Moreover, even
a pseudorandom restriction procedure for such circuits is already known (see [Tel18]). The
foregoing procedures (as well as all other procedures that we will mention below) use the
parameter value p = n−α, where α is a small constant. However, these restriction procedures
do not suffice in order to obtain a PRG via the [AW85] framework. Concretely, we are faced
with three main challenges:

1. Stronger simplification of the restricted function. The first challenge is that in previous
analyses the hybrid model to which the restricted LTF circuit simplifies is not “simple enough”
to be useful in known restrictions-to-PRG frameworks. Specifically, to get a PRG we
will need to “fool” the restricted circuit using significantly less randomness than the
remaining p · n bits. However, in [CSS18; Tel18] the hybrid model involves a DT of depth
(1− o(1)) · (p · n), which requires seed length essentially p · n to “fool”.12 We need to
show that random restrictions (and, later on, pseudorandom ones) simplify any LTF

circuit to a “sufficiently simple” hybrid model, for which we can (potentially) construct
an unconditional PRG with seed length o(p · n).

2. Low-error derandomization. The second challenge is that the error probability of the
known pseudorandom restriction procedure is too large to be useful in the known restrictions-
to-PRG frameworks. As mentioned in Section 2.1, the [AW85] framework involves a
union-bound over p−1 restrictions, and therefore the error of each restriction has to be at
most p. However, the analysis of pseudorandom restrictions in [Tel18] only bounds the
error by p1/5, using a naive concentration bound (i.e., Markov’s inequality); whereas the
analysis of [CSS18] for truly uniform restrictions relies on a read-k Chernoff bound (i.e.,
on [GLSS15]), which is not known to hold for a suitable pseudorandom distribution.

3. Constructing a PRG for the hybrid model. Lastly, after we show that suitable
pseudorandom restrictions simplify any LTF circuit to a “sufficiently simple” hybrid
model with sufficiently small failure probability, we need to construct a PRG with seed
length o(p · n) and error smaller than p for the hybrid model. As we will explain
in Section 2.3.3, previously-known PRG constructions do not seem to suffice for this
purpose.

We now state our two key technical results underlying Theorem 1.1, corresponding to the
challenges above. First, we construct a pseudorandom restriction procedure with seed length
approximately p−1 and failure probability ε = 2−nδ

that simplifies any LTF circuit of super-
linear size to a sufficiently simple hybrid model. In more detail, the hybrid model that we
consider is a DT whose gates query both LTFs and variables, with no more than pΩ(1) · (p · n)

12In [Tel18], the pseudorandom algorithm gets as input an LTF circuit and queries variables according to that
specific circuit, but this argument can be easily converted to a “black-box” pseudorandom restriction algorithm
that simplifies any circuit to a DT with parameters essentially as in [CSS18].
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variables and O(n1/4) LTFs queried in each path, and whose leaves are labeled by LTFs.
Indeed, the precise depth and number of queries of each type that this DT makes are of
crucial importance to our results. (Our actual hybrid model is unfortunately slightly more
complicated, labelling each leaf with a small set of LTFs rather than with a single LTF, since
for our PRG we will need to show that any LTF circuit can be sandwiched with error ε between
two functions that are each computable by such a hybrid model. For simplicity, we ignore
this fact and the more complicated model in the high-level overview.)

Proposition 2.2 (low-error pseudorandom restrictions for super-linear LTF circuits; informal,
see Corollary 6.12). For any constant d ∈ N and δ = 1

2 · 50−d, there is a distribution over subsets
I ⊆ [n] of size dpne, where p = n−(1+δ)/10, that can be sampled in time poly(n) with n1/10+O(δ)

random bits, such that the following holds. For any depth-d LTF circuit over n bits and with n1+δ wires,
when fixing uniform values for the variables in [n] \ I, with probability at least 1− 2−nδ

the restricted
circuit can be 2−nδ

-approximated by a decision tree in which each path queries at most pΩ(1) · (p · n)
variables and O(n1/4) LTFs, and each leaf is labeled by an LTF.

Our second key technical result is a low-error PRG for the hybrid model from
Proposition 2.2, which has seed length pΩ(1) · (p · n) (note that this is essentially the best
possible seed length, given that the DT queries pΩ(1) · (p · n) variables in each path). This
low-error PRG will follow as a special case of the PRG that was stated in Theorem 1.2.

Proposition 2.3 (low-error PRG for the hybrid model; informal, see Theorem 6.21). Consider
the class of functions over n′ input bits that are computable by decision trees that in each path query
at most D variables and M LTF functions, and whose leaves are labeled by LTFs. Then, there exists an
ε-PRG for this class, computable in poly(n′) time, with seed length Õ

(√
n′ · (D + M + log(1/ε))

)
.

In our application, given the restriction procedure in Proposition 2.2, we will have
n′ = dpne and D = pΩ(1) · (p · n) and M = O(n1/4), and we will use the error parameter
ε = 2−nδ

. Therefore, the seed length of the PRG from Proposition 2.3 will be dominated by
Õ(
√
(p · n) · D) ≤ pΩ(1) · (p · n).

In the following Sections 2.3.2 and 2.3.3 we will describe the main ideas behind the
proofs of Propositions 2.2 and 2.3, respectively. We note that these two sections can be read
independently of each other.

2.3.2 Low-error pseudorandom restrictions that “sufficiently simplify” the circuit

We now describe the proof of Proposition 2.2, in high-level and while not specifying precise
parameter values for simplicity. We will iteratively restrict the circuit for d− 1 iterations; in
each iteration i we start with a DT whose leaves are labeled by LTF circuits of depth i, and
our goal is to simplify it to a DT whose leaves are labeled by LTF circuits of depth i− 1. For
simplicity, let us first ignore the parameters of the DT, and just focus on a single circuit.

A single iteration. We choose the variables to keep alive via a k-wise independent
distribution, for k ≈ p−1 · log(1/ε). Following [CSS18; Tel18], we partition the graph between
the gates at the bottom layer and the variables into three parts: The one induced by “heavy”
variables, the one between “light” gates and “light” variables, and the remaining one between
“heavy” gates and “light” gates (we intentionally avoid precise definitions in this high-level
description). Our goal is to show that after the restriction, and given appropriate queries of
variables and of LTFs by the DT, all light gates will have fan-in at most one, and all heavy
gates will become extremely biased. In this case we will replace the heavy gates by the
corresponding constant, and will thus be able to reduce the depth of the circuit by one (at a
cost of a small approximation error).
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1. Heavy variables. Analogously to the setting of De Morgan formulas, our DT first queries all
the heavy variables. Recall that the circuit has only n1+δ wires; we define heavy variables so
that the DT would query at most pΩ(1) · (p · n) such variables.

2. Light gates and light variables. The subgraph induced by light gates and light variables was
handled in previous arguments using a simple graph-theoretic argument, which resulted in
a DT that is too deep for our purposes (i.e., the previous DTs were of depth (1− o(1)) · (p · n)
whereas we need depth o(p · n)). We handle this subgraph using a more refined graph-
theoretic argument. First, we carefully set the parameters (in all other parts of our proof) such
that the expected number of variable-pairs in this subgraph that both feed into a common gate
and that survive the restriction is pΩ(1) · (p · n).

Now we prove a concentration bound, showing that with probability 1 − ε under our
choice of restrictions, indeed at most pΩ(1) · (p · n) such variable-pairs survive the restriction.
To prove this bound we rely on the fact that the subgraph between light gates and light
variables has small degree: This allows us to partition the light gates into few large sets that
read disjoint subsets of variables. Given this concentration bound, with probability 1 − ε,
after the restriction our DT can query all the pΩ(1) · (p · n) living variables participating in
such pairs, hence reducing the fan-in of all gates in the subgraph to at most one (which
allows us to merge these gates into the layer above them). See Claim 6.7.1 for precise details.

3. Heavy gates and light variables. Lastly, we are left with the subgraph between heavy gates and
light variables, which is the most interesting part in the argument. The analysis of [CSS18]
for a truly random restriction handled this subgraph with an exponentially small failure
probability; but this analysis relied on a read-k Chernoff bound [GLSS15], which we do not
know how to derandomize in our particular setting using only p · n random bits. We use a
k-wise independent choice of variables to keep alive, and rely on an analysis that refers to the
particular structure of each LTF function (computed by a gate in the circuit) to show that with
all but an exponentially small failure probability, we can simplify this subgraph after at most
pΩ(1) · (p · n) queries to variables and p−O(1) queries to LTFs. Details follow.

The idea underlying previous results is to rely on a “restriction lemma” for a single LTF,
which shows that each gate in this subgraph becomes extremely biased with probability
1 − pΩ(1) when restricted (see Section 6.1.2). Thus, we expect the fan-in of each gate in
this subgraph to decrease by a factor of about p (recall that gates are heavy), and that all
but a pΩ(1) fraction of the gates will become extremely biased. When this happens, we
can replace the extremely biased gates by constants, thereby reducing the number of wires
in the subgraph by a p · pΩ(1) factor, and then we can query of all the p1+Ω(1) · n1+δ =
pΩ(1) · (p · n) remaining variables in the subgraph using our DT (hence eliminating the
subgraph completely). However, it is not clear how to show that the decrease of p1+Ω(1)

in the number of wires happens with high probability, rather than just in expectation.
Recall that our choice of values for fixed variables is uniform, but that our choice of which

variables to keep alive is only k-wise independent. The key problem is the latter choice might
restrict some gates in a manner such that we can no longer claim that a uniform choice
of values makes these gates biased with probability 1 − pΩ(1). To overcome this problem,
we prove that with all but exponentially small probability, after choosing the live variables
we can use the DT to query pΩ(1) · (p · n) additional variables in a careful way, which takes into
account the particular structure of each LTF gate, such that after these queries, each LTF becomes
biased with probability at least 1− pΩ(1) over a uniform choice of values for the restricted
variables. We stress that we are considering two different events and distributions here:
We are interested in proving that with extremely high probability 1− ε, our pseudorandom
choice of variables is “good” for each and every LTF gate (after querying additional variables);
whereas the meaning of “good” here is that with moderately high probability 1− pΩ(1) over
random choice of values for fixed variables, the LTF gate becomes biased. Conditioned on
any successful choice of live variables, we can now apply the read-k Chernoff bound to the
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uniform choice of values for fixed variables, and deduce that the fraction of unbiased gates
is very close to pΩ(1). One caveat is that during this process, our DT will also query a small
number of LTFs, rather than only variables. For further details see the proof of Proposition 6.7.

Subsequent iterations and approximation errors. The above procedure transforms a circuit
Cd of depth d into a DT over LTFs and variables whose leaves are labeled by circuits of depth
d− 1 and that approximates Cd with very small error, where the approximation error comes
from the fact that we replaced biased gates by constants. (As mentioned above, we actually
construct both an upper-sandwiching approximation and a lower-sandwiching approximation, at
the cost of labeling each leaf by one depth-(d− 1) LTF circuit and a small set of LTF functions.
For simplicity, we ignore this complication in the current overview.)

Our goal now is to iteratively apply further restrictions, in order to further reduce the
depth of the LTF circuits at the leaves of the DT, until we reach a DT whose leaves are labeled
with LTF circuits of depth one (i.e., LTFs). For i = d − 1, . . . , 1, we reduce the model to a
decision tree querying at most Di variables and Mi gates, and most importantly, whose leaves
are circuits of depth i. (We index iterations backwards as they correspond to the depth of
the LTF circuits on the leaves.) Note that when applying a restriction with value pi to a DT of
depth Di, in addition to claiming that the LTF circuits at the leaves of the DT become shallower,
we also need to claim that the depth of the tree itself decreases to roughly pi · Di (to ensure
that the final depth of the DT is sub-linear in the number of alive variables). We show that in
each iteration both statements hold for 1− ε of the leaves.

However, when composing restrictions in this manner we are faced with a subtle issue,
which is the bottleneck in the proof that necessitates having an exponentially small error in each
restriction (i.e., the argument would not follow through with larger error). Recall that each
leaf contributes a small error to the global tree, where the source of error is that the new DT

that labels this leafs only approximates the corresponding function. Also recall that when
counting the global error, the underlying distribution refers to the errors each leaf makes on
inputs that correspond to this leaf, under a uniform choice of input. The issue arises since the
initial DT queries not only variables but also LTFs: Hence, a uniform choice of input does not
induce a uniform choice of input in each leaf, since the set of inputs that reach any particular
leaf are the ones who also satisfy the queries of the LTF gates along the path. In particular,
this means that the weight of errors inside each leaf might be amplified.

The key to resolving this issue is to rely on the fact there are at most Mi LTFs in each path,
and therefore we intuitively expect the distribution over inputs inside the leaf to be skewed
by a multiplicative factor of at most 2Mi . We indeed formalize this intuition, and to solve the
issue, in each restriction i we ensure that the number of queried LTFs is at most Mi = p−O(1)

i ,
and we make sure that the error in the subsequent iteration, εi−1 will be much smaller than
2−Mi . (This is done by choosing, in each subsequent iteration, a smaller value for pi−1, i.e.,
pi−1 � pi.) Hence, the global in the subsequent restriction will be at most εi−1 · 2Mi � εi. For
further details see the proof of Proposition 6.9.

2.3.3 Low-error PRG for the “sufficiently simple” hybrid model

Our goal in this section is to prove Theorem 1.2, i.e., to construct a PRG for the class
ANYs ◦ LTFn of functions that can be computed as an arbitrary function of s LTFs, whose
seed length is Õ

(√
n · (s + log(1/ε))

)
. Our main application of this result is to prove

Proposition 2.3, and we will explain at the end of this section how the latter can be easily
obtained as a corollary. We note in advance that the crucial thing for this corollary is that the
PRG will be able to handle a tiny error of ε ≈ 2−n.99

.
Until recently, the seed length of known PRGs, even for the special case of AND ◦ LTF,

was proportional to log(1/ε)2, which is too much for us (see [GOWZ10; HKM12; ST17b;
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OST19]). However, very recently Kabanets, Koroth, Lu, Myrisiotis, and Oliveira [KKLMO20]
constructed a PRG that has a better dependency on the error, while simultaneously handling
a larger class of composition functions. Specifically, when the composition function is a De
Morgan formula of size s, their seed length is Õ

(√
n · s1/4 · log(1/ε)

)
. While this is still not

good enough for our application, their ideas will serve as our starting point.
Let f (x) = h(g1(x), . . . , gs(x)) for gi’s that are LTFs and for some composition function

h. Informally, the main idea underlying [KKLMO20] is to reduce the problem of ε-
fooling f to the problem of δ-fooling communication protocols for functions of the form
ḡ(x) = ∏j∈[∆] gij(x), where ∆ ∈ N is not too large but the error δ is very small. To do so,
in the analysis they first (ε/3)-approximate h by a real polynomial ph of bounded degree
∆, then replace each of the monomials ḡ of the polynomial by a corresponding randomized
communication protocol with error ε/3s, and finally claim that our PRG “fools” each of the
communication protocols with sufficiently low error δ� ε/2Õ(∆) allowing for a union-bound
over monomials. (See [KKLMO20, Theorem 25] for a detailed analysis.)

Instantiating the approach above with the trivial degree-s polynomial representation of
h and with efficient randomized communication protocols for functions of the form ḡ and
with suitable PRGs for these protocols, the resulting seed length is Õ

(√
n · s · log(1/ε)

)
(see

Section 6.2 for details). Tracking the parameters carefully, the multiplicative term of log(1/ε)
comes from computing each ḡ up to error ε/3s.

Our main idea is to avoid the multiplicative overhead of log(1/ε) by making the polynomial
ph “robust to noise” at each coordinate, which allows us to use communication protocols with
constant error rather than with error ε/3s. To do so we use a beautiful result of Sherstov [She13]:
For every polynomial ph, he constructed a “robust” polynomial p̃h of degree d = O(deg(ph)+
log(1/ε)) such that for every input x ∈ {0, 1}n and “noise” η ∈ [−1/3, 1/3]n it holds

that
∣∣∣ph(x) − p̃h(x + η)

∣∣∣ < ε. In high-level, to ε-approximate h(g1, . . . , gs) by a low-degree
polynomial of communication protocols, we will take a trivial representation of h by a degree-
s polynomial ph, convert ph to the robust polynomial p̃h guaranteed by [She13], and instead
of “feeding” p̃h the functions g1, . . . , gs, we will feed p̃h the expected values of the communication
protocols for each gi, while relying on the fact that p̃h is robust to the errors of the protocols.

In more detail, for each gi denote by gi a randomized communication protocol for gi with
error 1/3. Then, for every x ∈ {0, 1}n we have that∣∣∣h(g1(x), ..., gs(x))− p̃h(E[g1(x)], ..., E[gs(x)])

∣∣∣ < ε/3 ,

where we relied on the fact that for each i it holds that E[gi(x)] is (1/3)-close to gi(x) and
that p̃h is (ε/3)-robust to a noise of up to 1/3 per coordinate. Our goal is to fool the function
f̃ (x) = p̃h(E[g1(x)], ..., E[gs(x)]), and we want to show that it suffices to use a PRG that δ-
fools communication protocols for functions of the form ḡ = ∏i gi, where δ is sufficiently
small. The final observation that allows us to do so is that any monomial of f̃ , which is of the
form Πi E[gi] can be thought of as the expected value of the natural randomized protocol that
independently runs protocols for the gi’s and accepts if all of the protocols accepts. Since any
PRG for communication protocols also fools the expected value of a randomized protocol,
our PRG fools the monomials of f̃ with low error. Assuming that the error is sufficiently
small to allow for a union-bound over monomials (taking into account the weights of their
coefficients), our PRG also fools f̃ itself.

The argument above allows us to replace the (ε/3s)-error of the communication protocols
by error ρ = 1/3. We then instantiate communication protocols (for composition of d LTFs)
and PRGs (for the communication protocols) as above, and obtain a PRG for ANYs ◦ LTF with
seed length Õ(

√
n · d · log(1/ρ)) = Õ(

√
n · (s + log(1/ε))).

As an aside, observe that our first step was to use a trivial polynomial of degree s to
compute the composition h. This is unavoidable when h is arbitrary, but when h comes from
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more a restricted class we can use polynomials with better parameters, yielding a PRG with
shorter seed. See Appendix A for details.

Proposition 2.3 as a corollary of Theorem 1.2. Let T be a DT with parameters as in
Proposition 2.3. We can compute T as T(x) = ∑`∈L I`(x) · Φ`(x), where the summation is
over |L| ≤ 2D+M leaves, and for each leaf ` the function I` is the indicator function of `, and
Φ`(x) is the LTF function that labels `.13 It follows that to fool T with error δ, it suffices to
fool each term I` ·Φ` with error ε = δ · 2−(D+M). Now, since the path to each leaf queries D
variables and M LTFs, we can express I` as a conjunction of M + 1 LTFs, one of which will
simultaneously test the values of all the D queried variables. Therefore, I` ·Φ` is a conjunction
of M + 2 LTFs, so we can apply Theorem 1.2 with the specific composition function h = AND.

2.3.4 Making our PRG strongly explicit

The description above only claims that the PRG is computable in polynomial time. However,
as mentioned in Section 1.1, our PRG is in fact strongly explicit, in the sense that given a seed
s and an index i ∈ [n] of an output, we can compute the corresponding output bit G(s)i
in time O(n1−δ). The reason is that our algorithmic construction essentially just combines a
large number of k-wise independent distributions and PRGs for communication protocols,
with varying parameters, and strongly explicit constructions for both objects are known. To
ensure that even the combination of these objects is strongly explicit – that is, the combination
preserves this property – we fool communication protocols using a recent PRG by Forbes
and Kelley [FK18], which is algorithmically simple and thus suited for our purposes. See
Section 6.2.1 for an explanation and for technical details.

3 Previous work on circuit-analysis algorithms for LTF circuits

As mentioned in Section 1.1, a large number of previous works focused on circuit-analysis
algorithms for LTF circuits. We now survey the previously-known results, while focusing on
deterministic circuit-analysis algorithms. (Many randomized circuit-analysis algorithms for
LTF circuits are known – see, e.g., [CSS18; ACW16; KL18; KKLMO20] and the references
therein – but these are not the focus of this work, and do not imply circuit lower bounds via
Williams’ [Wil13] approach.)

Single LTFs and simple compositions of LTFs. For a single LTF function, a PRG with near-
optimal seed length Õ(log(n/ε)) was constructed by Gopalan, Kane, and Meka [GKM18],
following [DGJSV10; RS10; DKN10; Kan11; KRS12; MZ13; Kan14; KM15]. Concurrently
and subsequently, various PRGs were constructed for “simple compositions” of LTFs, and in
particular for AND ◦ LTF (i.e., for polytopes, see [GOWZ10; DKN10; HKM12; ST17b; CDS19;
OST19; KKLMO20]), for monotone functions of LTFs [GOWZ10], and for small De Morgan
formulas of LTFs [KKLMO20].

The class ANYo(n) ◦ LTF. The problem of fooling ANYs ◦ LTF with error ε reduces to fooling
ANDs ◦ LTF with error ε/2s [CDS19, Footnote 1]. Combining this reduction with the
PRG of [KKLMO20, Theorem 30], one can obtain a PRG for ANYs ◦ LTF with seed length
Õ
(√

n · (s5/4 + s1/4 · log(1/ε))
)
, which is non-trivial for s ≤ n2/5/polylog(n) (note that

this result is superseded by Theorem 1.2). Chattopadhyay, De, and Servedio [CDS19]

13Recall that in our actual hybrid model, each leaf is not labeled by a single LTF but rather by a small set of
poly(n) LTFs. We again ignore this issue in the overview for simplicity, and in the actual proof we will simply
union-bound over the poly(n) LTFs at each leaf (see Theorem 6.21 for details).
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(following [GOWZ10]) constructed a deterministic algorithm that approximately counts the
fraction of satisfying assignment for a given ANYs ◦ LTF circuit, up to error ε, in time
poly(n) · 2poly(s,1/ε). Note that their running time has an optimal dependency on n, but
becomes trivial when s ≥ nΩ(1) or ε ≤ n−Ω(1). In comparison, the PRG from Theorem 1.2
always has seed length at least

√
n, which is sub-optimal in the parameter n, but its seed

length remains o(n) even for s = n/polylog(n) and ε = 2−n/polylog(n).

Constant-depth LTF circuits. For circuits of depth two (i.e., LTF ◦ LTF circuits), Servedio
and Tan [ST17a] constructed an (n−O(1))-PRG with seed length n1−Ω(1) that works when
the number of wires is subquadratic. In an incomparable result, Alman, Chan, and
Williams [ACW16] (following [IPS13; Wil18; Tam16]) constructed a satisfiability algorithm
that runs in time 2n−nΩ(1)

for the larger class of AC0[m] ◦ LTF ◦ LTF circuits of subexponential size
that have a subquadratic number of LTF gates at their bottom layer.

For LTF circuits of depth d > 2, prior to the current work the known PRGs and satisfiability
algorithms only handled circuits with at most n.49 gates. However, these works extended to
the more general model of AC0 circuits that are augmented by a bounded number LTF gates:
Specifically, Servedio and Tan [ST18] (following [Vio07]) constructed a PRG for AC0 circuits

of size S with at most 2α·
√

log S LTF gates (for a universal constant α > 0) whose seed length

is 2O(
√

log S) + polylog(1/ε); and Lovett and Srinivasan [LS11] constructed an incomparable
PRG for AC0 circuits of polynomial size with at most n.49 LTF gates whose seed length is nδ

(for an arbitrarily small δ > 0) and whose error is 2−n.24
. See [SSTT16] for another result in

this spirit.
The only previously-known algorithm for LTF circuits of depth d > 2 and super-linear size

was an algorithm for quantified derandomization (i.e., for a relaxed circuit-analysis task) that
runs in time npolyloglog(n) and works when the circuit has n1+2−O(d)

wires and evaluates to the
same output on all but 2n1−2−O(d)

of its inputs [Tel18]. In general, quantified derandomization
algorithms are not known to imply lower bounds; however, even a very mild improvement
in the number of exceptional inputs that the foregoing algorithm can handle (namely, an
improvement in the universal constant hiding in the O-notation) would yield new lower
bounds for TC0 [CT19].

4 Preliminaries

We denote distributions and random variables in boldface. We let un denote the uniform
distribution over {0, 1}n. We will also use the convention of first defining some parameter
values (e.g., an input length n and auxiliary parameters denoting size and error bounds) and
then asserting that a uniform algorithm runs within some time bound with respect to these
parameter values; in all such statements, we assume that the algorithm explicitly gets all the
relevant parameter values as part of its input.

When we bound the running time of computing each output symbol of a function
G : {0, 1}` → Σn, the intention is that the algorithm also gets an index i ∈ [n] as part of
its input and its job is to output the i-th symbol of the output of G. When we say that a
distribution over strings x ∈ Σn can be sampled using s truly random bits such that each
coordinate of x can be computed in time t, we mean that there is a generator G : {0, 1}s → Σn

such that G(us) is distributed according to x and each output symbol of G can be computed
in time t. As a special case, when we say that a distribution over sets I ⊆ [n] can be sampled
using s truly random bits such that membership in I can be computed in time t, we mean that
each coordinate of the indicator vector of I can be computed in time t.

In the end, we will claim that each output bit of our PRG for constant-depth LTF circuits
can be computed in time n1−Ω(1). Fine-grained time complexity can in general be sensitive
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to polynomial overheads caused by different machine models, but our results hold in most
reasonable computational models. Indeed, we will prove that the time bounds hold with
respect to the standard multitape Turing machine model, which is a relatively weak model
of computation when we are concerned about polynomial factors. The reason we choose
this model is that multitape Turing machines can be implemented by Boolean circuits with
very little overhead [PF79], which will facilitate our proof that MCSP cannot be computed by
constant-depth slightly-superlinear-size LTF circuits (i.e., the proof of Corollary 1.3).

Definition 4.1 (distance between functions). We say that two functions f , g : {0, 1}n → {0, 1}
are ε-close if |E[ f (un)]−E[g(un)]| ≤ ε.

Definition 4.2 (sandwiching). We say that f : {0, 1}n → {0, 1} is ε-upper-sandwiched by
g : {0, 1}n → R if for every x ∈ {0, 1}n it holds that f (x) ≤ g(x), and also E[g(un)− f (un)] ≤ ε.
Similarly, we say that f is ε-lower-sandwiched by g if for every x it holds that g(x) ≤ f (x) and we
have that E[ f (un)− g(un)] ≤ ε.

4.1 Standard concentration bounds

We now state several well-known concentration bounds that we will use in the paper. The
first is the standard Hoeffding inequality.

Theorem 4.3 (Hoeffding’s inequality [Hoe63, Thm 2]). Let w ∈ Rn, and let z be a uniformly-
chosen random vector in {−1, 1}n. Then, for any t > 0 it holds that

Pr
[∣∣∣ 〈w, z〉

∣∣∣ ≥ t · ‖w‖2

]
≤ 2 exp(−t2/2) .

We also need concentration bounds for two regimes when the random variables are not
independent. The first of those, for the case of “read-k” random variables, was proved by
Gavinsky, Lovett, Saks, and Srinivasan [GLSS15]; and the second one is for random variables
that are k-wise independent, for which we will use the bound of Bellare and Rompel [BR94].

Theorem 4.4 (read-k Chernoff bound; [GLSS15, Thm 1.1]). Let {x1, ..., xn} be independent
random variables, and let y = y1, ..., yr be a set of functions x → {0, 1} such that each xi influences
at most k functions from y, where k ∈ N. Let µ = E[∑i yi]. Then, for any ∆ > 0,

Pr

[
r

∑
i=1

yi ≥ µ + ∆

]
≤ exp

(
−2∆2

rk

)
.

Theorem 4.5 (tail bound for k-wise independence; [BR94, Lemma 2.3]). Suppose x1, . . . , xn are
k-wise independent random variables taking values in [0, 1], where k ≥ 4.14 Let µ = E[∑i xi], and let
∆ satisfy ∆ ≥ µ/2 and ∆ ≥ 300k. Then

Pr

[∣∣∣µ−∑
i

xi

∣∣∣ ≥ ∆

]
≤ 2−k.

4.2 Restrictions

Given a function f : {0, 1}n → {0, 1}, a restriction of f is a subset W ⊆ {0, 1}n. We will be
interested in restrictions that are subcubes, and such restrictions can be described by a string

14For convenience, we allow non-integer values of k. The meaning is that any set of at most k of the variables
x1, . . . , xn are independent. Bellare and Rompel’s lemma [BR94] assumes k is an even integer, but we chose the
constant 300 to be large enough that our formulation follows from Bellare and Rompel’s lemma by considering
bkc and bkc − 1.
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ρ ∈ {0, 1, ?}n, where the subcube consists of all x ∈ {0, 1}n such that for every i ∈ [n] for
which ρi 6= ? it holds that xi = ρi. The living variables under ρ are the input bits indexed by
the set {i ∈ [n] : ρi = ?}. We will sometimes describe a restriction by a pair ρ = (I, z), where
I ⊆ [n] and z ∈ {0, 1}[n]\I or z ∈ {0, 1}n, with the interpretation being

ρi =

{
? if i ∈ I
zi if i ∈ [n] \ I.

The function f restricted to a subcube ρ is denoted by f �ρ : {0, 1}n → {0, 1} such that
f �ρ(x) = f (y), where for every i ∈ [n] it holds that yi = xi if ρi = ? and yi = ρi otherwise.
We will also consider the composition of restrictions to subcubes, where a composition
ρ = ρ1 ◦ ρ2 yields the restricted function f �ρ =

(
f �ρ2

)
�ρ1

. Specifically, if ρ1 ∈ {0, 1, ?}ρ−1
2 (?) or

ρ1 ∈ {0, 1, ?}n, then

(ρ1 ◦ ρ2)i =

{
(ρ2)i if (ρ2)i 6= ?

(ρ1)i if (ρ2)i = ?.
(1)

As a special case, if x ∈ {0, 1}ρ−1(?), then x ◦ ρ is the string in {0, 1}n obtained by using x to
fill in the ? positions of ρ.

Definition 4.6. A p-regular restriction is a random variable ρ ∈ {0, 1, ?}n such that for each i,
Pr[ρi = ?] = p and Pr[ρi = 0] = Pr[ρi = 1] = (1− p)/2. If additionally the coordinates ρ1, . . . , ρn
are independent, we say that the restriction is truly random. If ρ1, . . . , ρn are k-wise independent, we
say the restriction is k-wise independent.

Definition 4.7. Let A ⊆ [n]. A p-regular subset of A is a random variable I ⊆ A such that for each
i ∈ A,

Pr[i ∈ I] = p.

We say the subset is k-wise independent if the events i ∈ I are k-wise independent.

The next claim says that a p-regular k-wise independent subset of [n] and a p-regular
k-wise independent restriction can each be sampled efficiently using O(k · log(n/p)) truly
random bits. Indeed, we will show that the time to compute one coordinate of the restriction
on a multitape Turing machine scales linearly with k. The construction is standard, but
verifying the running time requires us to be slightly careful.

Claim 4.8. Let k, n ∈ N with k ≤ n and let p ∈ (0, 1) be a power of two. A p-regular k-wise
independent restriction ρ ∈ {0, 1, ?}n (and a p-regular k-wise independent subset I ⊆ [n]) can be
sampled using O(k · log(n/p)) truly random bits such that each coordinate of ρ (and membership in
I) can be computed in time k · polylog(n/p) on a multitape Turing machine.

Proof. Let F be a finite field of characteristic 2 with |F| ≥ n and |F| ≥ q, where q = 2/p. The
seed consists of a uniform random vector f ∈ Fk, which we think of as the list of coefficients
of a polynomial f : F → F of degree at most k− 1. Evaluate f at n distinct (fixed) elements of
F and take the first log q bits of each output value, giving a sequence y ∈ [q]n. This sequence
is k-wise independent [Vad12, Proposition 3.33] and each coordinate is distributed uniformly
over [q]. Using Horner’s rule, f can be evaluated using only O(k) field operations. Each
field operation can be performed in time polylog(|F|) [Sho90], so each coordinate of y can
be computed in time k · polylog(nq). (Note that according to Horner’s rule, we access the
coefficients of f in order from high-degree to low-degree, so this runtime holds even in the
multitape Turing machine model.) Our p-regular k-wise independent restriction ρ is given by

ρi =


0 if yi ∈ {1, 2, . . . , q/2− 1}
1 if yi ∈ {q/2, q/2 + 1, . . . , q− 2}
? if yi ∈ {q− 1, q}.
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Our p-regular k-wise independent subset I ⊆ [n] is given by I = ρ−1(?).

4.3 Threshold functions

For two vectors w, x ∈ Rn, we denote by 〈w, x〉 = ∑i∈[n] wi · xi the standard inner-product
over the reals. For h < n, we denote w>h = (wh+1, . . . , wn) ∈ Rn−h.

A linear threshold function (LTF) Φ : {0, 1}n → {0, 1} is a function of the form Φ(x) =
1 ⇐⇒ 〈x, w〉 > θ, where w ∈ Rn is a vector of real “weights”, and (the “threshold”) θ ∈ R is
a real number; we denote Φ = (w, θ). The following are standard definitions (see, e.g., [Ser07;
DGJSV10]) that refer to structural properties of LTFs.

Definition 4.9 (regularity). For µ > 0, we say that a vector w ∈ Rn is µ-regular if for every i ∈ [n]
it holds that |wi| ≤ µ · ‖w‖2. An LTF Φ = (w, θ) is µ-regular if w is µ-regular.

Definition 4.10 (critical index). When w ∈ Rn satisfies |w1| ≥ |w2| ≥ · · · ≥ |wn|, the µ-critical
index of w is defined as the smallest h ∈ [n] such that w>h is µ-regular (and h = ∞ if no such h ∈ [n]
exists). The critical index of an LTF Φ = (w, θ) is the critical index of w′, where w′ ∈ Rn is the vector
that is obtained from w by permuting the coordinates in order to have |w′1| ≥ · · · ≥ |w′n|.

4.4 PRGs yield hard functions

The following proposition (which is a minor modification of [Vio09, Prop. 5]) spells out the
standard transformation of PRGs to hard functions:

Proposition 4.11 (from PRG to average case hard function). Suppose that G : {0, 1}` → {0, 1}n

is ε-pseudorandom for a class F of functions f : {0, 1}n → {0, 1} that is closed under permuting the
input variables. For `′ = `+ dlog(1/ε)e, define h : {0, 1}`′ → {0, 1} by h(x) = 1 iff there exists
y such that x is a prefix of G(y). Let d ∈ {0, 1}`′ be a random variable that with probability 1/2 is
equal to u`′ and with probability 1/2 is equal to G(u`)[`′]. Then h is (1/2 + ε)-average-case hard for
F with respect to d; that is, for every f ∈ F that is sensitive to at most `′ input variables,15

Pr[ f (d) = h(d)] ≤ 1
2
+ ε. (2)

Proof. We have16

Pr[ f (d) = h(d)] =
1
2

Pr
u∼un

[ f (u) = h(u[`′])] +
1
2

Pr
u∼u`

[ f (G(u)) = h(G(u)[`′])]

=
1
2

Pr
u∼un

[ f (u) = h(u[`′])] +
1
2

Pr[ f (G(u`)) = 1]

≤ 1
2
(Pr[ f (un) = 0] + Pr[h(u`′) = 1]) +

1
2

Pr[ f (G(u`)) = 1]

≤ 1
2

(
Pr[ f (un) = 0] + 2`−`

′
)
+

1
2
(Pr[ f (un) = 1] + ε)

≤ 1
2
+ ε,

where the first inequality holds because f = h implies that either f = h = 0 or f = h = 1,
and the second inequality holds by the definition of h and the fact that G fools f .

15Technically, the domain of f is {0, 1}n, whereas d ∈ {0, 1}`′ ; the expression f (d) should be interpreted as the
output of f when the bits of d are placed at input locations to which f is sensitive.

16Since F is closed under permuting the input variables, we may assume without loss of generality that the
variables to which f is sensitive come before the variables that f ignores, hence f (d) is f (G(u`)) with probability
1/2 and f (un) otherwise.
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5 An improved low-error PRG for De Morgan formulas

Recall that Impagliazzo, Meka, and Zuckerman [IMZ19] designed a PRG for size-s De Morgan
formulas (s ≥ n) with seed length s1/3+o(1) and error 1/poly(s). In this section, we describe
a PRG with much lower error. In particular, we fool size-s De Morgan formulas with seed
length s1/3+o(1) · polylog(n/ε).

Theorem 5.1 (Low-error PRG for De Morgan formulas; Theorem 1.4, restated). For any
n, s ∈ N and any ε > 0, there is an ε-PRG for size-s De Morgan formulas with output length n
that is computable in time poly(n) with seed length(

s1/3 · log2/3(1/ε) + log2(1/ε)
)
· 2O(
√

log s) · polylog(n).

5.1 Shrinkage in expectation under truly random restrictions

Like the original PRG by Impagliazzo, Meka, and Zuckerman [IMZ19], the proof of
Theorem 5.1 relies on the phenomenon that De Morgan formulas shrink under a random
restriction. Let L( f ) denote the size of the smallest De Morgan formula computing f (L for
leaf complexity). Improving on work by Håstad [Hås98], Tal showed that formulas shrink in
expectation under a truly random restriction.

Theorem 5.2 ([Tal14]). Let f be a De Morgan formula of size s, and let ρ be a truly random p-regular
restriction. Then E[L( f �ρ)] ≤ O

(
p2s + p

√
s
)
≤ O(p2s + 1).

5.2 High-probability shrinkage of bounded-read De Morgan formulas

For our PRG, we would like to show some form of simplification with high probability under
a pseudorandom restriction. Let us begin with the special case of read-t De Morgan formulas
for small t, i.e., formulas where each variable appears in at most t leaves. Impagliazzo, Meka,
and Zuckerman showed [IMZ19, Lemma 4.7] that indeed, under a pseudorandom restriction,
such formulas shrink with high probability (see also [KRT17, Lemma 4.4]). Their bound is
sufficient for our application (Theorem 5.1), but we take this opportunity to re-prove the result
with improved parameters. We begin by recalling a structural lemma for De Morgan formulas
that Tal proved [Tal14] building on the work by Impagliazzo, Meka, and Zuckerman [IMZ19].

Lemma 5.3 ([Tal14]). Let f be a De Morgan formula of size s ≥ `. There exist a read-once De Morgan
formula F and De Morgan formulas g1, . . . , gm of size at most `, with m = O(s/`), such that for all
x,

f (x) = F(g1(x), . . . , gm(x)).

Furthermore, if a variable xi appears t times in f , then it appears at most 2t times in total among
g1, . . . , gm.

(The “furthermore” clause was not explicitly stated in Tal’s work [Tal14], but it follows
from an inspection of the construction.)

Lemma 5.4 (High-probability shrinkage of bounded-read De Morgan formulas). Let p, ε ∈
(0, 1). Let f be a read-t De Morgan formula of size s, where p2s ≥ 1. Let ρ ∈ {0, 1, ?}n be a k-wise
independent p-regular restriction, where k = p−2 log(s/ε). Then

Pr[L( f �ρ) ≤ O(p2s + t · p−4 · log(s/ε))] ≥ 1− ε.

Proof. Let f (x) = F(g1(x), . . . , gm(x)) be the decomposition from Lemma 5.3 with m ≤
O(p2s) and L(gi) ≤ ` = p−2. Since k ≥ `, Theorem 5.2 implies that E[L(gi�ρ)] ≤ s0 for
some s0 = O(1). Now form a graph with vertices g1, . . . , gm, where gi is adjacent to gj if there
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is some variable that is read by both gi and gj. Since f is read-t, each variable appears at most
2t times in total among g1, . . . , gm, so the graph has maximum degree less than 2t`. Therefore,
there is a proper (2t`)-coloring of the graph.

Consider a single color class S ⊆ [m] under such a coloring. Since S forms an independent
set, the formulas gi for i ∈ S read disjoint sets of variables, and each gi has at most ` leaves.
Therefore, if we let yi = L(gi�ρ)/` ∈ [0, 1], then yi for i ∈ S are k′-wise independent for
k′ = k/` = log(s/ε). By Theorem 4.5 with ∆ = |S|s0/`+ 300 log(s/ε), we have

Pr

[
∑
i∈S

L(gi�ρ) > 2|S|s0 + 300` log(s/ε)

]
≤ ε

s
.

The number of colors is 2t` (which is at most s), so by the union bound,

Pr

[
m

∑
i=1

L(gi�ρ) > 2ms0 + 600t`2 log(s/ε)

]
≤ ε

s
· 2t` ≤ ε.

Assuming that event does not occur,

L( f �ρ) ≤ 2ms0 + 600t`2 log(s/ε) = O(p2s + t`2 log(s/ε)).

5.3 High-probability simplification of unbounded-read formulas

Let us turn to the general case of unbounded-read De Morgan formulas. Impagliazzo,
Meka, and Zuckerman [IMZ19, Lemma 4.8] showed that with probability 1 − ε under a
pseudorandom restriction, a size-s De Morgan formula shrinks to size

p2s · exp

(
O

(
log(1/ε)

log1/3 s

))
.

This is meaningful in the moderate-error regime that they focused on (e.g., ε = 1/poly(s)),
but the bound becomes trivial for smaller ε such as ε = 1/quasipoly(s). Recall that we are
aiming to design a PRG for errors as small as 2−sΩ(1)

.
Unfortunately, as discussed in Section 2.1, the poor dependence on ε in Impagliazzo,

Meka, and Zuckerman’s result [IMZ19] is not an artifact of their analysis. Even under
a truly random restriction, De Morgan formulas genuinely do not shrink with sufficiently
high probability. To evade this obstacle, we are forced to consider a relaxed notion of
“simplification.” In particular, we study a hybrid decision tree model, defined next.

Definition 5.5. A (D, s)-DMF-DT is a partial decision tree T of depth D where each internal node is
labeled with a variable xi and each leaf is labeled with either a size-s De Morgan formula or else ⊥.
The tree computes a function T : {0, 1}n → {0, 1,⊥} in the natural way: follow the path in the partial
decision tree until reaching a leaf defined by the input x. If the leaf is marked with ⊥, output ⊥, and
otherwise output the value of the relevant formula evaluated on x. We define

Err(T) = Pr[T(un) = ⊥].

Loosely speaking, we will now show that with probability 1− ε under a pseudorandom
restriction with ?-probability p, a size-s De Morgan formula simplifies to a DMF-DT, where the
formulas at the leaves have size only O(p2s) and the depth D of the tree (i.e., the maximum
number of queries) is O(p−6 log(s/ε)). Intuitively, the hybrid decision tree model is helpful
because we can query all the “heavy” variables, leaving us with a bounded-read formula.

In fact, since we will need to apply this lemma iteratively to further simplify the simpler
function, we will prove more generally that DMF-DTs with size-s formulas at the leaves simplify
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to DMF-DTs with size-O(p2s)-formulas at the leaves. Another technicality is that we merely
achieve failure probability ε with respect to the pseudorandom choice of restriction and a
truly random input to the restricted function. The precise statement follows.

Lemma 5.6 (High-probability simplification of DMF-DTs). Let T be a (D, s)-DMF-DT and let
p, ε ∈ (0, 1) with p2s ≥ 1. For each restriction ρ ∈ {0, 1, ?}n, there is a (D′, s′)-DMF-DT Tρ such that
for all x, Tρ(x) ∈ {(T�ρ)(x),⊥}, and

s′ ≤ O(p2s) D′ ≤ D + O(p−6 log(s/ε)).

Furthermore, suppose ρ is sampled from a k-wise independent p-regular distribution, where k ≥
D + cp−6 log(s/ε) for a suitable constant c. Then

E
ρ
[Err(Tρ)] ≤ Err(T) + ε.

Proof. Let x ∈ {0, 1}n be an input to Tρ, and let y = x ◦ ρ. The tree Tρ begins by simulating the
decision tree portion of T(y), arriving at some leaf `. If ` is labeled ⊥, then the corresponding
node of Tρ is also a leaf labeled ⊥. Otherwise, ` is labeled with a size-s De Morgan formula f .

Let t = p6·s
log(s/ε)

. The tree Tρ obtains the values of all variables yi that appear more than t times
in f (by querying xi if ρi = ?), arriving at a leaf of Tρ. Let τ denote the restriction describing
these values of y, so τi ∈ {yi, ?} and f �τ is a size-s read-t De Morgan formula. For these
values of s, t, and ε, the bound in the conclusion of Lemma 5.4 is Cp2s for some constant C.
If L(( f |τ)|ρ) > Cp2s, then the leaf of Tρ is labeled ⊥; otherwise, it is labeled with ( f �τ)�ρ.

By construction, Tρ(x) ∈ {T(y),⊥} = {(T�ρ)(x),⊥} and we can take s′ = Cp2s. The
number of variables that appear in f more than t times is at most s/t, so we can take
D′ = D + s/t = D + O(p−6 log(s/ε)). Finally, let us bound E[Err(Tρ)] = Prρ,x[Tρ(x) = ⊥].
We can determine which leaf of T is reached by Tρ(x) by observing at most D coordinates of
ρ and x. The tree Tρ will output ⊥ if the leaf is labeled ⊥ or if it is labeled f and f �τ fails to
shrink. Since k ≥ D, the probability that the leaf is labeled ⊥ is precisely Err(T). Otherwise,
we can determine the formula f �τ by observing at most s/t additional coordinates of ρ and
x. Conditioned on any values for those D + s/t coordinates, the remaining coordinates of ρ
are still k′-wise independent where k′ = k− (D + s/t) ≥ p−2 log(s/ε). By Lemma 5.4, with
respect to those remaining coordinates, the probability that f �τ fails to shrink is at most ε.
Therefore, E[Err(Tρ)] ≤ Err(T) + ε.

Ultimately we would like to use a restriction with p ≈ s−1/3, but with such a small p,
the depth D′ in Lemma 5.6 becomes completely trivial, and besides, the seed length of the k-
wise independent restriction in Lemma 5.6 becomes too large. Following Impagliazzo, Meka,
and Zuckerman [IMZ19], we circumvent this issue by composing several pseudorandom
restrictions with a much larger value of p. Since we will not need to apply this next theorem
iteratively, we assume for simplicity that we start with a De Morgan formula rather than a
DMF-DT.

Theorem 5.7 (High-probability simplification of De Morgan formulas for small p). Let
n, s ∈ N, and let p ∈ (0, 1/2) and ε > 0. Let α = 1/

√
log s = o(1). Then, there

is a distribution over ρ ∈ {0, 1, ?}n that can be sampled in poly(n, s, log(1/p)) time using
O(sα · log2(1/p) · log(1/ε) · log n) truly random bits with the following properties.

1. ρ is p′-regular and k-wise independent where p′ ≥ p and k = sα · log(1/p) · log(1/ε).

2. For any size-s De Morgan formula f , there is a (D, s′)-DMF-DT T (jointly distributed with ρ)
such that

∀x, Pr[T(x) ∈ { f �ρ(x),⊥}] = 1 s′ ≤ p2−O(α) · s
E[Err(T)] ≤ ε D ≤ sα · log(1/p) · log(1/ε).
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Proof. If p < 2−s, the statement is trivial because the tree can simply query every variable
that f reads, so assume p ≥ 2−s. Let q be the smallest power of two that is at least s−α/7, so

q = 2−Θ(
√

log s). Let r = b log(1/p)
log(1/q) c, so qr ∈ [p, p/q).

Sample r independent and identically distributed restrictions ρ1, . . . , ρr ∈ {0, 1, ?}n,
where ρi is q-regular and k-wise independent for a value of k to be specified later. Set
ρ = ρr ◦ · · · ◦ ρ1, so indeed, ρ is p′-regular where p′ = qr ≥ p. To define T, think of f
as a (0, s)-DMF-DT, and using the notation of Lemma 5.6, define

T = (· · · (( fρ1
)ρ2

)ρ3
· · · )ρr

.

In each iteration, we use failure probability ε/r.
Clearly, T(x) ∈ { f �ρ(x),⊥} and E[Err(T)] ≤ ε. Furthermore, T is a (D, s′)-DMF-DT, where

D ≤ O(rq−6 log(rs/ε))

≤ O(s6α/7 log(1/ε) log(1/p)
√

log s)
≤ O(sα log(1/ε) log(1/p))

and
s′ ≤ O(q2)r · s ≤ 2O(r)q2r · s ≤ 2O(r) · p2 · q−2 · s ≤ p2−O( 1

α log s ) · s = p2−O(α) · s.

For each individual restriction, it suffices to take k = O(D). By Claim 4.8, each ρi can be
sampled using O(k log(n/q)) truly random bits. Therefore, the total seed length is

O(rk log(n/q)) ≤ O(sα log(1/ε) log2(1/p) log n) .

5.4 The PRG construction

Now we are ready to construct the PRG of Theorem 5.1. We follow the framework of
Impagliazzo, Meka, and Zuckerman [IMZ19]. Sample independent copies ρ1, . . . , ρt of the
restriction from Theorem 5.7, with

p = s−1/3 · log1/3(1/ε), (3)

error parameter ε/t, and t = O(p−1 log n + log(1/ε)). Let s′ and D be the values from
Theorem 5.7, and let G : {0, 1}d → {0, 1}n be a (D + s′)-wise independent generator. Sample
a (2400p−1)-wise independent string w. Let Ext : {0, 1}m×{0, 1}dExt → {0, 1}d be a (kExt, εExt)-
extractor, where kExt, εExt and m will be specified later. Sample independent uniform random
strings a ∈ {0, 1}m and y1, . . . , yt ∈ {0, 1}dExt . Let zi = Ext(a, yi). Our PRG outputs

w⊕
t⊕

i=1

(G(zi) ◦ ρi),

i.e., we use G(zi) to fill in the ? coordinates of ρi and then take the bitwise XOR of the
resulting t strings and w.

The proof of correctness is a hybrid argument. Sample independent uniform strings
u(1), . . . , u(t), and define hybrid distributions h0, . . . , ht by

hj = w⊕
( j⊕

i=1

(u(i) ◦ ρi)

)
⊕

 t⊕
i=j+1

G(zi) ◦ ρi

 .

Claim 5.8. Let f be a size-s De Morgan formula, and let j ∈ [t]. Then

|E[ f (hj−1)]−E[ f (hj)]| ≤ ε
t + 3 · 2D · εExt.

21



Proof. Define the random variable e = w ⊕
(⊕j−1

i=1(u
(i) ◦ ρi)

)
⊕
(⊕t

i=j+1 G(zi) ◦ ρi

)
which

conveniently gives us

hj−1 = e⊕ (G(zj) ◦ ρj)

hj = e⊕ (u(j) ◦ ρj).

Note that e and a are not independent, but e is nevertheless independent of ρj and yj. Let
f⊕e(x) = f (e ⊕ x), so f⊕e can be computed by a size-s De Morgan formula. Let T be the
DMF-DT from Theorem 5.7 associated with ρj and f⊕e, so T(x) ∈ {( f⊕e)|ρj

(x),⊥}. Define
r : {0, 1}n → [2D] by letting r(x) be the index of the leaf reached by T(x). For each ` ∈ [2D],
define

g−` (x) = 1 ⇐⇒ (r(x) = `) ∧ T(x) = 1
g+
` (x) = 1 ⇐⇒ (r(x) = `) ∧ T(x) ∈ {1,⊥}.

Now, g+
` (as a function) is a random variable, since g+

` depends on e and ρj. Let us bound
the support size of that random variable. For each fixed `, to describe the function g+

` , we
could specify the sequence of variables and values on the path from the root to leaf ` of T,
and then we could specify the label of that leaf (either ⊥ or a size-s′ De Morgan formula). In
total, that requires at most O(D log n + s′ log n) = O(s′ log n) bits.17

Intuitively, this means that a has a lot of entropy even given g+
` . By the extractor

guarantee, this should imply that zj = Ext(a, yi) is near uniform even given g+
` , and hence

g+
` (G(zj)) ≈ g+

` (G(ud)).
The cleanest way to make this sort of argument rigorous is to use the notion of conditional

min-entropy [DORS08]. Recall that for two random variables such as a and g+
` , the min-entropy

of a given g+
` is defined as

H̃∞(a | g+
` ) = log

(
1

Eg∼g+
`
[maxa Pr[a = a | g+

` = g]

)
.

Conditional min-entropy satisfies a chain rule [DORS08, Lemma 2.2], giving

H̃∞(a | g+
` ) ≥ H∞(a)− log(supp(g+

` )) ≥ m−O(s′ log n).

Furthermore, extractors can extract randomness from sources with high conditional min-
entropy. In particular, if we set kExt to be that same quantity m −O(s′ log n), then [Vad12,
Problem 6.8]

(g+
` , zj) ∼3εExt (g

+
` , u),

where u is a uniform random d-bit string independent of g+
` and ∼γ denotes γ-closeness in

total variation distance. Deterministic processing can only decrease total variation distance,
so ∣∣∣E[g+

` (G(zj))]−E[g+
` (G(u))]

∣∣∣ ≤ 3εExt.

Furthermore, g+
` only reads D + s′ variables, so G perfectly fools g+

` . Therefore,∣∣∣E[g+
` (G(zj))]−E[g+

` (u
(j))]

∣∣∣ ≤ 3εExt.

The same argument applies just as well to g−` , showing that∣∣∣E[g−` (G(zj))]−E[g−` (u
(j))]

∣∣∣ ≤ 3εExt.

17We may assume without loss of generality that s ≤ n3, since otherwise the theorem is trivial.
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Altogether, we have

E[ f⊕e(G(zj) ◦ ρj)] ≤
2D

∑
`=1

E[g+
` (G(zj))]

≤ E

[
2D

∑
`=1

g+
` (u

(j))

]
+ 2D · 3εExt

= E

[
2D

∑
`=1

g−` (u
(j))

]
+ E[Err(T)] + 2D · 3εExt

≤ E[ f⊕e(u(j) ◦ ρj)] +
ε

t
+ 2D · 3εExt.

A symmetric argument proves a bound in the other direction. Since f⊕e(G(zj) ◦ ρj) = f (hj−1)

and f⊕e(u(j) ◦ ρj) = f (hj), this completes the proof.

Claim 5.8 showed that the hybrid distributions are indistinguishable by f . Clearly, h0 is
our pseudorandom distribution. Next, we show that ht is statistically close to un.

Claim 5.9. ht ∼ε un.

Proof. Suppose we have already sampled ρ1, . . . , ρj−1. Let I be the set of coordinates in [n]
that are not yet covered by a ?, i.e.,

I = [n] \
(j−1⋃

i=1

ρ−1
i (?)

)
.

Let us say that ρj is a success if either |I| ≤ 2400p−1 or |ρ−1
j (?) ∩ I| ≥ p|I|/2. Recall from

Theorem 5.7 that ρj is 4-wise independent (indeed, k-wise independent for k � 4) and p′-
regular for some p′ ≥ p. Therefore, by Theorem 4.5 with ∆ = p′|I|/2, conditioned on any
values of ρ1, . . . , ρj−1, the probability that ρj is a success is at least 15/16. This implies that
with high probability, there will be at least Ω(t) successes. Indeed, by Azuma’s inequality
[DRV10, Lemma B.1], there will be at least t/2 successes, except with probability e−Ω(t) ≤ ε
(recalling that t = O(p−1 log n + log(1/ε))).

Suppose now that there are at least t/2 successes. We start with n coordinates not covered
by ?, and whenever there is a success, either we are down to 2400p−1 coordinates not covered,
or else the number of coordinates not covered decreases by a factor of (1− p/2). If the latter
case happens every time, then every coordinate is covered, because (1− p/2)t/2 · n < 1 (here
we use t ≥ Ω(p−1 log n)). Therefore, either way we must eventually cover all but 2400p−1

coordinates. In that case, with respect to the randomness of w and u(1), . . . , u(t), ht is clearly
uniformly random.

Proof of Theorem 5.1. By Claim 5.8 and the triangle inequality,

|E[ f (h0)]−E[ f (ht)]| ≤ ε + 2D · 3tεExt.

By Claim 5.9, this implies that

|E[ f (h0)]−E[ f ]| ≤ 2ε + 2D · 3tεExt.

Recall that h0 is the output distribution of our PRG. We shall set εExt = ε2−D/t, so the total
error is O(ε).
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Finally, let us bound the seed length of our PRG. We have log(1/p) < log n and
log(1/δ) = O(log(n/ε)). Therefore, each ρi costs fewer than

sα · log(1/ε) · polylog(n)

truly random bits, where α = 1/
√

log s = o(1). Furthermore, using Eq. (3),

s′ = p2−O(α)s = s1/3+O(α) log2/3(1/ε).

Therefore, the generator G has seed length

d = O((D + s′) log n) ≤ sα log(1/ε) · polylog(n) + s1/3+O(α) · log2/3(1/ε).

We shall take Ext to be the Guruswami-Umans-Vadhan extractor [GUV09], so we can take
kExt = O(d). As mentioned previously, we also need kExt = m−O(s′ log n), so we shall take
m = O(d). Of course, to sample a we need m truly random bits. The seed length dExt of this
extractor is

O(log(m/εExt)) = O(log(m) + D + log(t)) = sα log(1/ε) · polylog(n).

Finally, the O(p−1)-wise independent distribution w costs another O(p−1 log n) truly random
bits. Summing up, the total seed length is

s1/3+O(α) · log2/3(1/ε) + (p−1 + log(1/ε)) · sα · log(1/ε) · polylog(n),

which is bounded by(
s1/3 · log2/3(1/ε) + log2(1/ε)

)
· sO(α) · polylog(n) .

6 A PRG for LTF circuits of super-linear size

In this section we prove Theorem 1.1. We first present, in Section 6.1, a pseudorandom
restriction procedure that simplifies any LTF circuit into a suitable hybrid model, and fails
with tiny probability. Then, in Section 6.2, we construct a low-error PRG for the latter hybrid
model. And we combine these two parts into a PRG using the proof framework of Ajtai and
Wigderson [AW85] in Section 6.3.

6.1 Low-error pseudorandom restrictions for LTF circuits

In this section we present our pseudorandom restriction procedure for LTF circuits. We begin,
in Section 6.1.1, by defining the hybrid model to which any LTF circuit will be simplified with
very high probability, which is a generalization of decision trees and that we call an LTF-DT.
Then, in Section 6.1.2 we analyze the effect of a carefully structured restriction on a single LTF
function (i.e., a single gate in the circuit). In Section 6.1.3 we show how to simplify any LTF

circuit to an LTF-DT whose leaves are labeled by LTF circuits of smaller depth, with very high
probability. Anticipating iterative applications of this procedure, in Section 6.1.4 we show
how to simplify an LTF-DT whose leaves are labeled by LTF circuits into another LTF-DT whose
leaves are labeled by LTF circuits of smaller depth. Finally, in Section 6.1.5 we show how to
iteratively apply the foregoing procedure in order to simplify an LTF circuit into an LTF-DT
whose leaves are labeled by LTF functions (i.e., of LTF circuits of depth one).

Actually, as we will explain below, we show that each LTF circuit can be approximated by
an LTF-DT, and additionally that the approximation error of the LTF-DT can be decided by
a relatively simple function (i.e., at each leaf of the LTF-DT the approximation error can be
decided by the sum of polynomially-many LTFs). The fact that the approximation error can
be decided in this way will be crucial to our PRG construction, as explained in Section 6.3.
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Φ1(x) Φ2(x)

x3 x6 x2 x3

C1(x) C2(x) C3(x) C4(x) C5(x) C6(x) C7(x) C8(x)

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 1: An (n, 1, 2, d, w)-LTF-DT. Each Φi is an LTF, and each Ci is an LTF circuit with depth
d and at most w wires on variables x1, . . . , xn. In the more refined hybrid model presented in
Definition 6.2, each leaf ` is labeled not only with Ci but also with a set E` of LTFs (i.e., with
error indicators).

6.1.1 The hybrid computational model

Let us now formally define LTF decision trees. We first present a simplified definition and
then expand it to the full definition.

Definition 6.1 (LTF decision tree, see Figure 1). For n ∈ N, we say that a binary tree T is an
(n, M, D, d, w) LTF decision tree (or (n, M, D, d, w)-LTF-DT, in short) if:

1. Each internal node in T is labeled either by a variable xi (for some i ∈ [n]) or by a linear threshold
function {0, 1}n → {0, 1}.

2. Each leaf ` of T is labeled by an LTF circuit C` over n variables of depth d and with at most w
wires, and none of the variables queried on the path to ` appear as input variables in C`.

3. In the path to each leaf in the tree there are at most M nodes labeled with an LTF and at most D
nodes labeled with a variable. (In particular, the depth of T is at most D + M.)

An (n, M, D, d, w)-LTF-DT computes a function T : {0, 1}n → {0, 1} in the natural way:
Given input x ∈ {0, 1}n, we traverse from the root of T along the path that corresponds to the
evaluation of the function in each node (i.e., either an LTF or a variable) until we reach a leaf
` = `(x) that is labeled by an LTF circuit C`, and we output C`(x).

As mentioned above, we will actually argue that each LTF circuit is approximated by an
LTF-DT, and moreover that the approximation error can be tested (at each leaf of the LTF-DT)
by a “simple function”. This is formalized in the following definition:

Definition 6.2 (LTF decision tree with error indicators). We define a (n, M, D, d, w, e) LTF

decision tree with error indicators (or (n, M, D, d, w, e)-LTF-DT, in short) to be an (n, M, D, d, w)-
LTF-DT where each leaf ` of the tree is labeled with a set E` of LTF functions with |E`| ≤ e (in addition
to the LTF circuit C` that labels ` as before).

The interpretation is, if some Φ ∈ E` outputs 1, that means something has gone wrong
and the output of the tree is not reliable. An (n, M, D, d, w, e)-LTF-DT computes a function
T : {0, 1}n → {0, 1} as before: given input x ∈ {0, 1}n we traverse the corresponding path in
the tree until reaching a leaf ` = `(x), and then we output C`(x).
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Definition 6.3 (error functions of an LTF-DT). Given an LTF-DT T : {0, 1}n → {0, 1}, we
define its error-indicator function by Err(T, x) = ∑Φ∈E`(x)

Φ(x). We define the error of T by
Err(T) = Ex∼un [Err(T, x)].

Recall that when T was a DMF-DT, we defined Err(T) to be the probability of error on a
random input. Now that T is an LTF-DT, we have defined Err(T) to be the expected number of
errors on a random input.

Definition 6.4 (consistency of an LTF-DT with a function). Given a function f : {0, 1}n → {0, 1}
and an LTF-DT T : {0, 1}n → {0, 1}, we say that T is consistent with f if for every x ∈ {0, 1}n,

T(x) 6= f (x) =⇒ Err(T, x) ≥ 1 .

6.1.2 Simplification of a single LTF under a random restriction

To prove our result we will rely on a result asserting that any single LTF becomes close
a constant, with decent probability, under a restriction that randomly assigns values to
a fixed “good” set of variables. A similar result was proved by Chen, Santhanam, and
Srinivasan [CSS18, Lem. 4.4], who analyzed the case of a truly random restriction, and a
derandomized and refined version was proved in [Tel18, Prop. 3.8].

To get some intuition for the result, consider the illustrative example of the simple majority
function on n bits and of a random restriction. With extremely high probability, the `2 norm
of the living variables is ≈ √p · n; and by a suitable anti-concentration result (i.e., the Berry-
Esseen Theorem), the probability that a random fixing of the rest of the variables has absolute
value less than t · √p · n is at most O(t · √p). Thus, with probability at least 1−O(t · √p) the
restricted function has variables with `2 norm ≈ √p · n and “threshold” more than t · √p, in
which case it is exp(−t)-close to a constant function (see [Tel18, Fact 5.3] for details).

Indeed, the result of [CSS18] asserts that the same phenomenon happens for every LTF

rather than just for the majority function. We will need a variant of the derandomized version
of [Tel18] for this result: For any LTF, we will condition on a corresponding “good” choice of
variables to keep alive (where the meaning of “good” appears below), and assert that with
decent probability under a uniform choice of values for fixed variables, the LTF becomes close
to a constant.18 (We will also parametrize the result more carefully than in [Tel18].)

The proof below of this result closely follows [CSS18; Tel18]. In high-level, following an
idea of [Ser07], we partition the variables of the LTF into the “head” and the “tail,” where
the head consists of the variables with the largest weights in absolute value. (The precise
partition to head and tail relies on the critical index of the LTF, as defined in Definition 4.10.)
Intuitively, for any fixing of the head variables, the residual function on the tail variables
behaves approximately like a majority function, whose behavior under a random restriction
was analyzed above. In addition, the weights inside the head behave in a structured way (i.e.,
they essentially decrease exponentially), which makes them amenable to analysis. The proof
thus proceeds by a case analysis, depending on the relative total weight of the head.

Proposition 6.5 (random restriction lemma for a single LTF and a fixed set of living variables).

Let n ∈ N, let µ, µ′, ε > 0 such that µ ≤ 1
4
√

2 log(2/ε)
, and let λ = 10 log2(1/µ)

µ2 . Let Φ : {0, 1}n →
{0, 1} be an LTF with µ-critical index h, and assume that the weights vector w ∈ Rn of Φ = (w, θ)
satisfies |w1| ≥ |w2| ≥ . . . ≥ |wn|. Let I ⊆ [n] such that:

1. If h > λ we require that I ∩ [λ] = ∅.

18The original statement in [Tel18] also referred to a pseudorandom choice of values for the fixed variables, but
we only need a statement that refers to a pseudorandom choice of variables to fix and to a uniform choice of
values for the fixed variables.
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2. If h ≤ λ we require that I ∩ [h] = ∅ and ‖wI‖2 ≤ µ′ ·
∥∥∥w[n]\[h]

∥∥∥
2
.

Then, the probability over a uniform choice of z ∈ {0, 1}[n]\I that the restricted function Φ�I,z is
ε-close to a constant is at least 1−O(µ + µ′ ·

√
log(1/ε)).

Proof. Let J = [n] \ I be the set of variables fixed by z, and let T = [n] \ [min {h, λ}] be the
“tail” of variables following the “head” of the first min {h, λ} variables. For convenience, for
each string x ∈ {0, 1}∗, let e[x] ∈ {−1, 1}|x| be the string e[x]i = (−1)xi . Letting w′ = − 1

2 w,
there is some θ′ such that

Φ(x) = 1 ⇐⇒ 〈w′, e[x]〉 > θ′.

Note that the µ-critical index of w′ is h as well. We will prove that with probability at least
1−O(µ + µ′ · log(1/ε)) over choice of z ∈ {0, 1}J ,〈

w′J , e[z]
〉

/∈ θ′ ±
√

2 log(2/ε) ·
∥∥w′I

∥∥
2 .

Using Hoeffding’s inequality (Theorem 4.3), whenever this happens the restricted function
Φ�I,z is ε-close to a constant. Our proof of this claim relies on a case analysis.

The case of h > λ. For this case we use the following claim (the original notation is modified
to be consistent with our notation):

Claim 6.5.1 (see [Tel18, Claim 5.7.1 in full version], following [CSS18] and [DGJSV10, Lemma
5.5]). For any r ∈ N, let λr,µ = 4r·ln(3/µ2)

µ2 . Then, for any J ⊇ [λr,µ], the probability under uniform

choice of z ∈ {0, 1}J that
〈

w′J , e[z]
〉
∈ θ′ ± 1

4µ ·
∥∥∥w′>λr,µ

∥∥∥
2

is at most 2−r.

We use the claim above with parameter r = log(1/µ), relying on our hypothesis that

λ = 10 · log2(1/µ)
µ2 > λr,µ, to deduce that Prz

[〈
w′J , e[z]

〉
/∈ θ′ ± (1/4µ) ·

∥∥∥w′>λr,µ

∥∥∥
2

]
≥ 1 − µ.

Now, observe that

1
4µ
·
∥∥∥w′>λr,µ

∥∥∥
2
≥
√

2 log(2/ε) ·
∥∥∥w′>λr,µ

∥∥∥
2

(µ ≤ 1
4
√

2 log(2/ε)
)

>
√

2 log(2/ε) ·
∥∥w′T

∥∥
2 (λ > λr,µ)

≥
√

2 log(2/ε) ·
∥∥w′I

∥∥
2 , (I ⊆ T)

and hence the probability over z that
〈

w′J , e[z]
〉

/∈ θ′ ±
√

2 log(2/ε) · ‖w′I‖2 is at least 1− µ.

The case of h ≤ λ. For this case, observe that for any fixed value for z[h], the event〈
w′J , e[z]

〉
∈ θ′ ±

√
2 log(2/ε) · ‖w′I‖2 happens if and only if

〈
w′T\I , e[zT\I ]

〉
∈ θ′′ ±√

2 log(2/ε) · ‖w′I‖2, where θ′′ = θ′ −
〈

w′[h], e[z[h]]
〉

. Relying on the hypothesis that ‖wI‖2 ≤
µ′ · ‖wT‖2 (hence ‖w′I‖2 ≤ µ′ · ‖w′T‖2), to upper-bound the probability of the latter event it

suffices to upper-bound the probability of the event
〈

w′T\I , e[zT\I ]
〉
∈ θ′′ ±

√
2 log(2/ε) · µ′ ·

‖w′T‖2. We do so using the following claim, whose proof amounts to an application of the
Berry-Esseen theorem:

Claim 6.5.2 (see [Tel18, Lemma 5.5 in full version]). Assume that w′T is µ-regular and that
µ′ ≤ 3/4, and let I ⊆ T such that ‖w′I‖2 < µ′ · ‖w′T‖2. Then, for any θ′′ ∈ R and r > 0, the

probability over uniform choice of z′ ∈ {0, 1}T\I that
〈

w′T\I , e[z′]
〉
∈ θ′′ ± r · µ′ · ‖w′T‖2 is at most

O(r · µ′ + µ).
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We invoke the claim above with r =
√

2 log(2/ε), relying on the fact that w′T is µ-

regular and that µ′ ≤ 3/4.19 We deduce that the probability that
〈

w′T\I , e[z′]
〉
∈ θ′′ ±√

2 log(2/ε) · µ′ · ‖w′T‖2 is O(µ + µ′ ·
√

log(1/ε)). By the hypothesis that ‖w′I‖2 ≤ µ′ · ‖w′T‖2,

the probability that
〈

w′T\I , e[z′]
〉
∈ θ′′ ±

√
2 log(2/ε) · ‖w′I‖2 is O(µ + µ′ ·

√
log(1/ε)). Since

this holds for any fixed value for z[h], it follows that the probability over z ∈ {0, 1}J that〈
w′J , e[z]

〉
∈ θ′ ±

√
2 log(2/ε) · ‖w′I‖2 is at most O(µ + µ′ ·

√
log(1/ε)).

The next proposition considers a restriction where we assign truly random values to a
pseudorandom subset of the variables, as well as to the variables with the largest weights
(in absolute value). Under such a restriction, the proposition asserts that the LTF is likely to
become extremely biased. Furthermore, the bad event (i.e., the event that the LTF does not
become extremely biased) is broken up into two bad events: a bad set of living variables, or
a bad assignment. The probability of a bad assignment is moderately low, and crucially, the
probability of a bad set of living variables is extremely low.

Proposition 6.6 (pseudorandom restriction lemma for a single LTF). For any ε, γ > 0, there is
a value

λ = O(γ−2 · log2(1/ε) · log2(log(1/ε)/γ)) = Õ(γ−2 · log2(1/ε)) (4)

such that the following holds. Let Φ : {0, 1}n → {0, 1} be an LTF with weights vector w ∈ Rn,
and assume |w1| ≥ |w2| ≥ · · · ≥ |wn|. Let A ⊆ [n] \ [λ] and let I be a p-regular log(1/ε)-wise
independent subset of A. Sample z ∈ {0, 1}[n]\I uniformly at random. Then with probability 1− ε
over I,

Pr
z
[Φ�I,z is not ε-close to a constant] ≤ γ + O

(√
p log(1/ε)

)
.

Proof. We wish to apply Proposition 6.5 with

µ = Θ
(

γ

log(1/ε)

)
.

For this value of µ, the parameter λ in Proposition 6.5 is indeed given by Equation 4. We must
verify that with high probability I satisfies the Proposition’s hypotheses. Let h be the µ-critical
index of Φ. When h > λ, I is guaranteed to satisfy the hypotheses, because I ∩ [λ] = ∅ by
design. Assume now that h ≤ λ. Let T = [n] \ [h], so I ⊆ A ⊆ T. We need to show that with
high probability over I, we have ‖wI‖ ≤ µ′‖wT‖ for some small parameter µ′. Indeed, we
claim that

Pr
I

[
‖wI‖2 ≤ O

(
√

p + µ
√

log(1/ε)

)
· ‖wT‖2

]
≥ 1− ε. (5)

To prove it, for each i ∈ A, let ai be the random variable

ai =
w2

i
µ2‖wT‖2

2
· 1i∈I.

Note that, since I ⊆ A, we have that µ2 · ∑i∈A ai =
‖wI‖2

2
‖wT‖2

2
. Since wT is µ-regular, ai ∈ [0, 1].

Furthermore,

E

[
∑
i∈A

ai

]
=

p‖wA‖2
2

µ2‖wT‖2
2
≤ p

µ2 .

19Note that we can assume µ′ ≤ 3/4 without loss of generality, otherwise the statement that we are trying to
prove is trivial (because our claimed error bound O(µ′ ·

√
log(1/ε) + µ) is larger than one).
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By Theorem 4.5 with ∆ = p/µ2 + 300 log(1/ε),

Pr

[
∑
i∈A

ai ≥ 2p/µ2 + 300 log(1/ε)

]
≤ ε.

(Here we use the fact that the events i ∈ I are log(1/ε)-wise independent.) If that bad event
does not occur, then

‖wI‖2
2 ≤ (2p + 300µ2 log(1/ε)) · ‖wT‖2

2,

and hence ‖wI‖2 ≤ O(
√

p + µ
√

log(1/ε)) · ‖wT‖2, completing the proof of Equation (5). In
this case, the hypotheses of Proposition 6.5 are satisfied with µ′ = O(

√
p + µ

√
log(1/ε)), so

indeed,

Pr
z
[Φ�I,z is not ε-close to a constant] ≤ O

(
µ log(1/ε) +

√
p log(1/ε)

)
= γ + O

(√
p log(1/ε)

)
.

6.1.3 Restrictions for one layer of an LTF circuit

We would now like to prove that an LTF circuit of super-linear size simplifies under a
pseudorandom restriction, with very high probability. More specifically, in this result the
? positions (I) are pseudorandom, but the non-? positions are filled in using truly random
bits (u[n]\I). This is in contrast to the restrictions we studied in the context of De Morgan
formulas, where both components were pseudorandom.

We begin with the special case that each variable in the LTF circuit has a bounded fan-out.
(This is analogous to our analysis of De Morgan formulas, where we began with the special
case of bounded-read formulas.)

The result below is stated for general parameters. To facilitate its parsing, consider the
parametric setting with which we will apply the result: For a very small constant δ > 0, given
a circuit with w = n1+δ wires in which each variable has fan-out at most t = nO(δ), we apply
a restriction that keeps p = nO(δ) fraction of the variables alive. Our goal is to deduce that
the circuit simplifies to an LTF-DT in which each branch queries at most D = o(p · n) variables
and M = nO(δ) LTFs. Indeed, we prove the following more general technical statement:

Proposition 6.7 (pseudorandom restrictions simplify LTF circuits when the variables have
bounded fan-out). Let n, w, d, t ∈ N and p, ε > 0. Let I be a k-wise independent p-regular subset
of [n] where k = p−5/6 log(6w/ε), sample u ∈ {0, 1}n uniformly at random, and let ρ = (I, u[n]\I).
For any depth-d LTF circuit C : {0, 1}n → {0, 1} with at most w wires where every variable has fan-
out at most t, there is an (n, M, D, d− 1, w, w)-LTF-DT T (jointly distributed with ρ) that is consistent
with C�ρ such that E[Err(T)] ≤ ε and

D = O((p7/6 · w + p−5/2 · t) · log2(w/ε))

M = O(p−2/3 · t).

Proof. We first analyze the effect of the restriction ρ on C and prove a number of technical
claims, while also explaining intuitively and in advance how we intend to construct an LTF

decision tree that approximates C�ρ. Afterwards we will rely on these technical claims to
formally show how to construct the LTF-DT with error indicators.

Let W be the set of LTF gates Φ such that every input to Φ is a variable (not another gate).
We partition W = WH∪̇WL, where WH is the set of (“heavy”) gates with fan-in at least p−5/6

and WL = W \WH. Let X = {x1, . . . , xn} be the set of variables.
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notation our main setting

number of wires w n1+δ

fraction of live variables p n−O(δ)

target error probability ε 2−O(nδ)

heavy gates fan-in ≥ p−5/6 ≥ nO(δ)

variable fan-out ≤ t ≤ nO(δ)

Figure 2: The main parameters in the proof

Light gates. Consider the wires between WL and X. We say that two distinct variables
xi, xj ∈ X are a connected pair if there exists g ∈ WL such that both xi and xj feed into
g. The probability that both variables in a connected pair survive is p2. The number
of connected pairs is less than p−5/6 · w, since each wire participates in fewer than p−5/6

connected pairs. Therefore, in expectation, the number of connected pairs that survive the
restriction is bounded by p2 · p−5/6 · w = p7/6 · w. The next claim says that a similar bound
holds with high probability.

Claim 6.7.1. With probability 1− ε/6, the number of connected pairs such that both variables in the
pair are in I is O(p7/6 · w + p−5/2 · t · log(w/ε)).

Proof. Partition WL into blocks B1, . . . , Br, where r ≤ log(p−5/6), such that each block Bi
consists of all gates with fan-in more than 2i−1 and at most 2i. Fix a block i ∈ [r]. Form a
graph with vertex set Bi, where g is adjacent to g′ if there is some variable xi ∈ X that feeds
into both g and g′. Since each gate g has fan-in less than p−5/6 and each variable has fan-out
at most t, the maximum degree of this graph is less than p−5/6 · t. Therefore, there is a proper
coloring of the graph using O(p−5/6 · t) colors.

For each gate g ∈WL, let ag ∈ [0, 1] be the fraction of pairs of variables feeding into g such
that both variables are in I. Consider one color class S. Within this color class, gates read
disjoint sets of variables. Furthermore, each gate reads fewer than p−5/6 variables. Therefore,
the variables ag for g ∈ S are k′-wise independent where k′ = log(6w/ε). Furthermore,
E[ag] = p2, so

E

[
∑
g∈S

ag

]
= p2|S|.

By Theorem 4.5, we have

Pr

[
∑
g∈S

ag ≥ 2p2|S|+ 300 log(6w/ε)

]
≤ ε

6w
.

Now we shall union bound over all color classes and all blocks. Each color class has at least
one gate, and there are at most w gates in total. Therefore, except with probability ε/6, for
every i, we have

∑
g∈Bi

ag ≤ 2p2|Bi|+ O(p−5/6 · t · log(w/ε)).
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In this case, the number of connected pairs feeding into Bi that survive the restriction is

∑
g∈Bi

ag ·
(
fan-in(g)

2

)
≤
(

2i

2

)
· ∑

g∈Bi

ag

≤
(

2i

2

)
· (2p2|Bi|+ O(p−5/6 · t · log(w/ε)))

≤ O

((
2i

2

)
· p−5/6 · t · log(w/ε) + p2 ∑

g∈Bi

(
fan-in(g)

2

))
,

where the last step holds because (fan-in(g)
2 ) > (2i−1

2 ) > 1
4 (

2i

2) for each g ∈ WH. Therefore, the
total number of connected pairs that survive the restriction is

O

((
r

∑
i=1

(
2i

2

)
· p−5/6 · t · log(w/ε)

)
+ p2 · ∑

g∈WL

(
fan-in(g)

2

))
.

Since the total number of wires is at most w and the fan-in of each g ∈ WL is less than p−5/6,
we have ∑g∈WL (fan-in(g)

2 ) < p−5/6 · w. Furthermore, ∑r
i=1 (

2i

2) ≤ 22r+1 ≤ O(p−5/3). Therefore
the total number of connected pairs that survive is at most

O(p−5/3 · p−5/6 · t · log(w/ε) + p2 · p−5/6 · w) = O(p−5/2 · t · log(w/ε) + p7/6 · w).�

We will condition on the event of Claim 6.7.1, and in this case we will query all of the
O(p7/6 · w + p−5/2 · t · log(w/ε)) variables that participate in surviving connected pairs, such
that the only remaining light gates are now projection functions.

Heavy gates. Consider the bipartite subgraph between WH and X (see Figure 3 for a pictorial
representation of this subgraph). We first condition on three events that happen with high
probability, and depend only on the choice of I, the set of variables to keep alive. The first
event will be that the fan-in of each gate decreases by roughly a factor of p; more accurately:

Φ1 Φ2 Φ3 ... Φm

x1 x2 x3 ... xn

≤ t
≥ p−5/6

Figure 3: Pictorial representation of the subgraph between WH and X. Recall that each
Φi ∈WH has fan-in at least p−5/6, whereas each xi ∈ X has fan-out at most t.

Claim 6.7.2. With probability at least 1− ε/6, for each gate g ∈W, there are at most 2p ·fan-in(g)+
O(log(w/ε)) variables feeding into g that are in I.

Proof. This follows from Theorem 4.5 and a union bound over the ≤ w gates in W. �

We now consider two additional high-probability events that depend only on I. Intuitively,
we want to claim that after querying an additional small set of variables (on top of the
variables assigned by ρ), each gate g ∈WH has a decent chance of becoming extremely biased
under the uniform random assignment of bits in ρ.
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In more detail, let γ = p1/3 log(w/ε), and let λ be the quantity from Proposition 6.6 with
error parameter20 ε/(6w), so λ = O(p−2/3 · log2(1/p)). Let Xheads be the set of variables that
includes, for each g ∈ WH, the λ variables with the largest weights (in absolute value). Then,
we claim that:

Claim 6.7.3. With probability at least 1− ε/6,

|I ∩ Xheads| ≤ O(p7/6 · w · log2(1/p) + log(1/ε)).

Proof. We have |Xheads| ≤ λ · p5/6 · w (since |WH| ≤ p5/6 · w and each gate in WH contributes
at most λ variables to Xheads). By Theorem 4.5 with ∆ = p · λ · p5/6 · w + 300 log(6/ε), with
probability at least 1− ε/6, the number of variables in Xheads that land in I is at most

O(p · λ · p5/6 · w + log(1/ε)) ≤ O(p7/6 · w · log2(1/p) + log(1/ε)).

Here we use the fact that I is log(6/ε)-wise independent. �

Claim 6.7.4. Let I′ = I \ Xheads. With probability at least 1− ε/6 over the choice of I, for every
g ∈WH,

Pr
u∈{0,1}n

[g�I′,u is not (ε/(6w))-close to a constant] ≤ O
(

p1/3 log(w/ε)
)

. (6)

Proof. For each g ∈ WH, by Proposition 6.6, Equation (6) holds with probability 1− ε/(6w)
over the choice of I (note that

√
p log(1/ε) < γ.) A union bound over the ≤ w gates in WH

completes the proof. �

Our LTF-DT will query all the variables in Xheads, and then we will deal with the gates
according to the partition in the next claim. We will replace each gate in WH

1 with the
corresponding constant; we will query all the variables feeding into the gates in WH

2; we
will query the gates in WH

3 themselves.

Claim 6.7.5. Let I be such that the conclusions of Claims 6.7.2 and 6.7.4 are both satisfied. Let
I′ = I \ Xheads and z = u[n]\I′ . With probability 1− ε/6 over z, WH can be partitioned into three
sets, WH = WH

1 ∪WH
2 ∪WH

3, such that under the restriction (I′, z):

1. Every gate in WH
1 is (ε/(6w))-close to a constant.

2. The number of living wires feeding into WH
2 is at most O(p7/6 · w · log2(w/ε)).

3. |WH
3| ≤ O(p−2/3 · t).

Proof. Initially, partition WH into blocks B1, . . . , Br, where r ≤ log w, such that each block
Bi consists of all gates with fan-in more than 2i−1 and at most 2i. For each gate g ∈ WH,
by Claim 6.7.4, under the restriction (I′, z), the probability that g is not (ε/(6w))-close to a
constant is at most ϕ = O(p1/3 · log(w/ε)). We let WH

3 be the union of all gates in blocks Bi
with |Bi| ≤ ϕ−2 · t · log(6r/ε), so indeed,

|WH
3| ≤ r · ϕ−2 · t · log(6r/ε)

≤ O(log w · p−2/3 · log−2(w/ε) · t · log(log(w)/ε))

< O(p−2/3 · t).

We let WH
1 be the set of gates in WH \WH

3 that are (ε/(6w))-close to a constant after the
restriction, and we let WH

2 = WH \ (WH
1 ∪WH

3). All that remains is to bound the number of
living wires feeding into WH

2.

20I.e., the good event in Proposition 6.6 is that the restricted function is (ε/(6w))-close to a constant.
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Consider some block Bi with |Bi| > ϕ−2 · t · log(6r/ε). For each g ∈ Bi, we have
Pr[g ∈ WH

2 ] ≤ ϕ. Admittedly, these events are not completely independent, but each variable
has fan-out at most t, so we may apply the read-t Chernoff bound (Theorem 4.4) to our
uniform choice of z (recall that I is fixed). This shows that

Pr[|Bi ∩WH
2| ≥ 2ϕ|Bi|] ≤ exp(−ϕ2|Bi|/t) <

ε

6r
.

Therefore, by the union bound, with probability 1− ε/6 every block Bi contributes at most
2ϕ|Bi| gates to WH

2.
Furthermore, recall that we are assuming that I satisfies the conclusion of Claim 6.7.2, so

each gate in Bi has at most 2p · 2i +O(log(w/ε)) living wires. Therefore, in total, the number
of living wires feeding into WH

2 is at most

r

∑
i=1

2ϕ · |Bi| · (2p · 2i + O(log(w/ε))) ≤ ϕ ·
((

4p
r

∑
i=1
|Bi| · 2i

)
+ O

(
log(w/ε) ·

r

∑
i=1
|Bi|
))

≤ ϕ ·O
(

pw + p5/6 · w · log(w/ε)
)

≤ O(p7/6 · w · log2(w/ε)) ,

where we used the fact that the number of gates in WH is at most p5/6 · w. �

Constructing the LTF-DT with error indicators. With probability 1− 4ε/6 over the choice
of restriction ρ, the conclusions of Claims 6.7.1, 6.7.2, 6.7.3, and 6.7.4 are all satisfied. If not,
we set T to be a trivial tree with T(x) = 0 and Err(T, x) = 1 for all x. Assume now that the
conclusions of Claims 6.7.1, 6.7.2, 6.7.3, and 6.7.4 are all satisfied.

Let I′ = I \ Xheads. On input x ∈ {0, 1}I, our tree T first queries the variables in Xheads.
These queries, together with ρ, define an assignment z ∈ {0, 1}[n]\I′ . If this assignment z does
not satisfy the conclusion of Claim 6.7.5, the corresponding node of T is a leaf labeled by the
constant zero function and E` = {1} so that Err(T, x) = 1.

Assume now that the conclusion of Claim 6.7.5 is satisfied, so we obtain a partition of WH

into WH = WH
1 ∪WH

2 ∪WH
3. The gates in WH

1 are close to constants, after restricting according
to (I′, z). Let C̃�I′,z be the circuit obtained from C�I′,z by replacing each gate in WH

1 with the
corresponding constant. Write WH

1 = {Φ1, . . . , Φr} (where r ≤ w), and let Σ = {σ1, . . . , σr} be
the corresponding set of constants. For each Φi ∈ WH

1, let

Ei =

{
Φi�I′,z σi = 0
1−Φi�I′,z σi = 1

}
,

and note that Ei(x) = 1 if and only if Φi�I′,z(x) 6= σi. Define E = {E1, . . . , Er}.
Next, T queries the live variables feeding into WH

2 and queries each gate in WH
3. We

query also the connected pairs of variables feeding into WL, arriving at a leaf ` of T. After
replacing each of these variables and gates with the corresponding query value, our circuit
C̃�I′,z simplifies to a new LTF circuit C′. This new circuit has depth d− 1, because for every
gate Φ in W, either we queried Φ itself (hence it got replaced with a constant) or we queried
all but perhaps one of the input variables to Φ (hence it got replaced with a constant or a
literal). We set C` = C′ and E` = E .

By construction, either T(x) = C�ρ(x) or else some Φi(x) 6= σi in which case Err(T, x) ≥
1, so indeed, T is consistent with C�ρ. Now let us bound E[Err(T)] = E[Err(T, uI)].
There is a 4ε/6 chance that ρ is a bad restriction causing us to immediately halt with
Err(T, uI) = 1. The probability that the good event of Claim 6.7.5 does not occur is at most
ε/6. Each gate Φi that we replaced by a constant was (ε/(6w))-close to that constant, so
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E[Ei(uI)] ≤ ε/(6w). There are at most w gates in the circuit, so by linearity of expectation,
E[Err(T)] ≤ 4ε/6 + ε/6 + ε/6 = ε.

Let us verify that we obtained the claimed parameters for the tree. We query the variables
in living connected pairs, the variables in Xheads, and the variables feeding into WH

2, giving

D ≤ O(p7/6 · w + p−5/2 · t · log(w/ε))

+ O(p7/6 · w · log2(1/p) + log(1/ε))

+ O(p7/6 · w · log2(w/ε))

≤ O((p7/6 · w + p−5/2 · t) · log2(w/ε)),

where the last step uses the fact that log(1/p) ≤ log w without loss of generality. (After all, if
p < 1/w, then our claimed bound on D is greater than w.) Also, we queried the gates from
WH

3, giving
M ≤ O(p−2/3 · t).

Finally, note that for each leaf of the tree, none of the variables queried along the path
to that leaf appear as input variables in the circuit labeling that leaf. (This is required by
Definition 6.1.)

We now state a result analogous to Proposition 6.7, but that doesn’t assume the variables
have bounded fan-out. Intuitively, we will reduce the general case to the case of bounded
fan-out by using the decision tree to query “heavy” variables.

Proposition 6.8 (pseudorandom restrictions simplify LTF circuits, even if the variable fan-out
is large). Let n, w, d ∈ N and p, ε > 0. Let I be a k-wise independent p-regular subset of [n] where
k = p−5/6 log(6w/ε), sample u ∈ {0, 1}n uniformly at random, and let ρ = (I, u[n]\I). For any
depth-d LTF circuit C : {0, 1}n → {0, 1} with at most w wires, there is an (n, M, D, d − 1, w, w)-
LTF-DT T (jointly distributed with ρ) that is consistent with C�ρ such that E[Err(T)] ≤ ε and

D = O((p7/6 · w + p−11/3) · log2(w/ε))

M = O(p−11/6).

Proof. Let XH ⊆ [n] be the set of variables with fan-out more than t, where t = dp−7/6e, and
let XL = [n] \ XH. For each z ∈ {0, 1}XH

, define Cz = C�(XL,z), a depth-d LTF circuit with at
most w wires where every variable has fan-out at most t. Applying Proposition 6.7 to Cz gives
some tree Tz (jointly distributed with ρ) that is consistent with (Cz)�ρ. On input x ∈ {0, 1}I,
our tree T first queries every variable in XH ∩ I. Together with ρ, the answers to these queries
define some assignment z ∈ {0, 1}XH

. Our tree T then simulates Tz(x). As before (and as
required in Definition 6.1), none of the variables queried along the path to a leaf of the tree
appear as input variables in the circuit labeling that leaf.

Now let us bound E[Err(T)]. By construction,

E[Err(T)] = E[Err(T, uI)]

= E[Err(TuXH , uI)]

= E

 ∑
z∈{0,1}XH

Err(Tz, uI) · 1z=uXH


= ∑

z∈{0,1}XH

E[Err(Tz, uI) · 1z=uXH ].
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For a fixed z, the circuit Cz only reads variables in XL. Therefore, the random variable
Err(Tz, uI) is independent of uXH . Therefore,

E[Err(T)] = ∑
z∈{0,1}XH

E[Err(Tz, uI)] · Pr[z = uXH ] = ∑
z∈{0,1}XH

E[Err(Tz)] · 2−|X
H| ≤ ε.

Finally, since C has at most w wires, |XH| ≤ w/t ≤ p7/6 · w, hence the number of variable
queries made by T is at most

|XH|+ O((p7/6 · w + p−5/2 · t) · log2(w/ε)) = O((p7/6 · w + p−11/3) · log2(w/ε)),

and the number of LTF queries made by T is at most

O(p−2/3 · t) = O(p−11/6).

6.1.4 Restrictions for one layer of the leaves of an LTF-DT

Recall that given a LTF circuit of depth d and super-linear size, we want to iteratively apply
multiple restrictions that will simplify the circuit. Since Proposition 6.7 asserts that the first
restriction will already simplify the circuit to an LTF-DT, we now want to show that further
restrictions simplify an LTF-DT to a simpler LTF-DT (in particular, one whose leaves are labeled
by shallower LTF circuits). This is proved in the following result.

Similarly to Proposition 6.7, the result below is stated for general parameters, and to
facilitate its parsing we suggest the following specific setting with which it will be applied.
For a very small constant δ > 0, we are given an LTF-DT whose leaves are labeled by circuits
with w = n1+δ wires, and in which each branch queries at most D = o(n) variables and
M = nO(δ) LTF gates. We will apply a restriction that keeps p = nO(δ) fraction of the variables
alive, and want to deduce that the LTF-DT simplifies to one whose leaves are labeled by
shallower circuit, such that each branch queries at most D′ = p · D + o(p · n) variables and
M′ = M + nO(δ) LTFs, with tiny error probability ε ≈ 2p−.01

. These parameter settings are
formally stated in Corollary 6.10 below.

In the statement below, instead of using the notation D and D′ (and so forth) we will
denote the parameters with a subscript d (e.g., Dd and Dd−1). We use this notation because
we will later use the result in a recursive depth-reduction process, in which all the parameters
will change in each depth-reduction step. Nevertheless, we wish to stress that in the generic
statement below these parameters are not functions of the depth.

Proposition 6.9 (pseudorandom restrictions simplify LTF-DTs). Let n, w, d, Md ∈ N and p, ε >
0. Let I be a k-wise independent p-regular subset of [n] where k = p−5/6 · (Md + log(12w/ε)), sample
u ∈ {0, 1}n uniformly at random, and let ρ = (I, u[n]\I). For any function C : {0, 1}n → {0, 1} and
any (n, Md, Dd, d, w, ed)-LTF-DT Td consistent with C, there is an (n, Md−1, Dd−1, d − 1, w, ed−1)-
LTF-DT Td−1 (jointly distributed with ρ) that is consistent with C�ρ such that

E[Err(Td−1)] ≤ Err(Td) + ε

Dd−1 = O(p · Dd + (p7/6 · w + p−11/3) · (M2
d + log2(w/ε)))

Md−1 = Md + O(p−11/6)

ed−1 = ed + w.

Before turning to the proof, let us state the special case of Proposition 6.9 that was
mentioned above and that we will use for our main result.
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Corollary 6.10 (the special case of Proposition 6.9 used in our main result). Let δ > 0 be
sufficiently small and let n, d ∈ N. For suitable values p = n−O(δ) and k = nO(δ), let I be a k-wise
independent p-regular subset of [n]. Sample u ∈ {0, 1}n uniformly at random and let ρ = (I, u[n]\I).
For any function C : {0, 1}n → {0, 1} and any (n, Md, Dd, d, n1+δ, ed)-LTF-DT Td consistent with
C, there is an (n, Md−1, Dd−1, d − 1, n1+δ, ed−1)-LTF-DT Td−1 (jointly distributed with ρ) that is
consistent with C�ρ such that

E[Err(Td−1)] ≤ Err(Td) + 2−Ω(nδ)

Dd−1 = O(p · Dd) + n−Ω(δ) · p · n
Md−1 = Md + nO(δ)

ed−1 = ed + n1+δ.

Proof of Proposition 6.9. Let L be the leaves of Td. Let `(x) ∈ L be the leaf reached by Td(x),
and for each ` ∈ L, let V` be the set of variables queried by Td along the path to `. Loosely
speaking, we will first show that with high probability, the restriction decreases the length of
every path in Td by a factor of approximately p. Then, we use Proposition 6.7 to simplify the
functions that label the leaves of Td.

Shortening the paths in the tree. On input x ∈ {0, 1}I, our new tree Td−1 begins by
simulating the tree portion of Td(x ◦ ρ), querying x whenever Td makes a query to a variable
in I. However, if Td−1 finds that this process would require making more than q queries to
x where q = 2p · Dd + 300 log(2/ε), then instead of making query number bqc+ 1, our tree
Td−1 halts, outputs 0, and sets E` = {1} for that leaf.

Let us bound the contribution from these events to E[Err(Td−1)], i.e., the probability that
we are forced to halt early in that way with respect to ρ and the uniform random input uI.
Since uI ◦ ρ = u, we are simulating Td(u), so the contribution to E[Err(Td−1)] is

Pr
I,u
[|V`(u) ∩ I| > q] = ∑

`∈L
Pr
u
[`(u) = `] · Pr

I
[|V` ∩ I| > q].

For a fixed `, by Theorem 4.5, we have Pr[|V` ∩ I| > q] ≤ ε/2. Hence, overall we get the
bound

∑
`∈L

ε

2
· Pr

u
[`(u) = `] =

ε

2
.

Approximating leaves by LTF-DTs. Consider now the case that the simulation of Td(x ◦ ρ)
successfully reaches a leaf ` of Td (without needing to make more than q queries to x). For
each fixed leaf ` ∈ L, let C` be the depth-d LTF circuit labeling `, and let E` be the set of error
indicators labeling `. Let T(`) be the tree (jointly distributed with ρ) obtained from applying
Proposition 6.7 to C` with error ε′ := ε · 2−Md−1, so T(`) is consistent with C`�ρ. (Note that
I has enough independence to apply Proposition 6.7 with this small error value.) Our tree
Td−1(x) simulates T(`)(x). When T(`) finally reaches a leaf labeled by a circuit C′ and a set E
of error indicators, then the corresponding leaf of Td−1 is labeled by the same circuit C′ and
the set E ∪ E` of error indicators.

In this way, for every x, we have Td−1(x) = C�ρ(x) or Err(Td−1, x) ≥ 1. Let us bound
E[Err(Td−1)] = E[Err(Td−1, uI)]. The contribution from the error indicators of Td is at most
Err(Td); now we must bound the contribution from the error indicators of T(`). The leaf ` ∈ L
that we reach is given by `(uI ◦ ρ) = `(u).

It is tempting to say that the contribution from T(`(u)) must be at most ε′, because for
each fixed leaf `, E[Err(T(`))] ≤ ε′. Unfortunately, we cannot argue the same way we did in
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the proof of Proposition 6.8. The reason is that when accounting for the error, the expected
contribution of each T(`) (i.e., for a fixed leaf ` of Td) is the number of errors made by T(`)

on a random input conditioned on the input leading the tree to ` in Td (i.e., conditioned on the
event `(u) = `). If Td would only query variables, this conditioning would not matter, since
T(`) does not depend on the values of variables queried in the path to `. However, Td also
queries Md LTFs, and hence the conditioning might focus the contribution of T(`) on a subset
of inputs on which T(`) is likely to err. Fortunately, as we show below, this conditioning can
only increase the contribution of each leaf by 2Md , and thus overall contribution of T(`(u)) to
the error is at most ε′ · 2Md .

For each fixed leaf ` ∈ L, recall that V` is the set of variables queried in Td along the path
to `, and let ~v` ∈ {0, 1}|V`| be the sequence of values of the edges outgoing from the nodes
that correspond to V` along this path. Similarly, let G` be the set of at most Md gates queried
in T along the path to `, and let ~g` ∈ {0, 1}|G`| be the sequence of values of the edges outgoing
from the nodes that correspond to G` along this path. We define gts` : {0, 1}n → {0, 1}|G`| to
be the function x 7→ (g(x))g∈G`

, and similarly define vrs`(x) = (xi)xi∈V`
. Then

E
I,u

[
Err(T(`(u)), uI)

]
= E

I,u

[
∑
`∈L

Err(T(`), uI) · 1`(u)=`

]
= ∑

`∈L
E
I,u

[
Err(T(`), uI) · 1vrs`(u)=~v` · 1gts`(u)=~g`

]
≤ ∑

`∈L
E
I,u

[
Err(T(`), uI) · 1vrs`(u)=~v`

]
.

Now, C` does not read any of the variables in V`, and hence neither does T(`). Therefore, the
random variables Err(T(`), u) and 1vrs`(u)=~v` are independent, giving us the bound

E
I,x
[Err(T(`(u)), uI)] ≤ ∑

`∈L
E
I,u
[Err(T(`), uI)] · Pr

u
[vrs`(u) = ~v`]

= ∑
`∈L

E
ρ
[Err(T(`))] · Pr

u
[vrs`(u) = ~v`]

≤ ε′ · ∑
`∈L

Pr
u
[vrs`(u) = ~v`]

= ε′ ·E
u
[|{` ∈ L : vrs`(u) = ~v`}|].

Now consider some fixed string u ∈ {0, 1}n. To find all the leaves ` satisfying vrs`(u) = ~v`,
we can start at the root; when we reach a node that queries a variable, we take the outgoing
edge specified by u, and when we reach a node that queries a gate, we choose an outgoing
edge arbitrarily. We always make at most Md such binary choices, so |{` ∈ L : vrs`(u) =
~v`}| ≤ 2Md . Therefore,

E
I,u
[Err(T(`(u)), u)] ≤ 2Md · ε′.

Summing up, overall we get

E[Err(Td−1)] ≤ Err(Td) +
ε

2
+ 2Md · ε′ = Err(Td) + ε.

By Proposition 6.8, we have

Dd−1 ≤ q + O((p7/6 · w + p−11/3) · log2(w/ε′))

= O(p · Dd + (p7/6 · w + p−11/3) · (Md + log(w/ε))2)

and Md−1 = Md + O(p−11/6).
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6.1.5 Iterated restriction: Simplifying the entire circuit

Our goal now is to iteratively apply Proposition 6.9 to a given LTF circuit, in order to simplify
it to an LTF-DT whose leaves are labeled by real sums of LTF functions. This is presented
in the following result, which is the formal statement of Proposition 2.2, and whose proof
mainly involves inductive calculations of the parameters of such iterative applications. As
in the previous section, we first state a general result for a broad range of parameters, and
afterwards state a corollary that refers to the specific parameters used in our main result.

Proposition 6.11 (iterated restrictions simplify an LTF circuit to a decision tree with LTFs at
the leaves). Let n, d, w ∈ N and p, ε ∈ (0, 1/2). There is a distribution over subsets I ⊆ [n] with
the following properties.

1. Let ρ = (I, un). If C : {0, 1}n → {0, 1} is a depth-d LTF circuit with at most w wires, then
there is an (n, M, D, 1, w, wd)-LTF-DT T (jointly distributed with ρ) that is consistent with C�ρ

such that

D = (p1+40−(d−1) · w + p−4) · 2O(d) · log2(w/ε),

M = O(p−2 · d),

and with probability 1− ε, we have Err(T) ≤ ε.

2. For each i ∈ [n], we have Pr[i ∈ I] ≥ p. Meanwhile, with probability 1− ε, we have

|I| ≤ 2d · pn + O(log(1/ε)).

3. The set I can be sampled using ` = O(p−1 · d · log(w/ε) · log n) truly random bits such that
membership in I can be computed in time ` · polylog(n) on a multitape Turing machine.

Proof. Without loss of generality, assume that p > 1/n (otherwise we can take I to be a
singleton set consisting of a uniform random element of [n]). We view the initial circuit
C as an (n, Md, Dd, d, w, 0)-LTF-DT Td with the trivial parameters Dd = Md = 0. Then,
we will repeatedly apply Proposition 6.9 with error parameter ε2/d, giving a sequence
of restrictions ρd, . . . , ρ2 ∈ {0, 1, ?}n and a sequence of trees Td−1, . . . , T1, where Ti is an
(n, Mi, Di, i, w, w · (d− i))-LTF-DT, where Mi and Di will be computed shortly. We emphasize
that we have numbered the restrictions so that we start with ρd and finish with ρ2. That way,
ρi is applied to a tree whose leaves are labeled with circuits of depth i. Note also that for
convenience, we are thinking of each Ti as a function of n variables (though possibly fewer
than n variables are influential).21

Let A = ∑d
i=2 40d−i = (40d−1 − 1)/39 (a normalization factor). For i = d, . . . , 2, we choose

ρi to be a pi-regular restriction, where

pi ≈ p40d−i/A.

Specifically, pi is the smallest power of two such that pi ≥ p40d−i/A. For convenience, we
extend this definition also to the case i = d+ 1. Define pi···d = ∏d

j=i pj. Observe that pi ≤ pi+1,
and indeed pi ≤ 2p40

i+1. Furthermore, i < d =⇒ pi < 2p39
i+1···d.22 Let ρ = ρ2 ◦ · · · ◦ ρd, so that

for each j ∈ [n],
Pr[j ∈ (ρ)−1(?)] = p2···d ∈ [p, 2d−1 · p].

Let I = (ρ)−1(?), so indeed, for each i ∈ [n], we have Pr[i ∈ I] ≥ p. Furthermore, since
each set ρ−1

i (?) is k-wise independent for k > log(1/ε) (this is required by Proposition 6.9

21Note that the bounds in the conclusion of Proposition 6.9 do not refer to the number of variables (only to p,
ε, and the structural parameters of Ti).

22Indeed, pi < 2 · p40d−i/A, and pi+1···d ≥ ∏d
j=i+1 p40d−j/A = p(40d−i−1)/(39A) ≥ p40d−i/(39A), so pi < 2p39

i+1···d.
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regardless of Mi and Di), (ρ)−1(?) is also log(1/ε)-wise independent. Therefore, by
Theorem 4.5 with ∆ = 2d−1 · pn + 300 log(1/ε), with probability 1− ε, we have

|I| ≤ 2d · pn + 300 log(1/ε).

Let T = T1. Clearly, T is an (n, M1, D1, 1, w, wd)-LTF-DT that is consistent with C�ρ.
Furthermore, for any i ∈ {2, . . . , d} and any fixing of ρd, . . . , ρi+1, Proposition 6.9 guarantees
that

E
ρi
[Err(Ti−1)] ≤ Err(Ti) +

ε2

d
.

Note that Ti does not depend on ρi, . . . , ρ2 and similarly Ti−1 does not depend on ρi−1, . . . , ρ2.
Therefore, by averaging, we get

E
ρ
[Err(Ti−1)] ≤ E

ρ
[Err(Ti)] +

ε2

d
.

We start with Err(Td) = 0, so inductively we get Eρ[Err(T1)] < ε2, i.e., E[T] < ε2. By
Markov’s inequality, therefore, except with probability ε, we have Err(T) < ε. Now let us
compute the parameters Mi and Di.

Number of LTF queries: By Proposition 6.9, Mi−1 ≤ Mi +O(p−11/6
i ). Inductively, this shows

that

Mi = O

(
d

∑
j=i+1

p−11/6
j

)
< O(d · p−2

i+1). (7)

In particular, M1 < O(dp−2
2 ) < O(dp−2) as claimed.

Number of variable queries: By Proposition 6.9,

Di−1 = O
(

pi · Di + (p7/6
i · w + p−11/3

i ) · (M2
i + log2(w/ε))

)
< O

(
pi · Di + (p7/6

i · w + p−11/3
i ) · p−4

i+1 · (d log(w/ε))2
)

(Equation (7))

= O
(

pi · Di + (p16/15
i · w + p−113/30

i ) · (d log(w/ε))2
)

(pi ≤ 2p40
i+1)

≤ C ·
(

pi · Di + (p1/15
d · pi···d · w + p−4

i ) · (d log(w/ε))2
)

(6.1)

for some constant C, where the last inequality uses the fact that pi < 2p39
i+1···d when i < d,

which implies that p1/15
i < 2pi+1···d · p24/15

i+1···d ≤ 2pi+1···d · p1/15
d . Let us show by backward

induction that
Di ≤ (2C)d−i · (p1/15

d · pi+1···d · w + p−4
i+1) · (d log(w/ε))2.

This is true in the base case i = d. For the inductive step, we have

Di−1 < C ·
(

pi · Di + (p1/15
d · pi···d · w + p−4

i ) · (d log(w/ε))2
)

(Eq. (6.1))

< C ·
(

pi · Di + (p1/15
d · pi···d · w + p−4

i )
)
· (d log(w/ε))2

< C ·
(

pi · (2C)d−i · (p1/15
d · pi+1···d · w + p−4

i+1) + (p1/15
d · pi···d · w + p−4

i )
)
· (d log(w/ε))2

(induction hypothesis)

< (2C)d−(i−1) · (p1/15
d · pi···d · w + p−4

i ) · (d log(w/ε))2.
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Now, p1/15
d ≤ 2p1/(15A), and 1

15A = 39
15(40d−1−1) > 40−(d−1), so p1/15

d ≤ 2p40−(d−1)
. Therefore,

indeed,

D1 ≤ 2O(d) · (p1/15
d · p · w + p−4

2 ) · log2(w/ε)

≤ 2O(d) · (p1+40−(d−1) · w + p−4) · log2(w/ε).

Sampling cost: We sample each set ρ−1
i (?) using the algorithm of Claim 4.8. The seed length

is

O
(

p−5/6
i · (Mi + log(w/ε)) · log(n/pi)

)
< O

(
p−5/6

i · log(n) · log(w/ε)
)
·Mi

< O
(

p−5/6
i · log(n) · log(w/ε)

)
· (d · p−2

i+1) (Eq. (7))

< O
(

p−1
i · d · log(w/ε) · log n

)
. (pi < p12

i+1)

Therefore, summing up, the total seed length for sampling I is

O

((
∑

i
p−1

i

)
· d · log(w/ε) · log n

)
< O(p−1

2···d · d · log(w/ε) · log n)

= O(p−1 · d · log(w/ε) · log n)

as claimed. For each i, the time for computing membership in ρ−1
i (?) is only a polylog(n)

factor larger than the seed length for sampling ρ−1
i (?), so the same holds for I altogether.

(Note that to compute membership in I, it suffices to compute membership in each ρ−1
i (?)

in order starting with ρd, so this runtime holds even in the multitape Turing machine model.)

Let us now state the instantiation of Proposition 6.11 to the parameter values used in our
main result:

Corollary 6.12 (iterated restrictions simplify an LTF circuit to a decision tree with LTFs at the
leaves). Let n, d ∈ N and let δ = 1

2 · 50−d. There is a distribution over subsets I ⊆ [n] such that:

1. (Approximately p · n ≈ n0.9 live variables.) For each i ∈ [n], we have Pr[i ∈ I] ≥ p, where
p = n−(1+δ)/10; and with probability 1− 2−nδ

, we have |I| ≤ 2O(d) · pn.

2. (Simplifies LTF circuits of super-linear size.) Let ρ = (I, un). For any depth-d LTF

circuit C : {0, 1}n → {0, 1} with at most n1+δ wires, with probability 1 − 2−nδ
there is an

(n, M, D, 1, n1+δ, d · n1+δ)-LTF-DT T consistent with C�ρ such that Err(T) ≤ 2−nδ
and

D = 2O(d) · (p1+Ω(1) · n)
M = d · n1/4.

Moreover, the set I can be sampled using n1/10+O(δ) · polylog(n) truly random bits and
membership in I can be computed in time n1/10+O(δ) · polylog(n) on a multitape Turing machine.

6.2 Fooling LTF decision trees with error indicators

So far, we have shown that an LTF circuit simplifies under pseudorandom restrictions. The
simplified model is a decision tree that queries both variables and LTFs, with LTFs and LTF

error indicators at the leaves. In this section, we will show how to fool that simplified model,
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which mainly amounts to obtaining an improved PRG for polytopes (i.e., functions of the form
AND ◦ LTF) in the extremely-low-error regime.

We will in fact construct a PRG for the more general model of ANY ◦ LTF; that is, we
prove Theorem 1.2. The proof outline was described in Section 2.3.3. As mentioned
there, our starting point will be the recent result of Kabanets, Koroth, Lu, Myrisiotis,
and Oliveira [KKLMO20]. Using their ideas with appropriate communication protocols
for LTFs and PRGs for combinatorial rectangles, one can obtain a PRG with seed length
Õ
(√

n · s · log(1/ε)
)
. 23 We will get a better seed length of Õ(

√
n · (s + log(1/ε))).

6.2.1 A low-error PRG for arbitrary functions of a bounded number of LTFs

We begin with a general result on fooling functions of the form p(g1, . . . , gs), where p is
a polynomial and each gi has low communication complexity. If p is a multivariate real
polynomial p(x) = ∑a ca ∏i xai

i , we define L1(p) to be the sum of the absolute values of
the coefficients of p, i.e., L1(p) = ∑a |ca|. Furthermore, we let deg(p) denote the total degree
of p, i.e., deg(p) = max{∑i ai : ca 6= 0}.

Recall that a k-dimensional combinatorial rectangle over the alphabet {0, 1}m is a function
f : ({0, 1}m)k → {0, 1} of the form

f (x(1), . . . , x(k)) =
k

∏
i=1

fi(x(i)),

where fi : {0, 1}m → {0, 1}.

Theorem 6.13 (low-error PRG for polynomials of low-communication functions). Let k, m ∈
N, and let x be a distribution over ({0, 1}m)k that ε-fools k-dimensional combinatorial rectangles over
the alphabet {0, 1}m. Let f (x) = p(g1(x), . . . , gs(x)), where p : Rs → [0, 1] is a polynomial and for
each i ∈ [s], the function gi : ({0, 1}m)k → {0, 1} can be computed by a randomized k-party number-
in-hand communication protocol with communication cost R and failure probability 1/3. Then x fools
f with error

(ε · L1(p))Ω(1/R) · 2O(deg(p)).

Theorem 6.13 is similar to the main claim in the analysis in [KKLMO20]. The improvement
is that our theorem tolerates communication protocols with constant error, whereas the
analysis in [KKLMO20] requires communication protocols with low error due to a union
bound. The effect is that we will achieve a smaller value of R, hence a smaller error. Our
improvement is based on a beautiful result by Sherstov.

Theorem 6.14 (Making Polynomials Robust to Noise [She13]). Let p : {0, 1}s → [0, 1] be a given
polynomial. Then for every δ > 0, there is a polynomial probust : Rs → R such that

|p(x)− probust(x + η)| < δ

for all x ∈ {0, 1}s and all η ∈ [−1/3, 1/3]s. Furthermore,

deg(probust) ≤ O(deg(p) + log(1/δ))

and
L1(probust) ≤ L1(p) · 2O(deg(p)+log(1/δ)).

23To see this, let k =
√

n/s. Expand g as a degree-s real polynomial. We compute each monomial ḡ by
s repetitions of the communication protocol of Viola [Vio15] (following Nisan [Nis93]) for LTFs, which uses
R = O(

√
n · s · log(ns/ε)) communication bits. We then “fool” this protocol with error ε/2O(s) using the PRG

for combinatorial rectangles of Gopalan and Yehudayoff [GY20], whose seed length in this parameter setting is
dominated by Õ(R) = Õ(

√
n · s · log(1/ε))
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(The bound on L1(probust) is not explicitly stated in Sherstov’s work [She13]. We now
briefly explain how the L1 bound can be verified, assuming familiarity with Sherstov’s
proof [She13]. In the proof of Sherstov’s Theorem 5.2, the polynomial he calls p and the
quantities he calls d and D satisfy L1(p) ≤ 2O(d+D). It follows that in the proof of his
Theorem 6.2, we have L1(P) ≤ L1(φ) · 2O(deg(φ)+D). He sets D = O(deg(φ) + log(1/δ)),
and the polynomial r at the end of his Theorem 6.2 only increases L1(probust) by a constant
factor. Note that Sherstov’s input polynomial φ is defined over the domain {±1}n whereas
Theorem 6.14 is stated over the domain {0, 1}n. The justification is that under the input
transformation {0, 1} ↔ {±1} given by x ↔ (−1)x = 1− 2x, the degree of a polynomial does
not increase, whereas L1(p) can go up by at most a factor of 2O(deg(p)).)

Proof of Theorem 6.13. Let probust be the robust version of p with δ = (ε · L1(p))Ω(1/R) ·
2O(deg p). On any given input x, any of the functions g1(x), . . . , gs(x) can be computed by a
randomized k-party number-in-hand protocol with error 1/3 and R bits of communication.
For i = 1, . . . , s, denote by qi(x) the acceptance probability of the randomized protocol for
gi(x). We know that if gi(x) = 1, then qi(x) ≥ 2/3 and if gi(x) = 0 then qi(x) ≤ 1/3. Now,
we wish to show that x fools p(g1(x), . . . , gs(x)). By the robustness of probust, for every x we
have

|p(g1(x), . . . , gs(x))− probust(q1(x), . . . , qs(x))| ≤ δ, (6.2)

and thus it suffices to show that x fools probust(q1(x), . . . , qs(x)). For this we analyze each
monomial of probust separately. Write

probust(z) = ∑
a:∑i ai≤deg(probust)

ca · za1
1 za2

2 · · · z
as
s .

Take any formal monomial za1
1 za2

2 · · · z
as
s with ∑i ai ≤ deg(probust). We wish to show that x

fools the product q1(x)a1 · · · qs(x)as . Observe that for any x, q1(x)a1 · · · qs(x)as can be thought
of as the acceptance probability of a protocol that on input x runs the protocol for g1(x)
a1 times, each with fresh randomness, then the protocol for g2(x) a2 times, each with fresh
randomness and so on and so forth – eventually taking the AND of the answers of the ∑i ai
many protocols. This combined protocol is a randomized protocol in the k-party number-in-
hand model that uses R · deg(probust) communication bits. Denote the value of this protocol
on input x and randomness r by π(x, r). By design, Er[π(x, r)] = q1(x)a1 · · · qs(x)as for any x.

Now, for every fixed randomness r, the randomized protocol becomes a deterministic
protocol with value πr(x) = π(x, r) and communication cost at most R · deg(probust). We can
write πr(x) = ∑z∈A πr,z(x), where A is the set of accepting transcripts and πr,z(x) indicates
whether π has transcript z on input x and randomness r. For fixed r and z, the predicate πr,z
can be computed by a k-dimensional combinatorial rectangle over the alphabet {0, 1}m. Since
x fools k-dimensional combinatorial rectangles over the alphabet {0, 1}m with error ε, it fools
πr with error ε|A| ≤ ε · 2R·deg(probust). Therefore,∣∣∣∣ E

x∼x
[πr(x)]− E

x∼un
[πr(x)]

∣∣∣∣ ≤ ε · 2R·deg(probust).

By averaging, we get ∣∣∣∣ E
x∼x,r

[πr(x)]− E
x∼un,r

[πr(x)]
∣∣∣∣ ≤ ε · 2R·deg(probust).

And now since Er[πr(x)] = q1(x)a1 · · · qs(x)as for every x we have∣∣∣∣ E
x∼x

[q1(x)a1 · · · qs(x)as ]− E
x∼un

[q1(x)a1 · · · qs(x)as ]

∣∣∣∣ ≤ ε · 2R·deg(probust).
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Summing over all monomials, we get∣∣∣∣ E
x∼x

[probust(q1(x), . . . , qs(x))]− E
x∼un

[probust(q1(x), . . . , qs(x))]
∣∣∣∣

≤∑
a
|ca| · ε · 2R·deg(probust)

= L1(p) · ε · 2R·O(deg(p)+log(1/δ))

=
√

L1(p) · ε (6.3)

by a suitable choice of δ = (ε · L1(p))Ω(1/R) · 2O(deg p).
Overall, from Eq. (6.2) it follows that∣∣∣ E

x∼x
[p(g1(x), ..., p(gs(x)))]− E

x∼x
[probust(q1(x), ..., qs(x))]

∣∣∣ ≤ δ

and ∣∣∣ E
x∼un

[p(g1(x), ..., p(gs(x)))]− E
x∼un

[probust(q1(x), ..., qs(x))]
∣∣∣ ≤ δ .

In Eq. (6.3) we showed that∣∣∣ E
x∼un

[probust(q1(x), . . . , qs(x))]− E
x∼x

[probust(q1(x), . . . , qs(x))]
∣∣∣ ≤ √L1(p) · ε < δ ,

and thus by combining all three inequalities, applying the triangle inequality, we get that x
fools p(g1(·), g2(·), . . . , gs(·)) with error at most 3δ.

In our case, Nisan [Nis93] showed that LTFs have efficient randomized communication
protocols, and more recently Viola [Vio15] improved his result:

Theorem 6.15 (Communication complexity of LTFs [Nis93; Vio15]). Let Φ : {0, 1}n → {0, 1} be
an LTF. Under any partition of [n] into k parts, there is a δ-error randomized k-party number-in-hand
protocol for Φ with communication cost O(k · log(k) · log(n/δ)).

As an immediate corollary of Theorems 6.13 and 6.15, PRGs for combinatorial rectangles
fool arbitrary Boolean functions of a bounded number of LTFs. Specifically, denoting by ANYs
the class of all functions f : {0, 1}s → {0, 1}, we consider n-bit functions of the form ANYs ◦ LTF.
We will partition [n] into k parts of m bits, where k and m are arbitrary parametric choices
(such that n = k · m), and claim that a distribution that δ-fools k-dimensional combinatorial
rectangles over alphabet {0, 1}m also ε-fools ANYs ◦ LTF; the error parameter ε will correspond
to δ and to our choices of values for k and m.

Corollary 6.16 (PRGs for combinatorial rectangles fool ANY ◦ LTF). Let n, m, k ∈ N with n = mk.
Let δ > 0 and let x be a distribution over ({0, 1}m)k that δ-fools k-dimensional combinatorial
rectangles over the alphabet {0, 1}m. Let s ∈ N and let f : {0, 1}n → {0, 1} be a function in
ANYs ◦ LTF. Then x fools f with error ε = δΩ(1/(k·log(k)·log(mk))) · 2O(s).

Proof. For any function f : {0, 1}s → {0, 1}, we can write

f (x) = ∑
y∈{0,1}s

f (y) ·

 ∏
i∈y−1(1)

xi

 ∏
i∈y−1(0)

(1− xi)

 .

This “brute force” expansion shows that L1( f ) ≤ 4s. The claim then follows using
Theorem 6.13 and Theorem 6.15, while reying on the fact that

ε = (δ · 4s)1/O(k·log(k)·log(mk)) · 2O(s) = δΩ(1/(k·log(k)·log(mk))) · 2O(s).
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We wish to plug in an explicit PRG for combinatorial rectangles to obtain an explicit
PRG for ANY ◦ LTF. There is a long line of work developing PRGs for combinatorial
rectangles [ASWZ96; EGLNV98; LLSZ97; Lu02; GMRTV12; Vio14; GY20; HLV18; Lee19].
The best seed length is by Gopalan and Yehudayoff [GY20].

However, in our setting there is an additional complication: In our proof we will
construct a PRG for ANY ◦ LTF functions that are applied to some unknown subset of n′ < n
input bits, and we want its seed length to be noticeably smaller than n′ rather than only
noticeably smaller than n (the difference between the two will be crucial in our particular
parameter setting; see the proof of Theorem 6.25 for details).24 Moreover, we don’t only
want our PRG to be explicit (i.e., computable in polynomial time), but also want each
output bit of the PRG to be computable in time significantly smaller than n. Therefore we
consider the following generalization of combinatorial rectangles, which we call “somewhere
combinatorial rectangles”.

Definition 6.17. Let n, m, k ∈ N with n ≥ mk. A k-dimensional somewhere combinatorial rectangle
over the alphabet {0, 1}m that has n input bits is a function f : {0, 1}n → {0, 1} such that there
exist functions f1, . . . , fk : {0, 1}m → {0, 1} and indices 1 ≤ i1 < i2 < · · · < ikm ≤ n such that for
each x ∈ {0, 1}n, we have

f (x) = f1(xi1 , . . . , xim) ∧ f2(xim+1 , . . . , xi2m) ∧ · · · ∧ fk(xi(k−1)m+1
, . . . , xikm).

In words, a somewhere combinatorial rectangle applies a combinatorial rectangle to a
subset of its n input bits. Fooling somewhere combinatorial rectangles is extra challenging
because we do not know in advance which indices i1, . . . , ikm will be relevant. If we wanted an
explicit PRG for somewhere combinatorial rectangles with the smallest possible seed length,
we would use Lee’s PRG for a more general model called “product tests” [Lee19]. For ease
of analysis, we will instead use the Forbes-Kelley PRG [FK18] (which fools an even more
general model) because we can afford the slightly inferior seed length. We now verify that
each output bit of the Forbes-Kelley PRG can be computed quickly on a multitape Turing
machine.

Theorem 6.18 (Strongly explicit PRGs for combinatorial rectangles [FK18]). For every n, m ∈ N

and every ε > 0, there is a PRG that ε-fools somewhere combinatorial rectangles (of any dimension)
over the alphabet {0, 1}m that have n input bits. The PRG has seed length

O((m + log(n/ε)) · log2 n)

and each output bit is computable in time (m + log(1/ε)) · polylog(n) on a multitape Turing
machine.

Theorem 6.18 follows from Forbes and Kelley’s work [FK18] without any new insights,
but to verify the theorem we will have to review some of their analysis [FK18]. Recall that
a width-w length-n read-once branching program (ROBP) is a directed graph consisting of n + 1
layers V0, . . . , Vn, each with w vertices. Each vertex has two outgoing edges leading to the next
layer labeled 0 and 1 (except the vertices in the last layer, which have no outgoing edges). The
program starts at a designated start vertex in V0 and reads an input x ∈ {0, 1}n to walk
through the graph, using xi to choose the outgoing edge in Vi−1 × Vi. Finally, the program
accepts or rejects x depending on which vertex it arrives at in Vn, thereby defining a function
f : {0, 1}n → {0, 1}.

24The reason that we refer to the subset of n′ as “unknown” is that we want each of the n output bits of our
PRG to be computable in time o(n), in order to use this PRG as part of our final PRG construction in which each
output bit is computable in time o(n). In particular, when computing each output bit we will not have enough
time to go over certain previous choices of the PRG that determine which subset of n′ variables is the relevant
one on which the ANY ◦ LTF function is defined.
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Forbes and Kelley present an explicit PRG for ROBPs.25. Actually, they present two closely
related PRG constructions (see Section 4 of their paper). The first is a relatively simple “warm-
up” construction, and the second is a more refined construction that has a better seed length in
some cases. Both constructions can be viewed as being based on pseudorandom restrictions.
There are two differences between the two constructions: (a) the restrictions in the warm-
up construction are based on t-wise independence whereas the restrictions in the refined
construction are based on small-bias distributions and almost t-wise independence, and (b)
after performing several restrictions, the warm-up construction fills in any remaining stars
with 1, whereas the more refined construction fills in any remaining stars using a t-wise
independent distribution.

We will use a “hybrid” of these two constructions: We only use t-wise independence
(rather than also small-bias distributions) but we fill-in remaining stars with t-wise
independence instead of 1’s. The reason we do so is in order to preserve algorithmic simplicity
(only using t-wise independence) while still getting a sufficiently good seed length.26 This
yields the following PRG:

Lemma 6.19 (A version of the Forbes-Kelley PRG [FK18]). Let w, n ∈ N and ε > 0, and let
r = dlog ne. For a suitable value t = O(log(wn/ε)), let ρ1, . . . , ρr ∈ {0, 1, ?}n be independent
restrictions, each of which is (1/2)-regular and t-wise independent. Let ρ = ρr ◦ · · · ◦ ρ1, let
y ∈ {0, 1}n be a t-wise independent string, and let z = y ◦ ρ. Then z fools width-w length-n
ROBPs with error ε.

Proof sketch. By [FK18, Lemma 6.3], if ρ ∈ {0, 1, ?}n is a (1/2)-regular t-wise independent
restriction, then the distribution un ◦ ρ fools width-w length-n ROBPs with error nw · 2−Ω(t)

(this is the main step of the proof).27 In words, informally, applying ρ preserves the expectation
of the branching program to within a small additive error. The class of Boolean functions
on n bits that are computable by width-w ROBPs is closed under restriction, so it follows
by induction on r that the distribution un ◦ ρ fools width-w length-n ROBPs with error
rnw · 2−Ω(t). (Note that ρ has a much smaller ?-probability than ρ, and therefore the number
of truly random bits needed to complete ρ into an n-bit string is smaller.)

The composition ρ is a (2−r)-regular t-wise independent restriction. This implies that
E[|(ρ)−1(?)|] = 2−rn ≤ 1. We now think of the coordinates as being merely ((t− 1)/300)-
wise independent, which allows us to apply Theorem 4.5 with ∆ = t− 1 and conclude that
except with probability 2−(t−1)/300, we have |(ρ)−1(?)| ≤ t. Since y is t-wise independent,
whenever the event |(ρ)−1(?)| ≤ t happens, for any function f : {0, 1}n → {0, 1} it holds that
y perfectly fools f �ρ. It follows that for any function f : {0, 1}n → {0, 1} we have

|E[ f (un ◦ ρ)]−E[ f (y ◦ ρ)]| ≤ 2−(t−1)/300.

Therefore, z fools width-w length-n ROBPs with error rnw · 2−Ω(t) + 2−(t−1)/300, which is
at most ε, provided we use a suitable t = O(log(wn/ε)).

25Compared to classic PRGs for space-bounded computation [Nis92; INW94], the main feature of the Forbes-
Kelley PRG is that it fools ROBPs that read their input bits in any order For us, this feature is not actually necessary,
because somewhere combinatorial rectangles can be computed by ROBPs that read their bits in the standard order.
We are instead taking advantage of the simplicity and computational efficiency of the Forbes-Kelley PRG.

26Specifically, we fill in the remaining stars pseudorandomly because this way, we merely need to apply O(log n)
restrictions rather than O(log(n/ε)), giving us a total seed length that depends linearly on log(1/ε).

27The original statement in [FK18, Lemma 6.3] does not explicitly mention the distribution un ◦ ρ, but refers
to the distribution d⊕ (t ∧ un), where both d and t are t-wise independent n-bit random variables, and ⊕ and
∧ denote the bit-wise ⊕ and ∧ operations, respectively. To see that the two distributions are identical, think
of the original distribution from [FK18] as follows: The choice of t determines a k-wise independent set of
variables I ⊆ [n], and the choice of d assigns values for variables outside I in a t-wise independent manner; then,
conditioned on any choices for d and t, the choice of un assigns truly random values for the variables in I.

45



Proof of Theorem 6.18. For any k, a k-dimensional somewhere combinatorial rectangle over the
alphabet {0, 1}m that has n input bits can be computed by a read-once branching program
(ROBP) of width w = 2m + 1 and length n. We will now verify that each output bit of the PRG
described in Lemma 6.19 can be computed in time (log(w/ε)) · polylog(n) on a multitape
Turing machine. A similar analysis was performed by Cheraghchi, Hirahara, Myrisiotis, and
Yoshida [CHMY21], but they looked at circuit size whereas we are looking at uniform time
complexity.

We obtain the string y and each restriction ρi using the algorithm of Claim 4.8. The total
seed length is therefore O(r · k · log n) = O(log(wn/ε) · log2 n). Furthermore, each coordinate
of each ρi can be computed in time k · polylog(n), so each coordinate of z can be computed
in time r · k · polylog(n) = log(w/ε) · polylog(n). (Just like in the proof of Proposition 6.11,
to compute a coordinate of z, it suffices to compute the corresponding coordinate of y and
of each ρi in order starting with ρ1, so this runtime bound holds even in the multitape Turing
machine model.)

By plugging the PRG of Theorem 6.18 into Corollary 6.16, we will obtain our improved
low-error PRG for ANY ◦ LTF. We get a better seed length for functions that ignore most of
their input bits.

Corollary 6.20 (low-error PRG for ANY ◦ LTF). For any n, n′, s ∈ N and any ε > 0, there is an
ε-PRG for ANYs ◦ LTF functions f : {0, 1}n → {0, 1} that ignore all but n′ of the input bits. The seed
length and the time to compute each output bit on a multitape Turing machine are both√

n′ · (s + log(1/ε)) · polylog(n). (8)

Proof. We will use a δ-PRG for k-dimensional somewhere combinatorial rectangles over the
alphabet {0, 1}m that have n input bits, where k = n′/m and the parameters δ and m will be
chosen later. Consider any function f : {0, 1}n → {0, 1} of the form ANYs ◦ LTF that ignores all
but n′ of its n input bits. By applying Corollary 6.16 to the n′ relevant bits, we see that for
δ = (ε · 2−O(s))O(k·log(k)·log(n′)), we fool f with error ε. Plugging into Theorem 6.18, the seed
length is

O((m + log(n/δ)) log2 n) = (m + k · (s + log(1/ε))) · polylog(n).

To balance the two terms, we choose m =
√

n′ · (s + log(1/ε)), so k =
√

n′/(s + log(1/ε)),
giving the desired seed length.

6.2.2 Fooling LTF decision trees with error indicators

We now show our low-error PRG for LTF-DT’s when the “circuits” at the leaves have depth 1
(i.e., are simply LTFs). In fact, our PRG also fools such LTF-DT’s that have error indicators, which
means that the PRG fools the integer-valued function T(x)± Err(T, x). The proof amounts to
observing that our PRG for ANYs ◦ LTF with sufficiently low error fools such trees. Once again,
we get a better seed length if the tree ignores most of the input bits.

Theorem 6.21 (low-error PRG for LTF-DT’s). For all n, n′, M, D, w, e, ε, there is a ε-PRG for all
functions f : {0, 1}n → Z of the form f (x) = T(x) + ξ · Err(T, x), where ξ ∈ {±1} and T is an
(n, M, D, 1, w, e)-LTF-DT that ignores all but n′ of its input bits. The seed length and the time to
compute each output bit on a multitape Turing machine are both√

n′ · (D + M + log(e + 1) + log(1/ε)) · polylog(n).
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Proof. Let L be the set of leaves. For each leaf ` ∈ L, let g`(x) = 1 if and only if the tree
reaches ` when it reads x. Let Φ`,0 be the LTF labeling `, and let E = {Φ`,1, . . . , Φ`,e} be the
set of error indicators labeling `. That way,

f (x) = ∑
`∈L

g`(x) ·
(

Φ`,0(x) + ξ ·
e

∑
i=1

Φ`,i(x)

)
.

The function g` is a conjunction of at most M LTFs and at most D literals. Any conjunction of
literals can be computed by a single LTF, so the function g`(x) ·Φi,`(x) can be computed by a
conjunction of at most M + 2 LTFs. Therefore, it is δ-fooled by the δ-PRG from Corollary 6.20
with s = M + 2. Therefore, the same PRG fools f with error δ · |L| · (e+ 1) ≤ δ · 2D+M · (e+ 1).
Therefore, we should choose δ = ε · 2−D−M/(e + 1), giving the claimed seed length.

6.2.3 Improved low-error PRGs for De Morgan formulas with LTFs at the leaves

As another application of Theorem 6.13, we obtain an improved low-error PRG for size-
s De Morgan formulas with LTFs at the leaves. Kabanets, Koroth, Lu, Myrisiotis, and
Oliveira [KKLMO20] achieved seed length

Õ(n1/2s1/4 log(1/ε)) (9)

for this class, which is trivial if log(1/ε) >
√

n. Our seed length is

Õ(n1/2s1/4 log1/4(1/ε) + n1/2 log1/2(1/ε)), (10)

which remains nontrivial provided s log(1/ε) � n2 and log(1/ε) � n. The second
requirement is unavoidable, since fooling conjunctions of literals already requires seed length
Ω(log(1/ε)). When, e.g., s = n and ε = 2−

√
n, both the seed length by [KKLMO20] (Eq. 9)

and our seed length for fooling arbitrary functions of LTFs (Eq. 8) are larger than n, whereas
our seed length for De Morgan formulas of LTFs is Õ(n7/8).

To achieve our seed length, we use both Theorem 6.13 and an improved, optimal bound
on the low-error approximate degree of a size-s De Morgan formula. Since this result is not
necessary for our main constructions, we defer the proof to Appendix A.

6.2.4 Fooling LTF circuits of unbounded depth

As another corollary of Corollary 6.20, we show a PRG for LTF circuits of unbounded depth
with at most O(n/polylog(n)) gates.

Corollary 6.22 (PRG for LTF circuits with few gates). For any n, s ∈ N and any ε > 0, there is a
poly(n)-time computable ε-PRG for LTF circuits with s gates with output length n and seed length

Õ
(√

n · (s + log(1/ε))

)
.

Proof. Let C be an LTF circuit with s gates. The input variables to C are x1, . . . , xn.
Let y1, . . . , ys denote the values output by the gates of C in topological order, so ys is
the output value of the circuit, and for each i ∈ [s], there is some LTF Φi such that
yi = Φi(x1, . . . , xn, y1, . . . , yi−1).

The proof uses the “guess and verify” technique. For each string z ∈ {0, 1}s (the “guess”),
define gz(x) = 1 if and only if during the computation of C(x), for every i, we have yi = zi
(i.e., verifying the guess). That way,

C(x) = ∑
z∈{0,1}s

zs=1

gz(x). (11)
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The key claim is that for a fixed z,

gz(x) = 1 ⇐⇒ ∀i, Φi(x1, . . . , xn, z1, . . . , zi−1) = zi. (12)

Indeed, if gz(x) = 1, then Φi(x1, . . . , xn, z1, . . . , zi−1) = Φi(x1, . . . , xn, y1, . . . , yi−1) = yi = zi.
Conversely, if the right-hand side of Equation (12) holds, then induction on i shows that
zi = yi for every i ∈ [s].

Equation (12) implies that gz ∈ ANDs ◦ LTF. Therefore, by Equation (11), any δ-PRG for
ANDs ◦ LTF fools C with error δ · 2s−1. Therefore, we may use the PRG of Corollary 6.20 with
error δ = ε · 2−s+1.

6.3 The final PRG construction

In this section we combine the restriction procedure from Section 6.1 and the PRG from
Section 6.2 to get a PRG for LTF circuits of super-linear size. As explained in Section 2, we
will use the PRG framework of Ajtai and Wigderson [AW85]. Let us now formally state the
abstract version of their framework (see [ST19] for a discussion and proof of a nearly identical
formulation).

Definition 6.23 (C-to-Csimple simplifying restriction). Let n ∈ N and p > 0. Let C and Csimple

be classes of functions C : {0, 1}n → {0, 1}, let I be a distribution over subsets of [n], and let η > 0.
We say that I is a C-to-Csimple simplifying p-restriction with error η if:

1. For each i ∈ [n], we have Pr[i ∈ I] ≥ p.

2. For every C ∈ C, we have
Pr

I,z∈{0,1}[n]\I

[
C�I,z /∈ Csimple

]
≤ η.

Theorem 6.24 (the PRG framework of [AW85]; see [ST19, Theorem 5.1]). Let n ∈ N, let
p, ε > 0, and let η = ε·p

4 ln(2n/ε)
. Let C and Csimple be classes of functions C : {0, 1}n → {0, 1} where

C is closed under restriction. Assume that:

1. A C-to-Csimple simplifying p-restriction I with error η can be sampled using s truly random bits
such that membership in I can be computed in time t on a multitape Turing machine.

2. There is an η-PRG for Csimple with seed length s, where each output bit can be computed in time
t on a multitape Turing machine.

Then there is an ε-PRG for C with seed length O(s · p−1 · log(n/ε)), where each output bit can be
computed in time O(t · p−1 · log(n/ε)) on a multitape Turing machine.28

We now state our main result.

Theorem 6.25 (PRG for super-linear sized LTF circuits). Let d : N → N be a function, let
δ(n) = 1

4 · 50−d(n), and assume that d(n) can be computed in time O(n1−δ(n)) on a multitape Turing
machine. There exists an ε-PRG for LTF circuits of depth d(n) with at most n1+δ(n) wires, whose
seed length is O(n1−δ(n)) and whose error is ε = 2−nδ(n)

, such that each output bit of the PRG can be
computed in time O(n1−δ(n)) on a multitape Turing machine.

28As explained in Section 4, our usual convention is that algorithms receive “all relevant parameter values” as
inputs. In this case, the convention might seem to suggest that the algorithms somehow receive descriptions of C
and Csimple as inputs, but that is not what we have in mind. Instead the restriction sampling algorithm merely
gets n, p, η, and its seed as inputs; the PRG for Csimple gets n, η and its seed; the PRG for C gets n, p, ε, and its
seed. Implicitly, we are assuming that there is an infinite family of pairs (C,Csimple) – one for each triple (n, p, ε).
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Proof. For convenience, when n is clear from context we will denote d = d(n), δ = δ(n),
ε = ε(n), etc. Let w = n1+δ, p = w−1/10, and η = ε·p

4 ln(2n/ε)
. Let C be the set of functions

C : {0, 1}n → {0, 1} that can be computed by depth-d LTF circuits with at most w wires, and
note that C is closed under restriction. Let Csimple be the set of functions C : {0, 1}n → {0, 1}
such that (a) C ignores all but n′ of its n input bits and (b) there is some (n, M, D, 1, w, wd)-
LTF-DT consistent with C, where Err(T) ≤ η/2 and n′, M, and D are the parameters when
applying Proposition 6.11 with error η, namely

n′ = 2d · pn + O(log(1/η)) ≤ O(2d · pn)

D = (p1+40−(d−1) · w + p−4) · 2O(d) · log2(w/η) = p1+40−(d−1) · w · 2O(d) · log2(w/η)

M = O(p−2 · d)� D.

Observe that every such C is (η/2)-upper-sandwiched by T(x) + Err(T, x) and (η/2)-lower-
sandwiched by T(x)− Err(T, x).

With these definitions, Proposition 6.11 gives a C-to-Csimple simplifying p-restriction with
error η. The seed length is

O(p−1 · d · log(w/η) · log n),

and the time to compute membership is p−1 · d · log(w/η) · polylog(n). Recall that
Theorem 6.21 gives an (η/2)-PRG for all functions f of the form f (x) = T(x) + ζ · Err(T, x),
where ζ ∈ {±1} and T is an (n, M, D, 1, w, wd)-LTF-DT that ignores all but n′ of its input bits,
with the seed length and the time to compute each output bit both bounded by√

n′ · (D + M + log(wd) + log(1/η)) · polylog(n)

=
√

n′ · p1+40−(d−1) · w · 2O(d) · log(w/η) · polylog(n)

≤ Õ
(

p1+ 1
2 40−(d−1) · w · 2O(d) · log(1/ε)

)
.

The following standard fact implies that the same PRG η-fools Csimple.

Fact 6.25.1. If a function f : {0, 1}n → {0, 1} is (η/2)-upper-sandwiched and (η/2)-lower-
sandwiched by functions from a class F ⊆ {{0, 1}n → R}, then any distribution w over {0, 1}n

that is (η/2)-pseudorandom for F is η-pseudorandom for f .

Proof. Denoting the lower-sandwiching function by f (low), we have that E[ f (un)] ≤
E[ f (low)(un)] + η/2 ≤ E[ f (low)(w)] + η ≤ E[ f (w)] + η, and similarly, using the upper-
sandwiching function f (up), we have that E[ f (un)] ≥ E[ f (up)(un)]− η/2 ≥ E[ f (up)(w)]− η ≥
E[ f (w)]− η. �

Applying Theorem 6.24 gives us our ε-PRG for C. The seed length and the time to compute
each output bit (dominated by the PRG for Csimple) are both bounded by

Õ
(

p1+ 1
2 40−(d−1) · w · 2O(d) · log(1/ε) · p−1 · log(n/ε)

)
= Õ

(
p

1
2 40−(d−1) · w · 2O(d) · log2(1/ε)

)
= Õ

(
w1−2·40−d · 2O(d) · log2(1/ε)

)
.

We can assume without loss of generality that δ ≥ 1/ log n, as otherwise the seed length in
the theorem statement is greater than n. Since δ = 1

4 50−d, we get

50d ≤ 1
4

log n. (13)
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Therefore, the 2O(d) term in the seed length is at most polylog(n), so we can absorb it into
the Õ, making both the total seed length and the time complexity of computing each output
bit Õ(w1−2·40−d · log2(1/ε)). Recalling w = n1+δ and ε = 2−nδ

, the seed length and the time
complexity of computing each output bit are bounded by

n1+3δ−2·40−d · polylog(n) ≤ n1−δ · n−40−d · polylog(n) (40−d > 50−d = 4δ)

≤ n1−δ · n−(50−d)0.95 · polylog(n) (
log(40)
log(50)

< 0.95)

≤ n1−δ · n−Ω(1/ log0.95 n) · polylog(n) (Eq. (13))

= n1−δ · 2−Ω(log0.05 n) · 2O(log log n)

≤ n1−δ

for sufficiently large n.

6.4 Implications for MCSP

Let CC( f ) denote the size of the smallest Boolean circuit computing f . In the MCSP problem,
we are given an n-bit truth table of a function f : {0, 1}log n → {0, 1} and a size parameter
θ ∈ N; our job is to determine whether CC( f ) ≤ θ. In general, the existence of a PRG with
a certain “local efficiency” property that fools some model of computation implies that the
model cannot compute MCSP [KC00] In particular, we will now show that our PRG for LTF

circuits implies that LTF circuits cannot solve MCSP with certain parameters.
In fact, we will show that LTF cirucits cannot even compute a relaxed version of MCSP. For

two functions s1, s2 : N → N such that s1(n) < s2(n), let gapMCSP[s1, s2] denote the promise
problem where we are given an n-bit truth table of a function f : {0, 1}` → {0, 1}, where
n = 2`, and our goal is to distinguish between the “yes” case CC( f ) ≤ s1(`) and the “no” case
CC( f ) ≥ s2(`), under the promise that one of the two holds.

Theorem 6.26 (Lower bound for computing MCSP by LTF circuits). Let d : N → N be a
function with d(n) ≤ 1

6 log log n, let δ(n) = 1
8 · 50−d(n), and assume that d(n) can be computed

in time O(n1−2δ(n)) on a multitape Turing machine. Let s1(`) = 2(1−δ(2`))·`, and let s2(`) = 2`−1/`.
Then for all sufficiently large ` and n = 2`, depth-d(n) LTF circuits with n1+δ(n) wires cannot solve
gapMSCP[s1, s2] on truth tables of length n.

Proof. Fix ` and set n = n(`), d = d(n(`)), and δ = δ(n(`)). Let C be a depth-d LTF circuit
on n input bits with at most n1+δ wires. If we pick a function f : {0, 1}` → {0, 1} uniformly
at random, then with probability at least 1

2 , we have CC( f ) ≥ 2`−1/` [Sha49]. Therefore, if
E[C(un)] >

1
2 , we are done. Assume now that E[C(un)] ≤ 1

2 .
Let G : {0, 1}s → {0, 1}n be the PRG of Theorem 6.25, so E[C(G(us))] < 1, i.e., there

is some seed x∗ such that C(G(x∗)) = 0. The seed length of G and the time to compute
each output bit of G on a multitape Turing machine are both bounded by O(n1−2δ) (note
that we have defined δ to be smaller by a factor of two than the corresponding parameter
in Theorem 6.25). Multitape Turing machines can be simulated by Boolean circuits with
logarithmic overhead [PF79], so there is some Boolean circuit A of size O(n1−2δ log n) such
that for every seed x and every index i ∈ [n], we have A(x, i) = G(x)i. By hard-wiring the
seed x∗, we get a Boolean circuit B(i) = A(x∗, i) = G(x∗)i of size O(n1−2δ log n) whose truth
table is G(x∗). Thus, CC(G(x∗)) ≤ O(n1−2δ log n). Our assumption d ≤ 1

6 log log n ensures

that 50d ≤ (log n)1−Ω(1), and therefore nδ ≥ 2logΩ(1) n > (log n)ω(1). Therefore, for sufficiently
large `, CC(G(x)) ≤ n1−δ = 2(1−δ)`.
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A An improved low-error PRG for formulas of LTFs

A.1 Low-error approximating polynomials for De Morgan formulas

Recall that for a Boolean function f : {0, 1}n → {0, 1}, the δ-error approximate degree d̃egδ( f )
is the smallest degree of a polynomial p such that for all x, | f (x)− p(x)| ≤ δ. We rely on a
beautiful result from quantum computing by Reichardt [Rei11].

Theorem A.1 ([Rei11]). If F is a size-s De Morgan formula, then d̃eg1/3(F) ≤ O(
√

s).

While Reichardt’s result gives a polynomial of degree ≈
√

s that pointwise approximates
f to error 1/3, it is desirable in many cases to reduce the error much further to some small
parameter δ (that may depend on s). It is well-known (see [BNRW07]) that error reduction
can be done in a black-box fashion, yielding a polynomial of degree O(

√
s log(1/δ)) that

point-wise approximates the formula up to error δ. However, this result is not tight, and
in the next theorem we show that one can get a better dependency on the error parameter,
namely

√
s log(1/δ). Such a result was known for the special case of the OR function on s

variables, and is tight for this special case for any δ > 2−s [BCWZ99].

Theorem A.2. If F is a size-s De Morgan formula, then d̃egδ(F) ≤ O(
√

s log(1/δ)).

Proof. Take a formula for F of size s. Let k = log(1/δ). By Lemma 5.3, we can write F as a
composition of a read-once top formula T of size m = O(k) and bottom-formulas B1, . . . , Bm
each of size at most s/k.

By Theorem A.1, we know that each Bi can be point-wise approximated by a polynomial
qi of degree at most O(

√
s/k).

Take the unique multilinear polynomial p that computes the formula T exactly. deg(T) ≤
m since T is a formula with m leaves. Take the robust version probust of p with parameter δ, as
guaranteed from Theorem 6.14. By construction deg(probust) = O(k + log(1/δ)) = O(k).
Consider the composition f (x) = probust(q1(x), q2(x) . . . , qm(x)). The polynomial f is of
degree at most

O(k) ·O(
√

s/k) = O(
√

sk) = O
(√

s log(1/δ)

)
.

Moreover, on any input x ∈ {0, 1}n we have

(q1(x), q2(x) . . . , qm(x)) = (B1(x), . . . , Bm(x)) + η

where η ∈ [−1/3, 1/3]m, and thus Theorem 6.14 gives us

| f (x)− F(x)| = |probust(q1(x), . . . , qm(x))− p(B1(x), . . . , Bm(x))| ≤ δ.
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A.2 PRGs from approximating polynomials

Bounds on approximate degree can be combined with Theorem 6.13:

Theorem A.3. Let x be a distribution over ({0, 1}n/k)k that ε-fools k-dimensional combinatorial
rectangles. Let f (x) = F(g1(x), . . . , gs(x)), where d̃egδ(F) ≤ d and g1, . . . , gs : ({0, 1}n/k)k →
{0, 1} can be computed by randomized k-party number-in-hand communication protocols with
communication cost R and failure probability 1/6. Then x fools f with error

2δ + (ε · (4s + 4)d)Ω(1/R) · 2O(d).

Proof. Let p be a degree-d polynomial such that for all x ∈ {0, 1}s, |p(x) − F(x)| ≤ δ.
Define q(x) = p(x)

1+δ , so that q takes values in [0, 1] and we still have |q(x)− F(x)| ≤ 2δ. By
Theorem 6.13, x fools q(g1(x), . . . , gs(x)) with error (ε · L1(q))Ω(1/R) · 2O(d). To bound L1(q),
it is helpful to move to {±1} inputs, i.e., define

r(x1, . . . , xs) = q
(

1
2
− 1

2
x1, . . . ,

1
2
− 1

2
xs

)
,

so that
q(x1, . . . , xs) = r(1− 2x1, . . . , 1− 2xs).

By considering each monomial individually, we see that deg(r) ≤ deg(q) = d and L1(q) ≤
L1(r) · 4d. We may think of r as the Fourier expansion of a function r : {±1}s → [0, 1]. This
shows that each individual coefficient of r has absolute value at most 1. The number of
coefficients is at most (s + 1)d, so L1(r) ≤ (s + 1)d.

Now we are ready to give our improved low-error PRG for size-s De Morgan formulas
with LTFs at the leaves. Let FORMULA[s] denote the class of De Morgan formulas of size s.

Corollary A.4. For all n, s ∈ N and all ε > 0, there is a poly(n)-time computable PRG for
FORMULA[s] ◦ LTF with output length n and seed length

Õ(n1/2s1/4 log1/4(1/ε) + n1/2 log1/2(1/ε)).

Proof. By Theorem A.2, Theorem A.3, and Theorem 6.15, for any k, it suffices to fool k-
dimensional combinatorial rectangles with error

2−Õ(
√

s log(1/ε)·k log n).

By Theorem 6.18, this can be done with seed length

Õ
(

n/k +
√

s log(1/ε) · k log n
)

.

To balance the two terms, we choose k = n1/2s−1/4 log−1/4(1/ε).

B An improved low-error PRG for branching programs and general
formulas

In this appendix we construct PRGs with good dependency on the error of size-s branching
programs and for size-s formulas over an arbitrary basis. Impagliazzo, Meka, and Zuckerman
showed how to fool these classes with seed length of s1/2+o(1) and error 1/poly(s) (for
s ≥ n) [IMZ19]. We will achieve an improved seed length of

√
s · polylog(n/ε).

59



Theorem B.1 (Low-error PRG for branching programs and formulas over a general basis).
For any n, s ∈ N and any ε > 0, there is an ε-PRG for size-s branching programs and size-s formulas
over an arbitrary basis with output length n and seed length

√
s · polylog(n/ε), computable in time

poly(n).

The main improvement is the better dependence on ε; our PRG remains nontrivial even
when the error parameter is 2−sΩ(1)

. Even for constant error, our seed length is superior in
terms of the lower order terms. The so(1) term in the IMZ seed length is, more specifically,

2O(
√

log n). Our seed length replaces 2O(
√

log n) with polylog(n).

B.1 Shrinkage of all shifts simultaneously

We will present the proof for branching programs; the proof for formulas over a general
basis is essentially identical. Like the PRG for De Morgan formulas, the PRG is based on
the phenomenon that branching programs shrink under random restrictions. In Impagliazzo,
Meka, and Zuckerman’s work [IMZ19], the bottleneck preventing them from achieving low
error is that the chance of a branching program failing to shrink is too high.

To evade this obstacle, one approach would be to use a hybrid decision tree model like we
did with De Morgan formulas. We will take a different approach that gives better parameters
and is simpler in some respects. The key observation is that when shrinkage does occur,
all shifts of the branching program shift as well. (This is not necessarily true of De Morgan
formulas.)

To state this precisely, for a function f : {0, 1}n → {0, 1} and a string y ∈ {0, 1}n, define
f⊕y(x) = f (x⊕ y). Let BP( f ) be the size of the smallest branching program computing f .

Lemma B.2 (Shrinkage of all shifts of branching programs). Let p ∈ (0, 1) and let ρ be p-regular
restriction. Then for any size-s branching program f ,

Pr[∀y, BP(( f⊕y)�ρ) ≤ 4ps] ≥ 3/4.

Proof. For i ∈ [n], let si be the number of nodes in f that query xi. Define a random variable
ai by

ai =

{
si if ρi = ?

0 if ρi 6= ?.

Then E[∑i ai] ≤ ps, so by Markov’s inequality, Pr[∑i ai ≤ 4ps] ≥ 3/4. Now, fix any shift
y ∈ {0, 1}n. The function ( f⊕y)�ρ can be computed by a branching program of size ∑i ai
obtained from f by deleting all vertices v that query some xi with ρi 6= ?. The incoming
edges to such a vertex are redirected to the vertex reached from v by following the edge
labeled ρi ⊕ yi.

B.2 A good set of restrictions with high probability

The first step of our PRG is to independently sample pseudorandom restrictions ρ1, . . . , ρt ∈
{0, 1, ?}n. Ideally, we would like these restrictions to shrink all shifts of f like in Lemma B.2,
and we additionally would like the ? coordinates of these restrictions to collectively cover
almost all of [n]. That won’t necessarily happen, but we now will argue that with high
probability, some subset of the restrictions satisfies both conditions. This is how we are able
to tolerate the high failure probability in Lemma B.2.

Lemma B.3. Let f be a size-s branching program on n input bits, and let p, ε > 0. For
t = O(p−1 log n + log(1/ε), sample independent restrictions ρ1, . . . , ρt ∈ {0, ?}n, where each ρi
is p-regular and 4-wise independent. Then except with probability ε, there is some set J ⊆ [t] such
that
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1. For every j ∈ J, for every y ∈ {0, 1}n, BP(( f⊕y)|ρ(j)) ≤ 4ps.

2.
∣∣∣⋃j∈J ρ−1

j (?)
∣∣∣ ≥ n−O(p−1).

Proof. The proof is very similar to the proof of Claim 5.9. Suppose we have already sampled
ρ1, . . . , ρj−1, and we have already defined J ∩ [j− 1]. Let I be the set of coordinates in [n] that
are not yet covered by a ?, i.e.,

I = [n] \

 ⋃
i∈J∩[j−1]

ρ−1
i (?)

 .

Let us include j ∈ J if |ρ−1
j (?) ∩ I| ≥ p|I|/2 and for all y, BP(( f⊕y)|ρj

) ≤ 4ps. We shall also
include j ∈ J if |I| < 2400p−1. If |I| ≥ 2400p−1, then by Theorem 4.5 with ∆ = p|I|/2,

Pr
ρj
[|ρ−1

j (?) ∩ I| ≤ p|I|/2] ≤ 1
16

.

Combining with Lemma B.2, we see that conditioned on any values of ρ1, . . . , ρj, we have

Pr
ρj
[j ∈ J] ≥ 1− 1

4
− 1

16
>

2
3

.

This implies that after picking ρ1, . . . , ρt, with high probability, |J| ≥ Ω(t). Indeed, by
Azuma’s inequality [DRV10, Lemma B.1], |J| ≥ t/2 except with probability e−Ω(t) ≤ ε.

Suppose now that |J| ≥ t/2. We start with n coordinates not covered by ?, and whenever
we include j ∈ J, either we are down to 2400p−1 coordinates not covered, or else the
number of coordinates not covered decreases by a factor of (1 − p/2). If the latter case
happens every time, then every coordinate is covered, because (1 − p/2)t/2 · n < 1 (here
we use t ≥ Ω(p−1 log n)). Therefore, either way we must eventually cover all but 2400p−1

coordinates.

B.3 The improved analysis of the IMZ generator

Now we shall describe the full PRG construction. The construction is similar to our PRG
for De Morgan formulas (Section 5) (and the original PRG by Impagliazzo, Meka, and
Zuckerman [IMZ19]).

Sample ρ1, . . . , ρt as in Lemma B.3, with p = 1/
√

s.29 Let G : {0, 1}d → {0, 1}n be a (4
√

s)-
wise independent generator. Let Ext : {0, 1}m × {0, 1}dExt → {0, 1}d be a (kExt, εExt)-extractor
(the values of these parameters will be specified later.) Sample independent uniform random
strings a ∈ {0, 1}m and y1, . . . , yt ∈ {0, 1}dExt . Let zi = Ext(a, yi). Furthermore, sample an
O(
√

s)-wise independent string w ∈ {0, 1}n. Our PRG outputs

w⊕
t⊕

i=1

G(zi) ◦ ρi.

The proof of correctness is once again a hybrid argument. However, a key difference
is that in the hybrid argument, we will consider fixed restrictions. In particular, let f be a
size-s branching program, and consider some fixed ρ1, . . . , ρt and some set J ⊆ [t] satisfying
the conclusion of Lemma B.3. Let t′ = |J|, and let σ be a permutation on [t] such that
J = {σ(1), . . . , σ(t′)}.

29Actually, to optimize the low order terms in the seed length, we should use a value of p that is larger by a
factor of

√
log(n/ε). We use p = 1/

√
s just for simplicity.
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Define
e = w⊕

⊕
i 6∈J

G(zi) ◦ ρi.

Sample independent uniform strings u(1), . . . , u(t′), and define hybrid distributions h0, . . . , ht′

by

hj = e⊕
( j⊕

i=1

(u(j) ◦ ρσ(i))

)
⊕

 t′⊕
i=j+1

(G(zσ(i)) ◦ ρσ(i))

 .

We stress that ρ1, . . . , ρt and J are fixed at this point, so the randomness of hj is due to the
random choices of w, a, y1, . . . , yt.

Claim B.4. For each j ∈ [t′],

E[ f (hj−1)]−E[ f (hj)] ≤ 3εExt.

Proof. Define e′ to be the random variable such that

hj−1 = e′ ⊕ (G(zσ(j)) ◦ ρσ(j))

hj = e′ ⊕ (u(j) ◦ ρσ(j)).

Note that e′ is not independent of a or w, but e′ is nevertheless independent of yj. Let
F = ( f⊕e′)|ρσ(j) , so F (as a function) is a random variable (since it depends on e′). Let us
bound the support size of that random variable.

Since σ(j) ∈ J, we have Pre′ [BP(F) ≤ 4
√

s] = 1. Therefore, F can be described using
O(
√

s log n) bits. As in the proof of Claim 5.8, this implies that H̃∞(a | F) ≥ m−O(
√

s log n).
Setting kExt to be the same value m = O(

√
s log n), this implies that (F, zσ(j)) ∼3εExt (F, u),

where u is a uniform random d-bit string independent of F. It follows that

|E[F(G(zσ(j)))]−E[F(G(u))]| ≤ 3εExt.

Since BP(F) ≤ 4
√

s, G perfectly fools F, so

|E[F(G(zσ(j)))−E[F(u(j))] ≤ 3εExt.

Since F(G(zσ(j))) = f (hj−1) and F(u(j)) = f (hj), this completes the proof.

Proof of Theorem B.1. By the triangle inequality,

|E[ f (h0)]−E[ f (ht′)]| ≤ 3t′εExt ≤ 3tεExt.

Now, h0 is our pseudorandom distribution. Meanwhile, we claim that ht′ is a perfectly
uniform random string. Indeed, observe that

(ht′)i =

{
ei if i 6∈ ⋃j∈J ρ−1(?)

a fresh uniform random bit otherwise.

Since we are assuming the conclusion of Lemma B.3, the number of coordinates i with
i 6∈ ⋃j∈J ρ−1(?) is at most O(

√
s). The random variable w ensures that e is uniform random

on those coordinates. Thus, taking into account the failure probability in Lemma B.3, the total
error of our pseudorandom generator is at most ε + 3tεExt = O(ε), choosing εExt = ε/t.

Finally, let us bound the seed length of our PRG. Each ρi costs O(log n) truly random bits.
The generator G has seed length d = O(

√
s log n). Take Ext to be the GUV extractor [GUV09].

Then it suffices to take m = O(
√

s log n) and dExt = O(log(n/ε)). Summing up gives the
claimed seed length.
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