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Abstract—As social robots become increasingly prevalent in
day-to-day environments, they will participate in conversations
and appropriately manage the information shared with them.
However, little is known about how robots might appropriately
discern the sensitivity of information, which has major implica-
tions for human-robot trust. As a first step to address a part
of this issue, we designed a privacy controller, CONFIDANT, for
conversational social robots, capable of using contextual metadata
(e.g., sentiment, relationships, topic) from conversations to model
privacy boundaries. Afterwards, we conducted two crowdsourced
user studies. The first study (n = 174) focused on whether a
variety of human-human interaction scenarios were perceived as
either private/sensitive or non-private/non-sensitive. The findings
from our first study were used to generate association rules. Our
second study (n = 95) evaluated the effectiveness and accuracy
of the privacy controller in human-robot interaction scenarios
by comparing a robot that used our privacy controller against a
baseline robot with no privacy controls. Our results demonstrate
that the robot with the privacy controller outperforms the robot
without the privacy controller in privacy-awareness, trustworthi-
ness, and social-awareness. We conclude that the integration of
privacy controllers in authentic human-robot conversations can
allow for more trustworthy robots. This initial privacy controller
will serve as a foundation for more complex solutions.

Index Terms—human-robot conversations, privacy, trust

I. INTRODUCTION

Conversational social robots are becoming increasingly preva-
lent in society, taking the role of assistants and companions
in many different settings [1, 2]. In these roles, robots engage
in conversations with people or overhear them. A key facet of
conversations is understanding how content should be stored,
shared, and managed. Social robots have not been designed
with such capabilities, and they are currently not privacy-
aware. Thus, any data stored or learned by the robot can
be queried by anyone without any restrictions [3], which
raises significant concerns regarding the privacy of the users
who share information with the robot. One currently proposed
solution allows users to explicitly express consent with specific
data [4], but this approach would hamper the usability of the
robot. Additionally, social robots do not currently utilize access
control systems [5] that can be obtained through the integration
of speaker recognition or face recognition. While a robot may
adopt a basic permissions system, this approach will still fail
in complex multi-party conversations.

Additionally, social robots are envisioned to be used in
highly privacy-sensitive domains, including healthcare [6],
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Conversation:
Oh really? Can you
give me some
So, I'm thinking recommendations?
about investing
in the stock

market.

2P

Privacy Disclosure Decision:

Hi Misty, what
were they
talking about?

Hazel and Caden were
talking about finances.
Caden is thinking about
investing in the stock
market.

Fig. 1. In this paper, we design a privacy controller for social robots. Here, the
robot processes a set of metadata extracted from a conversation and decides
the privacy state of this conversation. Using this privacy state, the robot can
determine whether information can be appropriately shared with other users.
We evaluated the effectiveness of the design with two user studies.

workplaces [7], assistive therapy centers [8], schools [9], and
homes [10, 11]. These environments provide the social robot
with exposure and access to highly sensitive information. In
such scenarios, it may be challenging to distinguish between
appropriate privacy boundaries, as information that must be
shared with one user might pose significant privacy violations
when shared with others. Consider the following conversation
between the robot, Misty, and Barbara’s father, Bill:

Context: While Misty passes by Barbara’s room, Misty
overhears Barbara talking on the phone.

Barbara: I think I’ll just sneak out before my parents get
home... Ya I’'m sure they won’t even notice... Okay see you
at the party!

Context: Later that evening, Bill speaks with Misty.

Bill: Hey Misty, have you seen my daughter? I think she
might have stayed late at school, but she didn’t say anything.

In this scenario, Misty’s disclosure of the phone conversation
may negatively impact Barbara’s trust, but may improve Bill’s
relationship with Misty.
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In order to improve user trust towards social robots, robots
must understand conversational boundaries—contexts in which
it is appropriate to share information. To address this gap in
the field, we ask the following research question “How can
conversational privacy be modeled for privacy-sensitive human-
robot interactions?” We address this question by designing a
privacy controller for social robots that captures the dynamics of
conversational privacy, modeled using metadata (e.g., sentiment,
relationships, topic, etc.). This privacy controller, CONFIDANT,
decides whether information is private and whether it can be
shared with other parties. CONFIDANT can be used by robots
in common informational tasks, including Q&A, information
summarization, relationship development with users, activity
suggestions, event planning, and much more. Privacy issues
arising from multi-user interactions with conversational systems
are complex and multifaceted; they are affected by human
communication norms as well as the social dynamics of the
setting, such as device ownership and personalization [12, 13].
As a first step toward establishing a foundation for designing
privacy-aware social robots, this work addresses how robots
might control information flow across conversations.

The contributions of our work are as follows:

o Privacy Controller: We provide a privacy controller which
extracts conversational metadata and generates privacy rules.
These rules are then used in deciding whether information
can be shared (Section III).

o Dataset: We provide several annotated textual datasets for
evaluating conversational privacy decisions (Section V-A).

o User Study: We report results from two crowdsourced user
studies aimed at understanding perceptions of conversational
privacy in human-human interactions and human-robot
interactions. The studies provide insight into the importance
of each factor for perceived privacy (Section V-C).

II. RELATED WORK

Before presenting related work, we describe our operational
setting. We consider a social robot interacting with multiple
users; this robot may either continuously listen to conversations
and process the information, or it may only listen when
prompted by the user. A robot that uses audio-textual informa-
tion to perceive its environment can listen to conversations and
autonomously store, delete, or share information from these
conversations. As a result, the robot may accidentally reveal
sensitive information in subsequent conversations with others.
This scenario is most likely to occur with an honest-but-curious
user asking the robot about other users.

Next, we describe related works and existing privacy
solutions for social robots as conversational agents. Then, we
describe conversational privacy management (CPM) theory,
which motivates our design of the privacy controller.

A. Social Robots as Conversational Agents

Social robots have been envisioned as companions, assistants,
and collaborators that live in human environments and engage in
verbal [14, 15] and non-verbal [16] dialogue with their users. A
significant body of research on human-robot conversations has
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focused on mechanisms that enable conversational interactions,
floor management [17—-19], turn taking [20, 21], deictic referenc-
ing [22], disambiguation [23, 24], conversational gestures [25,
26], and several other mechanisms. Another body of work
has explored linguistic cues and how robots may use them to
improve user experience, including cues of expert speech [27],
politeness cues [28, 29], humor [30], and entertainment [31].
More recent research has focused on what is shared in human-
robot conversations, such as expressions of vulnerability [32,
33], social commentary [34], social inclusion [32], emotional
disclosure [35], sharing of the robot’s experiences [36], and
the use of gossip to enrich conversations [37]. These studies
make up a substantial body of knowledge about the design
space of human-robot conversations.

Despite the recent focus on what is shared in human-robot
conversations, very little is known about how a robot must
regulate the disclosure of information that has been shared with
it. To gain user trust and find widespread adoption, robots must
understand and delineate between shareable and non-shareable
information. Along these lines, Luria et al. [12] provide
insights into the various factors that define social boundaries in
human-robot interaction (HRI), such as social roles, dynamic
relationships, ownership bias, and moral dilemmas. Reig et
al. [13] highlight the trade-off between personalization and
privacy as well as concerns surrounding social robots and
data collection. Other work has studied the over-disclosure of
personal information to social robots [38, 39], thereby further
motivating work on the multi-user privacy problem. Reuben
et al. [40] propose privacy constructs for HRI scenarios to
motivate the implementation of privacy norms in robots.

B. Existing Privacy Solutions for Conversational Agents

While privacy solutions have been extensively explored for
conversational agents, reaching the proper privacy versus utility
trade-off can be challenging for social robots. Conversational
agents are typically voice assistants integrated into smart home
speakers and smartphones [41-43]. These agents, in their roles
as an artificial memory, a foreign language tool, a virtual
assistant, a kitchen helper, and more [44], must process large
volumes of data. Current voice assistant systems passively
listen for a wake word before further user interaction, but this
approach has significant limitations. Social robots may engage
in longer conversations, intermittently participate in ongoing
conversations, and be expected to draw on situated cues, such as
orientation and formation [45, 46], to determine conversational
participation. The use of wake words may disrupt the flow of
these conversations and become too cumbersome for users.

Users’ privacy concerns with conversational agents center
around permissions for recorded conversations and lack of
transparency about data used in off-site processing [47-49].
However, social robots possess mobility and additional sensing
capabilities; a robot can record conversations in different
contexts, recognize faces and objects, and be aware of its
location. Thus, a robot may be an active participant, a casual
observer, or an eavesdropper in a conversation. These ratified
and unratified roles create unique concerns regarding users’
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expectations and social boundaries. For example, a robot may
move throughout a user’s home and then overhear and share
sensitive information [12, 50]

C. Communication Privacy Management Theory

As previous privacy solutions are not easily extended to
social robots, our work derives inspiration from conversational
privacy management (CPM) theory [51], particularly in the
context of families and homes [52]. CPM is a dialectical
framework that focuses on individual and group privacy
management. Relational elements such as boundaries, rules,
ownership, control levels, and disclosure are leading factors
that shape CPM theory. Primarily, CPM theory accounts for
the role of the recipients in privacy management by also
highlighting a relationship between privacy, disclosure, and
confidentiality [51]. The principle of private information control
in CPM suggests the following:

[High control] can result in impermeable and dense bound-

aries to protect information (e.g., a secret);

[Moderate control] is used where information is available

to only some family members;

[Low control] is when information is open and access is

permitted to others.

Furthermore, the principle of private information rules in
CPM captures when, how, with whom, and in what ways one’s
private information can be shared. Factors such as culture,
gender, personality, and the risk-benefit threshold can all affect
the determination of whether information is private. However,
further indications such as disclosure warnings set a hard
rule, warning the recipient and restricting the disclosure of
information to others. Each involved person has a set of private
or personal information that they own and a set of (non-private)
information, co-owned with others. Co-ownership of privacy
boundaries (i.e., a collection of mutually agreed privacy rules)
prevents the violation of privacy. Moreover, a speaker’s self-
disclosure of private information indicates trust and intimacy
with the recipient. However, it does not necessarily cause
them. Overall, CPM theory provides a promising approach to
managing the complex dynamics of privacy in conversations,
but still requires contextualization in human-robot interactions.

III. PRIVACY CONTROLLER DESIGN

Social robots operate in complex scenarios where multiple
humans engage with each other and the robot over a period of
time; this active role uncovers the need to program some notion
of conversation context into the privacy controller. We adapt
CPM theory to human-robot conversations using concepts such
as co-ownership, decision factors, rules, and control levels in
the design of our privacy controller, CONFIDANT.

A. Terminology

CONFIDANT takes as input a conversation’s context and
decides whether to share that conversation. In particular, it
uses audio and textual data to derive metadata tuples for every
given conversation, representing its context. Metadata tuples,
inspired by contextual tuples [53], contain information about
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Fig. 2. How robots typically process conversational data: (1) users engage in
a conversation; (2) the robot perceives the conversation; (3) the robot records
the audio; (4) the audio is converted to text; (5) the text is used for NLP
tasks; (6) the speaker identity is verified; (7) the privacy controller processes
all information and makes a determination; (8) depending on the robot task,
text is converted to audio; (9) the robot responds to the users.

the context of a given conversation, such as the sentiment,
topic, location, and relationships. CONFIDANT employs these
tuples in rules which produce control levels as the final output.
The output control level of low, moderate, or high determines
whether it is appropriate to share information.

B. Privacy Controller Inference Components

Our first step in developing the privacy controller was
choosing the metadata tuples with a notable impact on privacy
disclosures. To this end, we utilized CPM theory [51, 52], socio-
linguistics literature [54], and other privacy literature [53], to
identify a set of attributes for these tuples. We converged
on relationship, sentiment, privacy indication phrases [55],
conversation topic, level of detail, location, and number of
listeners present. We selected these metadata attributes due
to (1) their relevance in privacy literature, and (2) their ease
of extraction from raw text and audio. We assume that the
relationships and location attributes are readily available to the
robot from its initial configuration and localization sensors.

CONFIDANT automatically infers the remaining attributes
by applying a suite of natural language processing (NLP) and
speech analysis techniques. First, it applies automatic speech
recognition to transcribe the recorded conversation. Second,
it applies speaker identification to recognize the number of
people in the conversation. Third, it uses NLP techniques
including sentiment analysis, semantic textual similarity, and
topic classification to automatically infer the sentiment of
the conversation, the privacy indication phrases, and the
conversation topic, respectively. Finally, it uses the number of
(transcribed) words as a proxy for the level of detail. Fig. 2
provides an overview of how data is processed by the robot.
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C. Benchmarking Privacy Controller Components

As CONFIDANT heavily utilizes several NLP and speech
processing components, we evaluated the following components
on common benchmark datasets associated with their task.

1) Speech Transcription: The first component, speech tran-
scription, is used for automatically transcribing any audio
the robot receives. Our model, Google’s Speech to Text API,
performs this task with an average word error rate (WER) of
0.13 on the LibriSpeech test dataset [56].

2) Sentiment Analysis: Sentiment analysis gauges the posi-
tive or negative inclination of a given text [57]. We employ the
Google Natural Language API’s sentiment analysis model [58].
When evaluated on the IMDB review dataset [59], the model
attains a precision of 0.951, a recall of 0.895, and an F1
score of 0.922. For rule generation, we quantize the sentiment
scores (values indicating negative to positive sentiment) and
magnitudes (values indicating degree) into 5 classes: negative,
slightly negative, neutral, slightly positive, and positive.

3) Topic Classification: Topic classification, or text catego-
rization, classifies a textual document under preset classes [60].
We use the Google Natural Language API’s content classifica-
tion model! to classify each conversation’s topic. We evaluate
the content classifier’s performance on the Yahoo! Answers
dataset [61]. The model achieves an accuracy of 65.31% on the
dataset. Note that the lower performance results from the labels
in the Yahoo! Answers dataset differing from the list of
potential topic labels from the content classification model.

4) Speaker Identification: Speaker identification matches
an unknown voice sample to an identity from a set of
known, enrolled voices. In our setting, speaker identification
is responsible for authenticating users and tagging speech
segments with users. CONFIDANT utilizes SpeechBrain [62],
an open-source speech toolkit, which achieves an area under
the curve (AUC) of 0.92 on the VoxCeleb dataset [63].

5) Semantic Textual Similarity: Semantic textual similarity
(STS) is often used to identify similar texts. Combined with
reference datasets, STS is capable of detecting hate-speech [64],
summarizing documents [65], and in our use-case, detecting
privacy indication phrases. We use privacy phrases, collected
through a user study, to detect privacy indication phrases from
a transcript; examples of such phrases include: “Don’t tell
anyone this” or “Make sure no one knows what we talked
about.” The STS model used in CONFIDANT [66] achieves an
AUC of 0.95 on the STS benchmark dataset [67].

D. Rule Generation

We model the rules powering our privacy controller as
association rules [68], mapping the metadata tuples to privacy
control levels. In general, association rules model “if-then”
relations in a dataset of items, mapping antecedents to a
consequent. CONFIDANT extracts metadata tuples from the
conversations, which act as the antecedents. It then consults a
set of rules to identify the consequent, representing the control

TA list of each topic class can be found at https://cloud.google.com/
natural-language/docs/categories
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Fig. 3. Metadata of a specific conversation such as relationships, sentiment,
location, etc. are associated with a control level. These control levels impact
whether the robot can disclose information from a particular conversation.

level. A natural question arises: how to generate these rules
for the privacy controller?

We follow a two-step procedure to generate these rules.
First, we annotate a dataset of conversations with their privacy
annotations from a set of users (described in Section IV).
We utilize an altered version of the apriori algorithm [69] to
generate generalized rules that map metadata tuples extracted
from these conversations to the privacy annotations (Fig. 3). Our
altered apriori algorithm only selects rules which correspond
to a CPM control level (e.g., low, moderate, or high control).
These control levels dictate whether a robot should disclose a
specific piece of information and how much detail it should
provide. See Algorithm 1 for the pseudocode on how the
generated rules are used to predict a control level.

Second, we allow CONFIDANT to personalize these rules
by continuously incorporating user feedback as new privacy
annotations to the recorded conversations. In CPM theory, a
participant naturally enforces privacy rules during a conversa-
tion. CONFIDANT detects explicit requests to keep parts of the
conversation private; it applies STS to match user speech to a
set of privacy indication phrases collected in our user study.
It then maps these requests to desired privacy levels to curate
more data and further personalize the rules.

Algorithm 1 Rule Generation

1: procedure RULE GENERATION(metadata, N, WEIGHTYS)
2: length = len(metadata)

3: > Generate rules via apriori for multiple support values
4: for i in [0 to N] do

5: sup =i/ length

6: rules.append(modified_apriori(metadata, sup)))

7: for sample in metadata do

8: inner_controls = {low:0, moderate:0, high:0}

9: > Track number of rules for each control level
10: for rule in rules do

11: for element in rule do

12: if element in sample then

13: items<— WEIGHTSI[j])

14: inner_controls[rule.control_level] += avg(items)

15: control_levels<— argmax(control_levels)

16: return control_levels
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IV. METHODOLOGY

We wish to understand the following about social robots
and conversational privacy:

¢ Annotated Dataset: How can we derive privacy annotations
from human-human conversations?

e Trained Privacy Controller: Can we train a privacy
controller by generating association rules which accurately
reflect CPM privacy rules?

o Evaluation: Do user perceptions of privacy and trust in
social human-robot interactions improve with the presence
of a privacy controller?

We conducted two user studies to (1) derive privacy annota-
tions from human-human conversation scenarios to train the
privacy controller, and (2) evaluate the controller’s performance
in human-robot interaction scenarios. All resources from the
user studies (i.e., questionnaires, scenarios, examples, source
code for the privacy controller, demographic distributions) are
shared for open access.2 Our protocol was approved by the
UW-Madison Institutional Review Board, and participants who
completed the study received $2.50 as compensation.

A. Study 1: Creating the Annotated Privacy Scenario Dataset

According to CPM theory, rules for privacy boundaries
are generated, reinforced, and remedied throughout many
interactions. With this concept in mind, we aimed to develop
the rules of our privacy controller similarly. Therefore, Study
1 produces a training dataset for CONFIDANT, generated by
asking participants to respond to set of conversational scenarios;
the participants provided privacy annotations to conversations
with different metadata tuples.

1) Study Task: We developed a series of information-
sharing scenarios that targeted the controller’s components (e.g.,
relationships, sentiment, number of people, level of detail, topic,
and location); one example of a scenario is present in Section I.
We presented each scenario to participants through an Amazon
Mechanical Turk (MTurk) survey; we asked them about
their attitudes regarding privacy, trust, and appropriateness
of information sharing. We developed 58 scenarios, including
16 privacy-violation scenarios and 42 control scenarios, as
described below. We utilize control scenarios to cover more
common conversations: ones that are less likely associated with
privacy concerns. Conversely, privacy violation scenarios are
those that are more likely associated with privacy concerns.
We intend to generate training data that cover the three output
control values: low, moderate, and high.

a) Privacy Violation Scenarios: Each scenario described
an interaction between a number of individuals (e.g., one-on-
one vs. multi-party), in a specific location (e.g., in-home vs.
out-of-home). Each interaction included an information sharing
behavior (e.g., disclosing vs. withholding) at different appropri-
ateness levels (e.g., appropriate, inappropriate, or ambiguous).
We associated each scenario with a privacy violation that may
occur. We selected these privacy violations after consulting

2Study materials are available at Open Science Foundation repository,
https://osf.io/r7vxg/?view_only=d90b8c23075d43bea67c0alcafcaa3la
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CPM literature [51, 52] and identifying violations that are
relevant to human-robot interaction. We identified seven distinct
privacy violations, as described below:

[PV-1] Miscalculation in timing: Disclosing information
at a time that is disruptive for the disclosee or at a time
unintended by the original owner of the information.
[PV-2] Violation for the greater good: Disclosure of infor-
mation with beneficent intent when the discloser considers
the benefits to outweigh the potential drawbacks.

[PV-3] Physical boundary predicaments: Disclosing as a
result of misinterpreting public spaces as private spaces.
[PV-4] Errors in judgement: Disclosing as a result of
assumptions or misunderstandings of another individual’s
privacy boundaries.

[PV-5] Value judgements: Disclosing as a result of valuing
one’s own desire to disclose over the violation of another
individual’s privacy.

[PV-6] Violations due to rules and responsibilities: Disclos-
ing information out of an obligation to follow rules, customs,
or responsibilities given one’s role within a group.

[PV-7] Eavesdropping: Eavesdropping is the unintended
disclosure of information by one individual to another. This
violation type is both a means of obtaining information and
acts as a violation as well. Eavesdropping is not considered
a direct violation on its own.

Following a partial factorial design, we balanced the com-
ponents within each scenario. Given the large number of
scenarios needed to utilize a true factorial design, we only
strictly controlled location, number of people, and information
sharing behavior. However, we kept the appropriateness of
sharing behavior (50% ambiguous, 25% appropriate, 25%
inappropriate) and violation types (two of each type with two
additional eavesdropping scenarios) loosely balanced. Then,
based on examples from literature [51], we wrote conversation
scripts for each scenario. Each script included a location, the
names of the characters involved, and a brief description of
the context of the scene.

b) Control Scenarios: We created 42 control scenarios.
These scenarios included the same elements (i.e., location,
characters, and context) as the privacy violation scenarios,
but were derived from a database of movie scripts [70]. For
realism, scenes were filtered by the genre, “Drama”, by topic
keywords,? and by passage length. Movie lines were selected
from the resulting scenes.

2) Method & Procedure: We presented privacy-violation
and control scenarios to participants through an MTurk survey.
Our data collection process followed a between-subjects design
and required each participant to complete a random sample of
five scenarios. Participants read through the provided scenario
scripts and answered a series of questions regarding privacy,
trust, and appropriateness of the information sharing depicted
within the scene. Additionally, the participants were asked to
rank the realism of the provided scenario scripts. Questions
varied slightly depending on the type of scenario (e.g., disclo-

3https://cloud.google.com/natural-language/docs/categories
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TABLE I
RELIABILITY MEASURES VIA CRONBACH’S ALPHA

Constructs  Study # of Questions Cronbach’s Alpha
Privacy Score 1 4 85.95
Privacy Norms 2 4 93.53
Social Norms 2 4 91.01
Trust 2 4 94.63

sure violations, withholding violations, and controls) and were
tailored to the scene’s context. Attention check questions were
randomly distributed throughout the questionnaire to ensure
attentive and legitimate responses were submitted.

After the scenarios, the survey included questions from
the privacy attitudes questionnaire [71] to assess participants’
privacy inclinations. To minimize participant attrition, we
selected only eight of the questionnaire’s 36 items. These
items were selected based on their relevance to information
disclosure and conversational privacy. Questionnaire items are
provided in the OSF repository linked above.

3) Participants: 174 U.S. participants, aged 22-78 (M =
39.6, SD = 10.708; 75% male, 25% female) completed the
survey in 12 minutes on average.

B. Training the Privacy Controller

After data collection, we randomly split the 58 scenarios
into 46 training scenarios and 12 testing scenarios. Privacy
scores are created from the responses and used to label the
privacy-sensitivity of each scenario. The dataset’s labels are
derived from the mean of the seven-point rating-scale responses
associated with each survey question about privacy, sensitivity,
and appropriateness of disclosure. Using the privacy score
and thresholds set at 2.3 and 3.1, we classify scenarios into
either low, moderate, or high control levels. Finally, rules are
generated using the metadata and control levels of the 46
training scenarios, according to Algorithm 1. The test set is
evaluated using the already generated rules.

C. Study 2: Evaluating the Privacy Controller

Following the data collection from Study 1 and training
the privacy controller, we prepared relevant components (e.g.,
speech to text, text to speech, generated rules) for use in Study
2. This study focused on assessing the controller’s performance
in terms of privacy norms, social norms, and user trust toward
the robot. To achieve this, we designed an online study to
be administered via MTurk. We created 12 scenarios, which
involved an initial conversation with a robot present, a controller
response, and a baseline response, and asked participants to
evaluate the robot’s responses. We used the Misty II* as the
social robot platform in our study.

1) Study Task: Our video scenarios were derived from the
privacy violation and control scenarios used in Study 1. We
took a random sample of 12 scenarios from the original
58 to use as our evaluation set for the privacy controller.

“https://www.mistyrobotics.com/
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Each scenario consisted of three videos including (1) a
conversation video, (2) a controller response video, and (3)
baseline response video. The conversation video involved
two individuals reenacting the scenario script, with a social
robot present and listening (Fig. 1). The controller response
video and baseline response video introduced a new scene
wherein a different individual asked the robot for information
about the previous conversation. For the controller response
condition, the robot replied with an answer determined by
CONFIDANT. For the baseline response condition, the robot
replied with low privacy control (i.e., the robot answered the
individual’s question completely). Each controller response
video demonstrated high, medium, or low privacy control levels,
while the baseline response always responded with low control.

2) Procedure, Measures, & Analysis: We presented videos
containing human-robot conversations to participants through
an MTurk survey. The study followed a within-subjects design
where each participant was presented with a random sample
of three scenarios to evaluate. Following each controller
response and baseline response video, participants were asked
to respond to a series of questions that addressed the controller’s
compliance with privacy norms, conversational norms, and
overall trustworthiness (provided in the OSF repository linked
above). Table I provides reports on the reliability of the resulting
scale. Attention checks were randomly distributed throughout
the questionnaires to monitor response legitimacy.

Our data analysis included a repeated measures one-way
analysis of covariance (ANCOVA), where the controller was
a within-participants factor while scenario and the interaction
between the controller and the scenario were within-participants
covariates. This analysis was repeated for the three measures:
privacy norms, conversational norms, and trust.

3) Participants: 95 U.S. participants, aged 24-70 (M = 43.3,
SD = 10.738; 54% male, 46% female) completed the survey
in 9 minutes on average.

V. RESULTS
A. Annotated Dataset: Privacy Sensitivity of Conversations

The computed control levels, locations, sentiments, and
topics in the resulting conversational dataset were distributed as
follows: The dataset was labeled with 15 low control scenarios,
27 moderate control scenarios, and 16 high control scenarios;
the dataset included 31 in-home scenarios and 27 out-of-
home scenarios. Additionally, 20 scenarios contained neutral
sentiment, 20 scenarios contained negative sentiment, and the
remaining 18 scenarios were positive. While containing only
58 scenarios, the dataset remains balanced in almost every
aspect except for conversation topic. Topics are skewed towards
arts and entertainment, likely a consequence of many of the
passages being derived from movie scripts. See Table II for
the list of all metadata extracted from several scenarios.

Beyond training CONFIDANT, Study 1 also provided a
dataset of privacy preserving phrases extracted from open-
ended survey questions for two situations: (1) ensuring a listener
does not share information and (2) indicating discomfort or
inability to share information. Using these phrases, CONFIDANT
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can automatically label in-the-wild conversations as privacy-
sensitive allowing for future dataset expansion.

B. Trained Privacy Controller: Generating Association Rules

CONFIDANT is trained by generating a set of rules associated
with a control level label for a given dataset of conversations.
These labels are then used to generate association rules, similar
to how privacy rules are created and managed in human-
human interactions. Fig. 3 provides some examples of generated
rules. For example, the controller learns a rule associating a
conversation containing: a slightly negative sentiment, only 2
people, and a professional relationship between the conversation
participants, with a high control level. The learned rule may be
indicative of a negative and sensitive workplace conversation
with a supervisor that is too inappropriate to share. However,
due to the small sample size of the training data, several
extraneous rules may appear, particularly those with fewer rule
items. Having generated association rules using Algorithm 1,
the privacy controller achieved 80.43% accuracy on the training
set of scenarios and achieved 66.67% accuracy on the test set.

C. Evaluation: Studying the Privacy Controller in Human-
Robot Interactions

To understand whether CONFIDANT truly improves users’
perceptions, we generated video recordings of conversation
scenarios. Participants were asked to respond to a questionnaire
that measured the robot’s ability to follow appropriate social
norms, its ability to follow appropriate privacy norms, and
their level of frust toward the robot. Our ANCOVA analysis
for the social norms scale demonstrated that participants
found the robot to more strongly follow expected norms of
human conversation when it used our controller (M = 3.769,
SD = 1.707) over the baseline behavior (M = 2.129,
SD = 1.580), F(1 : 86.92) = 250.90, p < .0001. Similarly,
analysis of the privacy norms scale showed participants rated
the appropriateness of the robot’s privacy norms significantly
higher when it used our controller (M = 3.663, SD = 1.849) over
the baseline (M = 1.697, SD = 1.487), F(1 : 86.54) = 371.935,
p < .0001. Finally, participants regarded their trust towards the
robot higher when the robot used our controller (M = 2.872,
SD = 1.901) over the baseline (M = 1.505, SD = 1.509),
F(1:86.47) = 176.907, p < .0001. Figs. 4 to 6 contain the
responses used in our analysis of the robot’s abilities. These
differences in users’ perceptions are more evident in scenarios
with sensitive details compared to scenarios without.

Overall, participants perceived the robot as more socially-
aware, privacy-aware, and trustworthy, when our privacy
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Fig. 4. The figures show participants perceived robots using CONFIDANT
as more privacy-aware (right) compared to baseline robots (left). The heatmap
shows the densities of the 7-point likert responses for the 12 test set scenarios.
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Fig. 5. The figures show participants perceived robots using CONFIDANT
as more trustworthy (right) compared to baseline robots (left). The heatmap
shows the densities of the 7-point likert responses for the 12 test set scenarios.
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Fig. 6. The figures show participants perceived robots using CONFIDANT as
more socially-aware (right) compared to baseline robots (left). The heatmap
shows the densities of the 7-point likert responses for the 12 test set scenarios.

controller governed its disclosures. The controller’s presence
improved user perceptions of the robot’s social awareness by
77%, privacy awareness by 116%, and trustworthiness by 91%
over the baseline. After filtering the responses for privacy-
conscious participants, the improvement to privacy-awareness

TABLE I
EXAMPLE OF THE METADATA TUPLES EXTRACTED FROM A SUBSET OF THE SCENARIOS

Scenario Realism Sentiment Topics Location Relationships Detail # of People Control Level
Control 6 4.67 Negative Autos & Vehicles Non-Domestic Family Medium Few Moderate
Control 11 5.27 Slightly Positive  Arts & Entertainment Domestic Close Few Short Low
Scenario 2 4.75 Negative None Non-Domestic Professional Short Some High
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TABLE III
MEAN SCORES FOR EACH EVALUATED CONSTRUCT (0-6)*

Construct B C PCB PC.C NPCB NPCC
Privacy 1.70  3.66 1.48 3.76 1.97 3.54
Trust 1.51  2.87 1.26 275 1.83 3.03
Social Norms ~ 2.13  3.77 1.96 3.82 2.35 3.70

* PC: privacy-conscious; NPC: non-privacy-conscious; B: baseline; C: controller

provided by CONFIDANT grows to 154%. For non-privacy-
conscious participants, this improvement is 79% (Table III).

VI. DISCUSSION

Conversational agents that maintain the privacy of their users
can serve as more effective and trustworthy conversational
partners. Sannon et al. [72] explore how people’s privacy
perceptions of chatbots change when CPM theory guides
the chatbot’s social interactions and data-sharing practices.
However, for social robots, maintaining the privacy of users
is more complex due to the dynamic settings in which they
function, such as team interactions in the workplace [33], or
overhearing conversations between parents and children [50].
Our findings provide preliminary evidence for the effectiveness
of CONFIDANT at managing privacy in social robots. Although
our evaluations are performed with social robots, this privacy
controller design may extend to other conversational agents.
However, privacy typically comes at the expense of another
attribute in the form of a trade-off [73]. While our approach
at managing privacy does not negatively impact the perceived
social awareness and trustworthiness of the robot, it may
come at the expense of usability in certain circumstances.
The following sections detail the drawbacks of CONFIDANT.

A. Limitations

While our work shows promising results, it must be
considered alongside potential limitations. First, some sce-
narios created to train our privacy controller are subjective
(i.e., participant responses varied significantly depending on
participants). In particular, scenarios categorized as “privacy
violations for the greater good” are determined based on what is
considered morally right. While other category types centering
around rules and responsibilities can be interpreted based on
strict policies or legal boundaries, ethics are influenced by
personal philosophies and belief systems. Ethical standards
we enforce in the robot may not be universally recognized
among all individuals. Second, we excluded highly sensitive
conversations (e.g., related to abuse, substance use, or severe
medical ailments) from our dataset to minimize psychological
risk to our participants. Without these topics, we are unable
to assess privacy in such cases. Third, our 58 scenarios only
provides partial coverage of the vast space of conversation
topics and dynamics. Finally, the current design of our privacy
controller only accounts for the context available within a
conversation and does not consider additional context such as
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pre-existing relationships or users’ privacy preferences, which
may otherwise impact sensitivity determinations.

B. Future Work

The scope of this work is limited to the design and evaluation
of a generic “one size fits all” privacy controller. To address
the system design limitations discussed in the previous section,
our future work aims to implement adaptive and personalized
features such as speaker relationships and conversation location.
Additionally, we plan to explore how other factors highlighted
by prior work, including personalization, ownership of devices,
social roles, ownership of conversation content, dynamic
relationships, co-embodiment, and social context [12, 13,
74], can be integrated into CONFIDANT. We also plan to
extract more user-specific context when gathering and sharing
information [12]. Speaker relationships will be registered by
allowing each user to specify their relationships with other users
during the initial robot setup and make any necessary changes
moving forward. Conversation locations will be implemented
using Visual Place Recognition (VPR) to classify images of
rooms and identify the location where the conversation takes
place (e.g., in a home [75] or non-domestic environments such
as offices, medical facilities, and restaurants [76]). Furthermore,
incorporating the comprehension and consideration of non-
verbal cues increases the range of scenarios a social robot can
handle and prevents non-verbal data leakage [77]. Additional
use cases will also be tested to extend CONFIDANT to many
contexts such as a personal assistant robot in the workplace or
a medical robot that interacts with doctors and patients. The
robot can adaptively learn new rules specific to these use cases
by utilizing user feedback to the robot behavior (e.g., “Please
don’t share this information with anyone again”). Finally, the
issue of scaling the rule generation system can be addressed by
expanding our dataset through automated detection of sensitive
conversations in online transcripts.

VII. CONCLUSION

Successful social integration of robots into daily environ-
ments such as in homes or workplaces is important to facilitate
human-robot interactions. In these settings, social robots should
promote trust and maintain the privacy of those they interact
with. In the pursuit of designing more trustworthy robots, we
created a privacy controller under simplified assumptions and
evaluated its performance in human-robot conversations. Our
findings present preliminary evidence for the effectiveness
of the privacy controller in creating more privacy-aware,
trustworthy, and socially aware social robots.
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