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Abstract. We study the design of core-selecting payment rules for combinatorial auctions, a
challenging setting where no strategyproof rules exist. We show that the rule most commonly
used in practice, the Quadratic rule, can be improved on in terms of efficiency, incentives, and
revenue. We present a new computational search framework for finding good mechanisms,
and we apply it toward a search for good core-selecting rules. Within our framework, we use
an algorithmic Bayes–Nash equilibrium solver to evaluate 366 rules across 31 settings to iden-
tify rules that outperform theQuadratic rule.Ourmainfinding is that our best-performing rules
are large-style rules—that is, they provide bidders with large values with better incentives than
does theQuadratic rule. Finally,we identify twoparticularlywell-performing rules and suggest
that theymaybe considered for practical implementation in place of theQuadratic rule.
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1. Introduction
The design and implementation of combinatorial auc-
tions (CAs) are a true success story for market design.1

CAs have found widespread use in practice for selling
and buying resources worth billions of dollars. Note-
worthy applications include procurement auctions
(Sandholm 2013), treasury auctions (Klemperer 2010),
and spectrum auctions (Cramton 2013). The advant-
age of CAs (in contrast to running multiple single-
item auctions) is that bidders can express complex
preferences over bundles of items, which avoids the
exposure problem and can increase efficiency.

There has been a large literature on the design of
bidding languages, clearing algorithms, and activity
rules for use in CAs (Cramton et al. 2006). However,
finding optimal payment rules has remained elusive. In
this work, we study direct payment rules that apply at
the end of an auction: these take as input the bidders’

value reports and compute final payments for the
winning bidders. Thus, our analysis applies to one-
shot, sealed-bid auctions as well as iterative auctions.
The best-known real-world application of such pay-
ment rules is the combinatorial clock auction (CCA),
whose supplementary round is a sealed-bid CA (Ausu-
bel et al. 2006). The CCA has found widespread adop-
tion in practice. For example, it has been used to conduct
more than 15 spectrum auctions, generating more than
$20 billion in revenue (Ausubel and Baranov 2017), and
it has been used to auction off offshore wind rights
(Ausubel and Cramton 2011).

1.1. Problems with Using a Vickrey-Clarke-Groves
Mechanism in Combinatorial Auctions

Our goal is to identify payment rules for CAs that
work well in practice. This includes optimizing standard
mechanism design criteria such as efficiency, incentives,
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and revenue. But it also includes paying attention to
institutional details and constraints, which may require
ruling out certain undesirable outcomes. At first sight,
the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey
1961, Clarke 1971, Groves 1973) may seem like an
appealing mechanism because it satisfies efficiency, indi-
vidual rationality, no deficit, and strategyproofness.
Unfortunately, for many practical applications, VCG
exhibits multiple, severe problems, including the possi-
bility of low-revenue outcomes, incentives for collusion,
and incentives for shill bidding (Ausubel and Milgrom
2006).

The fact that VCG may produce very low (and pos-
sibly zero) revenue is particularly problematic. To
illustrate this, consider a CA with three bidders and
two items, A and B. Assume that bidder 1 has value
$10 for the bundle {A, B} but zero value for any single
item. Assume that bidder 2 has value $10 for A, value
$0 for B, and value $10 for {A, B}. Assume that bidder
3 has value $10 for B, value $0 for A, and value $10 for
{A, B}. VCG allocates A to bidder 2 and B to bidder 3,
charging both $0. Thus, even though there is high
competition for the items, the auctioneer’s revenue is
$0. This is unfair, because bidder 1 expressed his will-
ingness to pay $10 for {A, B} but won nothing.2 In a
government auction, it would be unacceptable if pub-
lic resources were sold for less money than the maxi-
mum a group of bidders were willing to offer (Day
and Milgrom 2013).

Although reserve prices could, in principle, be used
to increase revenue, they cannot avoid the possibility
of noncompetitive levels of revenue. For spectrum auc-
tions, Ausubel and Baranov (2020b) have shown that
low-revenue outcomes have occurred frequently in
the assignment stage of the 2016/2017 Federal Com-
munications Commission Incentive Auction, includ-
ing three zero-revenue outcomes. More recently,
researchers as well as practitioners working on ad
auctions have also started to address the low revenue
produced by VCG when selling complementary ad
space (Niazadeh et al. 2021). Thus, the possibility of
VCG producing very low revenue is of significant
practical concern.3

1.2. Minimum Revenue Core-Selecting
Payment Rules

At the heart of VCG’s problems is that the VCG out-
come may be outside the core. Informally, this means
that payments may be so low that a coalition of bid-
ders may be willing to pay more in total than the cur-
rent winners’ total payments. A core outcome (with
respect to reported values) ensures competitive levels
of revenue and mitigates bidders’ incentives to submit
shill bids.

Multiple researchers have proposed mechanisms
that guarantee such core outcomes, so-called core-

selecting rules (Ausubel and Milgrom 2002; Milgrom
2007; Day and Milgrom 2008, 2013). Note that these
rules only guarantee that the outcome lies in the
revealed core (i.e., with respect to reported values), and
this does not guarantee that the outcome also lies in
the true core (i.e., with respect to the true values). In
fact, Goeree and Lien (2016) have shown that, unless
the VCG outcome lies in the true core, no payment
rule can implement a (true) core outcome in equili-
brium. At first sight, this may call into question the
value of designing core-selecting rules. However, as
Day and Milgrom (2013) have argued, the auctioneer
actually wants the core property to hold at the
revealed values, such that he can guarantee that there
does not exist a group of bidders who have offered to
pay more in total than what the current winners are
paying. Therefore, it has become standard in the
research community to use the term “core-selecting”
for rules that select outcomes in the revealed core, and
we therefore also adopt this terminology in this paper.

Every core-selecting mechanism must select the
social welfare-maximizing allocation with respect to
reported values (Day and Raghavan 2007). Thus, the
quest for core-selecting mechanisms can be reduced to
the design of core-selecting payment rules. Within the
space of core-selecting payments, Day and Raghavan
(2007) proposed to only select payments from the
so-called minimum revenue core (MRC), which is the
facet of the core polytope that yields minimal total
bidder payments. Day and Milgrom (2013) have
shown that MRC-selecting payment rules are Pareto
optimal for the bidders. They have further shown that
in a Nash equilibrium, MRC-selecting payment rules
minimize incentives to misreport, in the sense that
they minimize the sum over all individual bidders’
maximum gain from deviating from truthful bidding.
As this is a desirable property, we also focus our anal-
ysis onMRC-selecting payment rules.

1.3. The Quadratic Rule
In general, the MRC contains an infinite number of
payment vectors, which leaves lots of room for pay-
ment rule design. Day and Cramton (2012) proposed
the Vickrey-nearest rule, also known as the quadratic
rule (or QUADRATIC). QUADRATIC selects the payment
vector from the MRC that minimizes the Euclidean
distance to the VCG payment vector (computed at
reported values).

QUADRATIC is the rule used most often in practice
(e.g., in the CCA). Certainly, QUADRATIC is attractive
from a practical point of view, given that it identifies a
unique point in the MRC and that this point can be
computed via fast quadratic programming techni-
ques. But theory that supports QUADRATIC based on its
ability to achieve high efficiency or good incentives is
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scarce, and we still have an incomplete understanding
of its economic properties.

Only recently has the research community started
to grapple with the properties of QUADRATIC. For the
simple local-local-global (LLG) domain, with two items
and three bidders, Goeree and Lien (2016) as well as
Ausubel and Baranov (2020a) have derived the
Bayes–Nash equilibrium of QUADRATIC. It turns out
that, even though the rule minimizes the Euclidean
distance to VCG, the equilibrium strategies are far
from truthful. Multiple researchers have proposed
alternative MRC-selecting payment rules (e.g., Erdil
and Klemperer 2010 and Ausubel and Baranov
2020a). But they have not been able to identify a rule
that dominates QUADRATIC (see Section 2).

1.4. Overview of Our Approach
In this paper, we develop a computational search
approach for finding MRC-selecting payment rules that
outperform QUADRATIC. In terms of performance objec-
tives, we follow prior work on MRC-selecting rules
(e.g., Goeree and Lien 2016 and Ausubel and Baranov
2020a) and aim for rules with good efficiency, reve-
nue, and incentives. To capture incentives, we intro-
duce a new measure and prove that it satisfies five
economically important desiderata.

The basic idea of our approach is relatively simple:
we construct a framework to parameterize the space
of MRC-selecting payment rules, and we then algo-
rithmically search a subspace and identify the best-
performing rules within this space. However, the
details are quite intricate.

First, to make the space of MRC-selecting rules
amenable to a computational search, we must choose
a well-suited design framework. To this end, we intro-
duce a parameterized payment rule we call FRACTIONAL*,
with three parameters: a reference point r, a weight w,
and an amplification a (Section 4.2). FRACTIONAL*(r,w, a)
minimizes the w-weighted Euclidean distance to the
reference point r, where the weights can be amplified
or dampened by the amplification a. We consider a
multitude of reference points, weights, and amplifica-
tions, yielding a total of 366 rules.

Although our framework is rich enough to capture
all MRC-selecting rules, we restrict our search by
requiring that all rules (1) can be computed quickly
and (2) can be applied in any CA domain. These goals
have guided our selection of reference points and
weights (Section 4.3). The outcome of our search is a
fixed rule that can be described via the three parame-
ters r, w, and a.4

The second challenge relates to comparing the 366
rules in terms of their efficiency, incentives, and reve-
nue. Because no MRC-selecting rule is strategyproof
(Goeree and Lien 2016), we cannot simply evaluate
the performance of our rules “at truth” (i.e., assuming

that all bidders bid their true values). Instead, we
must compute the equilibrium for each rule, enabling
us to predict bidder behavior and corresponding auc-
tion performance if there was a payment rule switch.
Given that many high-stakes CAs are only conducted
once, and bidders typically keep their valuations
secret, the Bayes–Nash equilibrium (BNE) is the appro-
priate solution concept. As deriving 366 BNEs by
hand (which typically involves solving a differential
equation) is impractical, we use a recently developed
computational BNE solver by Bosshard et al. (2020) (Sec-
tion 4.5). Concretely, this is an algorithm that takes as
input a payment rule and produces as output an
ε-BNE with a very small ε. Given an ε-BNE for each
rule, it is then straightforward to compute the relevant
measures (efficiency, incentives, and revenue) and
evaluate all rules according to their performance.

Our computational approach enables us to evaluate
the performance of hundreds of rules in many differ-
ent settings. For this evaluation, we use two different
domain sizes. First, we perform an extensive analysis
in the stylized but well-known LLG domain. To
enhance the robustness of our results, instead of just
studying standard LLG (with uniform distributions
and no correlation), we create 29 different variations
of the LLG domain (varying, e.g., the marginal distri-
bution as well as the correlation between bidders); we
call each such variation a setting. Thus, with 366 rules
evaluated on 29 settings, we study 10,614 rule-setting
combinations in LLG. This allows us to identify a set
of 20 very good all-rounder rules—that is, payment
rules that outperform QUADRATIC (on average) across
all 29 LLG settings in terms of efficiency, incentives,
and revenue. Seven of these rules even dominate
QUADRATIC in every dimension in every LLG setting. To
see how well rule performance generalizes to a differ-
ent domain, we then select seven of the best-
performing rules from the first step and also evaluate
them in the larger and more complex LLLLGG
domain. We find that those rules also perform well in
LLLLGG.

As a final step in our analysis, we aim to identify
patterns to answer the question, what makes a rule a
good rule? An interesting pattern we identify is that
our best-performing rules are large-style rules in that
they provide better incentives for bidders with larger
values. By contrast, Lubin and Parkes (2009) found
small-style rules performed well in the budget-
balanced combinatorial exchanges (CEs) they studied.
This suggests that the structural differences between
CEs and CAs may be important in the design of their
payment rules.

A last finding we want to emphasize is that there is
not one best reference point or one best set of weights.
Instead, our results show that the combination of the
three parameters matters. Our analysis leads to a set
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of well-performing rules, where for each rule, the
reference point, the weights, and the amplification are
perfectly tuned to complement each other. We high-
light two rules that stand out for their strong perform-
ance across all settings and their simplicity, which
makes them a good candidate for use in practice in
place of QUADRATIC.

Overall, our paper shows that computational search
can be a powerful tool for mechanism design. Further-
more, our results demonstrate that large improve-
ments over QUADRATIC are possible. We hope that
some of our best-performing rules will spur new
research and that we have also enlarged the space of
payment rules that may be considered for implemen-
tation in practice.

2. Related Work
Research on the design of mechanisms that achieve
some form of “approximate incentive compatibility”
has a long history. Parkes et al. (2001) introduced the
idea of finding prices that minimize the distance to
VCG, first for combinatorial exchanges and later for
CAs (Parkes 2002). Building on this, Day and Raghavan
(2007) proposed to first minimize the total revenue
before minimizing the distance to VCG. These papers
can be seen as precursors to the design of the QUADRATIC

rule.
Erdil and Klemperer (2010) argued that non-VCG

reference points that are independent of the bidders’
reports offer better incentives at the margin of truthful
play. However, they do not offer a concrete payment
rule, nor do they offer an argument about what hap-
pens when further deviations are necessary. Along
the same lines, Day and Cramton (2012) studied QUAD-

RATIC with a zero reference point (or ZERO for short)
instead of VCG. Using computational experiments
(simulating truthful bidding), they found that the use
of ZERO favors higher-valued bidders. However, they
did not study this rule in a Bayes–Nash equilibrium,
nor did they analyze its efficiency.

Ausubel and Baranov (2020a) provided an analytical
study of three MRC-selecting payment rules (QUADRATIC,
proxy, and nearest-bid), varying the distributional
assumptions and the degree of risk aversion. They found
that MRC-selecting payment rules perform better in
terms of efficiency and revenue when bidders’ values
are more correlated, whereas VCG performs worse.
However, they did not identify a new payment rule
with superior properties to QUADRATIC.

Marszalec (2018) compared three core-selecting
payment rules against VCG via laboratory experi-
ments. He finds relatively low efficiency under VCG,
which may be explained by attempts to collude by the
bidders. For the three core-selecting payment rules, he
found that they lead to higher efficiency than VCG,

even when the bidders do not follow the equilibrium
bidding strategies.

Parkes et al. (2001) already proposed three weighted
payment rules. In particular, they suggested using the
bidders’ VCG payoffs to influence which core point to
select. Ausubel and Baranov (2017) reported that
weighted versions of QUADRATIC have been used in
recent CCAs conducted in Australia and Canada.
However, they did not use VCG payoff but well-
chosen reserve prices to power their weighted version
of QUADRATIC. The (intuitive) reason in favor of using
reserve-price weights is that those reserve prices are
not manipulable, whereas the VCG payoff is. How-
ever, no theoretical analysis of this reserve-price-
weighted version of QUADRATIC exists.

3. Preliminaries
3.1. Formal Model
In a CA, there is a set M of m distinct, indivisible
items, and a set N of n bidders. Each bidder i has a val-
uation vi that, for every bundle of items S ⊆M, defines
bidder i’s value vi(S) ∈ R≥0 (i.e., the maximum amount
that bidder i would be willing to pay for S). To sim-
plify notation, we assume that the seller has zero
value for all items, although our setup generalizes to
sellers with values (see Day and Cramton (2012) for
specifying reserve prices).

We let p � (p1, : : : ,pn) denote the payment vector,
with pi denoting bidder i’s payment. We assume that
bidders have quasilinear utility functions of the form
ui(S,pi) � vi(S) − pi. Bidders make reports about their
values for bundles to the mechanism, denoted by
v̂i(S) ∈ R≥0, which may be nontruthful. We let v̂
denote the tuple of all bidders’ value reports. We fol-
low the majority of prior work (Goeree and Lien 2016,
Ausubel and Baranov 2020a, Bosshard et al. 2020) and
assume that bidders only bid on bundles they are
directly interested in (i.e., where removing any item
from the bundle would strictly decrease the value).5

We define an allocation X � (X1, : : : ,Xn) ⊆Mn as a
vector of bundles, with Xi ⊆M being the bundle that i
gets allocated. A mechanism’s allocation rule maps the
bidders’ reports to an allocation. We only consider
allocation rules that maximize reported social welfare,
yielding an allocation X∗ � argmaxX

∑
i∈Nv̂i(Xi) sub-

ject to X being feasible (i.e., Xi ∩ Xj � ∅∀i, j ∈N). In
addition to the allocation rule, a mechanism also
specifies a payment rule, which determines the pay-
ment vector p � (p1, : : : ,pn). Together, these define the
outcome O � 〈X∗,p〉. An outcome O is called individu-
ally rational if ∀i ∈N: ui(X∗

i ,pi) ≥ 0.

3.2. VCG Payments and VCG Payoff
Next, we define two auxiliary concepts based on the
well-known VCG mechanism (Vickrey 1961, Clarke
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1971, Groves 1973), which we later use as components
in the design of our payment rules.

Definition 1 (VCG Payments). Given an allocation X∗
and bidders’ value reports v̂, bidder i’s VCG payment
is defined as pVCG,i � ∑

j≠iv̂j(X−i) −∑
j≠iv̂j(X∗), where X−i

is the welfare-maximizing allocation when all bidders
except i are present.

Note that VCG payments can be computed even if a
different payment rule than VCG is used; in this case,
the VCG payments are the payments the bidders
would have paid if the VCG payment rule had been used
but applied to the value reports submitted under the
actual payment rule. We use those VCG payments in
the definition of several of our more sophisticated
payment rules.

Analogously, we also define a bidder’s (reported)
VCG payoff,which is the payoff the bidder would have got-
ten, given his reported value, if the VCG payment rule
had instead been used in place of the actual payment rule.
Note that the payoff may be different from the bidder’s
utility, which is always evaluated at the true values.

Definition 2 (VCG Payoff). Given allocation X∗ and
bidders’ value reports v̂, bidder i’s (reported) VCG
payoff is his reported value minus his VCG payment:
πVCG,i � v̂(X∗

i ) − pVCG,i.

3.3. Bayes–Nash Equilibrium
We assume each bidder i knows his own valuation vi
but only has distributional information about all other
bidders’ valuations. We assume that bidders’ valua-
tions are drawn from a joint distribution with proba-
bility density function (PDF) f : Rn·2m �→ R≥0, and that
this distribution is common knowledge. Thus, from
each bidder’s perspective, the auction is a game of
incomplete information which is why BNE is the
appropriate solution concept.

We let si denote bidder i’s strategy, which is a map-
ping from his true valuation vi to a possibly nontruth-
ful report v̂i. Given a valuation and a strategy from
each bidder, this determines the outcome of the auc-
tion. We let ui(s1(v1), s2(v2), : : : , sn(vn)) denote bidder
i’s utility for the outcome of the auction. We use v−i to
denote the valuations of all bidders except i, and anal-
ogously for the strategies s−i. We say that a strategy
profile s∗ is an ε-BNE if no bidder has a profitable
deviation from this strategy profile netting him more
than ε in utility.

Definition 3 (ε-Bayes–Nash Equilibrium). A strategy
profile s∗ � (s∗1, : : : , s∗n) is an ε-Bayes-Nash equilibrium
(ε-BNE) if, for all bidders i ∈N, for all valuations vi:

Ev−i[ui(s∗i(vi), s∗−i(v−i))] ≥ Ev−i[ui(v̂i, s∗−i(v−i))] − ε

for all possible reports v̂i, (1)

where the expectation is taken with respect to the dis-
tribution over the other bidders’ valuations.

In this work, we use numerical algorithms with lim-
ited precision to find an equilibrium. We therefore
adopt ε-BNEs as our solution concept, where ε is a
suitably small constant fixed a priori.

4. A Computational Search for MRC-
Selecting Payment Rules

In this section, we present our design framework as
well as our computational search approach.

4.1. MRC-Selecting Payment Rules
As discussed in Section 1.2, we follow prior work
(e.g., Day and Milgrom 2013) and aim for payments in
the revealed core, which we simply call the core going
forward.

Definition 4 ((Revealed) Core). We let v̂ denote the
value reports, X∗ denote an optimal allocation, W
denote the set of winners, C ⊆N denote a coalition of
bidders, and XC denote an optimal allocation that
would be chosen by the mechanism if only the bidders
in the coalition C were present. A payment vector p is
in the (revealed) core if, in addition to individual
rationality, the following set of core constraints hold:∑

i∈W\C
pi ≥

∑
i∈C

v̂i(XC) −∑
i∈C

v̂i(X∗) ∀C ⊆N: (2)

Enforcing payments to be in the core puts lower
bounds (i.e., constraints) on the payments of the win-
ners, where each coalition of bidders leads to one core
constraint. Intuitively, the winners’ payments must be
sufficiently large such that (at the reported values) there
exists no coalition that is willing to pay more to the
seller than the current winners’ payments.

Figure 1(a) illustrates the core in the so-called LLG
domain with two items and three bidders. In this
example, local bidder 1 bids $0.9 for item A, local bid-
der 2 bids $0.5 for item B, and the global bidder bids
$1 for the bundle {A, B}. In the figure, the x axis corre-
sponds to local bidder 1’s payment, and the y axis cor-
responds to local bidder 2’s payment. The core is the
red shaded area. The MRC is the facet of the core pol-
ytope that yields the minimal total bidder payments
(Day and Raghavan 2007). In Figure 1(a), the MRC is
indicated by the bold red diagonal line. A rule that
always selects a payment vector in the MRC is called
MRC selecting.

In Figure 1(a), we also depict several payment vec-
tors of particular importance in blue (including
pVCG—i.e., VCG payments), which we motivate and
define formally in Section 4.3. Finally, the points A–H
and Q are the payments chosen by nine different
MRC-selecting payment rules. The point Q is the pay-
ment vector chosen by QUADRATIC. For this rule, pVCG
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serves as the reference point of the payment rule, which
means that the rule selects a point in the MRC that is
defined relative to this point. Specifically, QUADRATIC

selects the point in the MRC that minimizes the Eucli-
dean distance to the reference point pVCG (Day and
Cramton 2012).

4.2. Design Framework for New MRC-Selecting
Payment Rules

We now introduce a framework that allows us to con-
cisely define all MRC-selecting payment rules we con-
sider in this paper. The framework requires three
parameters: (1) a reference point function r(·) that maps
bidders’ reports v̂ to a payment vector, (2) a weight
function w(·) that maps v̂ to a weight vector, and (3) an
amplification scalar a ∈ R≥0.

Definition 5 (Algorithmic Framework for MRC-Selecting
Payment Rules). Given a vector of reported values v̂, a
reference point function r(·), a weight function w(·), and
an amplification scalar a, the unique MRC-selecting
payment vector p∗ is chosen to be

1. within theminimal revenue core according to v̂, and
2. within this, the payment vector that minimizes the

weighted and amplified Euclidean distance to the refer-
ence point:

p∗ � arg min
p∈MRC

�������������������∑n
i� 1

|pi − ri(v̂)|2
wi(v̂)a

√
: (3)

We adopt the standard terminology and simply refer
to a reference point r and weight w, leaving the depend-
ence on the bidders’ reports implicit. We also refer to
ri as bidder i’s reference point.

Our framework generalizesQUADRATIC: it allows for any
reference point r and uses a weighted Euclidean distance,
where the weights w can be amplified by raising them to a
fixed power a.6 Given that the weights are in the denomi-
nator, the minimization in Equation (3) has the effect that
the payment of a bidder with smaller weights is closer to
his reference point. As a→∞, the effect of theweights get
amplified. For a ∈ [0, 1), theweights get dampened, com-
pletely removing the effects of the weighting for a�0.
The framework naturally encompasses QUADRATIC by
choosing pVCG as the reference point, setting the weights
to EQUAL�1, and setting the amplification to 1.

The usefulness of our framework comes from the fact
that any MRC-selecting rule can now simply be defined
via a triple (r,w, a), which allows us to search for good
rules by searching a three-dimensional parameter space.
In general, our framework is rich enough to capture any
MRC-selecting rule (by choosing suitable, but arbitrarily
complex reference points). However, we limit our search
to rules (and thus reference points and weights) that (1)
can be computed quickly and (2) can be applied in any
CA domain. With the second point we mean that the
rule is well defined for any CA instance (with any num-
ber of items or bidders) and can therefore immediately
be applied in practice.7

Our framework generalizes the FRACTIONAL rule
introduced by Parkes et al. (2001). We therefore call all
of our rules FRACTIONAL*. For example, Fractional∗
(r � pVCG,W � πVCG,A � 5) refers to the rule we
obtain from Equation (3) with reference point pVCG,
weight πVCG, and amplification of 5. Note that we use
uppercase “R,” “W,” and “A” when writing out the
full names of the rules to enhance readability.

Figure 1. (Color online) Example of the Core andMRC Payments

(a) (b)
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4.3. Instantiating Our Framework: 366 MRC-
Selecting Payment Rules

We now present the parameter sets we consider
within our FRACTIONAL* framework when searching
for new MRC-selecting rules. Recall that we use p for
payments and π for payoffs. We use the –1 superscript
to denote taking the reciprocal of the weights, which
reverses the prioritization they construct. Because we
include reference points that are strictly inside the
core, we consider mirroring all reference points that
are inside the core across the nearest MRC facet
(denoted by the “M” superscript). This ensures that
all reference points are outside and below the core,
which implies that the direction to the MRC line (and
thus the sign of the expression) is always consistent.
By BID, we refer to the bid vector of the winning bid-
ders as charged by the simple first-price payment
rule. By pShapley and πShapley, we refer to payment and
payoff vectors computed based on the well-known
Shapley value, respectively (see Online Supplement A
for formal definitions).8 The following is the list of
reference points, weights, and amplifications that we
consider in our analysis:

1. Reference points: ZERO, BID, BID
M, pVCG, pShapley, and

pMShapley
2. Weights: EQUAL, BID, BID

−1, πVCG, π−1
VCG, pVCG, p

−1
VCG,

πShapley, π−1
Shapley, pShapley, and p−1Shapley

3.Amplification: 0:5, 1, 2, 3, 5, 10
We choose these specific parameter sets such that

we cover all previously established rules (enabling for
comparisons against the literature), rules close by, and
many new rules.9 In particular, our search includes all
previously established reference points (ZERO, BID,
pVCG, and pShapley) and weights (EQUAL and πVCG). The
mirroring and inversion operations lead to two new
reference points and five new weights. Considering
Shapley-based weighting is a new idea, which we dis-
cuss further in Online Supplement A. Finally, the set
of amplification factors are chosen such that we
explore not only the effect of dampening the influence
of the weights (with A�0.5) but also, more impor-
tantly, the influence of extremizing the effect of the
weights (with A ∈ {2, 3, 5, 10}). Taking the cross-
product of these parameter sets results in 366 different
MRC-selecting rules, which stands in stark contrast to
the roughly 15 MRC-selecting rules that have been
studied in prior work.10

Even though we do not explore the infinitely large
set of all possible MRC-selecting rules, our set of rules
provides us with good coverage of the MRC. To gain
some intuition, consider Figure 1, where we see that
the payment vectors determined by the nine MRC-
selecting rules in this example already provide good
coverage of the MRC. In Online Supplement B, we
provide a detailed analysis of 10,000 random auction

instances, showing that our full set of 366 rules covers
the MRC very densely for almost all auction instances.
Given that rules only differ in which points on the
MRC they select, this shows that we consider a very
large and diverse set of rules.

4.4. Reserve Price-Weighted MRC-Selecting Rule
from the 2019 Canadian Auction

Recently, some of the auctions run in practice have
started to experiment with weighted MRC-selecting
rules. Most prominently, the Government of Canada
(2019) used a weighted MRC-selecting rule with refer-
ence point pVCG to run a spectrum auction, even
though there is no prior work studying the properties
of this rule. As weights, the rule used reserve prices,
which were set by the auctioneer. For comparison
purposes, we include such a reserve price-weighted
rule in our analysis. As in the Canadian auction, we
use per-item reserve prices as weights for the rule.
The weight used for a bidder is then the sum of the
reserve prices of the items won by this bidder. Unlike in
the Canadian auction, we do not enforce the reserve pri-
ces themselves but rather just use them to compute the
weights in the payment rules.11 We do this because none
of our other rules use reserve prices, and doing so for one
rule would distort the revenue comparison. In LLG, this
rule turns out to be equivalent to QUADRATIC because if
the local bidders win, they both win exactly one item
(and we use the same reserve price for all items). In
LLLLGG, however, bidders can win a different number
of items such that the reserve price-basedweights are dis-
tinct and have an effect. Therefore, we include this rule in
our analysis in Section 7.

4.5. Searching for Optimal Rules via a
Computational BNE Solver

Given our framework for the design of MRC-selecting
payment rules, we next consider how to search
through the space of candidate rules to find one with
high efficiency, good incentives, and high revenue in
BNE. To this end, we employ a BNE-finding algorithm
that was recently introduced by Bosshard et al. (2017,
2020). See Online Supplement C for details on the algo-
rithm. We provide the source code for our use of this
algorithm at https://github.com/marketdesignresearch/
Comp-Search-BNE.

As this BNE algorithm is a numerical algorithmwith
limited precision, it only finds ε-BNEs for some ε > 0.
For LLG, we only report rules for which we find a
0.001-BNE (where the ε of 0.001 corresponds to 0.1%
of any nontruthful bidder’s maximum value). In
LLLLGG, we only report MRC-selecting rules for
which we find a 0.01-BNE (where the ε of 0.01 corre-
sponds to 0.5% of any bidder’s maximum value). Com-
puting these high-precision ε-BNEs takes minutes to
hours in LLG and multiple days in LLLLGG. For this
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reason, LLLLGG is currently themost complex domain
we can feasibly studywith this approach.

Equipped with the BNE solver, we perform an
exhaustive search over the discretized parameter
space. We compute the ε-BNEs of every rule for every
setting we consider. To find good rules, we compare
all rules according to multiple performance measures,
which we detail in Section 5. We provide open-source
access to the code used in our experiments at github.
com/marketdesignresearch/Comp-Search-BNE.

5. Design Dimensions and
Performance Measures

In this section, we introduce formal measures for the
three goals we strive for when designing MRC-
selecting payment rules: (1) high efficiency, (2) high
revenue, and (3) good incentives.

5.1. High Efficiency
From a social planner’s perspective (e.g., a govern-
ment auctioning off spectrum), it is desirable to maxi-
mize the social welfare generated by the allocation
under a mechanism (i.e., the sum of the winners’ true
values for their allocations). The efficiency of a mecha-
nism in a given auction instance is defined as the frac-
tion of the social welfare that the mechanism achieves
in that instance relative to the maximum possible.
When measuring the performance of a mechanism for
a distribution of instances, one must generalize this
standard concept. To this end, let I denote an auction
instance, which in our analysis simply corresponds to
a valuation profile v. Recall that the instances are
drawn from a known joint probability distribution
with PDF f. Let SWOPT(I) denote the social welfare
obtained under the optimal allocation, evaluated at
truth. Let SWM(I) denote the social welfare obtained
by the mechanism M when all bidders play their BNE
strategies, evaluated at truth. We define the efficiency
of mechanismM given distribution f as

EfficiencyM,f � EI~f [SWM(I)]
EI~f [SWOPT(I)] : (4)

In other words, our measure is the expected welfare
of the mechanism divided by the expected welfare of
the optimal allocation. This is a standard definition for
efficiency used in prior work (e.g., by Goeree and Lien
(2016)).12 When computing Equation (4) in our experi-
ments, we use numerical integration (in LLG) or Monte
Carlo sampling (in LLLLGG).

5.2. High Revenue
A primary motivation for using MRC-selecting pay-
ment rules is that they achieve high enough revenue
such that no subset of bidders reported to be willing
to pay more than the current winners’ total payments.

Note that all MRC-selecting rules satisfy this. How-
ever, all else equal, many auctioneers prefer higher
over lower revenue (Ausubel and Baranov 2017).
Thus, we also include revenue in our list of desider-
ata. Let RevenueVCG(I) denote the revenue (i.e., the
sum of all winners’ payments) obtained under VCG,
evaluated at truth. Let RevenueM(I) denote the reve-
nue of mechanism M when all bidders play their BNE
strategies, evaluated at truth. To measure revenue, we
again follow Goeree and Lien (2016) and define a
measure analogous to the one for efficiency:

RevenueM,f � EI~f [RevenueM(I)]
EI~f [RevenueVCG(I)] : (5)

We use a relative measure (normalizing by the VCG
revenue) to enable comparisons across rules and set-
tings. Note that with this measure, a rule can achieve
more than 100% revenue.

5.3. Good Incentives
Finally, we seek payment rules with “good incentives.”
Even though QUADRATIC is not strategyproof, auction
designers have argued in favor of it because it “induces
truthful bidding” (Cramton 2013, p. 165) and because it
“minimizes the bidders’ ability to benefit from strategic
manipulation” (Day and Raghavan 2007). One argument
is that, if the rule is “approximately strategyproof,” then
finding a beneficial deviation from truthful bidding may
be so hard that many bidders may just report truthfully
(Day and Milgrom 2008). Of course, because there is no
strategyproof MRC-selecting payment rule, there will
always remain some strategic opportunities for the par-
ticipants; however, we would like these opportunities in
BNE to be as small as possible.

Several different measures of approximate incentive
compatibility have been considered in the literature in
different contexts (e.g., Lubin and Parkes 2012, Balcan
et al. 2019, Deng and Lahaie 2019, and Balseiro et al.
2021). However, these definitions consider unilateral
deviations from a truthful strategy profile. By con-
trast, we need to evaluate the distance to truthful
reporting in BNE, and we thus need a different meas-
ure that captures this. To this end, in Online Supple-
ment D.1, we introduce five desiderata that we argue
an economically useful incentive measure should sat-
isfy. We then construct a new incentive measure step
by step and prove that it satisfies all five desiderata
(see Proposition 1 in Online Supplement D.2). We
now present the resulting measure.

As for efficiency and revenue, we measure the
incentives of a mechanism given a distribution f of
bidders’ values. This is necessary because the manipu-
lability of a payment rule depends on a bidder’s
value. In particular, for some rules, a bidder may ben-
efit more from manipulating if he has a small value,
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whereas for other rules, a bidder may benefit more
from manipulating if he has a large value. To formu-
late our measure, consider a mechanismM and such a
distribution f; let t be the corresponding truthful strat-
egy profile, and let s∗ be the corresponding BNE strat-
egy profile. We define the incentives of the mechanism
M given f as

IncentivesM,f (t,s∗)� |‖‖ti(vi)−s∗i(vi)‖2‖ f2|1 (6)

�∑n
i�1

���������������������������������������∫
vi
fi(vi)·(‖ti(vi)−s∗i(vi)‖2)2dvi

√
:

To provide intuition for this measure, we explain the
components of Equation (6). The innermost L2 metric
captures the distance between a bidder i’s truthful bid
and the BNE bid for a specific valuation. Next, ‖ · ‖ f2 is
a standard continuous weighted L2-norm to aggregate
over all possible auction instances (i.e., valuations).
Finally, the outer L1-norm simply aggregates over all
bidders.

6. Results for LLG
In this section, we study the LLG domain and several
novel variants. We first focus on LLG for several rea-
sons: First, there are existing theoretical results for
some rules that provide a benchmark for our experi-
ments. Second, solving for the BNE gets exponentially
harder as the domain gets more complex. LLG is sim-
ple enough that we can solve for the BNE strategies
for a large number of rules with high precision. That
said, as we will show, both the design space and the
resulting BNE structure are surprisingly subtle and
intricate. Thus, it is important to understand the BNEs
of a small domain before moving to a larger one.

6.1. LLG UNIFORM

In LLG, there are two items, A and B. There are two
local bidders, each only interested in item A or B,
respectively, and one global bidder who wants both
items simultaneously. Prior work has focused on LLG
UNIFORM, where each bidder’s value is drawn inde-
pendently, with local bidders’ values drawn from
U[0, 1] and the global bidder’s value drawn from
U[0, 2].

BNEs of MRC-selecting payment rules are complex
to study analytically, and existing theoretical results
are only available for LLG. Prior work has shown that
the BNE strategies of the local bidders require an addi-
tive shading in this setting.13

Proposition 1 (Goeree and Lien 2016, Ausubel and
Baranov 2020a). In LLG UNIFORM, a Bayes–Nash equili-
brium of the QUADRATIC rule is for the global bidder to be

truthful and for the local bidders to bid: v̂ � max(0,v
−(3− 2

��
2

√ )) ≈max(0,v− 0:17).
In Table 1, we provide the corresponding results

from our computational search approach.14 Theway to
read this (and all following tables) is as follows. The
QUADRATIC results are always provided in the first row
(and here, they correspond to the BNE in Proposition
1). For QUADRATIC, we report the absolute values of the
measures from Section 5. Recall that EFFICIENCY meas-
ures the fraction of the maximum social welfare
achieved by the rule in BNE, INCENTIVES is ameasure for
how far away from truthful the BNE is, and REVENUE

measures the fraction of the VCG revenue that the rule
achieves in BNE. Thus, in all settings, VCG achieves
100% efficiency, 0 incentives, and 100% revenue. At
first sight, it may look like VCG should be preferable
over QUADRATIC. However, recall that VCG is not an
MRC-selecting rule. It suffers from the problems we
discussed in Section 1.1 (in particular, the possibility of
very low, noncompetitive levels of revenue).

The next three rows of Table 1 show the top rules
by each dimension (efficiency, incentives, and reve-
nue). The individual entries for these rules represent
the multiplicative improvement for each measure rela-
tive to QUADRATIC. In this case, Fractional∗(r �
pShapley;W � πVCG, A � 10) is best by both efficiency
and revenue, providing evidence that the Shapley
value can be useful in the design of MRC-selecting
rules. The rule is able to increase the efficiency (rela-
tive to QUADRATIC) by 0.29% and revenue by 1.43%.
In this setting, the best rule by incentives is the
Fractional∗(r � pShapley,W � πShapley,A � 5) rule, where
the reference point is also Shapley and where an
amplified version of the Shapley payoff is used for
weighting. By contrast, in terms of incentives, the
non-MRC first-price rule is worse than QUADRATIC by
−412.6% (see Online Supplement G).

6.2. LLG with Correlation
We now expand on the basic LLG structure, by intro-
ducing correlation in the bidders’ values: instead of
drawing the values independently, we now draw
their values from a joint distribution. We use copulae
to define these distributions, a method that lets us sep-
arate the specification of the marginal distributions
through which each bidder views its distribution in
isolation from the coupling, which describes the joint
structure among these marginals.

Formally, Sklar’s theorem (Sklar 1959) states that all
multivariate cumulative distribution functions (CDFs)
F(x1, : : : ,xd) � P(X1 ≤ x1, : : : ,Xd ≤ xd) can be repre-
sented as F(x1, : : : ,xd) � C(M1(x1), : : : ,Md(xd)), where
the Mi are the marginal CDFs in each of d dimensions
(e.g., Mi(x) � P(Xi ≤ x)), and C is a copula (which is a
joint CDF with uniform marginals). The theorem also
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provides that C will be unique if the Fi are continuous.
The converse of the theorem lets us create multidi-
mensional models by combining marginal distribu-
tions Mi with a copula C to create a joint distribution
C(M1(x1), : : : ,Md(xd)). First, we consider several choices
for C; in Section 6.3 we consider choices for Mi, and in
Section 6.4 we then consider the cross product of these
choices.

To model correlation, we adopt standard Gaussian
copulae, which use a multivariate normal distribution
for the coupling function. We consider two correla-
tion structures: (a) SAME, which establishes correlation
between both bidders interested in the same item (i.e.,
between a given local bidder and the global bidder),
and (b) CROSS, which establishes correlation between
the local bidders.15 In both cases, the correlation con-
stant is 0.5.

Results for SAME-side correlation are provided in
Table 2. The third row of the table illustrates that a
rule that is very good by one dimension may be worse
on others. We will seek to address this in Section 6.5
by finding good all-rounder rules. See Online Supple-
ments I and J for results on SAME-side and CROSS-side
correlation, where in both cases, we also vary the
intensity of the correlation.

6.3. LLG with BETA Marginals (Uncorrelated)
We employ a BETA distribution for our marginals, as it
approximates the shape of many familiar distributions
with just two parameters.16 We use five parameteriza-
tions of the BETA distribution for the local bidders’ val-
ues (see Figure 2 in Online Supplement F). Once one
employs a skewed distribution, the relative bidder
strength between the local and global bidders may no
longer match that of the UNIFORM case (i.e., the means

of the bidders’ value distributions will be in a differ-
ent ratio to each other). To address this, we linearly
calibrate the distributions (unless explicitly mentioned)
to ensure that the ratio of the means of the bidders’
value distributions is the same as for UNIFORM. We
also experimented with uncalibrated settings, which
we include in Online Supplements K, L, and M.

Table 3 provides results for LLG(MD�BETA(3,1/3)),
which is an example of the types of results we see in
settings with skewed marginals. We again observe
that a different rule is optimal for each dimension.
However, all three rules perform quite well in all
dimensions relative to QUADRATIC. Results for the other
distributions are provided in Online Supplement K.

6.4. Maximum Improvements Relative to QUADRATIC

Modeling the joint distribution of value among the
bidders using a copulae lets us mix and match
between various marginal distributions and types of
correlation. We have investigated the full cross prod-
uct of correlations we discussed in Section 6.2 with
the set of marginal distributions discussed in Section
6.3. The full set of results is presented in Online Sup-
plements L and M.

We now briefly point toward those rules that achieve
the largest improvement over QUADRATIC in any single set-
ting. In terms of efficiency, Fractional∗(r � Bid;W �
πShapley,A � 2:0) achieves a 3.99% improvement over
QUADRATIC in LLG(MD�BETA(3,1/3),CORR�CROSS,UNCALI-

BRATED); see Table 4. Considering the fact that many
large-scale CAs allocate resources worth billions of dol-
lars, an efficiency improvement of this magnitude is
very significant. Note that the same rule, in the same
setting, also achieves an incentive improvement of
47.20%. This demonstrates that MRC-selecting rules

Table 1. Results for LLG(MD�UNIFORM)

Result Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 98.03 0.32 91.30

Improvement over QUADRATIC (%) Avg. (%)

Best efficiency Fractional∗(R � pShapley;W � πVCG,A � 10) 0.29 2.69 1.43 1.47
Best incentives Fractional∗(R � pMShapley,W � p−1Shapley,A � 3) 0.26 5.10 1.24 2.20
Best revenue Fractional∗(R � pShapley;W � πVCG,A � 10) 0.29 2.69 1.43 1.47

Notes. The first row shows the performance of QUADRATIC. The subsequent rows show the top rules for each dimension.

Table 2. Results for LLG(MD�UNIFORM,CORR�SAME)

Result Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 98.41 0.22 95.19

Improvement over QUADRATIC (%) Avg. (%)

Best efficiency Fractional∗(R � Zero,W � πVCG,A � 2) 0.24 6.77 2.65 3.22
Best incentives Fractional∗(R � Zero,W � pShapely,A � 0:5) 0.17 8.46 2.93 3.85
Best revenue Fractional∗(R � Zero,W � π−1

Shapley,A � 1) 0.04 −0.61 4.00 1.14

Notes. The first row shows the performance of QUADRATIC. The subsequent rows show the top rules for each dimension, with the entry inducing
selection shaded in grey.
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exist for which, in some settings, their equilibrium strat-
egies are significantly closer to truthful than QUADRATIC.
This performance is even exceeded by FRACTIONAL*
(R�ZERO,W�EQUAL,A�1) in LLG(MD�UNIFORM, CORR

�CROSSLARGE), where this rule achieves an incentive
improvement of 48.25% over QUADRATIC (see Table 8 in
Online Supplement J). In terms of revenue, Fractional∗
(r � BidM,W � p−1Shapley,A � 2) achieves a 23.43% im-
provement over QUADRATIC in LLG(MD� BETA(3,1/
3),CORR�CROSS) (see Table 29 in Online Supplement
M).

6.5. Best All-Rounder Rules
In the previous section, we have evaluated our rules
one setting at a time. When auctioneers have good
information about their setting structure, this enables
the selection of very high-performing rules, even if
these rules perform poorly elsewhere in the setting
space. However, in practice, auctioneers may not
know the exact structure of the setting in which they
are operating. Accordingly, we now seek good “all-
rounder” rules that are widely applicable.

Different auctioneers might place different empha-
sis on each of our evaluation dimensions. In the
absence of such knowledge, we opt to take a simple
average over all three dimensions and then rank our
rules by this average. Table 5 shows the top 20. We
see that the best rule achieves an 8.22% average
improvement (across all three dimensions) over QUAD-

RATIC, across all 29 settings.
Seven of the top 20 rules actually beat QUADRATIC in

every dimension in every setting; those rules are high-
lighted in grey in Table 5. The other rules beat QUAD-

RATIC in almost all of the 29 settings (specifically, in 26,

27, or 28 settings). However, we do not consider it to
be an exclusion criterion if a rule loses to QUADRATIC in
a few settings. In fact, we find that QUADRATIC per-
forms very well in some domains, where it is almost
impossible to beat. It would not make sense to restrict
our search for good all-rounder rules to only those
that beat QUADRATIC everywhere.

Looking at Table 5, we observe that Shapley-based
rules are ubiquitous. Indeed, all seven rules that beat
QUADRATIC everywhere use Shapley payments as a
reference point. Bosshard and Seuken (2021b) have
recently performed a theoretical analysis of such rules.
They found that using Shapley payments as a refer-
ence point typically leads to a low local manipulability
of the rule, which may explain its good performance
(see Online Supplement A for further discussion).

Unfortunately, the Shapley value is #P-hard for
many standard games (Deng and Papadimitriou
1994), and we are not aware of polynomial-time algo-
rithms that compute exact Shapley values for our set-
ting. For LLG, this is not a problem, but in larger
domains, this computational complexity becomes pro-
hibitively expensive, and consequently, we must omit
the Shapley-based rules from our analysis in LLLLGG.
In future work, one could try adapting previously
proposed approximation algorithms for computing
the Shapley value to our framework. For example,
Agarwal et al. (2019, algorithm 2) suggest a way to
approximate Shapley values based on sampling.

7. Results for LLLLGG
In this section, we take the rules that worked well in
the LLG domain and seek to find out if they also per-
form well in the larger LLLLGG domain introduced

Table 3. Results for LLG(MD�BETA(3,1/3),CORR�CROSS,UNCALIBRATED)

Result Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 97.79 0.59 88.24

Improvement over QUADRATIC (%) Avg. (%)

Best efficiency Fractional∗(R � pVCG,W � π−1
VCG,A � 3) 1.19 21.00 14.68 12.29

Best incentives Fractional∗(R � pMShapley,W � p−1Shapley,A � 3) 1.15 25.74 12.28 13.06
Best revenue Fractional∗(R � Bid,W � pShapley,A � 2) 0.99 6.98 15.80 7.92

Notes. The first row shows the performance of QUADRATIC. The subsequent rows show the top rules for each dimension, with the entry inducing
selection shaded in grey.

Table 4. Results for LLG(MD�BETA(3,1/3),CORR�CROSS,UNCALIBRATED)

Result Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 95.00 0.59 143.59

Improvement over QUADRATIC (%) Avg. (%)

Best efficiency Fractional∗(R � Bid,W � πShapley,A � 2) 3.99 47.20 10.02 20.40
Best incentives Fractional∗(R � Bid,W � πShapley,A � 2) 3.99 47.20 10.02 20.40
Best revenue Fractional∗(R � Bid,W � πShapley,A � 2) 3.99 47.20 10.02 20.40

Notes. The first row shows the performance of QUADRATIC. The subsequent rows show the top rules for each dimension, with the entry inducing
selection shaded in grey.
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by Bosshard et al. (2017, 2020) as a generalization of
LLG. This domain is significantly more complex, but
numerical BNEs can just barely be computed for it
using a powerful compute cluster.17 Specifically, the
LLLLGG domain has eight items and six bidders,
each of whom is interested in two bundles. There are
four local bidders, each interested in two (overlap-
ping) bundles of two items. And there are two global
bidders each interested in two distinct sets of four
items. There are significant symmetries in the domain
that reduce the complexity of the strategy space. The
strategies of the local bidders can be represented as two
two-dimensional (2D) surfaces, and the strategy of the
global bidder can be represented as a pair of symmetric
2D surfaces (which unifies their computation).

In LLLLGG(MD�UNIFORM), each local bidder draws
his value for each bundle from U[0, 1], whereas the
global bidders draw their values from U[0, 2]. The
results for the QUADRATIC rule in this domain are pro-
vided in Table 6 (see Online Supplement N for further
results in LLLLGG(MD�UNIFORM)). Because QUADRATIC

already achieves an efficiency of 99.7% in this domain,
there is not much room for improvement. We there-
fore also consider versions of LLLLGG modified in
ways analogous to what we have done in LLG, which
we again refer to as settings. However, because even
LLLLGG(MD�UNIFORM) requires thousands of core-
hours to solve for one high-quality numerical BNE,
we focus on a single modified setting. Concretely, we
analyze a setting with BETA(3,1/3) marginals for the

local bidders and U[0, 2] for the global bidders (with-
out correlation). We selected this setting because it is
relatively simple and corresponds to the LLG setting
shown in Table 3, where we observe that the choice of
rule has a substantial effect.

Because computing even a single BNE in LLLLGG(MD

�BETA(3,1/3)) is extremely costly, we cannot exhaustively
test all of the rules in this setting. Instead, we select all of
the (non-Shapley-based) top 20 rules we have previously
identified in Table 5, leading to a set of seven rules to be
tested in LLLLGG(MD�BETA(3,1/3)). The results are
shown in Table 7. We see that, as in LLG, all seven rules
also have a positive average improvement over QUAD-

RATIC in this setting. Thus, the performance enhancements
we observed for these rules in LLG generalize to this
much larger and more complex setting. Furthermore,
our top all-rounder rule from Table 5, Fractional∗(r �
Zero, W � πVCG,A � 0:5), also performs extremely well
in LLLLGG(MD�BETA(3,1/3)), leading to an average
improvement over QUADRATIC of 12.9%. Only one rule,
FRACTIONAL*(R�ZERO,W�EQUAL,A�1), performs even bet-
ter, achieving an average improvement over QUADRATIC

of 14.2%.

Table 5. Results Showing the Top 20 All-Rounder Rules

No.

Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 97.71 0.35 63.72

Best 20 all-rounder rules Avg. improvement over QUADRATIC (%) Avg. (%)

1 Fractional∗(R � Zero,W � πVCG,A � 0:5) 0.92 17.17 6.57 8.22
2 Fractional∗(R � Zero,W � πShapley,A � 0:5) 0.86 17.17 5.90 7.98
3 Fractional∗(R � Zero,W � πVCG,A � 1) 0.85 16.92 5.73 7.83
4 Fractional∗(pMShapley,W � Bid−1,A � 3) 0.82 16.74 5.05 7.54
5 Fractional∗(R � pVCG,W � p−1Shapley,A � 1) 0.82 16.30 5.34 7.49
6 Fractional∗(pMShapley,W � p−1Shapley,A � 3) 0.81 16.60 5.00 7.47
7 Fractional∗(R � Zero,W � Bid,A � 0:5) 0.79 16.23 5.35 7.46
8 Fractional∗(R � pMShapley,W � π−1

Shapley,A � 3) 0.81 16.59 4.96 7.46
9 Fractional∗(R � pVCG,W � Bid−1,A � 1) 0.80 16.10 5.16 7.35
10 Fractional∗(R � pVCG,W � π−1

VCG,A � 2) 0.79 15.72 4.94 7.15
11 Fractional∗(R � Zero,W � pShapley,A � 0:5) 0.75 15.44 5.01 7.07
12 Fractional∗(R � Zero,W � Equal,A � 1) 0.87 13.42 6.82 7.04
13 Fractional∗(R � pVCG,W � π−1

Shapley,A � 1) 0.71 14.56 4.48 6.58
14 Fractional∗(R � pMShapley,W � π−1

VCG,A � 3) 0.66 13.57 3.89 6.04
15 Fractional∗(R � pShapley,W � πVCG,A � 3) 0.65 13.42 3.84 5.97
16 Fractional∗(R � pMShapley,W � Bid−1,A � 2) 0.58 12.15 3.56 5.43
17 Fractional∗(R � pMShapley,W � π−1

Shapley,A � 2) 0.57 11.96 3.49 5.34
18 Fractional∗(R � pMShapley,W � p−1Shapley,A � 2) 0.56 11.77 3.46 5.27
19 Fractional∗(R � pVCG,W � p−1Shapley,A � 0:5) 0.53 11.09 3.27 4.96
20 Fractional∗(R � pShapley,W � πShapley,A � 3) 0.55 10.87 3.05 4.82

Notes. The first row is the average performance of QUADRATIC over all 29 domains. The subsequent rows show the top rules by their average
improvement over QUADRATIC. Rules that beat QUADRATIC in every dimension in every domain are shaded in grey.

Table 6. Results for the Quadratic Rule in
LLLLGG(MD�UNIFORM)

Rule Efficiency (%) Incentives Revenue (%)

QUADRATIC 99.7 0.900 108.1
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For comparison, we also include the worst rule
from LLG that converges in every setting. This rule,
Fractional∗(r � Bid, W � pVCG,A � 5), performs poor-
ly in LLLLGG(MD�BETA(3,1/3)) as well, with an aver-
age improvement of −17.5% over QUADRATIC, again
confirming that our observations from the LLG
domain generalize well to LLLLGG. As a reference,
we also include the first-price rule, even though it is
not an MRC-selecting rule. Naturally, first-price has
bad incentives. But we observe that first-price also has
bad efficiency (similar to our worst-performing rule)
and the worst revenue. This provides good support
for using MRC-selecting rules over first-price.

Finally, we also include the reserve price-weighted
rule (see Section 4.4), motivated by the use of a similar
rule in the 2019 Canadian spectrum auction (Govern-
ment of Canada 2019).18 We observe that the rule per-
forms similarly to QUADRATIC, which can be explained by
the similarity of their BNEs. Thus, in this experiment,
modifying QUADRATIC with reserve price weights only
has a modest effect on efficiency, incentives, and reve-
nue—at least compared with our top rules.19

To obtain an intuition for how our rules operate in
LLLLGG(MD�BETA(3,1/3)), we plot the BNE strategies

in Figure 2. The BNE strategy for QUADRATIC is
shown in yellow and that of one of our top rules,
FRACTIONAL*(R�ZERO,W�EQUAL,A� 1), is shown in
green. We observe that our rule induces more truthful
bidding than QUADRATIC for both local and global bid-
ders with large values (i.e., the BNE bids are closer to
the true value). Additionally, our rule also slightly
reduces the global bidders’ incentives to overbid
when they have a small value. Figure 3 in Online Sup-
plement O shows the BNE for the worst-performing
rule. The main observation we see there is that the
worst-performing rule provides worse incentives (i.e.,
it induces more shading in the reported value) for the
global bidders when their value is large compared
with QUADRATIC.

8. Analysis and Discussion
So far, we have identified a set of rules that perform
well in LLG and have seen that their good perform-
ance generalizes well to LLLLGG. We now take a step
back to evaluate whether we can identify any pat-
terns—that is, whether we can answer the question,
what makes a rule a good rule?

Table 7. Results for LLLLGG(MD�BETA(3,1/3))

No.

Rule Efficiency (%) Incentives Revenue (%)
QUADRATIC 97.1 2.170 137.3

Improvement over QUADRATIC (%) Avg. (%)

1 Fractional∗(R � Zero,W � Equal,A � 1) 2.1 36.4 4.0 14.2
2 Fractional∗(R � Zero,W � πVCG,A � 0:5) 2.0 32.4 4.4 12.9
3 Fractional∗(R � Zero,W � πVCG,A � 1) 1.8 28.4 4.4 11.5
4 Fractional∗(R � Zero,W � Bid,A � 0:5) 1.5 25.6 4.4 10.5
5 Fractional∗(R � pVCG,W � Bid−1,A � 1) 1.1 17.5 3.3 7.3
6 Fractional∗(R � pVCG,W � Bid−1,A � 0:5) 0.5 7.6 1.7 3.3
7 Fractional∗(R � Zero,W � Bid,A � 1) 0.4 4.7 1.4 2.2
8 Reserve price-weighted 0.0 0.3 −0.1 0.1
9 Fractional∗(R � pVCG,W � Bid,A � 5) −2.8 −42.1 −7.6 −17.5
10 First-price −2.7 −78.7 −12.7 −31.4
Notes. The first row shows the performance of QUADRATIC. In the subsequent rows we show seven of our best all-rounder rules from LLG (nos.
1–7). We also include the reserve price-weighted rule (no. 8), one of the worst rules we identified in LLG (no. 9), and first-price (no. 10). The
relative improvement numbers have a standard error of less than 0.1%.

Figure 2. (Color online) BNE Strategies for QUADRATIC and FRACTIONAL*(R�ZERO,W�EQUAL,A�1) in LLLLGG(MD�BETA(3,1/3))

(a) The local bidders’ strategy for
their bid on bundle 1

(b) The local bidders’ strategy for
their bid on bundle 2

(c) The global bidders’ bid on bundle 1;
their bid on bundle 2 is symmetric
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We first take a closer look at the seven non-Shapley
rules from Table 5 that we have analyzed in both LLG
and LLLLGG. To gain some intuition for what incen-
tives these rules provide, we plot the BNE strategies
of local bidders under all seven rules (in addition to
the worst-performing rule) for LLG(MD�UNIFORM) in
Figure 3. We observe a very clear pattern: all of our
well-performing rules are large-style rules—that is,
they provide much better incentives to bidders with
large values (i.e., above 0.5) than does QUADRATIC (by
calling them “large-style rules,” we follow the termi-
nology introduced by Parkes (2001)). By contrast, our
worst-performing rule is a small-style rule. The differ-
ences in incentives also directly translate into differen-
ces in utilities.20 We have verified that this pattern
(i.e., that our best-performing rules are large-style
rules) applies in the other LLG settings as well.
Finally, in Figure 2, we have seen that for LLLLGG(MD

�BETA(3,1/3)), one of our best-performing rules,
FRACTIONAL*(R�ZERO,W�EQUAL,A� 1), also provides bet-
ter incentives to high-valued bidders than does QUADRATIC

and thus also behaves similar to a large-style rule in that
setting.

A priori, it was not clear that large-style rules would
emerge as the best-performing rules.21 While a theoreti-
cal analysis of this effect is beyond the scope of the
present paper, we can provide some intuition for why
large-style rules perform well in our analysis. To this
end, consider Fractional∗(r � pVCG,w � Bid−1,a � 5)
in LLG(MD�UNIFORM), which is denoted as rule B in
Figure 1. Under this rule, the larger a local bidder’s bid,
the closer his payment will be to his VCG payment. If a
bidder’s bid is sufficiently large compared with the
other bidder’s bid, then the bidder pays essentially his
VCG payment (see Figure 1). In that case, a bidder with
a large value has negligible incentive to be nontruthful.
While no bidder will always face VCG incentives, the
larger the bidder’s value, the more likely he is to face
(close to) VCG incentives. Thus, a large-valued bidder
then optimizes for a distribution of scenarios where he

often faces VCG incentives, such that his optimal strat-
egy is much closer to bidding truthful than for a small-
valued bidder.

In LLG(MD�UNIFORM), for a core-selecting rule to
have an effect, the local bidders must jointly outbid
the global bidder. If none of the bidders has an incen-
tive to overbid (which is the case for all rules in Figure
3), then an efficiency loss must be caused by a local
bidder shading his value (such that the two local bid-
ders do not win even though this would be the effi-
cient outcome). Holding the other bid fixed, the
smaller a bidder’s shade, the smaller the probability of
an efficiency loss occurring. Finally, conditional on win-
ning, the value distribution of each local bidder is
shifted right (compared with the ex ante uniform dis-
tribution). Therefore, the incentives of large-valued
bidders matter more for efficiency than the incentives
for small-valued bidders. This effect is also nicely
exemplified by the worst-performing rule depicted in
Figure 3, where small-valued bidders have an incen-
tive to be almost truthful, but large-valued bidders
must shade a lot.

In our framework, there are multiple ways to design a
large-style rule. One way is exemplified by the top rule
in Table 5, Fractional∗(r � Zero;w � πVCG,a � 0:5). This
is an interesting rule, as it uses a zero reference point,
which heavily tilts the payments in favor of the large
bidders (see Day and Cramton (2012)). Additionally, it
uses πVCG as weights (which tilts the payments back
toward the small bidders). Finally, it uses a small (0.5)
amplification, which deemphasizes the weights, thus
making the rule more like QUADRATIC, but not quite. Con-
sidering all parameters together, the rule is a dampened
version of QUADRATIC with a zero reference point. A rule
that is very similar is FRACTIONAL*(R�ZERO, W�BID,A�0.5)
(in row 7), except that it uses Bid as the weight instead of
πVCG. Given that πVCG � Bid− pVCG, it is intuitive that
these two rules perform similarly.

An alternative way to construct a large-style rule is
to use a reference point with a more moderate tilting

Figure 3. (Color online) BNE Strategies for VCG, QUADRATIC, Seven of Our Best-Performing Rules, and One Poorly Performing
Rule in LLG(MD�UNIFORM)
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effect, and instead create the effect via the weights. This
is exemplified by the rule Fractional∗(r � pVCG,w �
Bid−1,a � 1) in row 9 of Table 5. This rule uses the
standard pVCG reference point but combines it with
Bid−1 as weights. The inverted bid weighting has the
effect of tilting the payments in favor of the large bid-
ders compared with the unweighted QUADRATIC.22

We want to emphasize that there is no such thing as
an “optimal reference point” or an “optimal weight.” If
we consider Table 5 again, we see that among the 20
rules, 4 of our 6 reference points show up and 9 of our 11
weights show up. No clear winner emerges. In fact, our
results show that a search for an optimal reference point
or an optimal weight is misguided, because it is the com-
bination of the reference point, the weights, and the
amplification that determines whether a payment rule
performs well or not. This is well illustrated by the pair
of rules in Table 5 in rows 7 and 9. The rule in row 7,
FRACTIONAL*(R�ZERO,W�BID,A� 0.5), uses BID as weights,
whereas the rule in row 9, Fractional∗ (r � pVCG,
w � Bid−1,a � 1), uses BID

−1 as weights. Thus, whether
the BID should be inverted depends on the reference
point. In fact, if we combine the VCG payment reference
point with the noninverted BID weight, we obtain a
very badly performing rule, Fractional∗(r � pVCG,w �
Bid−1, a � 1), whose average improvement over QUAD-

RATIC is −8.88%. If we additionally add an amplification of
5, we obtain our worst-performing rule, Fractional∗
(r � pVCG,w � Bid,a � 5), whose average improve-
ment over QUADRATIC is −29.24%. This highlights the
importance of choosing the right combination of refer-
ence point, weights, and amplification.

From our results in LLG and LLLLGG, we have
identified seven very good rules (i.e., rules 1–7 in Table
7) that systemically outperform QUADRATIC. We want to
highlight two of those rules. First, Fractional∗(r �
Zero,w � πVCG,a � 0:5) stands out, as it was the top
rule according to our all-rounder analysis in Section 6
and because it also performed very well in LLLLGG(MD

�BETA(3,1/3)). Second, FRACTIONAL*(R�Zero, W�EQUAL,
A�1) stands out because it is particularly simple and was
the top rule in LLLLGG(MD�BETA(3,1/3)). Furthermore, this
rule had previously been studied by Day and Cramton
(2012), albeit only at truth and not in BNE.

When interpreting our results, it is important to note
that we have measured the performance of all rules rel-
ative to QUADRATIC. Thus, if QUADRATIC performs partic-
ularly badly in one dimension, then rules that perform
well in this dimension have an advantage. One could
also consider choosing another benchmark, which
might change our results. However, given that QUAD-

RATIC is currently the most widely used rule in practice,
we consider this the most natural benchmark.

One limitation of our approach lies in the specific
objective we have adopted in our search for the best
all-rounder rules (i.e., the average improvement of a

rule compared with QUADRATIC across all dimensions
and settings). Of course, other objectives are conceiv-
able, including (1) maximizing the minimum average
improvement across all settings, (2) maximizing the
minimum improvement across all three dimensions, or
(3) maximizing the three dimensions in lexicographic
order. One might also add new dimensions such as
fairness. Our large-style rules shift the benefit to large-
valued bidders which may be considered unfair. How-
ever, balancing between efficiency and fairness raises
challenging new questions (e.g., how to measure fair-
ness). Lubin et al. (2015) already made some progress
in this direction, but more work is still needed. Our
computational search approach is agnostic to the partic-
ular objective of the search, and we do not argue in
favor of any one objective. Instead, we have adopted
the standard dimensions that have been used in prior
work; maximizing the average improvement across
the three dimensions was the most straightforward
aggregation method. It would be interesting for future
work to explore other objectives.

9. Conclusion
We have presented a computational search approach
for finding good MRC-selecting payment rules. We
have constructed a parameterized design framework
to describe any MRC-selecting payment rule, guaran-
teeing that all rules can be applied in any CA domain.
Our results have shown that the combination of the
reference point, weights, and amplification deter-
mines the performance of a rule. Our search identified
multiple very good all-rounder rules that beat QUAD-

RATIC on each dimension (efficiency, incentives, and
revenue) in almost all settings we have studied. We
found that all of these rules are large-style rules (i.e.,
they provide particularly good incentives to bidders
with large values). We have highlighted two particu-
larly promising rules that are simple and outperform
QUADRATIC by a significant margin.

Our work illustrates that a computational search
approach can be more powerful than designing a
mechanism by hand. Designing MRC-selecting rules
lends itself to this approach, because the design space
can be nicely parameterized and then searched
through. It is an interesting topic for future work to
explore a computational search approach in other
suitable mechanism design domains. Recently, New-
man et al. (2020) used a computational search to find
optimal parameters for a descending clock auction.
Given that, under certain assumptions, the descending
clock auction is strategyproof, they assumed straight-
forward truthful bidding when simulating bidder
behavior. However, in many domains, truthful bidding
is not a plausible model of bidder behavior, and the
computational complexity of equilibrium computation
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is likely to be a bottleneck. Therefore, future work on
equilibrium computation (be it for auctions or other
mechanisms) is important to enable computational
search approaches in further domains.

It would be an interesting topic for future work to
perform a theoretical analysis of our best-performing
rules. Bosshard and Seuken (2021b) have already
made some progress regarding an analytical explana-
tion for the advantages of our Shapley-based rules,
but there are still many open questions. Given the suc-
cess of using the Shapley value for the construction of
reference points and weights, it would also be inter-
esting to explore other economically well-motivated
payoff vectors for this purpose (e.g., the nucleolus and
the Nash bargaining solution).

Going forward, we encourage other researchers to
also consider using a computational search approach
for mechanism design. Finally, we hope that some of
the best rules we have identified may spur new
research and that they may be considered for imple-
mentation in practice.
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Endnotes
1 See the comments of the committee for the 2020 Economics Nobel
Prize awarded to Milgrom and Wilson at https://www.nobelprize.
org/uploads/2020/09/advanced-economicsciencesprize2020.pdf
(accessed January 16, 2021).
2 To distinguish the auctioneer from the bidders, we use “she” or
“her” for the auctioneer and “he” or “him” for the bidders.
3 Whether this is indeed a concern depends on the auctioneer’s pref-
erences. If the auctioneer cares about good incentives and expected
revenue, then VCG may be the best choice (as our results show).
However, for applications where even the possibility of a very low-
revenue outcome is unacceptable, the auctioneer may deem VCG
unsuitable.
4 This is in contrast to automated mechanism design (Sandholm 2003),
where a mechanism is automatically created (by an algorithm) for
each specific problem instance (at “runtime,” so to say).
5 There are two notable exceptions—namely, the papers by Beck and
Ott (2013) and by Bosshard and Seuken (2021a), who both also consid-
ered bidders placing bids on items they are not interested in. In general,
our framework can straightforwardly capture this as well. In future
work, it would be interesting to extend ourwork in this direction.
6 The (weighted) Euclidean distance metric is a natural choice, as it
is affected by both the total deviation and the maximum deviation.
Furthermore, it guarantees a unique solution to the minimization
problem (Day and Cramton 2012). While we could also study other
distance metrics within our framework, this is beyond the scope of
this paper.
7 By choosing reference points and weights that are economically
meaningful for any CA instance (such as pVCG), we aim to find rules

whose performance generalizes across CA instances. Although we
cannot guarantee this a priori, our experiments show that this is
indeed the case for our best-performing rules. A by-product of
choosing economically meaningful reference points and weights is
that one can think about each rule in terms of its components and
their properties. This facilitates discussions about the rules and their
analysis (similar to QUADRATIC).
8 Because reference points and weights are functions of bidders’ value
reports, they can be manipulated. This is obvious for BID, but it is also
true when using pVCG or πVCG: bidders have control over other bid-
ders’ VCG payments, which indirectly gives them some control over
their own payment under a rule using pVCG or πVCG as reference
points or weights. This motivates the use of alternative reference
points and weights that cannot be manipulated (e.g., Zero � 0

→
).

9 In our analysis we also include a recently proposed reserve price-
weighted version of QUADRATIC (see Section 4.4).
10 The total number of rules is fewer than 6 · 11 · 6, because with
EQUAL weights, the amplification has no effect.
11 We adopt the reserve price nomenclature to match the existing
naming of such weights.
12 Other measures are also plausible. For example, Ausubel and

Baranov (2020a) measured efficiency as EI~f
SWM(I)
SWOPT(I)
[ ]

, which is simi-

lar but not identical to Equation (4).
13 Ausubel and Baranov (2020a) also provided results for two other
rules, with and without correlation.
14 Values are provided through numerical integration of the BNE
strategy over the probability distribution of the setting; because
there is no sampling, there is no standard error to report.
15 Ausubel and Baranov (2020a) considered a form of correlation
where the local bidders are either exactly the same or drawn inde-
pendently. This approach is more amenable to theoretical analysis
but is less general and less natural.
16 Ausubel and Baranov (2020a) considered a distribution similar to
BETA(α, 0), but they were limited to Pareto-like shapes.
17 For all MRC-selecting rules, we compute a 0.01-BNE in LLLLGG;
at this level, ε is smaller than 0.5% of the maximum value of any
bidder. For the first-price rule only, we obtain a 0.015-BNE. The
average runtime per rule in LLLLGG at this precision was five
days, using a cluster of Intel Xeon E5-650 v4 2.20 GHz processors
with 40 logical cores each.
18 We set a simple per-item reserve price of 0.1 for all items. The
effect of the reserve-price weighting is that the global bidders (bid-
ding on four items) are assigned twice the weight of the local bid-
ders (bidding on two items). Therefore, the absolute value of the
reserve price does not matter.
19 One caveat is that we use uniform per-item reserve prices, which
constrains the effect of the weighting. It would be interesting future
work to explore the properties of this rule with more diverse
reserve prices.
20 We have computed the utilities obtained under the different rules
for the different value quartiles. The bidders with values between
0.75 and 1 achieve 4.5% more utility under FRACTIONAL*(R�ZERO,
W�EQUAL,A� 1) than under QUADRATIC.
21 In fact, Lubin and Parkes (2009) found that small-style rules per-
formed well in a combinatorial exchange domain.
22 The fact that there are multiple ways to create large-style rules in
our framework makes clear that it does not create a basis for MRC-
selecting rules. Recall that we built our framework from a carefully
chosen set of reference points and weights such that our resulting
rules can be applied in any CA domain. If we were working with a
basis, then we would instead have a purely computational approach
without this property.
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