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Abstract

Recent advances in Fourier analysis have brought
new tools to efficiently represent and learn set func-
tions. In this paper, we bring the power of Fourier
analysis to the design of combinatorial auctions
(CAs). The key idea is to approximate bidders’
value functions using Fourier-sparse set functions,
which can be computed using a relatively small
number of queries. Since this number is still too
large for practical CAs, we propose a new hybrid
design: we first use neural networks (NNs) to learn
bidders’ values and then apply Fourier analysis to
the learned representations. On a technical level,
we formulate a Fourier transform-based winner de-
termination problem and derive its mixed integer
program formulation. Based on this, we devise an
iterative CA that asks Fourier-based queries. We
experimentally show that our hybrid ICA achieves
higher efficiency than prior auction designs, leads
to a fairer distribution of social welfare, and signif-
icantly reduces runtime. With this paper, we are the
first to leverage Fourier analysis in CA design and
lay the foundation for future work in this area. Our
code is available on GitHub: https://github.com/
marketdesignresearch/FA-based-ICAs.

1 Introduction

Combinatorial auctions (CAs) are used to allocate multiple
heterogeneous items to bidders. CAs are particularly useful
in domains where bidders’ preferences exhibit complemen-
tarities and substitutabilities as they allow bidders to submit
bids on bundles of items rather than on individual items.

Since the bundle space grows exponentially in the number
of items, it is impossible for bidders to report values for all
bundles in settings with more than a modest number of items.
Thus, parsimonious preference elicitation is key for the prac-
tical design of CAs. For general value functions, Nisan and
Segal [2006] have shown that to guarantee full efficiency, ex-
ponential communication in the number of items is needed.

*Full paper including appendix available at arXiv: https://arxiv.
org/abs/2009.10749

†These authors contributed equally to this paper.

Thus, practical CAs cannot provide efficiency guarantees in
large domains. Instead, recent proposals have focused on it-
erative combinatorial auctions (ICAs), where the auctioneer
interacts with bidders over rounds, eliciting a limited amount
of information, aiming to find a highly efficient allocation.

ICAs have found widespread application; most recently,
for the sale of licenses to build offshore wind farms [Ausubel
and Cramton, 2011]. For the sale of spectrum licenses, the
combinatorial clock auction (CCA) [Ausubel et al., 2006] has
generated more than $20 billion in total revenue [Ausubel and
Baranov, 2017]. Thus, increasing the efficiency by only 1–2%
points translates into monetary gains of millions of dollars.

1.1 Machine Learning-based Auction Design

Recently, researchers have used machine learning (ML) to
improve the performance of CAs. Early work by Blum et
al. [2004] and Lahaie and Parkes [2004] first studied the re-
lationship between learning theory and preference elicitation
in CAs. Dütting et al. [2019], Shen et al. [2019] and Rahme
et al. [2021] used neural networks (NNs) to learn whole auc-
tion mechanisms from data. Brero et al. [2019] introduced
a Bayesian ICA using probabilistic price updates to achieve
faster convergence. Shen et al. [2020] use reinforcement
learning for dynamic pricing in sponsored search auctions.
Most related to the present paper is the work by Brero et
al. [2018; 2021], who developed a value-query-based ML-
powered ICA using support vector regressions (SVRs) that
achieves even higher efficiency than the CCA. In follow-up
work, Weissteiner and Seuken [2020] extended their ICA to
NNs, further increasing the efficiency. In work subsequent to
the first version of this paper, Weissteiner et al. [2022] pro-
posed Monotone-Value Neural Networks (MVNNs), which
are particularly well suited to learning value functions in
combinatorial assignment domains. However, especially in
large domains, it remains a challenge to find the efficient al-
location while keeping the elicitation cost low. Thus, even
state-of-the-art approaches suffer from significant efficiency
losses and often result in unfair allocations, highlighting the
need for better preference elicitation algorithms.

1.2 Combining Fourier Analysis and CAs

The goal of preference elicitation in CAs is to learn bidders’
value functions using a small number of queries. Mathemat-
ically, value functions are set functions, which are in general
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exponentially large and notoriously hard to represent or learn.
To address this complexity, we leverage Fourier analysis for
set functions [Bernasconi et al., 1996; O’Donnell, 2014;
Püschel and Wendler, 2020]. In particular, we consider
Fourier-sparse approximations, which are represented by few
parameters. These parameters are the non-zero Fourier coeffi-
cients (FCs) obtained by a base change with the Fourier trans-
form (FT). We use the framework by Püschel and Wendler
[2020], which contains new FTs beyond the classical Walsh-
Hadamard transform (WHT) [Bernasconi et al., 1996], pro-
viding more flexibility. Until recently, methods for learning
Fourier-sparse set functions focused on the WHT, and they
placed assumptions on bidders’ value functions that are too
restrictive for CAs [Stobbe and Krause, 2012]. However, re-
cently, Amrollahi et al. [2019] proposed a new algorithm that
can approximate general set functions by WHT-sparse ones,
which is suitable for large CAs and we use it in this work.

1.3 Our Contribution

Our main contribution in this paper is to bring the power of
Fourier analysis to CA design (Section 3). In particular, we
formulate FT-based winner determination problems (WDPs)
and derive corresponding mixed integer programs (MIPs) for
several FTs (Section 4). Our MIPs allow for the efficient so-
lution of the FT-based WDP and provide the foundation for
using Fourier-sparse approximations in auction design.

We first experimentally show that the WHT performs best
among the FTs in terms of induced level of sparsity (Sec-
tion 5.1) and reconstruction error (Section 5.2). As an ini-
tial approach, we develop a WHT-based allocation rule (Sec-
tion 5.3). However, this requires too many queries for direct
use in CAs. To overcome this, we propose a practical hybrid
ICA based on NNs and Fourier analysis (Section 6.1). The
key idea is to compute Fourier-sparse approximations of NN-
based bidder representations, enabling us to keep the number
of queries small. The advantage of the NN-based represen-
tations is that they capture key aspects of the bidders’ value
functions and can be queried arbitrarily often (Section 6.2).

Our efficiency experiments show that our hybrid ICA
achieves higher efficiency than state-of-the-art mechanisms,
leads to a significant computational speedup, and yields fairer
allocations (Section 6.3). This shows that leveraging Fourier
analysis in CA design is a promising new research direction.

2 Preliminaries

In this section, we present our formal model and review the
MLCA mechanism, which our hybrid ICA builds upon.

2.1 Formal Model for ICAs

We consider a CA with n bidders and m indivisible items.
Let N = {1, . . . , n} and M = {1, . . . ,m} denote the set of
bidders and items, respectively. We denote with x ∈ X =
{0, 1}m a bundle of items represented as an indicator vector,
where xj = 1 iff item j ∈ M is contained in x. Bidders’ true
preferences over bundles are represented by their (private)
value functions vi : X → R+, i ∈ N , i.e., vi(x) represents
bidder i’s true value for bundle x. By a = (a1, . . . , an) ∈ Xn

we denote an allocation of bundles to bidders, where ai is

the bundle bidder i obtains. We denote the set of feasible
allocations by F =

{
a ∈ Xn :

∑
i∈N aij ≤ 1, ∀j ∈ M

}
.

The (true) social welfare of an allocation a is defined as
V (a) =

∑
i∈N vi(ai). We let a∗ ∈ argmaxa∈F V (a) be

a social-welfare maximizing, i.e., efficient, allocation. The
efficiency of any a ∈ F is measured by V (a)/V (a∗). We
assume that bidders’ have quasilinear utilities ui, i.e, for a
payments p ∈ R

n
+ it holds that ui(a, p) = vi(ai)− pi.

An ICA mechanism defines how the bidders interact with
the auctioneer and how the final allocation and payments are
determined. We denote a bidder’s (possibly untruthful) re-
ported value function by v̂i : X → R+. In this paper,
we consider ICAs that ask bidders iteratively to report their
value v̂i(x) for particular bundles x selected by the mecha-
nism (for early work on value queries see [Hudson and Sand-
holm, 2003]). A finite set of such reported bundle-value pairs
of bidder i is denoted as Ri =

{(
x(l), v̂i(x

(l))
)}

, x(l) ∈ X .
Let R = (R1, . . . , Rn) denote the tuple of reported bundle-
value pairs obtained from all bidders. We define the re-
ported social welfare of an allocation a given R as V̂ (a|R) =∑

i∈N : (ai,v̂i(ai))∈Ri
v̂i(ai), where (ai, v̂i(ai)) ∈ Ri ensures

that only values for reported bundles contribute. Finally, the
optimal allocation a∗R ∈ F given the reports R is defined as

a∗R ∈ argmax
a∈F

V̂ (a|R). (1)

The final allocation a∗R ∈ F and payments p(R) ∈ R
n
+ are

computed based on the elicited reports R only.
As the auctioneer can only ask each bidder i a limited num-

ber of queries |Ri| ≤ Qmax, the ICA needs a smart preference
elicitation algorithm, with the goal of finding a highly effi-
cient a∗R with a limited number of value queries.

2.2 A Machine Learning-powered ICA

We now review the machine learning-powered combinatorial
auction (MLCA) by Brero et al. [2021]. Interested readers are
referred to Appendix A.1, where we present MLCA in detail.

MLCA starts by asking each bidder value queries for Qinit

randomly sampled initial bundles. Next, MLCA proceeds in
rounds until a maximum number of value queries per bid-
der Qmax is reached. In each round, for each bidder i ∈ N ,
it trains an ML algorithm Ai on the bidder’s reports Ri.
Next, MLCA generates new value queries qnew = (qnew

i )ni=1
with qnew

i ∈ X \ Ri by solving a ML-based WDP qnew ∈
argmax

a∈F

∑
i∈N

Ai(ai). The idea is the following: if Ai are good

surrogate models of the bidders’ true value functions then qnew

should be a good proxy of the efficient allocation a∗ and thus
provide valuable information.

At the end of each round, MLCA receives reports Rnew

from all bidders for the newly generated qnew and updates
R. When Qmax is reached, MLCA computes an allocation
a∗R maximizing the reported social welfare (eq. (1)) and de-
termines VCG payments p(R) (see Appendix A.2).

2.3 Incentives of MLCA and Hybrid ICA

A key concern in the design of ICAs are bidders’ incentives.
However, the seminal result by Nisan and Segal [2006] dis-
cussed above implies that practical ICAs cannot simply use
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VCG to achieve strategyproofness. And in fact, no ICA de-
ployed in practice is strategyproof – including the famous
SMRA and CCA auctions used to conduct spectrum auctions.
Instead, auction designers have designed mechanisms that,
while being manipulable, have “good incentives in practice”
(see [Cramton, 2013; Milgrom, 2007]).

Naturally, the MLCA mechanism is also not strategyproof,
and Brero et al. [2021] provide a simple example of a possi-
ble manipulation. The idea behind the example is straightfor-
ward: if the ML algorithm does not learn a bidder’s prefer-
ences perfectly, a sub-optimal allocation may result. Thus, a
bidder may (in theory) benefit from misreporting their pref-
erences with the goal of “correcting” the ML algorithm, so
that, with the misreported preferences, the mechanism actu-
ally finds a preferable allocation.

However, MLCA has two features that mitigate manipula-
tions. First, MLCA explicitly queries each bidder’s marginal
economy, which implies that the marginal economy term of
the final VCG payment is practically independent of bidder
i’s bid (for experimental support see [Brero et al., 2021]).
Second, MLCA enables bidders to “push” information to the
auction which they deem useful. This mitigates certain ma-
nipulations of the main economy term in the VCG payment
rule, as it allows bidders to increase the social welfare directly
by pushing (useful) truthful information, rather than attempt-
ing to manipulate the ML algorithm. Brero et al. [2021] ar-
gued that with these two design features, MLCA exhibits very
good incentives in practice. They performed a computational
experiment, testing whether an individual bidder (equipped
with more information than he would have in a real auction)
can benefit from deviating from truthful bidding, while all
other bidders are truthful. In their experiments, they could not
identify a beneficial manipulation strategy. While this does
not rule out that some (potentially more sophisticated) bene-
ficial manipulations do exist, it provides evidence to support
the claim that MLCA has good incentives in practice.

With two additional assumptions, one also obtains a theo-
retical incentive guarantee for MLCA. Assumption 1 requires
that, if all bidders bid truthfully, then MLCA finds an efficient
allocation (we show in Appendix D.3 that in two of our do-
mains, we indeed find the efficient allocation in the majority
of cases). Assumption 2 requires that, for all bidders i, if all
other bidders report truthfully, then the social welfare of bid-
der i’s marginal economy is independent of his value reports.
If both assumptions hold, then bidding truthfully is an ex-post
Nash equilibrium in MLCA.

Our hybrid ICA (Algorithm 1 in Section 6.1) is built
upon MLCA, leaving the general framework in place, and
only changing the algorithm that generates new queries each
round. Given this design, the incentive properties of MLCA
extend to the hybrid ICA. Specifically, our hybrid ICA is also
not strategyproof, but it also has the same design features (in-
cluding push-bids) to mitigate manipulations.

In future work, it would be interesting to evaluate exper-
imentally whether the improved performance of the hybrid
ICA translates into better manipulation mitigation compared
to MLCA. However, such an analysis is beyond the scope of
the present paper, which focuses on the ML algorithm that is
integrated into the auction mechanism.

3 Fourier Analysis of Value Functions

We now show how to apply Fourier analysis to value func-
tions providing the theoretical foundation of FT-based WDPs.

Classic Fourier analysis decomposes an audio signal or im-
age into an orthogonal set of sinusoids of different frequen-
cies. Similarly, the classical Fourier analysis for set functions
(i.e., functions mapping subsets of a discrete set to a scalar)
decomposes a set function into an orthogonal set of Walsh
functions [Bernasconi et al., 1996], which are piecewise con-
stant with values 1 and −1 only. Recent work by Püschel and
Wendler [2020] extends the Fourier analysis for set functions
with several novel forms of set Fourier transforms (FTs). Im-
portantly, because bidders’ value functions are set functions,
they are amenable to this type of Fourier analysis, and it is
this connection that we will leverage in our auction design.

Sparsity. The motivation behind our approach is that we
expect bidders’ value functions to be sparse, i.e., they can
be described with much less data than is contained in the
exponentially-sized full value function. While this sparsity
may be difficult to uncover when looking at bidders’ value
reports directly, it may reveal itself in the Fourier domain
(where then most FCs are zero). As all FTs are changes of
basis, each FT provides us with a new lens on the bidder’s
value function, revealing structure and thus potentially reduc-
ing dimensionality.

Set function Fourier transform. We now provide a for-
mal description of FTs for reported value functions v̂i. To do
so, we represent v̂i as a vector (v̂i(x))x∈X . Each known FT
is a change of basis and thus can be represented by a certain
matrix F ∈ {−1, 0, 1}2m×2m with the form:

φv̂i
(y) = (F v̂i)(y) =

∑
x∈X

Fy,xv̂i(x). (2)

There is exactly one Fourier coefficient per bundle, this fol-
lows from the theory presented by Püschel and Wendler
[2020]. The corresponding inverse transform F−1 is thus:

v̂i(x) = (F−1φv̂i
)(x) =

∑
y∈X

F−1
x,yφv̂i

(y). (3)

φv̂i
is again a set function and we call φv̂i

(y) the Fourier co-
efficient at frequency y. A value function is Fourier-sparse if
| supp(φv̂i

)| = |{y : φv̂i
(y) �= 0}| � 2m. We call supp(φv̂i

)
the Fourier support of v̂i.

Classically, the WHT is used as F [Bernasconi et al., 1996;
O’Donnell, 2014], but we also consider two recently intro-
duced FTs (FT3, FT4) due to their information-theoretic in-
terpretation given in [Püschel and Wendler, 2020]:

FT3: Fy,x = (−1)|y|−|x|
Imin(x,y)=x, (4)

FT4: Fy,x = (−1)|min(x,y)|
Imax(x,y)=1m , (5)

WHT: Fy,x =
1

2m
(−1)|min(x,y)|. (6)

Here, min is the elementwise minimum (intersection of sets),
max analogously, | · | is the set size, 1m denotes the m-
dimensional vector of 1s, and the indicator function IP is
equal to 1 if the predicate P is true and 0 otherwise.
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Notions of Fourier-sparsity. In recent years, the notion
of Fourier-sparsity has gained considerable attention, leading
to highly efficient algorithms to compute FTs [Stobbe and
Krause, 2012; Amrollahi et al., 2019; Wendler et al., 2021].
Many classes of set functions are Fourier-sparse (e.g., graph
cuts, hypergraph valuations and decision trees [Abraham et
al., 2012]) and can thus be learned efficiently. The benefit
of considering multiple FTs is that they offer different, non-
equivalent notions of sparsity as illustrated by the following
example.

Example 1. Consider the set of items M = {1, 2, 3} and
the associated reported value function v̂i shown in Table 1
(where we use 001 as a shorthand notation for (0, 0, 1)),
together with the corresponding FCs φv̂i : This bidder ex-

000 100 010 001 110 101 011 111

v̂i 0 1 1 1 3 3 3 5
FT3 0 1 1 1 1 1 1 -1
FT4 5 -2 -2 -2 0 0 0 1

WHT 17/8 -7/8 -7/8 -7/8 1/8 1/8 1/8 1/8

Table 1: Example with different induced notions of sparsity of all
considered FTs.

hibits complementary effects for each bundle containing more
than one item, as can be seen, e.g., from 3 = v̂i(110) >
v̂i(100) + v̂i(010) = 2 and 5 = v̂i(111) > v̂i(100) +
v̂i(010)+v̂i(001) = 3. Observe that while this value function
is sparse in FT4, i.e., φv̂i(110) = φv̂i(101) = φv̂i(011) = 0,
it is neither sparse in FT3 nor WHT. Note that the coefficients
φv̂i

(100), φv̂i
(010), and φv̂i

(001) capture the value of single
items and thus cannot be zero.

The induced spectral energy distributions for each FT, i.e.,
for each cardinality (i.e., number of items) d from 0 to m = 3,
we compute

∑
y∈X :|y|=d φv̂i

(y)2/
∑

y∈X φv̂i
(y)2, are shown

in Table 2.

d = 0 d = 1 d = 2 d = 3

FT3 0.00 42.86 42.86 14.28
FT4 65.79 31.58 0.00 2.63

WHT 65.69 33.41 0.68 0.22

Table 2: Spectral energy in % for each cardinality (i.e., number of
items) d from 0 to m = 3 of all considered FTs.

Fourier-sparse approximations. In practice, v̂i may only
be approximately sparse. Meaning that while not being
sparse, it can be approximated well by a Fourier-sparse func-
tion ṽi. Formally, let Si = supp(φṽi

) with |Si| = k, we call

ṽi(x) =
∑
y∈Si

F−1
x,yφṽi

(y) for all x ∈ X (7)

such that ‖ṽi − v̂i‖2 is small a k-Fourier-sparse ap-
proximation of v̂i. We denote the vector of FCs by
φṽi|Si

= (φṽi
(y))y∈Si

.

4 Fourier Transform-based WDPs

To leverage Fourier analysis for CA design, we represent bid-
ders’ value functions using Fourier-sparse approximations. A

key step in most auction designs is to find the social welfare-
maximizing allocation given bidder’s reports, which is known
as the Winner Determination Problem (WDP). To apply FTs,
we need to be able to solve the WDP efficiently. Accordingly,
we next derive MIPs for each of the FTs.

For each bidder i ∈ N , let ṽi : X → R+ be a Fourier-
sparse approximation of the bidders’ reported value function
v̂i. Next, we define the Fourier transform-based WDP.
Definition 1. (FOURIER TRANSFORM-BASED WDP)

argmax
a∈F

∑
i∈N

ṽi(ai). (FT-WDP)

For x, y ∈ R
d, let x ≤ y, max(x, y) and (−1)

x be defined
component-wise, and let 〈·, ·〉 denote the Euclidean scalar
product. First, we formulate succinct representations of ṽi.

Lemma 1. For i ∈ N let Si = {y(1), . . . , y(k)} be the
support of a k-Fourier-sparse approximation ṽi and Wi ∈
{0, 1}k×m be defined as (Wi)l,j = I

y
(l)
j =1

. Then it holds that

FT3: ṽi(x) =
〈
φṽi|Si

,max (0k, 1k−Wi(1m−x))
〉

(8)

FT4: ṽi(x) =
〈
φṽi|Si

,max (0k, 1k −Wix)
〉

(9)

WHT: ṽi(x) =
〈
φṽi|Si

, (−1)Wix
〉
. (10)

See Appendix B.1 for the proof. With Lemma 1 and rewrit-
ing max(·, ·) and (−1)· as linear constraints, we next encode
(FT-WDP) as a MIP (see Appendix B.2 for the proof).
Theorem 1. (FT-BASED MIPS) Let ṽi : X → R be a k-
Fourier-sparse approximation from (8), (9), or (10). Then
there exists a C > 0 s.t. the MIP defined by the objective

argmax
a∈F ,βi∈{0,1}k

∑
i∈N

〈φṽi|Si
, αi〉, (11)

and for i ∈ N one set of transform specific constraints (12)–
(14), or (15)–(17), or (18)–(20), is equivalent to (FT-WDP).

FT3: s.t. αi ≥ 1k −Wi(1m − ai) (12)
αi ≤ 1k −Wi(1m − ai) + Cβi (13)
0k ≤ αi ≤ C(1k − βi) (14)

FT4: s.t. αi ≥ 1k −Wiai (15)
αi ≤ 1k −Wiai + Cβi (16)
0k ≤ αi ≤ C(1k − βi) (17)

WHT: s.t. αi = −2βi + 1k (18)
βi = Wiai − 2γi (19)

γi ∈ Z
k (20)

5 Analyzing the Potential of a FT-based CA

In this section, we experimentally evaluate the FTs and pro-
pose an FT-based allocation rule that motivates our practical
hybrid ICA mechanism presented later in Section 6.

For our experiments, we use the spectrum auction test suite
(SATS) [Weiss et al., 2017].1 SATS enables us to generate

1We used SATS version 0.6.4 for our experiments. The imple-
mentations of GSVM and LSVM have changed slightly in newer
SATS versions. This must be considered when comparing the per-
formance of different mechanisms in those domains.
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Figure 1: Spectral energy distribution in LSVM for all FTs. For each
cardinality (x-axis), we plot the spectral energy of all frequencies of
that cardinality normalized by the total spectral energy (y-axis).

synthetic CA instances in different domains. We have access
to each bidder’s true full value function vi and the efficient
allocation a∗. When simulating bidders, we assume truthful
bidding (i.e., v̂i = vi). We consider three domains:

The Global Synergy Value Model (GSVM) [Goeree and
Holt, 2010] has 18 items, 6 regional and 1 national bidder.

The Local Synergy Value Model (LSVM) [Scheffel et al.,
2012] consists of 18 items, 5 regional and 1 national bidder.
Complementarities arise from spatial proximity of items.

The Multi-Region Value Model (MRVM) [Weiss et al.,
2017] has 98 items and 10 bidders (categorized as local, re-
gional, or national) and models large US spectrum auctions.

5.1 Notions of Fourier Sparsity

We first experimentally show that different notions of FT lead
to different types of sparsity in LSVM (for other domains
see Appendix C.1). For this we first compute the FTs of all
bidders and then calculate their spectral energy distribution.
That is, for each cardinality d (#items) from 0 to m, we com-
pute

∑
y∈X :|y|=d φv̂i(y)

2/
∑

y∈X φv̂i(y)
2. In Figure 1 we

present the mean over 30 LSVM instances and bidder types.
Figure 1, shows that while the energy is spread among FCs

of various degrees in FT3 and FT4, in WHT the low degree
(≤ 2) FCs contain most of the energy, i.e., the WHT has much
fewer dominant FCs that accurately describe each value func-
tion. As the WHT is orthogonal, learning low degree WHT-
sparse approximations leads to low reconstruction error. Low
degree WHT-sparse approximations can be learnt efficiently
and accurately from a small number of queries using com-
pressive sensing [Stobbe and Krause, 2012].

Note that the FT3 is identical to the classical polynomial
value function representation [Lahaie, 2010] defined as

v̂poly
i (x) =

m∑
l=1

∑
j={j1,...,jl}⊆M

xj1 · ... · xjl · c(i)j . (21)

where the coefficient c(i)j is equal to the FT3 FC at frequency
y with yi = 1 for i ∈ {j1, . . . , jl} and yi = 0 else.2 E.g.
for M = {1, 2}, v̂poly

i (x) = x1c
(i)
{1} + x2c

(i)
{2} + x1x2c

(i)
{1,2}.

Thus, converting v̂poly
i into another FT basis (here WHT) can

indeed be very helpful for the design of ML-based CAs.

2This can be seen by calculating the inverse in (4), i.e., F−1
y,x =

Imin(x,y)=x, and plugin F−1
y,x into (3).

DOMAIN K BIDDER FT3 FT4 WHT NN

GSVM
100 NAT. 11.3± 0.7 14.2± 0.8 1.8± 0.1 9.0± 1.8

REG. 0.0 1.4± 0.2 0.4± 0.1 7.2± 0.9

200 NAT. 0.0 0.0 0.0 5.7± 0.4
REG. 0.0 0.0 0.0 5.2± 0.8

LSVM
100 NAT. 78.4± 1.0 580.2± 7.9 31.2± 0.4 48.7± 1.2

REG. 28.2± 2.3 48.5± 2.7 6.8± 0.3 17.8± 0.7

200 NAT. 95.8± 1.2 639.0± 10.0 26.2± 0.3 40.6± 0.7
REG. 25.8± 2.0 43.1± 2.4 5.3± 0.3 15.3± 0.9

Table 3: Reconstruction error with a 95%-CI of k-Fourier-sparse
approximations ṽi and NNs trained on k randomly selected bundles.
Winners are marked in grey.

5.2 Reconstruction Error of Fourier Transforms

Next we validate the FT approach by comparing the recon-
struction error of the FTs in the medium-sized GSVM and
LSVM, where we can still compute the full FT (in contrast
to MRVM). For now, we assume that we have access to bid-
ders’ full v̂i. In Procedure 1, we determine the best k-Fourier-
sparse approximation ṽi (see Appendix C.2 for details).

Procedure 1. (BEST FCS GIVEN FULL ACCESS TO v̂i)
Compute ṽi using the k absolutely largest FCs φv̂i|Si

from the
full FT for each bidders’ reported value function φv̂i = F v̂i.

Remark 1. Since the WHT is orthogonal and the simulated
auction data is noise-free, its approximation error is exactly
equal to the residual of the FCs. Thus, Procedure 1 is optimal
for the WHT. This is not the case for FT3 and FT4 because
they are not orthogonal.

We then calculate the RMSE ( 1
2m

∑
x∈X (v̂i(x)− ṽi(x))

2)1/2

averaged over 100 instances and bidder types. In Table 3, we
present the RMSEs for the three FTs and for NNs, where we
used the architectures from Weissteiner and Seuken [2020].

For GSVM, we observe that we can perfectly reconstruct
v̂i with the 200 best FCs, which shows that GSVM is 200-
sparse. In contrast, LSVM is non-sparse, and we do not
achieve perfect reconstruction with 200 FCs. Overall, we ob-
serve that the WHT outperforms FT3 and FT4. Moreover, we
see that, if we could compute the k best FCs of the WHT from
k training points, the WHT would outperform the NNs.

However, in practice, we do not have access to full value
functions. Instead, we must use an algorithm that computes
the best FCs using a reasonable number of value queries.

Remark 2. Thanks to its orthogonality the WHT has strong
theoretical guarantees for sparse recovery from few samples
using compressive sensing (see [Stobbe and Krause, 2012]).
Thus, we focus on the WHT in the remainder of this paper.

5.3 A Fourier Transform-based Allocation Rule

We now present an FT-based allocation rule using the robust
sparse WHT algorithm (RWHT) by Amrollahi et al. [2019].
RWHT learns a Fourier-sparse approximation ṽi of v̂i from
value queries. Procedure 2 finds the allocation ã.

Procedure 2. (WHT-BASED ALLOCATION RULE)
i. Use RWHT to compute k-sparse approximations ṽi , i ∈ N .
ii. Solve ã∈ argmax

a∈F

∑

i∈N
ṽi(ai) using Theorem 1.
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Figure 2: Efficiency of Procedure 2 in GSVM.

In Figure 2, we present the efficiency of ã on 50 GSVM in-
stances for various values of k. We see that RWHT achieves a
median efficiency of 100% for 90 or more FCs. Nevertheless,
the main practical issue with this approach is the number of
value queries required. As we can see, RWHT needs 102, 000
value queries (39% of all bundles) to find the 90 best FCs. For
a practical ICA mechanism this is far too many.

6 A Practical Hybrid ICA Mechanism

In this section, we introduce and experimentally evaluate a
practical hybrid ICA mechanism, based on FTs and NNs.

6.1 The Hybrid ICA Mechanism

The main issue of the FT-based allocation rule in Section 5.3
is the large number of queries, which we now address. The
idea is the following: instead of directly applying a sparse FT
algorithm (like RWHT) to bidders, we apply it to a NN-based
representation. In this way, we query NNs instead of bidders.
Based on the FCs of the NNs, we determine a Fourier-sparse
approximation ṽi with only few value queries, where the idea
is that the FCs of each NN concentrate on the most dominant
FCs of its respective value function. Indeed, recent evidence
suggests that a NN trained by SGD can learn the Fourier-
support [Rahaman et al., 2019]. We analyze our NN support
discovery rule in Section 6.2. We now present HYBRID ICA,
leaving details of the sub-procedures to Appendix D.1.

HYBRID ICA (Algorithm 1) consists of 3 phases: the
MLCA, the Fourier reconstruction, and the Fourier alloca-
tion phase. It is parameterized by an FT F and the numbers
�1, �2, �3, �4 of different query types. In total, it asks each bid-
der

∑4
i=1 �i queries: �1 random initial, �2 MLCA, �3 Fourier

reconstruction, and �4 Fourier allocation queries.
1. MLCA Phase. We first run MLCA such that the NNs

can then be trained on “meaningfully” elicited reports. In
MLCA, we request reports for �1 random initial bundles and
for �2 MLCA queries (Lines 1-2).

2. Fourier Reconstruction Phase. Next, we compute a
Fourier-sparse approximation ṽi. For this, we first fit a NN
Ni on the reports Ri (Line 4). Then we compute the best FCs
of the fitted NNs (Line 5, Procedure 3) in order to discover
which FCs are important to represent the bidders. Based on
these FCs, we determine �3 Fourier reconstruction queries S̃i

(Line 6, Procedure 4), send them to the bidders and fit ṽi to
the reports Ri received so far (Line 7, Procedure 5).

Algorithm 1: HYBRID ICA

Params: F Fourier transform; �1, �2, �3, �4 query split
1 Set Qinit = �1 and Qmax = �1 + �2 � MLCA phase

2 Run MLCA(Qinit, Qmax); get �1 + �2 reports R
3 foreach bidder i ∈ N do � Fourier reconstr. phase

4 Fit NN Ni to Ri

5 Determine the best FCs of Ni � Proc. 3

6 Compute �3 reconstruction queries S̃i ⊆ X � Proc. 4

7 Ask S̃i, add reports to Ri, and fit ṽi to Ri � Proc. 5

8 for l = 1, . . . , �4 do � Fourier alloc. phase

9 Solve q ∈ argmaxa∈F
∑

i∈N ṽi(ai) (FT-WDP)
10 foreach bidder i ∈ N do
11 if qi ∈ Ri then � Bundle already queried

12 Define F ′ = {a ∈ F : ai �= x, ∀x ∈ Ri}
13 Resolve q′ ∈ argmaxa∈F′

∑
i∈N ṽi(ai)

14 Update qi = q′i
15 Query bidder i’s value for qi and add report to Ri

16 Fit ṽi to Ri � Proc. 5

17 From R compute: a∗R as in eq. (1), VCG payments p(R)
18 return Final allocation a∗R and VCG payments p(R)

3. Fourier Allocation Phase. We use the fitted ṽi to gen-
erate �4 Fourier allocation queries. Here, we solve the FT-
based WDP (Line 9) to get candidate queries q, ensure that all
queries are new (Lines 11–14), add the received reports to Ri

(Line 15) and refit ṽi (Line 16). Finally in Line 17, HYBRID
ICA computes based on all reports R a welfare-maximizing
allocation a∗R and VCG payments p(R) (see Appendix A.2).

Experiment Setup. For HYBRID ICA and MLCA, we use
the NN architectures from Weissteiner and Seuken [2020]
and set a total query budget of 100 (GSVM, LSVM) and 500
(MRVM). For HYBRID ICA, we optimized the FTs and query
parameters �i on a training set of CA instances. Table 4 shows
the best configurations.

NN ARCHITECTURES FT �1 �2 �3 �4

GSVM R:[32, 32] | N:[10, 10] WHT 30 21 20 29
LSVM R:[32, 32] | N:[10, 10, 10] WHT 30 30 10 30
MRVM L,R,N:[16, 16] WHT 30 220 0 250

Table 4: Best configuration of HYBRID ICA. R:[d1, d2] denotes a
3-hidden-layer NN for the regional bidder with d1, and d2 nodes.

6.2 NNs Support Discovery Experiments

In HYBRID ICA we use the NNs for support discovery where
it is key that the FCs of these NNs concentrate on the domi-
nant FCs of its value function, i.e. supp(φNi

) ≈ supp(φv̂i
).

To evaluate the NN-based support discovery (Line 5),
we consider the spectral energy ratio obtained by dividing
the spectral energies of the k frequencies selected from the
NN and the k best frequencies (for the WHT the best FCs
are the ones with the largest absolute value). Formally,
for each bidder i, let the k frequencies selected from the
NN be S̃i = {ỹ(1), . . . , ỹ(k)} and the best ones be S∗

i =

{∗y(1), . . . , ∗y(k)}. Then, bidder i’s energy ratio is given by∑
ỹ∈S̃i

φv̂i
(ỹ)2/

∑
∗
y∈S∗

i

φv̂i
(
∗
y)2 ∈ [0, 1] (see Appendix D.2

for details). This ratio is equal to one if S̃i = S∗
i . Figure 3
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GSVM LSVM MRVM

EFFICIENCY REGIONAL NATIONAL REV HRS/ EFFICIENCY REGIONAL NATIONAL REV HRS/ EFFICIENCY LOCAL REGIONAL NATIONAL REV HRS/

MECHANISM IN % IN % IN % IN % INST. IN % IN % IN % IN % INST. IN % IN % IN % IN % IN % INST.

HYBRID ICA 99.97± 0.03 94.72 5.25 81 0.81 98.74± 0.43 89.09 9.65 78 1.95 96.63± 0.31 0.00 1.19 95.44 36 23.88

MLCA 99.17± 0.37 98.11 1.06 79 4.65 99.14± 0.42 93.40 5.75 77 6.09 95.32± 0.32 0.00 0.53 94.79 41 43.26

HYBRID ICA (NO FR) 98.30± 0.49 97.94 0.36 75 0.93 98.16± 0.60 93.83 4.33 72 2.03 96.63± 0.31 0.00 1.19 95.44 36 23.88

HYBRID ICA (NO FR/FA) 98.16± 0.50 97.47 0.69 75 0.71 97.75± 0.63 92.78 5.27 72 1.86 93.91± 0.36 0.01 0.42 93.48 42 14.68

Efficient Allocation 94.75 5.25 84.03 15.97 0.00 2.11 97.89

Table 5: HYBRID ICA vs. MLCA, HYBRID ICA (NO FR), and HYBRID ICA (NO FR/FA). All results are averages over a test set of 100
(GSVM and LSVM) and 30 (MRVM) CA instances. For efficiency we give a 95% confidence interval and mark the best mechanisms in grey.
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Figure 3: Average energy ratio (y-axis) with 97.5% and 2.5% em-
pirical quantiles for a number of selected frequencies k (x-axis) over
30 instances in GSVM and LSVM and over 5 instances in MRVM.

shows that the NN-based supports are almost on par with the
best supports given a fixed budget of k frequencies.

6.3 Efficiency Experiments

We now evaluate the efficiency of HYBRID ICA vs MLCA.
Results. Table 5 contains our main results in all do-

mains.3 We show efficiency, distribution of efficiency to bid-
der types, revenue (

∑
i∈N p(R)i)/V (a∗), and runtime. First,

we see that HYBRID ICA statistically significantly outper-
forms MLCA w.r.t. efficiency in GSVM and MRVM and per-
forms on par in LSVM. Second, it also leads to a compu-
tational speedup (×6 GSVM, ×3 LSVM, ×2 MRVM). The
reason for this computational speedup is that the generation
of the �3 + �4 Fourier queries (estimating the superset of the
support using RWHT on the NNs, fitting the FT models us-
ing compressive sensing and solving our new FT-based MIPs)
is faster than the generation of the NN-based MLCA alloca-
tion queries (training NNs and solving the NN-based MIP).
Third, it distributes the welfare more evenly (= fairer) to bid-
der types.4 This also leads to a distribution that more closely
resembles that of the efficient allocation (see Efficient Allo-
cation). We present full efficiency path plots for the different
phases of HYBRID ICA in Appendix D.3.

Fourier queries. To verify the importance of the �3
Fourier reconstruction and �4 Fourier allocation queries, we
also present HYBRID ICA (NO FR) and HYBRID ICA (NO
FR/FA), which use random queries in place of the �3 Fourier
reconstruction and the �3 + �4 Fourier-based queries. As we
see in Table 5, using the Fourier queries leads to significantly
better efficiency and HYBRID ICA (NO FR/FA) does not
achieve a fairer efficiency distribution. A comparison of HY-
BRID ICA to HYBRID ICA (NO FR) reveals that, in GSVM
and LSVM, the Fourier reconstruction queries cause the fairer
distribution. We empirically verified that these queries are

3All experiments were conducted on machines with Intel Xeon
E5 v4 2.20GHz processors with 24 cores and 128GB RAM or with
Intel E5 v2 2.80GHz processors with 20 cores and 128GB RAM.

4We consider an allocation to be “fairer” if its social welfare is
more evenly distributed among bidder types. This is similar (but not
identical) to the standard notion of egalitarian social welfare.

composed of larger bundles (i.e, 17 items c.p. to 4 in MLCA
queries) and thus allocate large bundles to bidders that would
have been overlooked. In MRVM, the optimal query split for
HYBRID ICA uses �3 = 0 Fourier reconstruction queries such
that HYBRID ICA is equal to HYBRID ICA (NO FR). Thus, in
MRVM, HYBRID ICA’s increased efficiency and fairer distri-
bution results from the Fourier allocation queries.

Overall, we see that our Fourier-based auction is especially
powerful in sparse domains. In practice, bidders are often
limited by their cognitive abilities [Scheffel et al., 2012] or
use a low-dimensional computational model to represent their
value function. Thus, their reported preferences typically ex-
hibit only a limited degree of substitutability and complemen-
tarity, which is captured well by Fourier-sparsity.

7 Conclusion

We have introduced Fourier analysis for the design of CAs.
The main idea was to represent value functions using Fourier-
sparse approximations, providing us with a new lens on bid-
der’s values in the Fourier domain.

On a technical level, we have derived succinct MIPs for
the Fourier transform-based WDPs, which makes computing
Fourier-based allocation queries practically feasible. We have
leveraged this to design a new hybrid ICA that uses NN and
Fourier-queries. Our experiments have shown that our ap-
proach leads to higher efficiency, a computational speedup
and a fairer distribution of social welfare than state-of-the-art.

With this paper, we have laid the foundations for future
work leveraging Fourier analysis for representing and elicit-
ing preferences in combinatorial settings.
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