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A compressed data approach for image-domain least-squares migration
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ABSTRACT

We consider the problem of image-domain least-squares
migration (LSM) based on efficiently constructing the Hes-
sian matrix with sparse beam data. Specifically, we use the
ultra-wide-band phase space beam summation method, in
which beams are used as local basis functions to represent
scattered data collected at the surface. The beam domain data
are sparse. One can identify seismic events with significant
contributions so that only beams with nonnegligible ampli-
tudes need to be used to image the subsurface. In addition,
due to the beams’ spectral localization, only beams that pass
near an imaging point need to be taken into account. These
two properties reduce the computational complexity of com-
puting the Hessian matrix — an essential ingredient for
LSM. As a result, we can efficiently construct the Hessian
matrix based on analyzing the sparse beam domain data.

INTRODUCTION

Seismic migration methods are able to obtain subsurface images
from surface data (Claerbout, 1976). Because migration is an ad-
joint operator, obtained images contain errors due to the limited
data, background model, and noise. Tarantola (1984) and Schuster
(1993) suggest formulating the migration problem as a least-squares
inversion method by minimizing the difference between observed
and predicted data. These formulations are known as least-squares
migration (LSM). Compared to a migrated image, LSM improves
the image resolution, reduces migration noise, and balances the am-
plitude for poorly and well-illuminated regions.

LSM formulations are implemented in either the data domain
(Schuster, 1993; Nemeth et al., 1999; Dai et al., 2012) or the im-
age domain (Plessix, 2006; Yu et al., 2006; Aoki and Schuster,
2009). The former uses iterative schemes to minimize the misfit

between the predicted and observed data. In general, data-domain
formulations require solving the wave equation at each iteration,
which hampers computational efficiency. Image-domain formula-
tions are based on constructing and inverting a Hessian matrix.
However, constructing and inverting the Hessian matrix can be com-
putationally expensive for large physical models. Different approx-
imations to the Hessian matrix have been studied by Plessix (2006),
Valenciano et al. (2006), Yu et al. (2006), Tang (2009), and Aoki and
Schuster (2009). These approaches show a great reduction in com-
putational complexity without significantly impairing image quality.

Beam summation methods provide an accurate and efficient tool
in seismic wave propagation (Cerveny, 1982). The main advantage
of these formulations comes from the spectral locality of the beams.
When propagating the field, only beams passing near an imaging
point should be considered. Hill (2001) suggests a migration
approach based on expanding the source and receiver Green’s
functions (GFs) as a sum of beams resulting in an efficient tool
to obtain a high-resolution image. Based on these advantages,
several beam-based LSM approaches have been proposed, with
efficient Hessian approximations (Hu et al., 2016; Yuan et al.,
2017; Yue et al., 2021).

In this work, we adopt the migration formulations of Tuvi et al.
(2020a, 2020b) to efficiently construct the full Hessian matrix.
These approaches are based on the ultra-wide-band phase space
beam summation (UWB-PS-BS) method (Shlivinski et al., 2004),
which uses windowed Fourier transform (WFT) frame decomposi-
tion of surface fields. The WFT migration approach is different
from traditional Gaussian beam (GB) migration methods based
on localized source expansions. With WFT, the original shot gathers
are transformed into the beam domain rather than the shot-receiver
gathers used in traditional GB methods. Then, the migration is per-
formed by constructing the beam propagators and imaging the cor-
responding beam data, which represent the beam to beam scattering
amplitudes. Thus, the imaging task is completely formulated in the
beam domain. Detailed comparisons between the traditional GB
and WFT methods can be found in Tuvi et al. (2020b). Under
the Born approximation, the beam data are directly related to spe-
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cific scatterers over the subsurface. When implementing LSM, only
beams with significant amplitude need to be used to construct
the propagation operator, the migrated image, and the Hessian
matrix. Because the data transformation is performed before migra-
tion, one can filter out less relevant data for imaging. This thresh-
olding operation adds an a priori degree of localization to the LSM
problem. Compared with traditional GB methods, the new formu-
lation makes it easier to analyze the data prior to migration and the
imaging process is much more flexible. Combining this unique
property with the beams’ spectral locality significantly reduces
the computational complexity of the image-domain LSM problem.

BEAM-BASED MIGRATION

The proposed LSM method is based on the migration algorithm
of Tuvi et al. (2020b). One uses WFT frames with GBs to expand
the data and backpropagate the fields. This theory is based on the
UWB-PS-BS method presented by Shlivinski et al. (2004). The
frame elements are

~

Wy =P (X—Xp)e P Xn) -y — (m,n) = ((m;.my), (ny,ny)).

M

with v being a window function. Henceforth, the over-caret denotes
the frequency-dependent quantities. The index g that tags the frame
elements defines a spatial (x)-spectral (p) phase-space lattice via
Xp = mX, p, = np, with X and p being the unit cell dimensions,
at each direction over this lattice. Each element is localized around
points X, and p, over the x and p directions, respectively (Tuvi
et al., 2020b, Figure 1).

The frame should be overcomplete; i.e., the unit cell area should
satisfy X p < 27y, with v < 1 being the overcompleteness param-
eter. We also define a dual frame set {¢,(x)} used to expand the
data. In general, @ should be calculated numerically. However, if the
frame is highly overcomplete (v < 0.3), it can be approximated
analytically via @ = (v/|[i(x)||)*¥(x) (Shlivinski et al., 2004).
Typically,  is chosen to be a Gaussian window. This choice leads
to a snug frame for all frequencies in the band, leading to localized
and stable dual frame functions and expansion coefficients. Hill
(2001) obtains similar overcompleteness criteria via the oversam-
pling theorem.

‘We denote by &(Xs, X, ) the data collected at the receiver located at
X = X, due to a point source located at x = x,. The beam represen-
tation of the data AN/ is given by Tuvi et al. (2020b) as

Ay,ﬂ’ :/dzxséby(xs)/dzxréb;/(xr)a(xrvxs)’ 2)

with g and p’ being the source and receiver beams, respectively,
whereas the asterisk denotes the complex conjugate. The corre-
sponding migrated image is given by

0

m,,;,(r) = Re/oo d(umﬁ"‘Z/A\”#/(r)Aﬂ. . (3)
pa'

with f” being the frequency spectrum of the source. The functions
Ay (r) = ‘I‘;(r)‘Pfj/(r) are the imaging kernels, which can be ob-
tained by multiplying a pair of source and receiver (backpropa-

gated) beams, respectively.

APPLICATION FOR IMAGE-DOMAIN LSM

Under the Born approximation, the shot gathers are related to the
reflectivity of the model m, via the propagation operator L:

d(x,,x,) ~ Lm,, L = 0?fGg(r,x,)Gp(r, x.), (4)
with GB being the background GF. Introduction of equation 2 into
equation 4, and using the frame relation above, the Born approxi-
mation of the scattered beam data is given by

A~ y4 A
Ay =iz Lm,, ©)
A 769 A

with I:ﬂ_”r =f ((u)wz[\;.ﬂ/ being the beam propagation operator.
The estimated reflectivity can be written as

~ A R A ' li/ X 4

m, = (L},L,,) "L, M , (6)
with § being the adjoint operator. Equation 5 represents the beam
data as the interaction between the imaging kernels and the medium
reflectivity, whereas the operation in equation 6 expresses the esti-
mated reflectivity as the inverse Hessian matrix (I:; #,I:M/)" ap-
plied on the migrated image of equation 3. Constructing the full
Hessian matrix is computationally expensive due to the model size.
In addition, a large number of crosscorrelation operations between
the sources and receivers are needed to obtain the Hessian matrix
elements. Here, we use a compressed data set to efficiently construct
the Hessian matrix.

Under the Born approximation, the beam domain data can be in-
terpreted as applying the propagation operator I:,,,,u on the medium
reflectivity m,. As noted by Tuvi et al. (2020b), the corresponding
data are governed by the subsurface reflection obtained from local-
ized areas and in specific directions (local Snell’s law reflection).
The migrated image of equation 3 is obtained by applying the
propagation operator on the beam domain data. Using the local
Snell’s law interpretation of the data, we can filter out low-ampli-
tude data. Thus, we can compress the data size needed for imaging
and threshold the corresponding imaging kernels in the propagation
operator. The imaging kernels are obtained by multiplying two
beam propagators. Each beam propagates along its axis and decays
from it. Given an imaging point, only pairs of beams that overlap
there will contribute to the image. As a result, the beam propagation
operator can be represented using only a subset of imaging kernels.
This compressed representation is based on physical properties of
the subsurface. Because the data transformation is calculated over
the surface before constructing the image, the proposed formulation
can a priori reduce the number of calculations needed to construct
the Hessian matrix.

NUMERICAL EXAMPLE

We demonstrate our LSM algorithm via the Marmousi model.
The model comprises 460 and 150 points in the distance and depth
directions, respectively, with a 0.02 km grid spacing in both direc-
tions. To reduce memory costs, we use 0.04 km grid for imaging.
The reflectivity model is shown in Figure 1a. We use the frequency
range f = [5,25] Hz for imaging, with the frequency interval of
Af = 0.25 Hz. We set the beam parameter b = 20, and we obtain
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16 beam initiation points, with the 43 initial propagation directions
with a spectral range p, = [-0.42,0.42] s/km and unit cell dimen-
sions X ~ 0.6 km, p = 0.03 s/km (Tuvi et al., 2020b, equation 13).
This choice of b leads to collimated beams for all of the propagation
domain, whereas the beams’ width is defined as described in Hill
(2001). The beam propagators are calculated via numerical integra-
tion with background GFs (Tuvi et al., 2020b, equation 9). These
GFs are uniformly distributed over the surface with Ax = 0.02 km
spacing and calculated by solving the frequency-domain acoustic
wave equation. Using these beam propagators, we calculate Born
modeling data corresponding to equation 5.

In Figure 1b, we plot the full data set of equation 5, at the
frequency f = 10 Hz normalized to their maximal value at this
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Figure 1. The reflectivity model and the beam representation of the shot gathers.
(a) Reflectivity and (b-d) beam data of equation 5 for frequency f = 10 Hz, normal-
ized to their maximal value at this frequency, obtained by the full, 10%, and 5% of the
highest amplitudes, respectively. The size of the axes is the number of source and
receiver beams. The full data are sparse. Thus, we may use only the sparse data

set as (c and d).
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frequency. The axes are in the size of source and receiver beams,
where we arrange them as concatenated vectors with each beam
initiation point and all propagation directions. Each point over
this grid represents an imaging kernel amplitude (beam-to-beam
scattering amplitude). The data are sparse. Following the preceding
discussion, the amplitudes correspond to scattering events over the
subsurface. In Figure 1c and 1d, we plot the data at the same fre-
quency for the top 10% and 5%, respectively, of the highest ampli-
tudes. Major subsurface scattering energy is still kept in the
thresholded sparse sets. One may use only high-amplitude imaging
kernels for imaging. Only these imaging kernels contain significant
energy needed to construct the image.

To explore the sparse Hessian matrix structure, we plot in
Figure 2a—2c a row of the Hessian matrices calcu-
lated using the full data set, 10%, and 5% of
the full data set at the point r = (2.6, 1.52) km,
highlighted by the red dot in Figure la. To
obtain the sparse Hessian, we threshold the data
with the top highest amplitudes at each frequency.
Only the corresponding imaging kernels are used
to construct the Hessian. The beam data near this
area correspond to the angle between the incident
and backpropagated beams. The data also corre-
spond to the reflector angle near this point. The
full data set Hessian in Figure 2a is localized
around the imaging point. The Hessian matrices
calculated from the sparse data sets still extract
the correlation information between the imaging
point and its neighborhood points, although not
as accurately as the full data set Hessian.

Constructing the full Hessian with the full
data set requires 500,000 crosscorrelations at
each frequency, which is too computationally
costly on a desktop machine. For this reason,
we only provide the number of crosscorrelations
instead of the absolute computing time. With
10% and 5% of the full data set, only 50,000
and 25,000 crosscorrelations are required, re-
spectively, at each frequency and can be per-
formed directly on a desktop machine. With
the sparse data, we greatly reduce the number
of crosscorrelations, which significantly reduces
the computational complexity.

Distance (km)

&

«10-15 1 3 5 7 9 x107®
0 5
e
. 0.5 ’
5 = 1
g 5
4 g1
3 > 2
a 2
2
1
2.5
0

5% data

Figure 2. Hessian row corresponding to the point r = (2.6, 1.52) km calculated by the full and sparse data sets. (a) Full data, (b) 10% of the

highest amplitude data, and (c) 5% of the highest amplitude data.
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In Figure 3a—3c, we plot the images obtained by the beam-based
migration operation of Tuvi et al. (2020b) for the full, 10%, and 5%
sparse data sets, respectively, whereas in Figure 3d-3f, we plot the
LSM images obtained by the proposed method. Applying the inverse
of the Hessian to the migration image is achieved by an iterative con-
jugate gradient method. The image quality is significantly improved
by the proposed LSM method compared to the migration results. We
reconstruct most of the subsurface structures while substantially
reducing the computational cost by approximating the Hessian with
a small number of terms. In Figure 3g-3i, we compare the LSM re-
sults with the true reflectivity model at x = 4.6 km. The LSM results
all resemble the true values. Then, we implement the algorithm using
more realistic full wavefield data, generated using the time-domain
rapid expansion method (Pestana and Stoffa, 2010). The physical
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configuration is the same as previously. The migration and LSM
images are plotted in Figure 4a—4c and 4d—4f, respectively. Com-
pared to the migration image, the LSM results have better resolution
with improved energy balance for all events, especially for poorly
illuminated regions. Because the data used in these tests are full
wavefield data that do not fully obey the Born approximation, we
do note slightly worse image qualities compared with the LSM re-
sults obtained using the Born data, where the same engine is used for
modeling and imaging. We reconstruct most of the subsurface even
with 5% of the data, which significantly reduces the computational
cost. These results agree with our physical model. They also dem-
onstrate the advantage of the phase-space data representation because
it filters only the relevant data needed for imaging. Therefore, only a
few beams are needed to image the subsurface.
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Figure 3. Image results obtained by the beam-based migration and LSM methods — Born data. (a-c) Images obtained by the migration
operation of Tuvi et al. (2020b) for the full and sparse data sets. (d-f) Images obtained by the proposed LSM method for the full and sparse data
sets. The full and sparse data set images resemble the true reflectivity. (g-i) Comparison over the line at x = 4.6 km.
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Figure 4. Image results obtained by the beam-based migration and LSM methods — full wavefield data. (a-c) Images obtained by the
migration operation of Tuvi et al. (2020b) for the full and sparse data sets. (d-f) Images obtained by the proposed LSM method for the full
and sparse data sets. The full and sparse data sets images resemble the true reflectivity.

CONCLUSION

This paper presents a new approach for image-domain LSM us-
ing a compressed data set. The method is based on the UWB-PS-BS
method. Unlike GB methods, based on point source expansion as a
summation of GBs, the UWB-PS-BS method is based on a frame
decomposition for scattered data. This decomposition extracts sig-
nificant scattering events (local Snell’s law reflection) from original
shot gathers. The phase space represents these subsurface physical
properties using only a small number of elements. We use this
unique property to extract only the relevant data (those with signifi-
cant amplitude) to perform image-domain LSM. We demonstrate
the advantages of our approach through numerical examples. We
show good agreement between the full and sparse data set images.
These results also demonstrate the efficiency of the proposed ap-
proach. We show that the proposed method is able to efficiently
construct the Hessian, which enables the fast image-domain LSM
implementation.
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