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ABSTRACT

We consider the problem of image-domain least-squares

migration (LSM) based on efficiently constructing the Hes-

sian matrix with sparse beam data. Specifically, we use the

ultra-wide-band phase space beam summation method, in

which beams are used as local basis functions to represent

scattered data collected at the surface. The beam domain data

are sparse. One can identify seismic events with significant

contributions so that only beams with nonnegligible ampli-

tudes need to be used to image the subsurface. In addition,

due to the beams’ spectral localization, only beams that pass

near an imaging point need to be taken into account. These

two properties reduce the computational complexity of com-

puting the Hessian matrix — an essential ingredient for

LSM. As a result, we can efficiently construct the Hessian

matrix based on analyzing the sparse beam domain data.

INTRODUCTION

Seismic migration methods are able to obtain subsurface images

from surface data (Claerbout, 1976). Because migration is an ad-

joint operator, obtained images contain errors due to the limited

data, background model, and noise. Tarantola (1984) and Schuster

(1993) suggest formulating the migration problem as a least-squares

inversion method by minimizing the difference between observed

and predicted data. These formulations are known as least-squares

migration (LSM). Compared to a migrated image, LSM improves

the image resolution, reduces migration noise, and balances the am-

plitude for poorly and well-illuminated regions.

LSM formulations are implemented in either the data domain

(Schuster, 1993; Nemeth et al., 1999; Dai et al., 2012) or the im-

age domain (Plessix, 2006; Yu et al., 2006; Aoki and Schuster,

2009). The former uses iterative schemes to minimize the misfit

between the predicted and observed data. In general, data-domain

formulations require solving the wave equation at each iteration,

which hampers computational efficiency. Image-domain formula-

tions are based on constructing and inverting a Hessian matrix.

However, constructing and inverting the Hessian matrix can be com-

putationally expensive for large physical models. Different approx-

imations to the Hessian matrix have been studied by Plessix (2006),

Valenciano et al. (2006), Yu et al. (2006), Tang (2009), and Aoki and

Schuster (2009). These approaches show a great reduction in com-

putational complexity without significantly impairing image quality.

Beam summation methods provide an accurate and efficient tool

in seismic wave propagation (Červený, 1982). The main advantage

of these formulations comes from the spectral locality of the beams.

When propagating the field, only beams passing near an imaging

point should be considered. Hill (2001) suggests a migration

approach based on expanding the source and receiver Green’s

functions (GFs) as a sum of beams resulting in an efficient tool

to obtain a high-resolution image. Based on these advantages,

several beam-based LSM approaches have been proposed, with

efficient Hessian approximations (Hu et al., 2016; Yuan et al.,

2017; Yue et al., 2021).

In this work, we adopt the migration formulations of Tuvi et al.

(2020a, 2020b) to efficiently construct the full Hessian matrix.

These approaches are based on the ultra-wide-band phase space

beam summation (UWB-PS-BS) method (Shlivinski et al., 2004),

which uses windowed Fourier transform (WFT) frame decomposi-

tion of surface fields. The WFT migration approach is different

from traditional Gaussian beam (GB) migration methods based

on localized source expansions. With WFT, the original shot gathers

are transformed into the beam domain rather than the shot-receiver

gathers used in traditional GB methods. Then, the migration is per-

formed by constructing the beam propagators and imaging the cor-

responding beam data, which represent the beam to beam scattering

amplitudes. Thus, the imaging task is completely formulated in the

beam domain. Detailed comparisons between the traditional GB

and WFT methods can be found in Tuvi et al. (2020b). Under

the Born approximation, the beam data are directly related to spe-
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cific scatterers over the subsurface. When implementing LSM, only

beams with significant amplitude need to be used to construct

the propagation operator, the migrated image, and the Hessian

matrix. Because the data transformation is performed before migra-

tion, one can filter out less relevant data for imaging. This thresh-

olding operation adds an a priori degree of localization to the LSM

problem. Compared with traditional GB methods, the new formu-

lation makes it easier to analyze the data prior to migration and the

imaging process is much more flexible. Combining this unique

property with the beams’ spectral locality significantly reduces

the computational complexity of the image-domain LSM problem.

BEAM-BASED MIGRATION

The proposed LSM method is based on the migration algorithm

of Tuvi et al. (2020b). One uses WFT frames with GBs to expand

the data and backpropagate the fields. This theory is based on the

UWB-PS-BS method presented by Shlivinski et al. (2004). The

frame elements are

ψ̂μ ¼ ψ̂ðx−xmÞe
−iωpn ·ðx−xmÞ; μ¼ ðm;nÞ ¼ ððm1;m2Þ;ðn1;n2ÞÞ;

(1)

with ψ̂ being a window function. Henceforth, the over-caret denotes

the frequency-dependent quantities. The index μ that tags the frame

elements defines a spatial (x)-spectral (p) phase-space lattice via

xm ¼ mx̄, pn ¼ np̄, with x̄ and p̄ being the unit cell dimensions,

at each direction over this lattice. Each element is localized around

points xm and pn over the x and p directions, respectively (Tuvi

et al., 2020b, Figure 1).

The frame should be overcomplete; i.e., the unit cell area should

satisfy ωx̄ p̄ < 2πν, with ν < 1 being the overcompleteness param-

eter. We also define a dual frame set fφ̂μðxÞg used to expand the

data. In general, φ̂ should be calculated numerically. However, if the

frame is highly overcomplete (ν < 0.3), it can be approximated

analytically via φ̂ ≈ ðν∕kψ̂ðxÞkÞ2ψ̂ðxÞ (Shlivinski et al., 2004).

Typically, ψ̂ is chosen to be a Gaussian window. This choice leads

to a snug frame for all frequencies in the band, leading to localized

and stable dual frame functions and expansion coefficients. Hill

(2001) obtains similar overcompleteness criteria via the oversam-

pling theorem.

We denote by d̂ðxs; xrÞ the data collected at the receiver located at
x ¼ xr due to a point source located at x ¼ xs. The beam represen-

tation of the data Âμ;μ 0 is given by Tuvi et al. (2020b) as

Âμ;μ 0 ¼

Z
d2xsφ̂μðxsÞ

Z
d2xrφ̂

�
μ
0ðxrÞd̂ðxr; xsÞ; (2)

with μ and μ
0 being the source and receiver beams, respectively,

whereas the asterisk denotes the complex conjugate. The corre-

sponding migrated image is given by

mmigðrÞ ¼ Re

Z
∞

0

dωω2f̂
�
X
μ;μ 0

Λ̂μ;μ 0ðrÞÂμ;μ 0 ; (3)

with f̂ being the frequency spectrum of the source. The functions

Λ̂μ;μ 0ðrÞ ¼ Ψ̂
�
μðrÞΨ̂

b
μ
0ðrÞ are the imaging kernels, which can be ob-

tained by multiplying a pair of source and receiver (backpropa-

gated) beams, respectively.

APPLICATION FOR IMAGE-DOMAIN LSM

Under the Born approximation, the shot gathers are related to the

reflectivity of the model mr via the propagation operator L̂:

d̂ðxr; xsÞ ≃ L̂mr; L̂ ¼ ω
2f̂ĜBðr; xsÞĜBðr; xrÞ; (4)

with ĜB being the background GF. Introduction of equation 2 into

equation 4, and using the frame relation above, the Born approxi-

mation of the scattered beam data is given by

Âμ;μ 0 ¼
ν
4

kψ̂ðxÞk4
L̂μ;μ 0mr; (5)

with L̂μ;μ 0 ¼ fðωÞω2
Λ̂
�
μ;μ 0 being the beam propagation operator.

The estimated reflectivity can be written as

mr ¼ ðL̂†
μ;μL̂μ;μÞ

−1L̂
†

μ;μ 0

Âμ;μ 0kψ̂ðxÞk4

ν
4

; (6)

with † being the adjoint operator. Equation 5 represents the beam

data as the interaction between the imaging kernels and the medium

reflectivity, whereas the operation in equation 6 expresses the esti-

mated reflectivity as the inverse Hessian matrix ðL̂†

μ;μ 0 L̂μ;μ 0Þ−1 ap-

plied on the migrated image of equation 3. Constructing the full

Hessian matrix is computationally expensive due to the model size.

In addition, a large number of crosscorrelation operations between

the sources and receivers are needed to obtain the Hessian matrix

elements. Here, we use a compressed data set to efficiently construct

the Hessian matrix.

Under the Born approximation, the beam domain data can be in-

terpreted as applying the propagation operator L̂μ;μ 0 on the medium

reflectivity mr. As noted by Tuvi et al. (2020b), the corresponding

data are governed by the subsurface reflection obtained from local-

ized areas and in specific directions (local Snell’s law reflection).

The migrated image of equation 3 is obtained by applying the

propagation operator on the beam domain data. Using the local

Snell’s law interpretation of the data, we can filter out low-ampli-

tude data. Thus, we can compress the data size needed for imaging

and threshold the corresponding imaging kernels in the propagation

operator. The imaging kernels are obtained by multiplying two

beam propagators. Each beam propagates along its axis and decays

from it. Given an imaging point, only pairs of beams that overlap

there will contribute to the image. As a result, the beam propagation

operator can be represented using only a subset of imaging kernels.

This compressed representation is based on physical properties of

the subsurface. Because the data transformation is calculated over

the surface before constructing the image, the proposed formulation

can a priori reduce the number of calculations needed to construct

the Hessian matrix.

NUMERICAL EXAMPLE

We demonstrate our LSM algorithm via the Marmousi model.

The model comprises 460 and 150 points in the distance and depth

directions, respectively, with a 0.02 km grid spacing in both direc-

tions. To reduce memory costs, we use 0.04 km grid for imaging.

The reflectivity model is shown in Figure 1a. We use the frequency

range f ¼ ½5; 25� Hz for imaging, with the frequency interval of

Δf ¼ 0.25 Hz. We set the beam parameter b ¼ 20, and we obtain
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16 beam initiation points, with the 43 initial propagation directions

with a spectral range pn ¼ ½−0.42; 0.42� s∕km and unit cell dimen-

sions x̄ ≈ 0.6 km; p̄ ≈ 0.03 s∕km (Tuvi et al., 2020b, equation 13).

This choice of b leads to collimated beams for all of the propagation

domain, whereas the beams’ width is defined as described in Hill

(2001). The beam propagators are calculated via numerical integra-

tion with background GFs (Tuvi et al., 2020b, equation 9). These

GFs are uniformly distributed over the surface with Δx ¼ 0.02 km

spacing and calculated by solving the frequency-domain acoustic

wave equation. Using these beam propagators, we calculate Born

modeling data corresponding to equation 5.

In Figure 1b, we plot the full data set of equation 5, at the

frequency f ¼ 10 Hz normalized to their maximal value at this

frequency. The axes are in the size of source and receiver beams,

where we arrange them as concatenated vectors with each beam

initiation point and all propagation directions. Each point over

this grid represents an imaging kernel amplitude (beam-to-beam

scattering amplitude). The data are sparse. Following the preceding

discussion, the amplitudes correspond to scattering events over the

subsurface. In Figure 1c and 1d, we plot the data at the same fre-

quency for the top 10% and 5%, respectively, of the highest ampli-

tudes. Major subsurface scattering energy is still kept in the

thresholded sparse sets. One may use only high-amplitude imaging

kernels for imaging. Only these imaging kernels contain significant

energy needed to construct the image.

To explore the sparse Hessian matrix structure, we plot in

Figure 2a–2c a row of the Hessian matrices calcu-

lated using the full data set, 10%, and 5% of

the full data set at the point r ¼ ð2.6; 1.52Þ km,

highlighted by the red dot in Figure 1a. To

obtain the sparse Hessian, we threshold the data

with the top highest amplitudes at each frequency.

Only the corresponding imaging kernels are used

to construct the Hessian. The beam data near this

area correspond to the angle between the incident

and backpropagated beams. The data also corre-

spond to the reflector angle near this point. The

full data set Hessian in Figure 2a is localized

around the imaging point. The Hessian matrices

calculated from the sparse data sets still extract

the correlation information between the imaging

point and its neighborhood points, although not

as accurately as the full data set Hessian.

Constructing the full Hessian with the full

data set requires 500,000 crosscorrelations at

each frequency, which is too computationally

costly on a desktop machine. For this reason,

we only provide the number of crosscorrelations

instead of the absolute computing time. With

10% and 5% of the full data set, only 50,000

and 25,000 crosscorrelations are required, re-

spectively, at each frequency and can be per-

formed directly on a desktop machine. With

the sparse data, we greatly reduce the number

of crosscorrelations, which significantly reduces

the computational complexity.

Figure 1. The reflectivity model and the beam representation of the shot gathers.
(a) Reflectivity and (b-d) beam data of equation 5 for frequency f ¼ 10 Hz, normal-
ized to their maximal value at this frequency, obtained by the full, 10%, and 5% of the
highest amplitudes, respectively. The size of the axes is the number of source and
receiver beams. The full data are sparse. Thus, we may use only the sparse data
set as (c and d).

Figure 2. Hessian row corresponding to the point r ¼ ð2.6; 1.52Þ km calculated by the full and sparse data sets. (a) Full data, (b) 10% of the
highest amplitude data, and (c) 5% of the highest amplitude data.
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In Figure 3a–3c, we plot the images obtained by the beam-based

migration operation of Tuvi et al. (2020b) for the full, 10%, and 5%

sparse data sets, respectively, whereas in Figure 3d–3f, we plot the

LSM images obtained by the proposed method. Applying the inverse

of the Hessian to the migration image is achieved by an iterative con-

jugate gradient method. The image quality is significantly improved

by the proposed LSM method compared to the migration results. We

reconstruct most of the subsurface structures while substantially

reducing the computational cost by approximating the Hessian with

a small number of terms. In Figure 3g–3i, we compare the LSM re-

sults with the true reflectivity model at x = 4.6 km. The LSM results

all resemble the true values. Then, we implement the algorithm using

more realistic full wavefield data, generated using the time-domain

rapid expansion method (Pestana and Stoffa, 2010). The physical

configuration is the same as previously. The migration and LSM

images are plotted in Figure 4a–4c and 4d–4f, respectively. Com-

pared to the migration image, the LSM results have better resolution

with improved energy balance for all events, especially for poorly

illuminated regions. Because the data used in these tests are full

wavefield data that do not fully obey the Born approximation, we

do note slightly worse image qualities compared with the LSM re-

sults obtained using the Born data, where the same engine is used for

modeling and imaging. We reconstruct most of the subsurface even

with 5% of the data, which significantly reduces the computational

cost. These results agree with our physical model. They also dem-

onstrate the advantage of the phase-space data representation because

it filters only the relevant data needed for imaging. Therefore, only a

few beams are needed to image the subsurface.

Figure 3. Image results obtained by the beam-based migration and LSM methods — Born data. (a-c) Images obtained by the migration
operation of Tuvi et al. (2020b) for the full and sparse data sets. (d-f) Images obtained by the proposed LSMmethod for the full and sparse data
sets. The full and sparse data set images resemble the true reflectivity. (g-i) Comparison over the line at x ¼ 4.6 km.
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CONCLUSION

This paper presents a new approach for image-domain LSM us-

ing a compressed data set. The method is based on the UWB-PS-BS

method. Unlike GB methods, based on point source expansion as a

summation of GBs, the UWB-PS-BS method is based on a frame

decomposition for scattered data. This decomposition extracts sig-

nificant scattering events (local Snell’s law reflection) from original

shot gathers. The phase space represents these subsurface physical

properties using only a small number of elements. We use this

unique property to extract only the relevant data (those with signifi-

cant amplitude) to perform image-domain LSM. We demonstrate

the advantages of our approach through numerical examples. We

show good agreement between the full and sparse data set images.

These results also demonstrate the efficiency of the proposed ap-

proach. We show that the proposed method is able to efficiently

construct the Hessian, which enables the fast image-domain LSM

implementation.
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