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This review aims to synthesize the current knowledge of sediment dynamics
using insights from long-term research conducted in the watershed draining to
the Chesapeake Bay, the largest estuary in the U.S.,, to inform management
actions to restore the estuary and its watershed. The sediment dynamics of the
Chesapeake are typical of many impaired watersheds and estuaries around the
world, and this synthesis is intended to be relevant and transferable to other
sediment-impaired systems. The watershed's sediment sources, transport,
delivery, and impacts are discussed with implications for effectively
implementing best management practices (BMPs) to mitigate sediment issues.
This synthesis revealed three key issues to consider when planning actions to
reduce sediment loading: Scale, time, and land use. Geology and historical
land use generated a template that current land use and climate, in addition to
management, are acting upon to control sediment delivery. Important sedi-
ment sources in the Chesapeake include the Piedmont physiographic region,
urban, and agricultural land use, and streambank erosion of headwater
streams, whereas floodplain trapping is important along larger streams and
rivers. Implementation of BMPs is widespread and is predicted to lead to
decreased sediment loading; however, reworking of legacy sediment stored in
stream valleys, with potentially long residence times in storage, can delay and
complicate detection of the effects of BMPs on sediment loads. In conclusion,
the improved understanding of sediment sources, storage areas, and transport
lag times reviewed here can help target choices of BMP types and locations to
better manage sediment problems—for both local streams and receiving

waters.
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1 | WHY CARE ABOUT SEDIMENT?

Although sediment is a naturally occurring component of aquatic ecosystems, excess fine-grained sediment can cause
negative impacts on the health of these environments, including streams, rivers, and estuaries. For example, 15% of
stream and river length in the U.S. has been assessed to be in “poor” condition (and another 29% “fair”) due to excess
sediment, with disproportionate impacts of sediment on stream biota compared to other stressors (United States Envi-
ronmental Protection Agency, 2016). Understanding the sources of sediment and delivery processes are critical to
understand watershed impairment and target management practices to improve water quality (Gellis, Fitzpatrick, &
Schubauer-Berigan, 2016; Novotny & Chesters, 1989). In addition, sediment eroded from landscapes and transported
through stream networks may be subject to time-lags that delay arrival to downstream ecosystems that may be the pri-
mary focus of management interventions (Pizzuto et al., 2014; Pizzuto, Keeler, Skalak, & Karwan, 2017). A thorough
understanding of sediment sources, transport, fate, and delivery is therefore necessary to efficiently and effectively tar-
get management actions with the goal of decreasing downstream loading of sediment and its negative impacts.

Here, we review the state-of-the-science of sediment dynamics in the watersheds of the Chesapeake Bay (hereaf-
ter “Chesapeake watershed”) with the goal of identifying recommendations for implementing management practices
to reduce fine-grained sediment loading. The Chesapeake watershed covers 166,530 km* with a population of more
than 18 million people from six states and the District of Columbia and contains multiple major tributaries to the
estuary (Figure 1a). Decades of high sediment, nitrogen (N), and phosphorus (P) loading from its watershed to the
Chesapeake Bay and its tidal tributaries (hereafter “Bay”) have led to impairment of estuarine biota and water clarity
(W. M. Kemp et al., 2005, Figure 1b,c). In response, the U.S. EPA identified the total maximum daily loading (TMDL)
of sediment, N, and P from the Chesapeake watershed to the Bay that would result in restoration of water quality
and alleviate biotic impairment (United States Environmental Protection Agency, 2010). A partnership of federal,
state, and local governments—the Chesapeake Bay Program (CBP)—is now responsible for implementing manage-
ment actions that would reduce downstream sediment loading by 20% to meet the TMDL target (United States Envi-
ronmental Protection Agency, 2010). In addition to the Bay, numerous streams in the watershed have been identified
with biotic impairment due to excess sediment and are subject to individual local TMDLs. In this review, we summa-
rize sediment sources, transport, delivery, and impacts in the Chesapeake watershed, and using examples from
around the world, to help inform effective approaches for reducing sediment loading. The relatively well-studied
Chesapeake watershed and Bay are typical of managed, diverse temperate landscapes, and this synthesis of long-term
sediment knowledge is intended to help inform understanding and management of sediment in other similarly
affected landscapes.

1.1 | Impacts on biota

An adequate supply of fine- and coarse-grained sediment is necessary to the healthy function of non-tidal and tidal
aquatic systems (Stevenson, Ward, & Kearney, 1988), but human-driven alterations to the sediment cycle can result in
profound ecological impairments. The overall impact of sediment on aquatic ecosystems has been recognized for over
80 years (Aitken, 1936), yet research continues to explore the complex mechanisms by which ecosystems react to sedi-
ment pressures and its exacerbation of other environmental pressures such as elevated temperature, nutrients, or con-
taminants (Matthaei, Piggott, & Townsend, 2010; Piggott, Lange, Townsend, & Matthaei, 2012). Furthermore, as a key
constituent affecting water clarity, sediment also plays a role in perceptions of the quality and value of water for
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FIGURE 1 (a) Map of the Chesapeake Bay and its watershed. Red colors indicate urban/developed areas and tan color indicates
agricultural areas (i.e., cultivated crops and pasture/hay) from the 2016 National Land Cover Database; (b) Satellite image of sediment
plume entering the Chesapeake Bay after Tropical Storm Lee in 2011 (image courtesy of NASA); (c) Deer Creek, Maryland, with high
concentrations of suspended sediment after a storm (image courtesy of USGS)

recreational use and aesthetic purposes (Gibbs, Halstead, Boyle, & Huang, 2002; D. G. Smith, Cragg, & Croker, 1991).
While many of the studies and reviews of the impacts of sediment on biota have been conducted outside the Chesa-
peake watershed, we consider these mechanisms to be largely applicable and necessary to understand the impacts of
sediment pressures on a wide variety of aquatic ecosystems, including the Chesapeake.

Numerous review papers comprehensively cover the effects of fine-grained sediment on aquatic ecosystems (Berry,
Rubinstein, Melzian, & Hill, 2003; Wood & Armitage, 1997), and specifically address the effects of sediment across non-
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tidal and tidal food webs. Fine-grained sediments impact primary producers (Cabaco, Santos, & Duarte, 2008; Jones,
Collins, Naden, & Sear, 2012), low-level consumers such as macroinvertebrates (Jones et al., 2012), and higher con-
sumers such as fishes (P. Kemp, Sear, Collins, Naden, & Jones, 2011; Kjelland, Woodley, Swannack, & Smith, 2015).
These reviews highlight that the effects of sediment are wide-ranging and include community-level shifts, changes in
biodiversity, behavioral alterations, physiological stress-responses, and diminished population fitness.

Sediment generally affects biota through two mechanisms—indirectly by deposition and siltation of bed habitats
and directly through effects from suspended sediment. Deposited particles can indirectly impact biota as a vector for
pollutants and contaminants (see section below), as well as decrease particle size of bed substrate, bury bed habitat
(Wood & Armitage, 1997), and clog interstitial pore space and block hyporheic exchange (Brunke, 1999). In non-tidal
systems, deposited sediment can restrict benthic algal growth (Yamada & Nakamura, 2002) and can disproportionately
affect some macroinvertebrate taxa particularly vulnerable to surficial fine sediment, such as EPT (Ephemeroptera,
Plecoptera, Trichoptera; Burdon, McIntosh, & Harding, 2013).

Suspended sediment can directly impact biota by decreasing light penetration and suppressing primary pro-
duction in algae and macrophytes (Izagirre, Serra, Guasch, & Elosegi, 2009; Jones, Collins, et al., 2012;
Yamada & Nakamura, 2002), causing direct abrasion and physical damage to soft-tissues, and clogging of mem-
branes such as gills (P. Kemp et al., 2011). Abundant suspended sediment can induce increased drift of inverte-
brates in stream ecosystems (Culp, Wrona, & Davies, 1986; Doeg & Milledge, 1991) and can alter fish
movement and predator-prey interactions (Kjelland et al., 2015). However, suspended sediment concentration
alone has been shown to be a poor predictor of the ecological impacts of sediment; rather, impacts are a combi-
nation of concentration and duration of the elevated sediment pressure (Newcombe & Macdonald, 1991),
highlighting the importance of increased temporal resolution in sediment monitoring to more fully understand
impacts on aquatic ecosystems.

Research on sediment effects on biota in the non-tidal Chesapeake watershed, although limited, support these
more general patterns outlined above. Sediment and turbidity are the third-most common cause of impairment on
the list of impaired and threatened waters within the Chesapeake region (United States Environmental Protection
Agency, 2015). Schutt (2012) reports a strong negative relationship between EPT taxa and abundance of fine sedi-
ment in streambeds in the James River, Virginia. A detailed study in three Pennsylvania streams found that
increased sediment loads led to finer bed sediment and a shift in macroinvertebrate composition from amphipods
to chironomids and also fewer brown trout (N. E. Wohl & Carline, 1996). Three to five years after riparian resto-
ration to two of these streams, bank erosion, and streambed sedimentation decreased and macroinvertebrate densi-
ties increased, but drought conditions inhibited the ability to detect a response of macroinvertebrate diversity
(Carline & Walsh, 2007). In a study covering seven counties of Maryland, the proportion of a catchment with con-
temporary developed land use or historic agricultural land use had a negative effect on riffle quality, a proxy for
streambed stability and sediment pressures, resulting in a negative effect on benthic stream macroinvertebrates
(Maloney & Weller, 2011).

Within the Chesapeake Bay, the impact of sedimentation on submerged aquatic vegetation (SAV) has gained con-
siderable attention. Estuarine SAV beds provide critical habitat for juvenile fish and the iconic Chesapeake blue crab
(Callinectes sapidus), as well as foraging habitat for local and migrating waterfowl. Sediment burial and differences in
sediment grain size affect the germination, distribution, and persistence of SAV (W. M. Kemp et al., 2004). While fine-
grained sediment and organic matter are important substrate components contributing to SAV germination, and mod-
erate deposition rates can stimulate growth (Marba & Duarte, 1994), excessive sediment accumulation can negatively
impact seedling emergence (Jarvis & Moore, 2015; Rybicki & Carter, 1986) and has been associated with severe declines
in acreage (Orth & Moore, 1984). Persistence of SAV beds in the mesohaline portion of Chesapeake Bay correlates with
high accumulation rates of sandy sediments with low organic content; in contrast, finer sediment accumulation in simi-
lar locations is correlated with SAV absence (Palinkas & Koch, 2012). Furthermore, storm- and wind-driven
resuspension of previously deposited sediments can create light-limiting conditions, reducing macrophyte biomass, as
seen in the Susquehanna Flats region of the upper Chesapeake Bay (Gurbisz, Kemp, Sanford, & Orth, 2016). Sedimenta-
tion rates and sediment burial also affect the behavior and mortality of benthic macrofauna, with implications for com-
munity structure and related functions such as sediment bioturbation and pelletization (Hinchey, Schaffner, Hoar,
Vogt, & Batte, 2006; Schaffner, Diaz, Olsen, & Larsen, 1987). Of particular concern are the impacts of increased sedi-
mentation on the native oyster Crassostrea virginica (Colden & Lipcius, 2015; Comeau, Mallet, Carver, Nadalini, &
Tremblay, 2017), which plays an important economic and cultural role in the region as well as provide water-column
filtration services. While C. virginica has demonstrated a tolerance for short-duration exposure to suspended sediment
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BOX1 Management implication: Not all sediment is equal

Sediment origin can have an important role in its impact on the biological community, as sediment from differ-
ent sources can have differing size-fractions, organic content, and bound pollutants (Cashman, 2018; Kennicutt
et al., 1994). Increased surface area and binding sites on fine-grained sediment are more likely to carry higher
concentrations of P, heavy metals, and other contaminants (Horowitz & Elrick, 1987; Thoms, 1987). Organic
sediments will likely have more associated contaminants and their decomposition on the bed increases oxygen
demand and can cause localized hypoxia (Sear et al., 2016).

plumes (Suedel, Clarke, Wilkens, Lutz, & Clarke, 2015), sub-lethal and lethal effects of sediment burial have been
observed, and sediment burial decreases the success of oyster restoration (Colden, Latour, & Lipcius, 2017; Schulte,
Burke, & Lipcius, 2009; Box 1).

1.2 | Sediment as a vector for nutrients and contaminants

Suspended sediments are usually considered an important vector for nutrients and contaminants that can adversely
affect the downstream Bay, and thus, managing sediment may help minimize the loading and impacts of other contam-
inants. In the Chesapeake watershed, 73% of total P load and 18% of total N load transported to the Bay is typically
attached to sediment (calculated from Zhang, Brady, Boynton, & Ball, 2015), and particulate nutrient fractions
(i.e., sediment-attached) generally are a larger percentage of total load where sediment loading is greater (Zhang et al.,
2015). Analyses of the multi-decadal record of particulate nutrient and suspended sediment loads in the nine major
river tributaries of the Bay indicate average nutrient concentrations on suspended sediment are 1.0 mg-P/g and 3.6 mg-
N/g (Zhang & Blomquist, 2018).

Understanding the concentrations and sorption and desorption dynamics of bound nutrients and contaminants with
sediment is important for understanding their fate during transport and storage in sediment accumulation zones. Phos-
phate is the most bioavailable form of P and can be responsible for fueling algal blooms (Lean & Nalewajko, 1976).
Phosphate reversibly attaches (sorbs) to sediment and is transported and deposited into storage along with sediment.
The desorption of phosphate off sediment can occur in response to changes in redox, pH, and microbial activity
(Froelich, 1988). Once detached from sediment, phosphate can be taken up by organisms or rapidly transported down-
stream as a dissolved solute (Newbold, Elwood, O'Neill, & Sheldon, 1983).

In addition, organic matter, metals, pesticides, polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons
(PAHs), and other organic contaminants are associated with sediment. In particular, many heavy metals, PCBs, PAHs,
and other organic contaminants have been found to be enriched in sediments washed out of urban watersheds (Foster,
Roberts, Gruessner, & Velinsky, 2000; Horowitz & Stephens, 2008). For example, mercury attaches tightly to sediment
and is transported and deposited with sediment in channel beds and floodplains (Flanders et al., 2010; Skalak &
Pizzuto, 2010, 2014). Sediment-bound mercury concentrations are a function of sediment particle size or organic con-
tent (Skalak & Pizzuto, 2014). Remobilization and downstream export of stored mercury is a result of sediment erosion
and can take years to decades or centuries to remove contaminated sediments (Skalak & Pizzuto, 2010, 2014).

2 | THE ROLE OF LAND USE HISTORY

Past land uses have altered the characteristics of Chesapeake watersheds, changing both sediment and hydrologic
inputs into the stream channel. Changes in stream dynamics slowly alter channel form and function and fine sediment
storage over a range of timescales. The time required between watershed change and the corresponding change in a
stream system is known as the lag time (Bain et al., 2012), with a delayed onset, peak disturbance, and lingering impact.
The lag time for sediment can be decades or centuries (Pizzuto et al., 2017). The result is that changes that occurred
centuries ago continue to impact stream sediment dynamics today (Belby, Spigel, & Fitzpatrick, 2019), and that the
effect of current changes made to the watershed (e.g., best management practices, BMPs) may not become fully
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apparent until years or decades in the future. Understanding the past human alterations to streams, intentional and
unintentional, is needed to understand current sediment sources, impacts, and trajectories. Although observations and
deductions about sediment processes in past centuries are sparse, we attempt to summarize observations, theory, and
inferences to highlight differences across important eras. The focus of this section is land use history, whereas other
drivers of sediment dynamics are discussed later in the review.

2.1.1. | Pre-colonial period before European arrival

Geologic (pre-European) rates of erosion varied across the Chesapeake watershed with greater erosion in basins that are
steeper and have more precipitation (Portenga et al., 2019). Notably, the Piedmont physiographic province, located between
the mountains and Coastal Plain, had low natural sediment yields compared to current high yields (Gellis et al., 2009). Pre-
colonial sedimentation in stream valleys was typically minimal and stream-floodplain geomorphology stable (Costa, 1975;
Jacobson & Coleman, 1986), with some exceptions occurring where intensive agriculture by Native peoples led to sediment
erosion (L. A. James, 2019; Stinchcomb, Messner, Driese, Nordt, & Stewart, 2011). Stream channels in the Chesapeake
watershed likely looked very different in the pre-colonial period than today. In some locations, headwater streams may
have had low banks, anastomosing channels, and extensive wetland marsh and swamp floodplains (Elliott, Wilf, Walter, &
Merritts, 2013) with significant beaver influence (Brush, 2009; Ruedemann & Schoonmaker, 1938). Before eastern North
America was settled by Europeans, streams in the Chesapeake watershed likely had sediment inputs to streams similar to
outputs (Figure 2a). Overall, sediment yields to the Bay are assumed to have been relatively small, with no net deposition
or erosion and much less sediment in floodplain storage along streams (Jacobson & Coleman, 1986).

2.1.2. | Colonial period

During the colonial period from the 17th to 19th centuries, uplands of the Chesapeake watershed were largely def-
orested for slash and burn agriculture, charcoal production, and timber harvesting, leaving hillslopes susceptible to ero-
sion (Brush, 2009; Figure 2b). Massive pulses of sediment were transported into streams and delivered to the Bay with
significant accumulation in floodplains and channel beds (Jacobson & Coleman, 1986; L. A. James, 2019). Sediment
retention was also increased by the widespread construction of colonial-era milldams throughout the region (Merritts
et al., 2013; Walter & Merritts, 2008). Sediment that accumulated in floodplains and channel beds during this period is
often referred to as “legacy sediment” (see section below). This phenomenon was widespread where land clearing
occurred across the United States (Happ, Rittenhouse, & Dobson, 1940).

2.1.3. | Post-colonial period

In the late 19th and early 20th centuries, soil conservation practices were introduced and much of the eastern
U.S. began to reforest (Steyaert & Knox, 2008), which stabilized hillslopes and began reducing sediment loads to
streams (Brush, 2009). Although watershed inputs from upland soils decreased, accumulated sediment stored in the
stream valley continued to be mobilized in streams (Jacobson & Coleman, 1986). This is thought to have led to stream
incision, which in turn, caused reductions in overbank floods and floodplain deposition (Hupp et al., 2015; Leopold,
Wolman, & Miller, 1964). Simultaneously, many milldams were naturally breached or removed (Merritts et al., 2011)
which decreased the volume of sediment trapped in the stream system and helped speed local erosion and degradation
of channel beds. Overall, it is inferred that streams in the Chesapeake during this time were mostly erosional and sedi-
ment yields to the Bay were moderate.

2.1.4. | Urbanization period
Urbanization, the current era of regional land use, is considered to have accelerated with widespread suburban expan-

sion after World War 2. Construction in the early stages of urbanization generated large volumes of erodible sediment
that delivered large sediment pulses to streams (Wolman, 1967) that can persist for decades after initial construction
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(Gellis et al., 2017). Although urban cover can limit the area of exposed surface soils to erosion, greater impervious sur-
face area increases the energy and volume of runoff and increases water delivery to streams. This stream “flashiness”
(the quick rise and fall of the streamflow hydrograph in response to precipitation) can result in increased erosion of
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BOX 2 Management implication: Legacy sediment

Legacy sediment is a high priority for future mitigation work because its presence represents a potential long-
term supply that will continue to be eroded and supply sediment to downstream environments (Meade, 1982).
Proposed management strategies include removal of legacy sediment through floodplain excavation, channel
dredging, or armoring or grading of stream banks to prevent lateral erosion. Efficacy of these strategies largely
depends on watershed context and additional study is needed to determine effectiveness and the negative side-
effects of these approaches.

streambanks and beds, whereas floodplain deposition can be enhanced with increases in peak streamflow as streams
flood more frequently (Hupp, Noe, Schenk, & Benthem, 2013). Symptoms of impairment common in urban streams,
termed the “urban stream syndrome”, include initial increases in sediment supply from hillslope erosion leading to an
aggradation phase with streambed and floodplain deposition, followed by an erosional phase where flashy streams
erode stream beds and banks (Paul & Meyer, 2001), although channel response can vary (Colosimo & Wilcock, 2007).
Streams are even more erosional during this period than during the post-colonial period, and sediment yields to the
Bay remain moderate (Figure 2c).

2.1 | Legacy sediment and stream valley storage

The term “legacy sediment” has attained widespread usage over the last decade and is defined many ways. In the mid-
Atlantic of the U.S,, its usage has been directly associated with sediment deposits behind former milldam impound-
ments (Walter & Merritts, 2008). Others have argued milldams are not required to create legacy sediment deposits
(Bain, Smith, & Nagle, 2008; Donovan, Miller, Baker, & Gellis, 2015; Hupp et al., 2013). Much of the usage of this term
has relied on “preconceived understandings and implications” of what legacy sediment is rather than an explicit defini-
tion (L. A. James, 2013). L. A. James (2013) suggests that a thorough identification of how sediment is produced should
not be a “sticking point as long as it is clear that the deposit is associated with processes substantially accelerated by
human activities.” E. Wohl (2015) broadens the definition of legacy sediments further to “those for which the location,
volume, and/or presence of contaminants result from past and contemporary human activities.” For purposes of the
Chesapeake management effort, the Science and Technical Advisory Committee of the CBP (Miller et al., 2019) has
recently defined legacy sediment as:

“sediment stored in upland and lowland portions of the Bay's tributary watersheds as a byproduct of accel-
erated erosion caused by landscape disturbance following European settlement, most prominently in the
Piedmont and Coastal Plain provinces.”

In addition to storage of this older legacy sediment in stream valleys, significant inputs into storage continued into
the recent past (Costa, 1975). This historic legacy of augmented fine-grained sediment storage in stream valleys sets the
stage for current sediment dynamics, which we describe next (Box 2).

3 | SEDIMENT SOURCES, TRANSPORT, AND DELIVERY
3.1 | Sediment budget framework

The balance of sediment inputs and outputs is a fundamental description of stream systems (E. Wohl, 2015), and a sedi-
ment budget is an accounting framework that can be used to understand and manage the processes of sediment ero-
sion, transport, storage, delivery, and linkages among these elements and where they occur in a watershed (Gellis,
Fitzpatrick, & Schubauer-Berigan, 2016; Leopold, 1966; Reid & Dunne, 2005; Swanson, Janda, Dunne, & Swanston,
1982; Walling & Collins, 2008). Typical inputs to a stream include upland soil erosion, gully erosion, tributary loading,
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and erosion of streambanks; dynamic storage can include hillslopes, upland valleys, alluvial fans, channel beds and
margins, and floodplains; and export could be to either a downstream reach, estuary, or coast (where additional sources
and storage may occur). Effective sediment management requires information on each of these aspects of the sediment
budget, and their controls, across multiple spatial scales. For example, the accurate quantification of erosion sources is
important as management approaches to mitigate erosion from upland sources (i.e., forest, pasture, crop) and channel
sources are distinctly different (e.g., soil conservation vs stream restoration). However, sediment budgets provide only a
snapshot of sediment processes and do not address trajectories of change or describe the localized impacts of sediment
processes.

For smaller watersheds, the quantification of erosional sources can be identified by using an approach called sediment
fingerprinting (Gellis, Fitzpatrick, & Schubauer-Berigan, 2016; Gellis & Walling, 2011). Sediment fingerprinting is a
method which uses distinguishing tracers (e.g., chemicals, trace elements, radio-isotopes, and other attributes) to identify
and quantify specific sources of eroded sediment delivered and transported within a watershed, with results used to guide
management actions to reduce sediment loads (Mukundan, Walling, Gellis, Slattery, & Radcliffe, 2012). Importantly, fin-
gerprinting specifically targets sediment that has been delivered to water bodies, which may differ from gross erosion cal-
culated from sediment budgets on the landscape (see section on Upland Storage below). Furthermore, repeated analysis
of sediment fingerprints throughout time can address how source contributions may change in response to management
actions. With this in mind, specific guidelines on underlying assumptions of sediment fingerprinting, sediment source
sampling, target sampling and software for statistical procedures used to apportion sources have been developed to aid in
decision-making (Gellis, Fitzpatrick, & Schubauer-Berigan, 2016; Gorman Sanisaca, Gellis, & Lorenz, 2017a, 2017b).

3.1.1 | Upland erosion

Sediment eroded from uplands originates from a variety of sources. Common present-day upland sediment sources in
the Chesapeake watershed include agricultural areas, forests, roads, urban areas, construction sites, gullies and ditches,
and mines (Langland & Cronin, 2003), and these sources vary spatially across and within watersheds (Cashman et al.,
2018; Gellis et al., 2009; Gellis et al., 2015; Gellis et al., 2017; Gellis & Gorman Sanisaca, 2018; Gellis & Noe, 2013).

Across the whole Chesapeake watershed, the statistical tool Spatially Referenced Regressions on Watershed Attri-
butes (SPARROW) has been used to estimate sediment loads from upland sources (Brakebill, Ator, & Schwarz, 2010;
Brakebill, Ator, & Sekellick, 2019) and estimated average sediment yield to be approximately 70 times greater per unit
area from urban lands than from agricultural lands (Brakebill et al., 2010). Despite these differences, the model suggests
agriculture contributes about 69% of the sediment delivered to the Bay (when accounting for sediment storage along
streams and in reservoirs) mainly because agriculture is more widespread than any other land use (Figure 3, Brakebill
et al.,, 2019). Direct measurements of soil erosion rates from agricultural fields have been shown to be more than
10 times greater than from forests in the Chesapeake (Gellis et al., 2015). In addition, the Piedmont physiographic set-
ting, with its specific geology, topography, and structure, has also been well documented to have erosive upland soils
and high sediment yields (Brakebill et al., 2010; Gellis, Banks, Langland, & Martucci, 2004; Trimble, 1975).

Total Flux
(10° Metric Tons)

Chesapeake Bay 4,800

Susquehanna River 2,400

Potomac River 860

James River 760

Rappahannock River ‘ 520

Appomattox River [ [ 14

Pamunkey River I

FIGURE 3 Estimates of the contribution of Mattaponi River | 5

different upland land uses to the load of stream Patuxent River I 21

. . T Choptank River 3
sediment that is transported to the outlet of individual ! ! ! !

0 20 40 60 80 100

tributaries of the Chesapeake Bay watershed
(accounting for both sediment generated in the Percent of total suspended-sediment flux
watershed of that tributary and retained during \:l Agriculture

transport), derived from SPARROW modeling (Brakebill Il urban developement, 1992-2002

etal,, 2019) B Forest
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FIGURE 4 Summarized sediment mass balances derived from sediment budgets of Chesapeake small watersheds. Inputs and outputs

may not balance because of unmeasured processes or measurement and extrapolation errors. Units are in mg km™ year™*

BOX 3 Management implication: Upland sediment sources

The availability of detailed information on the source of sediment (stream corridors or upland erosion) in a spe-
cific local watershed would facilitate more effective planning and implementation of sediment-reduction
actions. Notably, management approaches to mitigate erosion from upland sources (i.e., forest, pasture, crop)
and streambanks are distinctly different (e.g., implementing soil conservation vs stream restoration). However,
management actions designed to reduce upland sediment erosion across the Chesapeake Bay watershed are
likely to be most effective where sediment loading is greatest—specifically, in both urban and agricultural areas
of Piedmont. Limiting delivery of sediment is likely more effective when targeting erosion in uplands located
closer to streams and the Bay.

Within the Chesapeake watershed, sediment fingerprinting has been used in a variety of small watersheds
(<250 km?), ranging from highly urban to highly agricultural basins (Table S1; Devereux, Prestegaard, Needelman, &
Gellis, 2010; Banks, Gellis, & Noe, 2010; Massoudieh, Gellis, Banks, & Wieczorek, 2013). Fingerprinting results are
quite variable from basin to basin and across time, reflecting the interaction of land use, geology, and sediment storage
in each basin, as well as characteristics of storms sampled (Cashman et al., 2018; Gellis et al., 2009; Gellis et al., 2015;
Gellis & Gorman Sanisaca, 2018). Although results for each basin are unique, agriculture and urban land use have been
identified as important uplands sources of sediment transported as stream load (Table S1).

Direct field measurements of erosion and deposition across the landscape can be used to develop a watershed sedi-
ment budget for a specific setting. Sediment budgets are typically calculated from measurements at fixed locations
throughout a watershed that are extrapolated to estimate overall net erosion and deposition for the whole watershed.
Sediment budgets in the Chesapeake watershed have indicated highly variable upland sediment yields delivered to
streams among different basins (Figure 4; Box 3).

3.1.2 | Upland storage

Not all sediment eroded from uplands is delivered to streams. In construction of sediment budgets, the term “gross
erosion” is used to describe sediment eroded from an area of interest, which can range from plot- to watershed-scale,
and “net delivery” is used to describe sediment delivered to a downstream site (de Vente, Poesen, Arabkhedri, &
Verstraeten, 2007). The sediment delivery ratio (SDR) is the ratio of net delivery to gross erosion (Walling, 1983), usu-
ally expressed as a percent, in other words, the proportion of eroded sediment that was exported at that stream sam-
pling location.

Reports of SDRs in the Chesapeake watershed are rare. Costa (1975) examined stratigraphy of surficial deposits in
Western Run, Maryland, and determined 34% of sediment eroded from hillslopes during European land clearing for
agriculture in the 1700s was transported into the river system. The remaining 66% was deposited in floodplains, and as
colluvium and sheetwash deposits on hillslopes. Gellis et al. (2015) determined SDRs for agricultural fields and forest to
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BOX 4 Management implication: Gullies

Where gullying is of particular concern, extra consideration should be given to interpreting gullies’ hydrologic
context and how they would be classified into sediment source, budgeting, or modeling results to inform appro-
priate management interventions. Although management actions to mitigate rill initiation and expansion of
disconnected field gullies might involve establishing vegetation cover or soil conservation, most actions to limit
channel expansion or headcut incision might involve the management of upstream runoff and hard stabiliza-
tion of gully-channels (similar to some in-channel stream restorations methods).

be 4 and 8%, respectively, for Linganore Creek, Maryland, indicating a large mass of sediment in upland storage. In
addition, small ponds constructed on agricultural lands in Linganore Creek stored 16% of total eroded sediment (Gellis
et al., 2015). S. Smith and Wilcock (2015) also documented substantial upland valley sediment storage.

3.1.3 | Gullies and zero-order channels

Gullies, ditches, and zero-order stream erosion can be an important source of sediment as well as effective links from
the uplands to stream valleys when connected to downstream channels, increasing upland connectivity and the effi-
cient delivery of sediment to the permanent flowing stream network (Poesen, Nachtergaele, Verstraeten, & Valentin,
2003). While gullies and zero-order channels are commonly classified under upland erosion (S. Smith & Wilcock, 2015),
their expansion and erosion also share many similarities to stream-channel erosional processes, despite the ephemeral
nature of their flows. Gully erosion is often triggered by extreme rainfall on intensively disturbed soils along steep
slopes (Valentin, Poesen, & Li, 2005). It is important to note that various methodological approaches (e.g., sediment
budget, fingerprinting, modeling) may opt to lump gullies into different sides of the upland/stream valley divide, or
altogether ignore gullies (Box 4).

3.1.4 | Stream valley fluxes

Sediment stored in stream valleys can be eroded, entrained as suspended sediment or bedload and transported down-
stream, deposited in storage zones such as floodplains or channel deposits, and potentially eroded again and trans-
ported further downstream (Figure 5). Thus, contemporary sediment sources and transport are greatly influenced by
the reworking of sediment already stored in stream valleys.

Bank erosion

Sediment eroded from streambanks is efficiently delivered to the channel and can be the predominant source of
the sediment load; however, bank erosion rates are highly variable in time and space and generally poorly quanti-
fied and difficult to predict. Sediment fingerprinting studies have identified streambanks as consistently important
contributors of sediment: The major source of sediment (>50%) in 5 of 8 studies and the single greatest source in
6 of 8 studies (Table S1), although some sediment fingerprinting approaches may not be able to distinguish
between gully and streambank erosion (Gellis, Fuller, & Van Metre, 2016). Likewise, most Chesapeake sediment
budgets have found that bank erosion is greater than the amount of upland erosion delivered to stream networks
(Figure 4). Quantification of streambank sediment sources is notable since previous models used by management
agencies in the Chesapeake watershed underrepresent bank erosion (e.g., the CBP partnership’s Watershed Model;
Shenk & Linker, 2013).

The spatial and temporal factors that influence bank erosion are being identified. Studies that have measured bank
erosion found it typically increases with stream drainage area (Gellis et al., 2015; Gellis et al., 2017; Gillespie, Noe,
Hupp, Gellis, & Schenk, 2018) and where bank sediment is less dense and has less coverage by woody vegetation and
roots (Wynn & Mostaghimi, 2006). Conversely, bank aggradation by riparian grasses leads to narrower stream channels
compared to forested riparian zones (Hession, Pizzuto, Johnson, & Horwitz, 2003; Sweeney et al., 2004).
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FIGURE 5 Examples of some potential pathways of transport, storage, erosion, and export of sediment within a stream valley of a
watershed

Geomorphometry of stream valleys, including the shape, size, and ratios of channels, streambanks, and floodplains, has
been used to predict rates of bank erosion (Hopkins et al., 2018; Schenk, Hupp, Gellis, & Noe, 2013). Although banks
erode at a greater rate in larger streams, the total cumulative length of headwater streams on the landscape leads to
greater sediment contributions from headwaters (Gellis et al., 2015; Gellis et al., 2017; Hopkins et al., 2018). Finally,
streambanks are more likely to erode following a greater frequency of freeze-thaw cycles (Wynn, Henderson, &

Vaughan, 2008), during large floods (Gellis et al., 2017), or after exposure to warmer and more acidic water (Hoomehr,
Akinola, Wynn-Thompson, Garnand, & Eick, 2018).
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Floodplains can trap sediment through both deposition of channel load during overbank flooding as well as by riparian
buffering of sediments eroded from adjacent uplands. Floodplain deposition is spatially variable through the watershed
depending on land use, geology, reach geomorphology, and floodplain hydrologic connectivity (Gellis et al., 2009; Gil-
lespie et al., 2018; Hopkins et al., 2018; Hupp et al., 2013; Noe & Hupp, 2005; Pizzuto, Skalak, Pearson, & Benthem,
2016; Schenk, Hupp, Gellis, & Noe, 2013; Wolf, Noe, & Ahn, 2013). In general, greater rates of floodplain sedimentation
occur where greater sediment load is transported by streams, greater hydrologic connectivity exists between stream
channels and floodplains, and floodplain complexity is greater (like highly variable microtopography, coarse woody
debris, and plant biomass). As with streambank erosion, the geomorphometry of stream valleys can be predictive of
floodplain deposition (Hopkins et al., 2018; Schenk et al., 2013).

Floodplains, including alluvial wetlands, can cumulatively trap large quantities of sediment, sometimes at rates sim-
ilar to annual river loads (Phillips, 1989). For example, sediment accumulating on Coastal Plain floodplains of seven
Chesapeake rivers was nearly 20% greater than the amount of sediment exported in the annual river load (Noe &
Hupp, 2009). SPARROW modeling calculated that floodplains on the major Coastal Plain rivers cumulatively trap the
equivalent of 32% of those rivers’ total load of suspended sediment before final export to the Bay (Brakebill et al., 2010).
Within a 4.8 km reach, floodplain deposition was equal to 10% of the annual river load (Pizzuto et al., 2018). Most
watershed sediment budgets have measured floodplain trapping rates to be slightly smaller than bank erosion rates
(Figure 4). Floodplain sediment trapping compared to annual river load evaluated in four small watersheds was 19% in
7 km? (Hopkins et al., 2018) and 52% in 14 km?* (Gellis et al., 2017) upper Difficult Run headwater tributaries, 95% in
the 147 km? Linganore Creek (Gellis et al., 2015), and over 400% of the annual load in the 151 km? lower Difficult Run
watersheds (Hopkins et al., 2018).

Balance of erosion and deposition

Streambank erosion and floodplain deposition can theoretically balance each other under geomorphic conditions of
dynamic equilibrium (Hupp et al., 2015; Leopold et al., 1964). However, legacy sediment storage and hydrologic alter-
ations due to watershed land use change, and potentially climate change, have led to non-equilibrium stream valley
sediment processes (E. Wohl, 2015). In some streams, floodplain deposition exceeds streambank erosion, leading to net
retention of sediment, but in other streams, the opposite occurs leading to a net source of sediment.

Headwaters are primarily dominated by bank erosion, while floodplains along streams with larger drainage area,
particularly along alluvial streams with broad valley-bottoms, can trap large amounts of sediment. In the Chesapeake
watershed, Donovan et al. (2015) estimated the balance of floodplain and streambank geomorphic changes in stream
valleys of the Baltimore area can change from erosional, typically in lower-order streams with small drainage area, to
depositional in higher-order streams with larger drainage area. Stream reaches switched from being typically erosional
in first through third-order streams, neutral in fourth-order, and depositional in fifth and sixth order streams of the Dif-
ficult Run watershed (Hopkins et al., 2018; Hupp et al., 2013). In contrast, Gillespie et al. (2018) found that sediment
balance was depositional among sites in third- or fourth-order streams, but decreasingly so in larger streams, of an agri-
cultural Virginia watershed. Pizzuto et al. (2018) measured that floodplain deposition was more than three times greater
than bank erosion along a fifth-order stream. Schenk et al. (2013) found drainage area was most often not related to
sediment balance among different Piedmont watersheds, but the geomorphometry of stream valleys, specifically the
ratio of bank height to floodplain width, was predictive of the sediment balance of Chesapeake Piedmont streams
(Hopkins et al., 2018; Schenk et al., 2013).

However, the length of headwater streams across the watershed can surpass downstream floodplain trapping effi-
ciency, resulting in net downstream loading from stream valleys (Hopkins et al., 2018, Figure 6). Sediment budgets in
the Chesapeake have indicated variable and basin-specific results, but with some generally and broadly applicable con-
clusions. Bank erosion is much greater than floodplain deposition in some watersheds (typically smaller drainage
areas), but only slightly greater in others (larger drainage areas, Figure 4).

In-channel erosion and deposition flux

Many sediment field studies neglect the role of erosion and deposition within stream channels, often assuming chan-
nels are not a significant source or sink of fine-grained sediment and that most sediment is transported downstream.
Nevertheless, channels are an active region of biogeochemical alteration of nutrients, contaminants, and carbon (Fisher
et al., 1998), and can be differentiated into several geomorphic zones, including point bars, alternate bars, and other
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FIGURE 6 (a) Cumulative annual suspended sediment load and the trendline of flow-normalized load at the nine River Input
Monitoring stations discharging to the Chesapeake Bay, from 1985 to 2016 (Moyer, Langland, Blomquist, & Yang, 2017); (b) trends in flow-
normalized suspended sediment load across the Chesapeake watershed from 2007 to 2016 relative to the TMDL target of 20% reduction in
loading to the Chesapeake Bay (dashed vertical line; Moyer et al., 2017); and (c) directionality of flow-normalized trends at each station
(green down arrows indicate decreasing load, gray circles indicate no trend, and orange up arrows indicate increasing load, Moyer et al.,
2017) overlaid on estimated suspended sediment yield by SPARROW modeling (Brakebill et al., 2010)

lateral deposits, mid-channel bars and islands, and channel beds, that store a varying amount of fine sediment over dif-
ferent timescales (Box 5).

The amount of fine sediment stored in active channels depends on sediment supply and channel transport capacity
(Skalak & Pizzuto, 2010). Although active channels are geomorphically dynamic with highly variable rates of erosion
and deposition, in general stream beds and point bars are often a small proportion of sediment budgets (Gellis et al.,
2015; Gellis et al., 2017). However, by comparing sediment budget and fingerprinting results in Upper Difficult Run,
Cashman et al. (2018) estimated that a minimum of 34% of the total bank-derived material in the sediment load was
eroded bank material from previous years re-mobilized from temporary in-channel storage.

Other deposits, such as lateral fine-grained channel margin deposits or lateral accretion elements that form in
nearbank regions, are typically caused by bank obstructions such as large wood debris (Skalak & Pizzuto, 2010). These
deposits often tend to be more stable than other forms of channel storage and thus have longer residence times (see
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BOX 5 Management implication: Headwater versus larger streams

Among the streams in a watershed, where should efforts be targeted to address the goal of reducing down-
stream sediment loading? Because of the fundamental differences in sediment transport between headwater
vs. larger streams, it is useful to discriminate based on drainage area or stream order. Headwater systems, typi-
cally first through about third-order streams, are net erosive because of bank erosion occurs but little active
floodplain exists to support offsetting deposition. Here, stream restoration and stormwater control can be
implemented to reduce bank erosion. Larger streams, typically third order and larger, are often net depositional
because their wider active floodplain and shallower slopes can support extensive deposition. Here, the conser-
vation and restoration of hydrologic connectivity to floodplains can be implemented to maintain or augment
sediment trapping. However, choosing the best management approach also is a question of spatial scale and
concentration of effort. The greater cumulative stream length in headwater streams makes them a larger con-
tributor to downstream sediment load than larger streams; however, the greater rates of erosion and deposition
in larger stream reaches makes them more efficient to manage than headwater streams and their proximity to
downstream water bodies makes it more likely achieve more rapid reductions in sediment delivery.

Section 3.2, below). However, more work is needed to develop better estimates of both the quantity of fine sediment stored
in active margins of channels as well as their storage and remobilization timescales and response to management
practices.

Reservoirs

Reservoirs temporarily store water and slow water velocity for many reasons including water supply, recreation, agri-
cultural and sediment management, and flood control. Reservoir size can range from small farm ponds to large water
supply and hydroelectric facilities. When water velocity is slowed, sediment can drop out of suspension and become
temporally or permanently trapped in reservoirs. The SPARROW model has estimated that large reservoirs trap 29% of
long-term sediment load in the Chesapeake watershed with the efficiency of sediment trapping depending on the ratio
of average inflow to surface area (Brakebill et al., 2010).

The three reservoirs in the Lower Susquehanna River (Lake Clarke and Lake Aldred in Pennsylvania and Conowingo
Reservoir in Maryland and Pennsylvania) have a particularly important impact on sediment delivery to the Bay. Over the
past 80+ years, about 426 million metric tons of sediment were transported into these reservoirs, about 254 million metric
tons trapped, and 172 million metric tons transported to the Bay, indicating a 60% long-term trapping rate (Langland,
2015). However, the three reservoirs are in differing stages of filling with sediment. On the Conowingo Reservoir, bathym-
etry surveys from 1990 to 2011 indicate loss of water-storage capacity and thus an increase in sediment-storage in each
successive survey. The ratio of sediment output to input from the lower Susquehanna reservoirs has been increasing over
the past 30 years with a marked decrease in retention in the mid-2000s as Conowingo Reservoir was filling (Zhang,
Hirsch, & Ball, 2016). As the ratio between the water- and sediment-storage capacities change, and more sediments are
deposited, eventually a condition of “equilibrium” occurs resulting in negligible sediment trapping efficiency. Such is the
case in the Lower Susquehanna River, as Lake Clarke and Lake Aldred have been in equilibrium for several decades and
Conowingo Reservoir is nearing or at equilibrium. Brief high-flow events, such as Tropical Storm Lee in 2011, now scour
large amounts of sediment from the Lower Susquehanna reservoir system and export it to the Bay (Hirsch, 2012;
Figure 1b). The issue of decreased reservoir trapping, thereby increasing sediment and nutrient loads downstream, has
posed new challenges to the attainment of TMDL goals for the Chesapeake Bay, and is currently being factored in the
assessment of regulatory load reduction requirements by the CBP partnership.

3.2 | Residence times

After sediment is deposited, it remains in storage until it is remobilized and transported downstream. This storage time
can range from days to millennia largely dependent on characteristics of the watershed, the stream, the storage zone,
and the sediment. In-channel sediment typically has a younger age, shorter residence time, and shorter storage
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timescales than floodplain sediment. Channel sediment is mobilized by flow at smaller thresholds of shear stress and
hence more frequently. The average age of the material stored in channel beds is often less than a year because the
active layer of channel beds is generally assumed to exchange annually (Gellis et al., 2017). Storage timescales of sedi-
ment within in-channel deposits such as point bars, active bars, and mid-channel bars are variable, but generally
assumed to be remobilized on annual timescales, although other in-channel locations such as fine-grained channel
margin deposits have longer storage timescales ranging from less than a year to over 70 years (Skalak & Pizzuto, 2010).

Outside channels, floodplain storage timescales can extend from decades to millennia (Pizzuto et al., 2014; Pizzuto
et al., 2017). Data from the Chesapeake watershed suggest floodplain sediment age is typically about 500 years (Pizzuto
et al., 2014). Sediment stored in floodplains is largely reintroduced to channels through bank erosion or vertical flood-
plain erosion. This phenomenon of long time-scales for reworking of floodplain sediment can have implications for
management (Pizzuto et al., 2017). First, there is likely to be a lag between the introduction of a management practice
onto the landscape and its anticipated benefit on downstream sediment loads. Second, long sediment storage times in
conjunction with large masses of sediment in floodplain storage would lead to elevated downstream sediment loads into
the future. Thus, reworking of sediment storage in floodplains is likely to lead to difficulty in detecting the signal of
reduced downstream sediment loading due to upstream BMP implementation. Finally, sediment is more rapidly deliv-
ered to downstream waters, like the Bay, from streams lower in the stream network.

3.3 | Suspended sediment characteristics, yields, and loads

Sediment transported through the Chesapeake watershed and delivered to the Bay is primarily fine-grained (i.e., silt or
clay). Considering all nine of the major tributaries monitored from 1984 to 2016, Zhang and Blomquist (2018) reported
that 90% of suspended sediment is fine-grained. They reported that suspended sediment exported from the monitored
portion of the watershed was strongly dominated (90%) by the three largest tributaries, namely, the Susquehanna, Poto-
mac, and James rivers. Susquehanna River sediment consisted of almost entirely fine-grained sediment throughout the
period of record, which indicates strong modulation of sediment characteristics by the Conowingo Reservoir located
near the river outlet.

Suspended sediment yields from streams (i.e., sediment load divided by drainage area) vary across the Chesapeake
watershed according to differences in watershed land use, size, and physiographic setting. Average sediment yields
ranged from approximately 20-2,000 kg/ha between 2007 and 2016 at 65 Chesapeake Bay nontidal network stations
(Moyer et al., 2017). Urban, Piedmont, and headwater streams have the greatest sediment yields in the Chesapeake
watershed (Figure 5, Brakebill et al., 2010; Gellis et al., 2009). Regardless of land use, sediment yields typically decline
with increasing watershed area because of increasing trapping of sediment along larger streams and rivers (Donovan
et al., 2015; S. Smith & Wilcock, 2015).

Changes in sediment yields over time can result from alterations to the balance of erosional inputs and depositional
storage. A decrease in yield over time could result from reduced rates of streambank or overland erosion or increased
rates of floodplain trapping. Sediment yields between 2007 and 2016 were reduced at 18%, increased at 37%, and had no
discernable statistical trend at 43% of the 65 analyzed Chesapeake nontidal network stations (Figure 5; Moyer et al.,
2017). A —20% median reduction was observed at stations with decreasing yield and +31% increase was observed at sta-
tions with increasing yield. Sediment yields increased or remained unchanged at the five stations draining urban water-
sheds. Sediment yields increased or remained unchanged in 13 of 14 streams that drain predominantly agricultural
watersheds. Two-thirds of stations with reduced sediment loads drain mostly undeveloped watersheds. To summarize,
trends in sediment yield are disparate across the Chesapeake watershed with little evidence of widespread declines over
time. Continued research is needed to link trends in sediment yield to watershed and climate changes.

There has been little change in the total annual suspended load of sediment delivered to the Chesapeake Bay over
the past 30 years from the nine major tributaries that drain 78% of the watershed, with large interannual variability
associated with differences in precipitation and runoff (Figure 6). Flow-normalized sediment loads increased at four
and decreased at three stations between 1985 and 2016. Annual sediment loads approximately doubled from 1.1 million
metric tons from the late 1990s and early 2000s to present at the Susquehanna River at Conowingo, MD (USGS station
ID: 01578310). This station contributes the largest load of sediment to the Bay of all tributaries and increases have been
associated with sediment filling of the Conowingo Reservoir (Langland, 2015). The increased sediment load coming
from the Susquehanna has effectively offset large reductions that occurred at the Potomac River at Washington, DC
(USGS station ID: 01646580) between 1985 and 1995. Annual sediment loads in the Potomac River decreased from
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approximately 2.3 to 0.9 million metric tons during this period, possibly as erosion rates fell after a period of intense
urban and agricultural development in the mid-1970s and early 1980s.

4 | EFFECTS OF MANAGEMENT PRACTICES

A wide variety of BMPs for sediment control continue to be implemented in the Chesapeake watershed to meet the
Chesapeake Bay TMDL. The TMDL requires installation of BMPs and other management actions to reduce sediment
inputs to the Bay by 20% by 2025 compared to baseline conditions in 2009. This equates to a reduction in sediment load-
ing of more than 0.73 million metric ton per year (United States Environmental Protection Agency, 2010). As of the
2017 Midpoint assessment, Bay jurisdictions have met the interim milestone of implementing practices to achieve the
required 60% in [predicted] sediment reductions (United States Environmental Protection Agency, 2018). Meeting this
milestone required investment in a diverse menu of BMPs including agricultural practices to better manage crops, pas-
ture, and animal facilities, urban practices to better manage stormwater, and practices to better manage timberlands
and roadways.

The Chesapeake Bay Program has compiled an inventory of approximately 150 different BMPs implemented in the
Chesapeake watershed (Chesapeake Bay Program, 2018a) and uses this inventory in the CBP Watershed Model to pre-
dict the effect of management on sediment loading (United States Environmental Protection Agency, 2010). The inven-
tory includes BMP implementation that was federally, state, nongovernmental organization, and voluntarily funded
(Hively, Devereux, & Claggett, 2013), and BMP implementation is reported annually to the CBP by jurisdictions. The
CBP Chesapeake Assessment Scenario Tool (CAST; Cast.chesapeakebay.net) can be used at a state, county, or water-
shed scale to assess predicted changes in sediment loads due to current or proposed management actions.

41 | Review of BMP efficiencies

Each type of BMP is expected to have a different sediment removal or trapping efficiency and therefore different
impacts on sediment loads to streams. While field-scale estimates of sediment removal efficiencies exist for some BMPs
in the scientific literature, actual BMP removal efficiencies can be affected by confounding local or regional factors as
well as the level of implementation and maintenance routines (Liu et al., 2017). A recent synthesis of BMP monitoring
studies across the U.S. documented a wide range of sediment removal efficiencies for agricultural and urban BMPs (Liu
et al., 2017). The CBP convenes expert panels of scientists and practitioners to evaluate state of the science to develop
standardized efficiencies for each BMP type or methods to calculate efficiencies for individual BMPs that are then incor-
porated into the CBP Watershed Model (e.g., Tables S2 and S3). However, there is still substantial uncertainty in the
actual performance of BMPs. Numerous factors should be considered when selecting BMPs in a specific setting, includ-
ing cost effectiveness, site constraints on BMP function (e.g., stormwater treatment vs. runoff reduction practices),
maintenance requirements, limitations due to local topography and soils, and possible co-benefits (nutrient reduction,
habitat improvement, etc.).

4.2 | Expected BMP effects on sediment loads

The CBP Watershed Model can be used to estimate the expected total reduction in sediment mass delivered to streams
due to implemented BMPs as well as the average effect of different types of BMP. Sekellick, Devereux, Keisman,
Sweeney, and Blomquist (2019) ran the CBP Watershed Model with a selection of specially designed scenarios to evalu-
ate effectiveness of BMPs from 1985 through 2014. BMPs were estimated to reduce time-averaged sediment loads to
streams in the Chesapeake watershed by 23% in the model year 2014 as compared to a 2014 model scenario without
BMPs (Sekellick et al., 2019). The expected reduction in sediment loads to streams due to BMP implementation varies
across the Chesapeake watershed. In some areas, such as the Eastern Shore, sediment reductions are estimated to be as
high as 85% in 2014 due to high rates of implementation of conservation tillage practices. Large percentage reductions
in sediment loads are also expected in West Virginia and the Potomac river watershed due to widespread implementa-
tion of pasture fencing practices. Although modeling suggests that the suite of implemented BMPs across the landscape
should lead to large reductions in downstream sediment loading, there is a paucity of on-the-ground monitoring studies


http://Cast.chesapeakebay.net

18 of 28 WI LEY— "g“ WIREs NOE ET AL.

W WATER

that document short- and long-term impacts of BMPs within the Chesapeake watershed. Furthermore, as described
above, few streams across the Chesapeake watershed (18% of load stations) currently show declines in sediment loading
over time. However, as the Phase 5.3.2 CBP Watershed model, which was used in this study, does not account for the
lag times inherent in sediment erosion, storage, and transport, these estimated effects may be delayed or attenuated
across longer time scales.

About 82% of the total estimated reductions in stream sediment loads in 2014 is due to BMP implementation on
agricultural lands, particularly due to conservation tillage, pasture fencing, and conservation plans (Sekellick et al.,
2019). The USDA NRCS estimates agricultural conservation practices in 2011, that compared to the baseline condition
(2003-2006), resulted in a 63% reduction in sediment loss from fields and a 57% reduction in sheet and rill erosion rates
(National Resources Conservation Services, 2013). Greater use of cover crops in 2011 provided a reduction in sediment
loss by an average of 78% and winter cover crop adoption reduced sediment losses by 37% compared to the baseline
(National Resources Conservation Services, 2013). While conservation tillage was estimated to account for a large pro-
portion of reduction in sediment loads to streams, other agricultural BMPs were estimated to be more effective per unit
of implementation (Table S2). These include streamside grass buffers that were estimated to reduce sediment loads by
11,000 kg/ha and pasture fencing was estimated to reduce sediment loads by 8,576 kg/ha (Sekellick et al., 2019).

BMPs on developed land were estimated to account for 12% of the total reduction in sediment load to streams due
to implemented BMPs in 2014, with the largest estimated reductions from erosion and sediment controls, dry ponds,
and abandoned mine land reclamation (Sekellick et al., 2019). BMPs that were estimated to be most effective at reduc-
ing sediment loads to streams were bioretention, abandoned mine land reclamation, and street sweeping. Bioretention
BMPs were estimated to reduce sediment loads by 5,876 kg/ha, the greatest magnitude of load reduction from among
developed land BMPs (Sekellick et al., 2019; Table S3).

4.3 | New research on BMP effectiveness

The arrangement, density, and placement of stormwater control BMPs within urban and suburban watersheds can
strongly affect BMP performance. A year of monitoring sediment export during storm events in two suburban water-
sheds in Clarksburg, Maryland indicated that the study area with a distributed network of infiltration-focused
stormwater BMPs exported 30% less sediment during storm events than a study area with a centralized set of detention-
focused stormwater BMPs (Hopkins, Loperfido, Craig, Noe, & Hogan, 2017). This result suggests that distributing BMPs
throughout the watershed can be a more effective strategy to reduce sediment export compared to installing a few large
detention ponds. However, sediment export from the two study areas became more similar as precipitation amount and
intensity increased and the performance of BMPs declined as water storage within the facility was exceeded (Hopkins
et al., 2017). During large precipitation events, few BMPs can adequately mitigate peak flows which can result in sub-
stantial stream bank erosion downstream of the BMPs. This is consequential because the majority of sediment load
(>94%) is transported during stormflow conditions that occur less than 20% of the year (Horowitz & Stephens, 2008).

Installing BMPs within stream channels can also retain and trap sediments from being transported downstream.
These strategies often involve armoring the bed and banks to prevent erosion or alternatively to reconnect the stream
with its floodplain by raising the base elevation of an incised stream channel or by grading bank slopes. Stream restora-
tion strategies like natural channel design can be effective at increasing sediment trapping through in-channel storage
and floodplain creation, with rates of sediment trapping increased by the degree of hydrologic connectivity to the
stream channel (McMillan & Noe, 2017). An alternative approach to reconnect the channel to the floodplain involves
lowering the floodplain to the elevation of the incised channel via the mass-removal of all legacy sediment from the
floodplain. In one monitored instance of this restoration design, 20,000 metric tons of legacy sediment were excavated
from a 1.5 km section of Big Spring Run, an agricultural stream in Pennsylvania, restoring a pre-colonial stream valley
morphology. This legacy sediment removal project resulted in 10,000 m* of extra water storage and a reduction in the
effective sediment load by 85% (Langland, Duris, Zimmerman, & Chaplin, 2020).

5 | NEWERSCIENTIFIC TOOLS

As the Chesapeake Bay TMDL continues to be implemented to reduce sediment loading, new models and measurement
capabilities will redefine and improve how we assess, monitor, and manage sediment within the watershed.
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51 | Models

The CBP partnership uses the CBP Watershed Model to develop nitrogen, phosphorus, and sediment reduction targets
to meet the Chesapeake Bay TMDL and to track progress toward those targets (Chesapeake Bay Program, 2018b). At
the direction of stakeholder groups, the model was revised and simplified in 2018 such that the primary model structure
for management scenarios is time-averaged using coefficients based on long-term hydrology. For time-averaged coeffi-
cients arising from dynamic models, a 10- to 30-year hydrology is typically used. Sediment transport modeling was also
updated to improve representation of upland erosion and delivery and sediment exchange in stream valleys
(Chesapeake Bay Program, 2018b).

Time-averaged field-scale sediment erosion yields from uplands are estimated using the Revised Universal Soil Loss
Equation (National Resources Conservation Services, 2007) at a 10-m scale. Sediment delivery ratios (delivery to
streams) are then calculated relative to slope, area, roughness, and flow-path length at a 10-m scale following the sedi-
ment connectivity method of Cavalli, Trevisani, Comiti, and Marchi (2013). Small stream and small reservoir attenua-
tion is estimated by the SPARROW regression model (Brakebill et al., 2010). An average yield and sediment delivery
ratio is calculated for each land use type for model segments averaging 75 km?, and small water body effects are sum-
marized at the same scale. Stream bed, bank erosion and floodplain deposition are estimated based on large-scale aver-
age rates. A closely related dynamic model based on Hydrologic Simulation Program—Fortran (Bicknell, Imhoff, Kittle,
Jobes, & Donigian, 2005) is used to calibrate to observed water quality data over 1985-2015. Estimates of large river and
reservoir sediment balances from the dynamic model are used in the time-averaged model as loss coefficients. Full doc-
umentation of both the time-averaged and dynamic models is available on the CBP website (Chesapeake Bay Program,
2018a).

The CBP Watershed Model effectively predicts measured suspended sediment yields at monitoring stations
(R* = 0.96; Chesapeake Bay Program, 2018b). Boomer, Weller, and Jordan (2008) demonstrated that models incorporat-
ing Universal Soil Loss Equation and sediment delivery ratio poorly predict observed sediment yields, but that multiple
regression models incorporating the effects of soil erodibility, streamflow, topography, land use, and physiographic
province have moderate predictive performance (R*> = 0.55). The SPARROW regression model had similar, moderate
predictive performance for sediment yield (R* = 0.57) when accounting for upland and stream-corridor sources, land-
scape factors affecting sediment transport, and fluvial and reservoir retention (Brakebill et al., 2010).

5.2 | New measurement capabilities

Recent advances in data collection techniques have substantially increased both the resolution and spatial scale of data
on sediment dynamics. While previously a gap existed in linking small, site-scale measurements of erosional and depo-
sitional processes in the field with large-scale modeling efforts, new approaches are enabling direct measuring and
quantification of sediment erosion and deposition across large-spatial scales.

The new Floodplain and Channel Evaluation Toolkit (FACET; Lamont et al., 2019) is able to use aerial lidar
datasets to automatically derive standard field-scale geomorphic metrics (e.g., channel width, bank height, active flood-
plain width) and is in the process of being applied to most of the Chesapeake watershed. Furthermore, FACET outputs
are being used to link field-derived estimates of localized sediment erosion from streambanks and retention on flood-
plains to enhance predictions throughout local watersheds (Hopkins et al., 2018).

Additional lidar acquisitions coordinated through the USGS 3D Elevation Program is resulting in high-quality of
temporally-repeated lidar datasets that will enable topographic change detection across entire counties (>1,000 km?).
Similarly, historical aerial photography has the potential to be processed with newer structure-from-motion photogram-
metric (SfM) algorithms to create high-resolution topographic datasets for change detection (Chirico, Bergstresser,
DeWitt, & Alessi, 2020; Warrick, Ritchie, Adelman, Adelman, & Limber, 2017). Although these approaches may not be
as sensitive to change as traditional field-based approaches, the ability to identify erosional hotspots across the land-
scape, particularly in locations without historical monitoring, has potential to revolutionize the identification and moni-
toring of sediment erosion.

Despite these improvements, highly accurate measurements at the field scale are still necessary, especially in the
monitoring of individual restorations or sediment management projects. These new approaches help address the cur-
rent limitations of field-based approaches, the representativeness of measurements, and the error associated with
extrapolation across unmeasured areas (Gellis, Fitzpatrick, & Schubauer-Berigan, 2016). Spatially continuous data from
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terrestrial laser scanners (TLS) and ground-based SfM allow for sub-centimeter resolution mapping across 10-100 s of
meters, functionally similarly to the scale of traditional field-based approaches (e.g., bank pins). Pairing SfM with small
Unmanned Aerial Systems (SUAS) allows rapid monitoring and evaluation of erosion (M. R. James, Robson, & Smith,
2017) across entire reaches, or river segments of interest (<1-10 km) with high temporal repeatability (weekly-
monthly).

Finally, advances in fluvial sediment monitoring, particularly of advanced acoustic methods, are drastically improv-
ing collection and quantification of suspended sediment. Acoustic Doppler methods for deriving discharge also collect
backscatter data, a value of the intensity of the signal of rebounding acoustics off particles in the water column, which
can be used to directly calculate suspended sediment concentrations (Medalie, Chalmers, Kiah, & Copans, 2014). This
approach collects data at multiple points across a cross-section, avoiding potential bias of a single-point turbidity probe,
and is more resistant to biofouling (Gray & Gartner, 2009). Furthermore, the use of multi-frequency systems
(i.e., multiple single-frequency instruments) can not only capture suspended sediment concentration, but can separate
concentrations of silt and clay, and sand, in real-time, at accuracy levels equal to, or more accurate than, traditional
sampling methods (Topping, Wright, Melis, & Rubin, 2007).

6 | CONCLUSION: SUMMARY FOR WATERSHED MANAGEMENT

The delivery of sediment to Chesapeake streams and the Bay is controlled by both natural and anthropogenic factors
(Box 6). Geology and historical land use have generated a physical template that is influenced by present-day land
use, climate, and management actions. Variations in these factors across the watershed and over time result in com-
plex landscape processes and interactions. Locations of dominant sediment sources in the Chesapeake Bay watershed
include the Piedmont, urban and agriculture land use, and headwater streams. BMPs have a wide range in efficien-
cies and their implementation is predicted to have meaningfully reduced sediment loading. However, trends in
downstream monitored sediment loads are not yet consistent with the estimated effects of upstream BMP implemen-
tation. Active sediment storage in streams and rivers can introduce long transport and lag times, attenuating the
effects of management actions and delaying detection on sediment loads. Enhancing knowledge of sources and lags
of sediment can help managers improve BMP location and selection to increase efficiency and cost-effectiveness of
management actions. Furthermore, the impact of sediment on ecosystem health can also vary due to grain size and
other factors. Fine-grained sediment has been shown to have the largest impacts on stream biota; meanwhile, coarse
sediment can be necessary for stream habitat and downstream estuarine wetlands. Contaminated sediment can be

BOX 6 Management implication: Three important geomorphic principles to guide management

Scale: Sediment starts in the uplands and moves through stream storage compartments before being exported
from a watershed to a downstream waterbody. Sediment “hops and rests” downstream, in and out of different
storage zones (like floodplains), trapping large amounts of sediment (and nutrients), and causing lag times
(sometimes short, often long) in responses to management actions. However, sediment processes differ in head-
water streams and larger rivers.

Time: Historical legacies matter—actions from 200+ years ago continue to influence sediment issues in the
present. Despite current implementation of BMP and sediment management efforts, reworking of legacy sedi-
ment and time-lags inherent in sediment transport and storage may influence long-term sediment loading rates
and the detection of these management effects in the future.

Land use: Agricultural, developed land, and stream banks are all important sources of sediment, but are
locally and temporally variable. Urban streams export a larger sediment yield than agricultural streams, but
agriculture is more widespread and contributes the largest cumulative sediment load among Chesapeake land
uses. Sediment-bound pollutants vary depending on the source of eroded sediment. Based on models, BMPs
implemented in various land uses of the Chesapeake Bay watershed are expected to have reduced the 2014 sedi-
ment load to streams by about a quarter, although this effect is not yet apparent in the measured trends of
downstream suspended sediment loads.
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Landscape Co-benefits of
setting Sediment summary TMDL implication implementation
Headwater First and second-order channels erode their =~ Consider practices associated with ~ Improve stream health
streams streambanks but typically have minimal stream restoration and runoff and fish habitat
active floodplains control to prevent bank erosion
Larger If well connected to channels, floodplains Conserve and restore hydrologic Improve wildlife and fish
streams can trap much of the sediment eroded connectivity to floodplains habitat and
and rivers upstream biodiversity, and

Urban areas

Agricultural
areas

Bank erosion is the dominant source of
sediment export

Both bank erosion and upland soil erosion
are important sediment sources in
agricultural areas; the two can often be
directly assessed

Consider stormwater control in
the uplands with stream
restoration to prevent bank
erosion

Consider practices to reduce
upland soil erosion and
implement stream buffers

Legacy sediment removal can
prevent bank erosion and
restore floodplain connectivity

mitigate flooding

Improve stream health,
fish habitat, and
recreation

Improve stream health
and fish habitat and
forest buffer

Improve wetland and
fish and wildlife
habitat

targeted by specific BMPs to improve ecosystem health. Although changes in hydrology associated with climate
change could influence sediment dynamics, insufficient information exists on current impacts or predictions of
future changes.

Despite the vast body of sediment research conducted in the Chesapeake watershed synthesized in this review, fur-
ther study is still required to improve quantitative, geographically specific predictability of sediment loads, fate, trans-
port, impacts on stream health, and the effectiveness of BMPs throughout stream networks. In particular, the targeting
of BMP type and location would benefit from improvements in spatial prediction of sediment dynamics everywhere, at
the fine resolution needed for managers to make decisions (e.g., individual stream reaches, individual catchments, or
individual fields), and in predictions of changes in sediment storage and downstream transport through time. This
holistic understanding of sediment, being developed in the Chesapeake Bay watershed, may be relevant to other regions
that require management actions to reduce downstream loading of fine-grained sediment for the benefit of people and
ecosystems (Box 7).

ACKNOWLEDGMENTS

We would like to thank the support of the U.S. Geological Survey's Chesapeake Bay Activities program, feedback from
the Chesapeake Bay Program partners, and manuscript reviews by Faith Fitzpatrick, Jim Pizzuto, Meghan Fellows, and
an anonymous reviewer. Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

CONFLICT OF INTEREST
The authors acknowledge no conflict of interests with this work.

AUTHOR CONTRIBUTIONS

Gregory Noe: Project administration-Lead, Writing-original draft-Lead, Writing-review & editing-Lead. Matthew
Cashman: Conceptualization-Equal, Writing-original draft-Equal, Writing-review & editing-Equal. Katie Skalak:
Conceptualization-Equal, = Writing-original  draft-Equal, Writing-review &  editing-Equal. Allen Gelis:
Conceptualization-Equal, Writing-original draft-Equal, Writing-review & editing-Supporting. Kristina Hopkins:
Writing-original draft-Supporting. Douglas Moyer: Writing-original draft-Supporting. James Webber: Writing-



22 of 28 WI LEY— "g, WIREs NOE ET AL.

W WATER

original draft-Supporting. Adam Benthem: Visualization-Equal, Writing-original draft-Supporting, Writing-review &
editing-Supporting. Kelly Maloney: Writing-original draft-Supporting. John Brakebill: Writing-original draft-
Supporting. Andrew Sekellick: Writing-original draft-Supporting. Michael Langland: Writing-original draft-
Supporting. Qian Zhang: Writing-original draft-Supporting. Gary Shenk: Writing-original draft-Supporting. Jeni
Keisman: Writing-original draft-Supporting. Cliff Hupp: Writing-original draft-Supporting.

ORCID

Gregory B. Noe © https://orcid.org/0000-0002-6661-2646
Katie Skalak ©® https://orcid.org/0000-0003-4122-1240
Allen Gellis ‘® https://orcid.org/0000-0002-3449-2889
Kristina G. Hopkins @ https://orcid.org/0000-0003-1699-9384
Doug Moyer @ https://orcid.org/0000-0001-6330-478X
James Webber ¥ https://orcid.org/0000-0001-6636-1368
Adam Benthem © https://orcid.org/0000-0003-2372-0281
Kelly Maloney ‘© https://orcid.org/0000-0003-2304-0745
John Brakebill ' https://orcid.org/0000-0001-9235-6810
Andrew Sekellick ‘© https://orcid.org/0000-0002-0440-7655
Mike Langland ‘© https://orcid.org/0000-0002-8350-8779
Qian Zhang © https://orcid.org/0000-0003-0500-5655
Gary Shenk © https://orcid.org/0000-0001-6451-2513

Jeni Keisman @ https://orcid.org/0000-0001-6808-9193
Cliff Hupp ‘© https://orcid.org/0000-0003-1853-9197

RELATED WIREs ARTICLES
Physical and biological controls on fine sediment transport and storage in rivers
Monitoring the effectiveness of floodplain habitat restoration: A review of methods and recommendations for future

monitoring
Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum

FURTHER READING

Franssen, J., Blais, C., Lapointe, M., Bérubé, F., Bergeron, N., & Magnan, P. (2012). Asphyxiation and entombment mechanisms in fines rich
spawning substrates: Experimental evidence with brook trout (Salvelinus fontinalis) embryos. Canadian Journal of Fisheries and Aquatic
Sciences, 69(3), 587-599.

Greig, S. M., Sear, D. A., & Carling, P. A. (2005). The impact of fine sediment accumulation on the survival of incubating salmon progeny:
Implications for sediment management. Science of the Total Environment, 344(1-3), 241-258. https://doi.org/10.1016/j.scitotenv.2005.
02.010

Langland, M. J., Duris, J. W., Zimmerman, T. M., & Chaplin, J. J. (2020). Effects of legacy sediment removal and effects on nutrients and sedi-
ment in Big Spring Run, Lancaster County, Pennsylvania, 2009-15: U.S. Geological Survey Scientific Investigations Report 2020-5031, p. 28.
https://doi.org/10.3133/sir20205031.

REFERENCES

Aitken, W. W. (1936). The relation of soil erosion to stream improvement and fish life. Journal of Forestry, 34(12), 1059-1061. https://doi.org/
10.1093/jof/34.12.1059

Bain, D. J., Green, M. B., Campbell, J. L., Chamblee, J. F., Chaoka, S., Fraterrigo, J. M., ... Leigh, D. S. (2012). Legacy effects in material flux:
Structural catchment changes predate long-term studies. Bioscience, 62(6), 575-584. https://doi.org/10.1525/bi0.2012.62.6.8

Bain, D. J., Smith, S., & Nagle, G. N. (2008). Reservations about dam findings. Science, 321(5891), 910-910.

Banks, W., Gellis, A. C., & Noe, G. (2010). Sources of fine-grained suspended sediment in Mill Stream Branch watershed, Corsica River Basin, a
tributary to the Chesapeake Bay, Maryland, 2009. Paper presented at the Proceedings of the 2nd Joint Federal Interagency Conference,
Las Vegas, NV, June.

Belby, C. S., Spigel, L. J., & Fitzpatrick, F. A. (2019). Historic changes to floodplain systems in the Driftless area. In E. C. Carson,
J. E. Rawling, III, J. M. Daniels, & J. W. Attig (Eds.), The Physical Geography and Geology of the Driftless Area: The Career and Contribu-
tions of James C. Knox (Vol. 543, p. 119). Boulder, CO: Geological Society of America.

Berry, W., Rubinstein, N., Melzian, B., & Hill, B. (2003). The biological effects of suspended and bedded sediment (SABS) in aquatic systems: A
review. Duluth: United States Environmental Protection Agency.


https://orcid.org/0000-0002-6661-2646
https://orcid.org/0000-0002-6661-2646
https://orcid.org/0000-0003-4122-1240
https://orcid.org/0000-0003-4122-1240
https://orcid.org/0000-0002-3449-2889
https://orcid.org/0000-0002-3449-2889
https://orcid.org/0000-0003-1699-9384
https://orcid.org/0000-0003-1699-9384
https://orcid.org/0000-0001-6330-478X
https://orcid.org/0000-0001-6330-478X
https://orcid.org/0000-0001-6636-1368
https://orcid.org/0000-0001-6636-1368
https://orcid.org/0000-0003-2372-0281
https://orcid.org/0000-0003-2372-0281
https://orcid.org/0000-0003-2304-0745
https://orcid.org/0000-0003-2304-0745
https://orcid.org/0000-0001-9235-6810
https://orcid.org/0000-0001-9235-6810
https://orcid.org/0000-0002-0440-7655
https://orcid.org/0000-0002-0440-7655
https://orcid.org/0000-0002-8350-8779
https://orcid.org/0000-0002-8350-8779
https://orcid.org/0000-0003-0500-5655
https://orcid.org/0000-0003-0500-5655
https://orcid.org/0000-0001-6451-2513
https://orcid.org/0000-0001-6451-2513
https://orcid.org/0000-0001-6808-9193
https://orcid.org/0000-0001-6808-9193
https://orcid.org/0000-0003-1853-9197
https://orcid.org/0000-0003-1853-9197
https://doi.org/10.1002/wat2.1331
https://doi.org/10.1002/wat2.1355
https://doi.org/10.1002/wat2.1355
https://doi.org/10.1002/wat2.1373
https://doi.org/10.1016/j.scitotenv.2005.02.010
https://doi.org/10.1016/j.scitotenv.2005.02.010
https://doi.org/10.3133/sir20205031
https://doi.org/10.1093/jof/34.12.1059
https://doi.org/10.1093/jof/34.12.1059
https://doi.org/10.1525/bio.2012.62.6.8

NOE ET AL. "g’ WIRES_WI LEY 23 of 28

W WATER

Bicknell, B., Imhoff, J., Kittle, J., Jobes, T., & Donigian, A. (2005). Hydrological Simulation Program-FORTRAN: HSPF Version 12.2 User's
Manual. Athens, GA: U.S. Environmental Protection Agency.

Boomer, K. B., Weller, D. E., & Jordan, T. E. (2008). Empirical models based on the universal soil loss equation fail to predict sediment dis-
charges from Chesapeake Bay catchments. Journal of Environmental Quality, 37(1), 79-89.

Brakebill, J. W., Ator, S. W., & Schwarz, G. E. (2010). Sources of suspended-sediment flux in streams of the Chesapeake Bay watershed: A
regional application of the SPARROW Modell. Journal of the American Water Resources Association, 46(4), 757-776.

Brakebill, J. W., Ator, S. W., & Sekellick, A. J. (2019). Input and predictions from a suspended-sediment SPARROW model CBSS_V?2 in the
Chesapeake Bay Watershed. Reston, VA: US Geological Survey.

Brunke, M. (1999). Colmation and depth filtration within streambeds: Retention of particles in Hyporheic interstices. International Review of
Hydrobiology, 84(2), 99-117. https://doi.org/10.1002/iroh.199900014

Brush, G. S. (2009). Historical land use, nitrogen, and coastal eutrophication: A Paleoecological perspective. Estuaries and Coasts, 32(1),
18-28. https://doi.org/10.1007/s12237-008-9106-z

Burdon, F. J., McIntosh, A. R., & Harding, J. S. (2013). Habitat loss drives threshold response of benthic invertebrate communities to depos-
ited sediment in agricultural streams. Ecological Applications, 23(5), 1036-1047. https://doi.org/10.1890/12-1190.1

Cabaco, S., Santos, R., & Duarte, C. M. (2008). The impact of sediment burial and erosion on seagrasses: A review. Estuarine, Coastal and
Shelf Science, 79(3), 354-366. https://doi.org/10.1016/]j.ecss.2008.04.021

Carline, R. F., & Walsh, M. C. (2007). Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania. Restoration
Ecology, 15(4), 731-742.

Cashman, M. J. (2018). Source and target sediment fingerprint data for Upper Difficult Run, VA. Reston, VA: U.S. Geological Survey.

Cashman, M. J,, Gellis, A. C., Sanisaca, L. G., Noe, G. B., Cogliandro, V., & Baker, A. (2018). Bank-derived material dominates fluvial sedi-
ment in a suburban Chesapeake Bay watershed. River Research and Applications, 34(8), 1032-1044.

Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small alpine
catchments. Geomorphology, 188, 31-41.

Chesapeake Bay Program. (2018a). Chesapeake Bay Program Quick Reference Guide for Best Management Practices (BMPs): Nonpoint Source
BMPs to Reduce Nitrogen, Phosphorus, and Sediment Loads to the Chesapeake Bay and its Local Waters. CBP/TRS-323-18. Annapolis, MD:
Chesapeake Bay Program. Retrieved from https://www.chesapeakebay.net/documents/BMP-Guide_Full.pdf.

Chesapeake Bay Program. (2018b). Chespaeake Bay Program, Documentation for the Chesapeake Bay Program Partnership Phase 6 Chesapeake
Assessment Scenario Tool (CAST) and Watershed Model. Annapolis, MD: Chesapeake Bay Program. Retrieved from http://cast.
chesapeakebay.net/Documentation/ModelDocumentation.

Chirico, P. G., Bergstresser, S. E., DeWitt, J. D., & Alessi, M. A. (2020). Geomorphic mapping and anthropogenic landform change in an
urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques. Journal of Maps. https://doi.
0rg/10.1080/17445647.2020.1746419.

Colden, A. M., Latour, R. J., & Lipcius, R. N. (2017). Reef height drives threshold dynamics of restored oyster reefs. Marine Ecology Progress
Series, 582, 1-13.

Colden, A. M., & Lipcius, R. N. (2015). Lethal and sublethal effects of sediment burial on the eastern oyster Crassostrea virginica. Marine
Ecology Progress Series, 527, 105-117.

Colosimo, M. F., & Wilcock, P. R. (2007). Alluvial sedimentation and erosion in an urbanizing watershed, Gwynns falls, Maryland 1. Journal
of the American Water Resources Association, 43(2), 499-521.

Comeau, L. A., Mallet, A., Carver, C., Nadalini, J.-B., & Tremblay, R. (2017). Behavioural and lethal effects of sediment burial on quiescent
eastern oysters Crassostrea virginica. Aquaculture, 469, 9-15. https://doi.org/10.1016/j.aquaculture.2016.11.038

Costa, J. E. (1975). Effects of agriculture on erosion and sedimentation in the Piedmont Province, Maryland. Geological Society of America
Bulletin, 86(9), 1281-1286.

Culp, J. M., Wrona, F. J., & Davies, R. W. (1986). Response of stream benthos and drift to fine sediment deposition versus transport. Cana-
dian Journal of Zoology, 64(6), 1345-1351. https://doi.org/10.1139/z86-200

de Vente, J., Poesen, J., Arabkhedri, M., & Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography,
31(2), 155-178.

Devereux, O. H., Prestegaard, K. L., Needelman, B. A., & Gellis, A. C. (2010). Suspended-sediment sources in an urban watershed, northeast
branch Anacostia River, Maryland. Hydrological Processes, 24(11), 1391-1403. https://doi.org/10.1002/hyp.7604

Doeg, T., & Milledge, G. (1991). Effect of experimentally increasing concentration of suspended sediment on macroinvertebrate drift. Marine
and Freshwater Research, 42(5), 519-526. https://doi.org/10.1071/MF9910519

Donovan, M., Miller, A., Baker, M., & Gellis, A. C. (2015). Sediment contributions from floodplains and legacy sediments to Piedmont
streams of Baltimore County, Maryland. Geomorphology, 235, 88-105.

Elliott, S. J., Wilf, P., Walter, R. C., & Merritts, D. J. (2013). Subfossil leaves reveal a new upland hardwood component of the pre-European
Piedmont landscape, Lancaster County, Pennsylvania. PLoS One, 8(11), €79317.

Fisher, S. G., Grimm, N. B,, Marti, E., Holmes, R. M., Jones, J., & Jeremy, B. (1998). Material spiraling in stream corridors: A telescoping eco-
system model. Ecosystems, 1(1), 19-34. https://doi.org/10.1007/s100219900003

Flanders, J., Turner, R., Morrison, T., Jensen, R., Pizzuto, J., Skalak, K., & Stahl, R. (2010). Distribution, behavior, and transport of inorganic
and methylmercury in a high gradient stream. Applied Geochemistry, 25(11), 1756-1769.

Foster, G. D., Roberts, E. C., Gruessner, B., & Velinsky, D. J. (2000). Hydrogeochemistry and transport of organic contaminants in an urban
watershed of Chesapeake Bay (USA). Applied Geochemistry, 15(7), 901-915. https://doi.org/10.1016/S0883-2927(99)00107-9


https://doi.org/10.1002/iroh.199900014
https://doi.org/10.1007/s12237-008-9106-z
https://doi.org/10.1890/12-1190.1
https://doi.org/10.1016/j.ecss.2008.04.021
https://doi.org/10.5066/P9Q2YQY6:
https://www.chesapeakebay.net/documents/BMP-Guide_Full.pdf
http://cast.chesapeakebay.net/Documentation/ModelDocumentation
http://cast.chesapeakebay.net/Documentation/ModelDocumentation
https://doi.org/10.1080/17445647.2020.1746419
https://doi.org/10.1080/17445647.2020.1746419
https://doi.org/10.1016/j.aquaculture.2016.11.038
https://doi.org/10.1139/z86-200
https://doi.org/10.1002/hyp.7604
https://doi.org/10.1071/MF9910519
https://doi.org/10.1007/s100219900003
https://doi.org/10.1016/S0883-2927(99)00107-9

MWI LEY_';:’WIRES NOE ET AL.

WATER

Froelich, P. N. (1988). Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism 1.
Limnology and Oceanography, 33(4 part 2), 649-668.

Gellis, A. C., Banks, W. S., Langland, M. J., & Martucci, S. K. (2004). Summary of suspended-sediment data for streams draining the Chesa-
peake Bay watershed, water years 1952-2002. US Geological Survey Scientific Investigations Report, 5056, 1-59.

Gellis, A. C., Fitzpatrick, F. A., & Schubauer-Berigan, J. (2016). A manual to identify sources of fluvial sediment (EPA/600/R-16/210).
Washington, DC: EPA. Retrieved from http://pubs.er.usgs.gov/publication/70182516.

Gellis, A. C., Fuller, C. C., & Van Metre, P. C. (2016). Sources and ages of fine-grained sediment to streams using fallout radionuclides in the
Midwestern United States. Journal of Environmental Management, 194(194), 73-85. https://doi.org/10.1016/j.jenviman.2016.06.018

Gellis, A. C., & Gorman Sanisaca, L. (2018). Sediment fingerprinting to delineate sources of sediment in the agricultural and forested Smith
Creek watershed, Virginia, USA. Journal of the American Water Resources Association, 64(6), 1197-1220. https://doi.org/10.1111/1752-
1688.12680

Gellis, A. C., Hupp, C. R., Pavich, M. J., Landwehr, J. M., Banks, W. S., Hubbard, B. E., ... Reuter, J. M. (2009). Sources, transport, and storage
of sediment at selected sites in the Chesapeake Bay Watershed [Geological Survey Scientific Investigations Report 2008-5186]. Reston, VA: U.
S. Geological Survey

Gellis, A. C., Myers, M. K., Noe, G. B., Hupp, C. R, Schenk, E. R., & Myers, L. (2017). Storms, channel changes, and a sediment budget for
an urban-suburban stream, difficult run, Virginia, USA. Geomorphology, 278, 128-148. https://doi.org/10.1016/j.geomorph.2016.10.031

Gellis, A. C., & Noe, G. B. (2013). Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment finger-
printing approach: 2008 to 2010. Journal of Soils and Sediments, 13(10), 1735-1753.

Gellis, A. C., Noe, G. B, Clune, J. W., Myers, M. K., Hupp, C. R, Schenk, E. R., & Schwarz, G. E. (2015). Sources of Fine-Grained Sediment in
the Linganore Creek Watershed, Frederick and Carroll Counties, Maryland, 2008-10. Reston, VA: U.S. Geological Survey

Gellis, A. C., & Walling, D. E. (2011). Sediment source fingerprinting (tracing) and sediment budgets as tools in targeting river and watershed
restoration programs. A Simon, S J. Bennett, J. M. Castro Stream restoration in dynamic fluvial systems: Scientific approaches, analyses,
and tools. AGU Geophysical Monograph Series, 194. Washington, DC American Geophysical Union. doi:https://doi.org/10.1029/
2010GM000960

Gibbs, J. P., Halstead, J. M., Boyle, K. J., & Huang, J.-C. (2002). An hedonic analysis of the effects of Lake water clarity on New Hampshire
lakefront properties. Agricultural and Resource Economics Review, 31(1), 39-46. https://doi.org/10.1017/S1068280500003464

Gillespie, J. L., Noe, G. B., Hupp, C. R., Gellis, A. C., & Schenk, E. R. (2018). Floodplain trapping and cycling compared to streambank ero-
sion of sediment and nutrients in an agricultural watershed. Journal of the American Water Resources Association, 54(2), 565-582.

Gorman Sanisaca, L., Gellis, A. C., & Lorenz, D. (2017a). Determining the sources of fine-grained sediment using the sediment source assessment
tool (Sed_SAT) [Open File Report], Reston, VA: U.S. Geological Survey, p. 1062.

Gorman Sanisaca, L., Gellis, A. C., & Lorenz, D. (2017b). Sediment Source Assessment Tool (Sed_SAT version 1.0). Reston, VA: U.S. Geological
Survey. Retrieved from https://my.usgs.gov/bitbucket/projects/SED/repos/sed_sat/.

Gray, J. R., & Gartner, J. W. (2009). Technological advances in suspended-sediment surrogate monitoring. Water Resources Research, 45(4).
https://doi.org/10.1029/2008 WR007063

Gurbisz, C., Kemp, W. M., Sanford, L. P., & Orth, R. J. (2016). Mechanisms of storm-related loss and resilience in a large submersed plant
bed. Estuaries and Coasts, 39(4), 951-966. https://doi.org/10.1007/s12237-016-0074-4

Happ, S. C., Rittenhouse, G., & Dobson, G. C. (1940). Some principles of accelerated stream and valley sedimentation. Washington, DC: US
Department of Agriculture.

Hession, W., Pizzuto, J., Johnson, T., & Horwitz, R. (2003). Influence of bank vegetation on channel morphology in rural and urban water-
sheds. Geology, 31(2), 147-150.

Hinchey, E. K., Schaffner, L. C., Hoar, C. C., Vogt, B. W., & Batte, L. P. (2006). Responses of estuarine benthic invertebrates to sediment
burial: The importance of mobility and adaptation. Hydrobiologia, 556(1), 85-98. https://doi.org/10.1007/s10750-005-1029-0

Hirsch, R. M. (2012). Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during
Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality (1411334523). Reston, VA: U.
S. Geological Survey

Hively, W. D., Devereux, O. H., & Claggett, P. (2013). Integrating Federal and State data records to report progress in establishing agricultural
conservation practices on Chesapeake Bay farms. Reston, VA: U.S. Geological Survey. Retrieved from http://pubs.er.usgs.gov/publication/
0fr20131287

Hoomehr, S., Akinola, A., Wynn-Thompson, T., Garnand, W., & Eick, M. (2018). Water temperature, pH, and road salt impacts on the fluvial
erosion of cohesive streambanks. Watermark, 10(3), 302.

Hopkins, K. G., Loperfido, J., Craig, L. S., Noe, G. B., & Hogan, D. M. (2017). Comparison of sediment and nutrient export and runoff charac-
teristics from watersheds with centralized versus distributed stormwater management. Journal of Environmental Management, 203,
286-298.

Hopkins, K. G., Noe, G. B., Franco, F., Pindilli, E. J., Gordon, S., Metes, M. J., ... Hogan, D. M. (2018). A method to quantify and value flood-
plain sediment and nutrient retention ecosystem services. Journal of Environmental Management, 220, 65-76.

Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry.
Applied Geochemistry, 2(4), 437-451.

Horowitz, A. J., & Stephens, V. C. (2008). The effects of land use on fluvial sediment chemistry for the conterminous US—Results from the
first cycle of the NAWQA program: Trace and major elements, phosphorus, carbon, and sulfur. Science of the Total Environment, 400
(1-3), 290-314.


http://pubs.er.usgs.gov/publication/70182516
https://doi.org/10.1016/j.jenvman.2016.06.018
https://doi.org/10.1111/1752-1688.12680
https://doi.org/10.1111/1752-1688.12680
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.1016/j.geomorph.2016.10.031
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.1029/2010GM000960
https://doi.org/10.1029/2010GM000960
https://doi.org/10.1017/S1068280500003464
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.5066/P9Q2YQY6:
https://my.usgs.gov/bitbucket/projects/SED/repos/sed_sat/
https://doi.org/10.1029/2008WR007063
https://doi.org/10.1007/s12237-016-0074-4
https://doi.org/10.1007/s10750-005-1029-0
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.5066/P9Q2YQY6:
http://pubs.er.usgs.gov/publication/ofr20131287
http://pubs.er.usgs.gov/publication/ofr20131287

NOE ET AL. "g’ WIRES_WI LEY 25 of 28

W WATER

Hupp, C. R, Noe, G. B., Schenk, E. R., & Benthem, A. J. (2013). Recent and historic sediment dynamics along difficult run, a suburban Vir-
ginia Piedmont stream. Geomorphology, 180-181, 156-169. https://doi.org/10.1016/j.geomorph.2012.10.007

Hupp, C. R., Schenk, E. R., Kroes, D., Willard, D. A., Townsend, P. A., & Peet, R. K. (2015). Patterns of floodplain sediment deposition along
the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology, 228, 666-680.

Izagirre, O., Serra, A., Guasch, H., & Elosegi, A. (2009). Effects of sediment deposition on periphytic biomass, photosynthetic activity and
algal community structure. Science of the Total Environment, 407(21), 5694-5700. https://doi.org/10.1016/j.scitotenv.2009.06.049

Jacobson, R. B., & Coleman, D. J. (1986). Stratigraphy and recent evolution of Maryland Piedmont flood plains. American Journal of Science,
286(8), 617-637.

James, L. A. (2013). Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene, 2, 16-26.

James, L. A. (2019). Impacts of pre-vs. postcolonial land use on floodplain sedimentation in temperate North America. Geomorphology, 331,
59-717.

James, M. R., Robson, S., & Smith, M. W. (2017). 3-D uncertainty-based topographic change detection with structure-from-motion photo-
grammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surface Processes and Landforms, 42(12),
1769-1788.

Jarvis, J. C., & Moore, K. A. (2015). Effects of seed source, sediment type, and burial depth on mixed-annual and perennial Zostera marina
L. seed germination and seedling establishment. Estuaries and Coasts, 38(3), 964-978.

Jones, J. L, Collins, A. L., Naden, P. S., & Sear, D. A. (2012). The relationship between fine sediment and macrophytes in rivers. River
Research and Applications, 28(7), 1006-1018. https://doi.org/10.1002/rra.1486

Jones, J. I, Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S., & Armitage, P. D. (2012). The impact of fine sediment on macro-inverte-
brates. River Research and Applications, 28(8), 1055-1071. https://doi.org/10.1002/1ra.1516

Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, 1. (2011). The impacts of fine sediment on riverine fish. Hydrological Processes, 25(11),
1800-1821. https://doi.org/10.1002/hyp.7940

Kemp, W. M., Batleson, R., Bergstrom, P., Carter, V., Gallegos, C. L., Hunley, W., ... Moore, K. A. (2004). Habitat requirements for submerged
aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors. Estuaries, 27(3), 363-377.

Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., ... Stevenson, J. C. (2005). Eutrophication of Chesapeake
Bay: Historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1-29.

Kennicutt, M. C., Wade, T. L., Presley, B. J., Requejo, A. G., Brooks, J. M., & Denoux, G. J. (1994). Sediment contaminants in Casco bay,
Maine: Inventories, sources, and potential for biological impact. Environmental Science & Technology, 28(1), 1-15. https://doi.org/10.
1021/es000502003

Kjelland, M. E., Woodley, C. M., Swannack, T. M., & Smith, D. L. (2015). A review of the potential effects of suspended sediment on fishes:
Potential dredging-related physiological, behavioral, and transgenerational implications. Environment Systems and Decisions, 35(3),
334-350. https://doi.org/10.1007/s10669-015-9557-2

Lamont, S., Ahamed, A., Metes, M., Claggett, P., Hopkins, K. G., & Noe, G. (2019). Floodplain and channel evaluation tool (FACET). Version
0.1.0. [software release]. Reston, VA: U.S. Geological Survey. doi: https://doi.org/10.5066/P9PI94Z1.

Langland, M. (2015). Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland,
1900-2012. Reston, VA: U.S. Geological Survey

Langland, M., & Cronin, T. (2003). A summary report of sediment processes in Chesapeake Bay and watershed (2003-4123). Reston, VA: U.S.
Geological Survey. Retrieved from http://pubs.er.usgs.gov/publication/wri034123

Lean, D., & Nalewajko, C. (1976). Phosphate exchange and organic phosphorus excretion by freshwater algae. Journal of the Fisheries Board
of Canada, 33(6), 1312-1323.

Leopold, L. B. (1966). Channel and hillslope processes in a semiarid area, New Mexico (Vol. 352). Washington, DC: US Government Printing
Office.

Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology. New York, NY: Dover Publications, Inc.

Liu, Y., Engel, B. A, Flanagan, D. C., Gitau, M. W., McMillan, S. K., & Chaubey, I. (2017). A review on effectiveness of best management
practices in improving hydrology and water quality: Needs and opportunities. Science of the Total Environment, 601, 580-593.

Maloney, K. O., & Weller, D. E. (2011). Anthropogenic disturbance and streams: Land use and land-use change affect stream ecosystems via
multiple pathways. Freshwater Biology, 56(3), 611-626.

Marba, N., & Duarte, C. M. (1994). Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Marine Ecology
Progress Series, 107(3), 307-311.

Massoudieh, A., Gellis, A., Banks, W. S., & Wieczorek, M. E. (2013). Suspended sediment source apportionment in Chesapeake Bay watershed using Bayes-
ian chemical mass balance receptor modeling. Hydrological Processes, 27(24), 3363-3374. https://doi.org/10.1002/hyp.9429

Matthaei, C. D., Piggott, J. J., & Townsend, C. R. (2010). Multiple stressors in agricultural streams: Interactions among sediment addition,
nutrient enrichment and water abstraction. Journal of Applied Ecology, 47(3), 639-649. https://doi.org/10.1111/j.1365-2664.2010.01809.x

McMillan, S. K., & Noe, G. B. (2017). Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment
retention. Ecological Engineering, 108, 284-295.

Meade, R. H. (1982). Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90(3),
235-252.

Medalie, L., Chalmers, A. T., Kiah, R. G., & Copans, B. (2014). Use of acoustic backscatter to estimate continuous suspended sediment and
phosphorus concentrations in the Barton River, northern Vermont, 2010-2013. Reston, VA: U.S. Geological Survey Retrieved from http://
pubs.er.usgs.gov/publication/ofr20141184.


https://doi.org/10.1016/j.geomorph.2012.10.007
https://doi.org/10.1016/j.scitotenv.2009.06.049
https://doi.org/10.1002/rra.1486
https://doi.org/10.1002/rra.1516
https://doi.org/10.1002/hyp.7940
https://doi.org/10.1021/es00050a003
https://doi.org/10.1021/es00050a003
https://doi.org/10.1007/s10669-015-9557-2
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.5066/P9PI94Z1
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.5066/P9Q2YQY6:
http://pubs.er.usgs.gov/publication/wri034123
https://doi.org/10.1002/hyp.9429
https://doi.org/10.1111/j.1365-2664.2010.01809.x
https://doi.org/10.5066/P9Q2YQY6:
http://pubs.er.usgs.gov/publication/ofr20141184
http://pubs.er.usgs.gov/publication/ofr20141184

wI_WI LEY_';:’WIRES NOE ET AL.

WATER

Merritts, D., Walter, R., Rahnis, M., Cox, S., Hartranft, J., Scheid, C., ... Matuszewski, D. (2013). The rise and fall of mid-Atlantic streams:
Millpond sedimentation, milldam breaching, channel incision, and stream bank erosion. Reviews in Engineering Geology, 21, 183-203.
Merritts, D., Walter, R., Rahnis, M., Hartranft, J., Cox, S., Gellis, A., ... Becker, S. (2011). Anthropocene streams and base-level controls from
historic dams in the unglaciated mid-Atlantic region, USA. Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 369(1938), 976-1009. https://doi.org/10.1098/rsta.2010.0335

Miller, A., Baker, M., Boomer, K., Merritts, D., Prestegaard, K. L., & Smith, S. (2019). Legacy sediment, riparian corridors, and Total maximum
daily loads. Edgewater, MD: Chesapeake Bay Program Science and Technical Advisory Committee.

Moyer, D., Langland, M., Blomquist, J., & Yang, G. (2017). Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the
Chesapeake Bay nontidal network stations: Water years 1985-2016. Reston, VA: U.S. Geological Survey, https://doi.org/10.5066/
F7RR1X68.

Mukundan, R., Walling, D. E., Gellis, A. C., Slattery, M. C., & Radcliffe, D. E. (2012). Sediment source fingerprinting: Transforming from a
research tool to a management tool. Journal of the American Water Resources Association, 48(6), 1241-1257. https://doi.org/10.1111/j.
1752-1688.2012.00685.x

National Resources Conservation Services. (2007). Revised Universal Soil Loss Equation 2 (RUSLE2). Washington, DC: Natural Resources
Conservation Services Retrieved from http://www.rusle2.org

National Resources Conservation Services. (2013). Impacts of conservation adoption on cultivated acres of cropland in the Chesapeake Bay
Region, 2003-06 to 2011. Washington, DC: Natural Resources Conservation Services Retrieved from https://www.nrcs.usda.gov/wps/
portal/nrcs/detail/national/technical/nra/ceap/na/?cid=stelprdb1240074

Newbold, J., Elwood, J., O'Neill, R., & Sheldon, A. (1983). Phosphorus dynamics in a woodland stream ecosystem: A study of nutrient spiral-
ling. Ecology, 64(5), 1249-1265.

Newcombe, C. P., & Macdonald, D. D. (1991). Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries
Management, 11(1), 72-82. https://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2

Noe, G. B., & Hupp, C. R. (2005). Carbon, nitrogen and phosphorus accumulation in floodplains of Atlantic coastal plain rivers, USA. Ecolog-
ical Applications, 15(4), 1178-1190. https://doi.org/10.1890/04-1677

Noe, G. B, & Hupp, C. R. (2009). Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems, 12(5), 728-746.

Novotny, V., & Chesters, G. (1989). Delivery of sediment and pollutants from nonpoint sources: A water quality perspective. Journal of Soil
and Water Conservation, 44(6), 568-576 Retrieved from http://www.jswconline.org/content/44/6/568.short

Orth, R. J., & Moore, K. A. (1984). Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspec-
tive. Estuaries, 7(4), 531-540.

Palinkas, C. M., & Koch, E. W. (2012). Sediment accumulation rates and submersed aquatic vegetation (SAV) distributions in the mesohaline
Chesapeake Bay, USA. Estuaries and Coasts, 35(6), 1416-1431. https://doi.org/10.1007/s12237-012-9542-7

Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333-365.

Phillips, J. D. (1989). Fluvial sediment storage in wetlands. Journal of the American Water Resources Association, 25(4), 867-873. https://doi.
0rg/10.1111/j.1752-1688.1989.tb05402.x

Piggott, J. J., Lange, K., Townsend, C. R., & Matthaei, C. D. (2012). Multiple stressors in agricultural streams: A Mesocosm study of interac-
tions among raised water temperature, sediment addition and nutrient enrichment. PLoS One, 7(11), e49873. https://doi.org/10.1371/
journal.pone.0049873

Pizzuto, J., Keeler, J., Skalak, K., & Karwan, D. (2017). Storage filters upland suspended sediment signals delivered from watersheds. Geology,
45(2), 151-154. https://doi.org/10.1130/g38170.1

Pizzuto, J., O'Neal, M. A., Narinesingh, P., Skalak, K., Jurk, D., Collins, S., & Calder, J. (2018). Contemporary fluvial geomorphology and
suspended sediment budget of the partly confined, mixed bedrock-alluvial South River, Virginia, USA. Bulletin, 130(11-12), 1859-1874.

Pizzuto, J., Schenk, E. R., Hupp, C. R., Gellis, A. C., Noe, G., Williamson, E., ... Newbold, D. (2014). Characteristic length scales and time-
averaged transport velocities of suspended sediment in the mid-Atlantic region, USA. Water Resources Research, 50(2), 790-805. https://
doi.org/10.1002/2013wr014485

Pizzuto, J., Skalak, K., Pearson, A., & Benthem, A. (2016). Active overbank deposition during the last century, South River, Virginia. Geomor-
phology, 257, 164-178.

Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs.
Catena, 50(2), 91-133. https://doi.org/10.1016/S0341-8162(02)00143-1

Portenga, E. W., Bierman, P. R., Trodick, C. D., Jr., Greene, S. E., DeJong, B. D., Rood, D. H., & Pavich, M. J. (2019). Erosion rates and sedi-
ment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes. Bulletin, 131(7-8), 1295-1311.

Reid, L. M., & Dunne, T. (2005). Sediment budgets as an organizing framework in fluvial geomorphology. In G. M. Kondolf & H. Piégay
(Eds.), Tools in Fluvial Geomorphology (pp. 463-500). Chichester, England: John Wiley & Sons, Ltd.

Ruedemann, R., & Schoonmaker, W. (1938). Beaver-dams as geologic agents. Science, 88(2292), 523-525.

Rybicki, N. B., & Carter, V. (1986). Effect of sediment depth and sediment type on the survival of Vallisneria americana Michx grown from
tubers. Aquatic Botany, 24(3), 233-240.

Schaffner, L. C., Diaz, R. J., Olsen, C. R., & Larsen, I. L. (1987). Faunal characteristics and sediment accumulation processes in the James
River estuary, Virginia. Estuarine, Coastal and Shelf Science, 25(2), 211-226. https://doi.org/10.1016/0272-7714(87)90123-5

Schenk, E. R., Hupp, C. R., Gellis, A., & Noe, G. (2013). Developing a new stream metric for comparing stream function using a bank-
floodplain sediment budget: A case study of three Piedmont streams. Earth Surface Processes and Landforms, 38(8), 771-784. https://doi.
org/10.1002/esp.3314


https://doi.org/10.1098/rsta.2010.0335
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.5066/F7RR1X68
https://doi.org/10.5066/F7RR1X68
https://doi.org/10.1111/j.1752-1688.2012.00685.x
https://doi.org/10.1111/j.1752-1688.2012.00685.x
http://www.rusle2.org
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/na/?cid=stelprdb1240074
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/na/?cid=stelprdb1240074
https://doi.org/10.1577/1548-8675(1991)011%3C0072:EOSSOA%3E2.3.CO;2
https://doi.org/10.1890/04-1677
http://www.jswconline.org/content/44/6/568.short
https://doi.org/10.1007/s12237-012-9542-7
https://doi.org/10.1111/j.1752-1688.1989.tb05402.x
https://doi.org/10.1111/j.1752-1688.1989.tb05402.x
https://doi.org/10.1371/journal.pone.0049873
https://doi.org/10.1371/journal.pone.0049873
https://doi.org/10.1130/g38170.1
https://doi.org/10.1002/2013wr014485
https://doi.org/10.1002/2013wr014485
https://doi.org/10.1016/S0341-8162(02)00143-1
https://doi.org/10.1016/0272-7714(87)90123-5
https://doi.org/10.1002/esp.3314
https://doi.org/10.1002/esp.3314

NOE ET AL. "g’ WIRES_WI LEY 27 of 28

W WATER

Schulte, D. M., Burke, R. P., & Lipcius, R. N. (2009). Unprecedented restoration of a native oyster metapopulation. Science, 325(5944),
1124-1128.

Schutt, A. E. (2012). Using macroinvertebrate community composition to distinguish between natural and anthropogenic sedimentation. (MSc
Masters Thesis). Richmond, VA: Virginia Commonwealth University.

Sear, D. A., Jones, J. L, Collins, A. L., Hulin, A., Burke, N., Bateman, S., ... Naden, P. S. (2016). Does fine sediment source as well as quantity
affect salmonid embryo mortality and development? Science of the Total Environment, 541, 957-968. https://doi.org/10.1016/j.scitotenv.
2015.09.155

Sekellick, A. J., Devereux, O. H., Keisman, J. L., Sweeney, J. S., & Blomquist, J. D. (2019). Spatial and Temporal Patterns of Best Management
Practice Implementation in the Chesapeake Bay Watershed, 1985-2014 (2328-0328).F:\2020\05_MAY\09-05\WAT2_1454\from Reston,
VA: U.S. Geological Survey

Shenk, G. W., & Linker, L. C. (2013). Development and application of the 2010 Chesapeake Bay watershed total maximum daily load model.
Journal of the American Water Resources Association, 49(5), 1042-1056.

Skalak, K., & Pizzuto, J. (2010). The distribution and residence time of suspended sediment stored within the channel margins of a gravel-
bed bedrock river. Earth Surface Processes and Landforms, 35(4), 435-446. https://doi.org/10.1002/esp.1926

Skalak, K., & Pizzuto, J. (2014). Reconstructing suspended sediment mercury contamination of a steep, gravel-bed river using reservoir the-
ory. Environmental Geosciences, 21(1), 17-35.

Smith, D. G., Cragg, A. M., & Croker, G. F. (1991). Water clarity criteria for bathing waters based on user perception. Journal of Environmen-
tal Management, 33(3), 285-299. https://doi.org/10.1016/S0301-4797(91)80030-9

Smith, S., & Wilcock, P. (2015). Upland sediment supply and its relation to watershed sediment delivery in the contemporary mid-Atlantic
Piedmont (USA). Geomorphology, 232, 33-46.

Stevenson, J. C., Ward, L. G., & Kearney, M. S. (1988). Sediment transport and trapping in marsh systems: Implications of tidal flux studies.
Marine Geology, 80(1), 37-59. https://doi.org/10.1016/0025-3227(88)90071-0

Steyaert, L. T., & Knox, R. G. (2008). Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interac-
tions within the eastern United States. Journal of Geophysical Research-Atmospheres, 113, D02101. https://doi.org/10.1029/
2006JD008277.

Stinchcomb, G., Messner, T., Driese, S., Nordt, L., & Stewart, R. (2011). Pre-colonial (AD 1100-1600) sedimentation related to prehistoric
maize agriculture and climate change in eastern North America. Geology, 39(4), 363-366.

Suedel, B. C., Clarke, J. U., Wilkens, J., Lutz, C. H., & Clarke, D. G. (2015). The effects of a simulated suspended sediment plume on eastern
oyster (Crassostrea virginica) survival, growth, and condition. Estuaries and Coasts, 38(2), 578-589.

Swanson, F. J., Janda, R. J., Dunne, T., & Swanston, D. N. (1982). Sediment budgets and routing in forested drainage basins. General Technical
Report PNW-141. Washington, DC: United States Department of Agriculture.

Sweeney, B. W., Bott, T. L., Jackson, J. K., Kaplan, L. A., Newbold, J. D., Standley, L. J., ... Horwitz, R. J. (2004). Riparian deforestation,
stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences of the United States of America,
101(39), 14132-14137.

Thoms, M. (1987). Channel sedimentation within the urbanized river tame, UK. Regulated Rivers: Research & Management, 1(3), 229-246.

Topping, D., Wright, S., Melis, T., & Rubin, D. (2007). High-resolution measurements of suspended-sediment concentration and grain size in
the Colorado River in Grand Canyon using a multi-frequency acoustic system. Paper presented at the Proceedings of the 10th International
Symposium on River Sedimentation.

Trimble, S. (1975). A volumetric estimate of man-induced soil erosion on the Southern Piedmont Plateau. Present and prospective technology
for predicting sediment yields and sources. Publication ARS_S_40. US Department of Agriculture, Washington, DC.

United States Environmental Protection Agency. (2010). Cheapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment.
Washington, DC: US EPA Retrieved from https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-document

United States Environmental Protection Agency. (2015). EPA Office of Water (OW): 303(d) Listed Impaired Waters NHDPlus Indexed Dataset.
Washington, DC: US EPA Retrieved from https://www.epa.gov/waterdata/waters-geospatial-data-downloads

United States Environmental Protection Agency. (2016). National Rivers and Streams Assessment 2008-2009: A Collaborative Survey
(EPA/841/R-16/007). Washington, DC: US EPA Retrieved from http://www.epa.gov/national-aquatic-resource-surveys/nrsa

United States Environmental Protection Agency. (2018). Midpoint assessment of the Chesapeake Bay Total Maximum Daily Load.
Washington, DC: US EPA Retrieved from https://www.epa.gov/sites/production/files/2018-07/documents/factsheet-epa-midpoint-
assessment-chesapeake-bay-tmdl.pdf

Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena, 63(2-3), 132-153.

Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65(1-3), 209-237.

Walling, D. E., & Collins, A. L. (2008). The catchment sediment budget as a management tool. Environmental Science & Policy, 11(2),
136-143.

Walter, R. C., & Merritts, D. J. (2008). Natural streams and the legacy of water-powered mills. Science, 319(5861), 299.

Warrick, J. A., Ritchie, A. C., Adelman, G., Adelman, K., & Limber, P. W. (2017). New techniques to measure cliff change from historical
oblique aerial photographs and structure-from-motion photogrammetry. Journal of Coastal Research, 33(1), 39-55. https://doi.org/10.
2112/jcoastres-d-16-00095.1

Wohl, E. (2015). Legacy effects on sediments in river corridors. Earth-Science Reviews, 147, 30-53.

Wohl, N. E., & Carline, R. F. (1996). Relations among riparian grazing, sediment loads, macroinvertebrates, and fishes in three Central Penn-
sylvania streams. Canadian Journal of Fisheries and Aquatic Sciences, 53(S1), 260-266. https://doi.org/10.1139/f95-264


https://doi.org/10.1016/j.scitotenv.2015.09.155
https://doi.org/10.1016/j.scitotenv.2015.09.155
http://F:\2020\05_MAY\09-05\WAT2_1454\from
https://doi.org/10.5066/P9Q2YQY6:
https://doi.org/10.1002/esp.1926
https://doi.org/10.1016/S0301-4797(91)80030-9
https://doi.org/10.1016/0025-3227(88)90071-0
https://doi.org/10.1029/2006JD008277
https://doi.org/10.1029/2006JD008277
https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-document
https://www.epa.gov/waterdata/waters-geospatial-data-downloads
http://www.epa.gov/national-aquatic-resource-surveys/nrsa
https://www.epa.gov/sites/production/files/2018-07/documents/factsheet-epa-midpoint-assessment-chesapeake-bay-tmdl.pdf
https://www.epa.gov/sites/production/files/2018-07/documents/factsheet-epa-midpoint-assessment-chesapeake-bay-tmdl.pdf
https://doi.org/10.2112/jcoastres-d-16-00095.1
https://doi.org/10.2112/jcoastres-d-16-00095.1
https://doi.org/10.1139/f95-264

ﬂl_WI LEY_';:’WIRES NOE ET AL.

WATER

Wolf, K. L., Noe, G. B., & Ahn, C. (2013). Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils
of created and natural floodplain wetlands. Journal of Environmental Quality, 42(4), 1245-1255.

Wolman, M. G. (1967). A cycle of sedimentation and erosion in urban river channels. Geografiska Annaler. Series A, Physical Geography, 49,
385-395.

Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21(2),
203-217.

Wynn, T., Henderson, M., & Vaughan, D. (2008). Changes in streambank erodibility and critical shear stress due to subaerial processes along
a headwater stream, southwestern Virginia, USA. Geomorphology, 97(3-4), 260-273.

Wynn, T., & Mostaghimi, S. (2006). The effects of vegetation and soil type on streambank erosin, southwestern Virginia, USA. Journal of the
American Water Resources Association, 42(1), 69-82.

Yamada, H., & Nakamura, F. (2002). Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River,
northern Japan. River Research and Applications, 18(5), 481-493. https://doi.org/10.1002/rra.688

Zhang, Q., & Blomquist, J. D. (2018). Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and
temporal patterns in 1984-2016. Science of the Total Environment, 619-620, 1066-1078. https://doi.org/10.1016/j.scitotenv.2017.10.279

Zhang, Q., Brady, D. C., Boynton, W. R., & Ball, W. P. (2015). Long-term trends of nutrients and sediment from the nontidal Chesapeake
watershed: An assessment of Progress by river and season. Journal of the American Water Resources Association, 51(6), 1534-1555.

Zhang, Q., Hirsch, R. M., & Ball, W. P. (2016). Long-term changes in sediment and nutrient delivery from Conowingo dam to Chesapeake
Bay: Effects of reservoir sedimentation. Environmental Science & Technology, 50(4), 1877-1886.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Noe GB, Cashman MJ, Skalak K, et al. Sediment dynamics and implications for
management: State of the science from long-term research in the Chesapeake Bay watershed, USA. WIREs
Water. 2020;7:€1454. https://doi.org/10.1002/wat2.1454



https://doi.org/10.1002/rra.688
https://doi.org/10.1016/j.scitotenv.2017.10.279
https://doi.org/10.1002/wat2.1454

	Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay water...
	1  WHY CARE ABOUT SEDIMENT?
	1.1  Impacts on biota
	1.2  Sediment as a vector for nutrients and contaminants

	2  THE ROLE OF LAND USE HISTORY
	Outline placeholder
	  Pre-colonial period before European arrival
	  Colonial period
	  Post-colonial period
	  Urbanization period

	2.1  Legacy sediment and stream valley storage

	3  SEDIMENT SOURCES, TRANSPORT, AND DELIVERY
	3.1  Sediment budget framework
	3.1.1  Upland erosion
	3.1.2  Upland storage
	3.1.3  Gullies and zero-order channels
	3.1.4  Stream valley fluxes
	3.1.4  Bank erosion
	3.1.4  Floodplain deposition
	3.1.4  Balance of erosion and deposition
	3.1.4  In-channel erosion and deposition flux
	3.1.4  Reservoirs


	3.2  Residence times
	3.3  Suspended sediment characteristics, yields, and loads

	4  EFFECTS OF MANAGEMENT PRACTICES
	4.1  Review of BMP efficiencies
	4.2  Expected BMP effects on sediment loads
	4.3  New research on BMP effectiveness

	5  NEWER SCIENTIFIC TOOLS
	5.1  Models
	5.2  New measurement capabilities

	6  CONCLUSION: SUMMARY FOR WATERSHED MANAGEMENT
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	FURTHER READING
	REFERENCES


