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Abstract

Solar images observed in different channels with different instruments are crucial to the study of solar activity.
However, the images have different fields of view, causing them to be misaligned. It is essential to accurately
register the images for studying solar activity from multiple perspectives. Image registration is described as an
optimizing problem from an image to be registered to a reference image. In this paper, we proposed a novel coarse-
to-fine solar image registration method to register the multichannel solar images. In the coarse registration step, we
used the regular step gradient descent algorithm as an optimizer to maximize the normalized cross correlation
metric. The fine registration step uses the Powell-Brent algorithms as an optimizer and brings the Mattes mutual
information similarity metric to the minimum. We selected five pairs of images with different resolutions, rotation
angles, and shifts to compare and evaluate our results to those obtained by scale-invariant feature transform and
phase correlation. The images are observed by the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory and
the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Furthermore, we used the
mutual information and registration time criteria to quantify the registration results. The results prove that the
proposed method not only reaches better registration precision but also has better robustness. Meanwhile, we want

to highlight that the method can also work well for the time-series solar image registration.

Unified Astronomy Thesaurus concepts: Astronomical techniques (1684); Astronomy data analysis (1858);

Computational methods (1965)

1. Introduction

Solar multichannel observations are extremely important for
studying solar activity. However, the observation data obtained
from different instruments or channels have various resolutions
and different fields of view (FOV). So, the images must be
registered before analyzing them. Image registration aims to find
the greatest similarity between an image to be registered (called
the moving image) and a reference image (called the fixed
image), and further to obtain a transformation parameter vector
w(r, s, x, y), 1.e., rotation angle r, scale s, and shift x and y along
with the X and Y directions. Furthermore, the parameter vector is
used to align the two images. But, how to find the parameter
vector is still an enormous challenge.

Cross correlation is a common practice in solar image
registration (Feng et al. 2012; Yang et al. 2015). But because
the fixed image energy is usually not constant and varies with the
feature position and different spatial scales, the cross correlation
method cannot usually succeed. Another drawback is that the
region of the cross correlation heavily relies on the size of the
moving image and the amplitudes of the fixed image. Feature-
point matching can register the images with different resolutions
and rotations and has been introduced into solar image registration
(Yang et al. 2020; Deng et al. 2021). Its registration accuracy
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depends on the number of feature points between the pair of
images. However, the feature points of solar images are unstable,
fewer in different channels, and have obvious differences.
Therefore, the accuracy of the feature-point matching method is
greatly uncertain. Phase correlation is another solar image
registration method (Hrazdira et al. 2020, 2021) that is used to
measure the solar differential rotation. In this paper, we proposed
a novel high-precision registration method to align multichannel
solar images using image intensity similarity metrics (Styner &
Brechbuhler 2000). The intensity similarity metrics use the
statistical characteristics of the intensity distribution between the
fixed image and the moving image to find an optimum vector
(called transform parameters). Our registration method adopts the
coarse-to-fine strategy to find the optimum parameters. In the
coarse registration step, we used the regular step gradient descent
(RSGD; Eikvil et al. 2005; Mambo 2018) algorithm as optimizer
to continuously iterate the transformation parameters to bring the
normalized cross correlation (NCC; Lewis 1995; Yu et al. 2021)
similarity metric to a maximum. The coarse transformation
parameters are then taken as the initial values of the Powell-Brent
(PB; Powell 1964, 1975; Brent 2013) algorithm to minimize the
Mattes mutual information (MMI; Mattes et al. 2001, 2003;
Rahunathan et al. 2005) similarity metric for high-precision
transformation parameters.

The paper is structured as follows. Section 2 explains the NCC
and MMI similarity metrics and the RSGD and PB algorithms.
Section 3 describes our method and illustrates the registration
processing using a pair of images with different channels and
FOV. In Section 4, two pairs of solar images from different
instruments and channels are selected to further illustrate the
accuracy of our method. Section 5 evaluates our registration
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results by quantitative comparison to other registration methods.
Finally, our conclusion is given in Section 6.

2. Methodology

The aim of image registration is to quantify the similarity
between the fixed image and the moving image. Our proposed
method is iterative registration processing. The iterative
processing requires a pair of images, a similarity metric, and
an optimizer. The similarity metric quantifies the similarity of
the pair of images, and the optimizer maximizes (or minimizes)
the similarity metric. The process repeatedly calculates the
similarity metric of the pair of images according to the
parameter vector p and the optimizer continuously adjusts the
transformation vector until the metric reaches a given threshold
or convergence.

2.1. NCC Similarity Metric and RSGD Optimizer

The NCC method overcomes the drawbacks mentioned
above regarding cross correlation by normalizing the fixed
image and the moving image to unity to yield a cosine-like
correlation coefficient (Lewis 1995). The RSGD algorithm acts
as an optimizer to find a parameter vector y that makes the
NCC similarity metric between the moving image and the fixed
image reach a maximum. It is a gradient descent method, and
continuously updates p according to the gradient at the current
position 1y, i.e., the current transform parameter vector,
through iterations,

OSnce
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where 1y, | represents the next parameter vector. dSncc/Op is
the gradient at position 1y and a; denotes the decaying step size
or learning rate, which is a nonnegative value. The value gets
smaller when the gradient changes its direction determined by
the inner product of dSncc/du.
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where & is a relaxing factor and set to 0.5. If the gradient value
or the relaxing factor is less than a given value, or the iteration
number reaches a threshold, the coarse registration process will
be achieved, and the coarse registration vector p will be
obtained.

2.2. MMI Similarity Metric and Powell-Brent Optimizer

The mutual information (MI) metric measures the similarity
between the moving image and the fixed image from the
perspective of information entropy. The smaller the image
registration error, the smaller the joint entropy, and the greater
the MI metric value. A high MI value implies that the images
are likely better registered. The MMI algorithm is a more
effective method to represent the MI metric. Calculating the
similarity metric of the pair of images using MI is described as
a maximization problem, but the aim of MMI is to minimize
the negative MI. MMI uses the joint probability distribution of
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the pixels to measure the similarity of the pair of images.
B-spline kernels are used to compute the probability density
functions. MMI uses a single set of pixel locations for
persistent optimizing, instead of continuously drawing a new
set at each iteration. The samples are used to calculate the
probability density and the bins of the samples are used to
calculate the uncertainty (Rahunathan et al. 2005).

The PB algorithm is taken as an optimizer to minimize MMI
by performing a line search. It is an iterative multidirectional
search that exactly performs an iterative fitting of a parabola to
each transformation parameter (scale, rotation, and shift) profile
to minimize MMI,

At Swm (1, + Nid®) = argm/\inSMMI(N(k) + M), (3)

i1
where d) is the ith direction (i=1, 2, 3, 4) with the kth
iteration. p{” denotes the initial position of the th iteration, in

which NE)O) is the coarse registration parameters. J; is a step size
that brings MMI into the minimum. The processing uses the
Brent linear search method along the four directions given by
d{®. Subsequently, let d¥ = p — p® as a new direction to
obtain p*"" using the line search. If the Euclidean distance
|* T — ®)| is less than a given threshold ¢, the fine
registration step reaches convergence and the iteration stops.
u(kﬂ) is the final transformation vector. Otherwise, the
algorithm again selects the four directions from d® (i = 2,
3, 4, 5) to continuously iterate the process until
||* 1 — u®| < e. This step can avoid the linear correlation
of the foregoing four directions that could make the algorithm
fail to reach convergence. Detailed descriptions of the PB
algorithm are given by Powell (1975) and Brent (2013).

3. Implementation Process

We chose a pair of images with different resolutions and
FOV obtained by the Goode Solar Telescope (GST; Cao et al.
2010) at Big Bear Solar Observatory on 2012 May 22 at
17:17:10 UT. The two images observed in the Ha and TiO
channels are shown in Figures 1(a) and (b), respectively. We
see that their resolution and FOV are different according to the
umbra and several pores. Next, we will use the two images as
an example to illustrate the registration processing. Here, the
TiO image is taken as the moving image and the Ha image as
the fixed image.

3.1. Image Pyramid

Our method requires us to use image intensity information
multiple times for finding the optimum registration parameters.
Therefore, we generated multiscale Gaussian pyramid images
with different scales using Gaussian convolution kernels to
improve the convergence speed. Here, we set a three-layer
pyramid with the first layer being 16x downsampling of the
original image, the second layer being 4 x downsampling, and
the third layer being the original image.

3.2. Coarse Aligning

The registration processing starts from the first layer of the
image pyramid, and then the result obtained by the first layer is
used as the initial parameter of the second layer until the final
coarse alignment is completed. In the first layer, the parameter
ro of the initial vector po in Equation (1) is set to 0, s is equal to
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2012-05-22 17:17:00 UT

Figure 1. (a) The Ha image taken from GST at Big Bear Solar Observatory on
2012 May 22 at 17:17:01 UT. (b) The TiO image taken from GST on 2012
May 22 at 17:17:10 UT. (c) The coarse registration result using NCC and
RSGD. The bright bridge in red box “B” has been aligned, but the pores in box
“A” are slightly misaligned. (d) The fine registration result using MMI and
Powell.

1, and the shift (xo and yg) is set to the distance from the
geometric center of the TiO image to the geometric center of
the Hor image. The minimum step size is set to 1 x 107>, the
minimum gradient value is 1 x 107° and the maximum
iteration number is 75. If the step size is less than 1 x 107>, or
the gradient value is less than 1 x 107° or the iteration
numbers reach 75, then the coarse process will stop. Finally,
the coarse transformation parameters are obtained. The TiO
image is magnified 1.055 times, counterclockwise rotated
0.442°, and shifted 446.528 and 366.166 pixels along the
x- and y-axes. The transformed TiO image is shown in
Figure 1(c) where the Ha image is stitched together to better
compare the alignment result. The TiO image is on the right
side and the Hov image is on the left side. In Figure 1(c), we see
that the bright bridge in box B has been coarsely aligned to the
Ha image. But, the pores in box A are not completely aligned
and the pores in the TiO image have a slight divergence. This
means that the transformed TiO image is not accurately aligned
to the Ha image.

3.3. Fine Aligning

The coarse registration parameter p(1.055, —0.442, 446.528,
366.166) is taken as the initial value of the fine alignment. The
PB algorithm is considered as the optimizer to find the
transformation parameter j that makes the MMI reach the
minimum. The Euclidean norm e is set to 1 x 107°. If the
Euclidean distance ||p®™" — u®)|| is less than e, the fine
registration process will stop. Finally, the fine registration
vector p(1.354, —0°997, 482.667, 353.257) is obtained.
Figure 1(d) shows the fine registration result. Similar to
Figure 1(c), the Ha image and the registered TiO image are
also stitched together. Compared with the features in the two
boxes of Figure 1(c), the penumbral fiber structures are
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Figure 2. (a) The HMI continuum image observed by SDO/HMI on 2015
January 5 at 19:11:39 UT. (b) The TiO image observed by GST on 2015
January 5 at 19:12:43 UT. (c) The subregion marked with a gray box in panel
(a). (d) An overlapped image together with the registered TiO image and panel
(c). The red arrows point the image features to comparison each other.

precisely aligned besides the bright bridge, and the pores are
better overlapped with each other in box A.

4. Results

We selected two pairs of images with different channels and
different FOV to further demonstrate the applicability and
robustness of the proposed method. The pair of images is the
TiO image obtained by GST and the continuum image
provided by the Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012) on board the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012). The other pair of images is
observed by GST in the Ha blue- and red-wing channels.

4.1. GST TiO Image and SDO/HMI Image

The TiO image was observed on 2015 January 5 at 19:12:43
UT, and its pixel resolution is 070376. The other is the
continuum image observed by SDO/HMI at the same time
whose pixel resolution is 0”6. The full-disk continuum image
is shown in Figure 2(a), and the TiO image is shown in
Figure 2(b). Here, the TiO image is the moving image and the
continuum image is the fixed image.

The pixel resolution of the TiO image is about 15 times
higher than that of the contintum image. To improve the
convergence speed, we completed image preprocessing of the
pair of images. We first decreased by 15 times the sample rate
of the TiO image to generate a new downsampled image.
Furthermore, we calculated the NCC coefficient between the
downsampled TiO image and the full-disk solar image to locate
a coarse region to be aligned in the full-disk image according to
the NCC maximum position. The coarse region to be aligned is
marked with a gray box in Figures 2(a) and (c) shows much
richer image details about the coarse region. Here, this coarse
region is taken as the fixed image and the downsampled TiO
image as the moving image. Here, we note that in the step we



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 261:10 (7pp), 2022 August

¥ ! ! oY R ¥ &

Figure 3. (a) The Ha blue-wing (100 A) image observed by GST on 2015 July
14 at 18:15:09 UT. (b) The Ho red-wing (80 A) image observed by GST on
2015 July 14 at 18:15:14 UT. (c) The registered red-wing image to the blue-
wing image. (d) The image stitched together with the blue-wing image and the
registered red-wing image. The red arrows point to the aligned features in
comparison with each other.

only calculated the NCC maximum to obtain the coarse
position in the full-disk image to improve the convergence
speed. The process is different from calculating the NCC
gradient value in the coarse step.

The final transformation vector u is obtained. The pixel
resolution of the TiO image is 17.568 times that of the
continuum image, and the rotation angle is 197465. The
registered TiO image and the continuum region are overlapped
and shown in Figure 2(d). The pores and penumbral filaments
pointed to by the red arrows are better aligned together. If the
pixel resolution (0”6) of the full-disk image is taken as a
reference, the pixel resolution of the TiO image is 070342.

4.2. GST Ha Blue- and Red-wing Images

Figures 3(a) and (b) show the Ha blue- (100 A) and red-
(80 A) wing images closer to the solar edge obtained by the
GST on 2015 July 14 at 18:15:09 UT. Their pixel resolution is
0”029. We can see that the bright bridge and penumbral
filaments in the sunspot are deformed due to the projection
effect. Compared to Figure 3(a), panel (b) has slight rotation
angles and shifts. The blue-wing image is taken as the fixed
image and the red-wing image as the moving image. The fine
alignment vector p(1.003, —6.101, —4.361, 0.264) is obtained
by our method. According to the registration parameters, one
sees that the pixel resolution of the blue- and red-wing images
is approximately equal. But, the red-wing image must rotate
counterclockwise 62101, and shift —4.361 and 0.264 pixels
along the x- and y-axes. The final result and the stitched image
are shown in Figures 3(c) and (d), respectively. The solar
features in the red-wing image, such as umbral points and
penumbral filaments pointed to by the three red arrows, are
accurately joined to the blue-wing image, demonstrating that
the moving image and the fixed image are better aligned.
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5. Discussion

In this section, we first discuss why the coarse-to-fine
method is proposed, and then compare our method to the scale-
invariant feature transform (SIFT) and phase correlation
methods. Figures 4 and 5 present the registration results using
different registration methods. Figures 4(a) and (b) show the
TiO and Ha images observed by GST on 2015 May 21 at
20:40:02 UT and the registration results with different
registration methods are presented in Figures 4(c)-(f).
Figure 5 is similar to Figure 4. But the images are the Ha
blue 40 A and 80 A wing images observed on 2014 August 5 at
16:51:31 UT. We further used the MI and registration time
criteria to quantify the registration results and their values are
listed in Table 1. The “..” symbols represent that the
corresponding method fails to align the data set. All
experiments were completed on a Windows 10 64 bit PC with
an Intel Core i7 2.60 GHz processor (6 cores and 12 threads)
and 16 Gbyte RAM. The registration methods are implemented
on the Python 3.8.2 platform.

5.1. Coarse-to-fine Registration

The advantage of the RSGD algorithm as an optimizer is that
its search direction and step are determined by the gradient that
takes the impact of all registration parameters into account
simultaneously. If one of the parameters (i.e., r, s, x, y) results
in a wrong direction, the impact would be averaged by all
parameters. Thus, the RSGD algorithm is insensitive to the
initial values of the parameters. But its inherent drawback is
that the candidate parameters obtained by the algorithm are
close enough to the global optimum parameters, although in
most cases the global optimum parameters cannot be obtained
even though we attempt to add the iteration number of the
algorithm.

Compared to the RSGD algorithm, the PB algorithm takes
every parameter into account in turn. The computational cost is
relatively lower than the derivative-based methods, such as
RSGD, which causes it to quickly approach the optimum
solution area. But its limitation is that every parameter is taken
into account separately. Thus, every parameter contributes a
great impact in every iteration and makes the algorithm easily
fall into a local optimum. Therefore, the selection of the initial
parameters is crucial to whether PB can obtain the globally
optimum values without falling into a local optimum. So, we
used the advantage of the RSGD algorithm, i.e., insensitive
initial parameters, to obtain a coarse area and then used the PB
algorithm to achieve a high-precision registration.

Figures 4(f) and 5(f) present two registration results using
the PB algorithm combining MMI (PB-MMI), respectively.
Compared to the registration result of our methods (see
Figures 4(c) and 5(c)), we can find that the registration
accuracy of PB-MMI is relatively lower. But, if we only focus
on the red box in Figure 4(f), the alignment result seems to be
good. This is because PB-MMI falls into a local optimum. The
registration result shown in Figure 5(f) seems to be successful.
But, if we focus on the small pore pointed to with a red arrow
in the bottom left of Figure 5(f), two images that contain the
same pore fail to align with each other. Compared to the results
in Table 1, the registration time of the coarse-to-fine method is
comparable to that of the PB-MMI method, but our MI values
have been significantly improved. The fact that the PB
algorithm easily fails or the registration accuracy is relatively
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PB and MMI

Figure 4. (a), (b) TiO and Ha images observed by GST on 2015 May 21 at 20:40:02 UT. The TiO is the fixed image and the Ha image is the moving image. (c) The
registration result of our method. (d) The result of SIFT. (e) The result of phase correlation. (f) The result of the PB and MMI. Every registration result is superposed

on the TiO image.

low is related to its optimization process. However, adopting
the coarse-to-fine registration strategy not only considerably
decreases the registration time but also improves the registra-
tion accuracy.

5.2. Comparison and Evaluation

We selected the two classical solar image registration
methods, SIFT and phase correlation, to evaluate and compare
the performance with different methods. We selected the
library provided by the OpenCV-Python package’ to complete
the SIFT experiments. For phase correlation, we used the
Python library® that implements an FFT-based method (Reddy
& Chatterji 1996). The FFT-based phase correlation method
can align the images with different translations, rotations, and
scales.

We tested the SFIT method in five pairs of images, and got
four decent alignments and a failed case, which is illustrated in
Figure 5. As listed in Table 1, the MI values of our method are
slightly higher than that of the SIFT method, and the
registration times of our method are significantly superior to
the SIFT method. Figure 4(d) shows the registration result
aligned by the SIFT method. The registration accuracy is
comparable to our method (Figure 4(c)). SIFT does not work

7 https://pypi.org/project/opencv-python/
8 https:/ /pypi.org/project/imreg/

well if the pair of images have distinct image features, for
example, Figure 5(d). This is because the pair of images
(Figures 5(a) and (b)) present different image features that
mean few feature points are successfully matched by SIFT. The
three pairs of images shown in Figures 1, 3, and 5 are
successfully aligned by the phase correlation method.
Figure 5(e) shows a successful case. The registration accuracy
is comparable to Figure 5(c). But, the fact that only three pairs
of images were aligned successfully proves that the robustness
and stability of phase correlation are inferior to our method.

6. Conclusion

We proposed a coarse-to-fine registration method based on
image intensity similarity metrics. We first used the RSGD
algorithm as an optimizer to bring the NCC similarity metric to
the maximum for obtaining a coarse registration vector.
Subsequently, the coarse vector is taken as the initial value in
the fine registration step to further align the moving image to the
fixed image. In the fine registration step, the PB algorithm is taken
as the optimizer and MMI as the similarity metric. We selected
five pairs of images with different resolutions, rotation angles, and
shifts observed by GST and SDO/HMI to evaluate the
registration results. Meanwhile, the MI and registration time
criteria are used to quantify the registration results obtained by our
method, SIFT, and phase correlation. The registration results and
the quantitative values prove that our proposed method has much
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our method
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Figure 5. (a), (b) The Ha blue 40 A and 80 A wing images observed on 2014 August 5 at 16:51:31 UT. (c¢)—(f) The results of our method, SIFT, phase correlation, and

PB and MML
Table 1
Performance Evaluation of Different Registration Methods
Data Set Registration Method MI Times (s)
Figure 1 SIFT 0.62 302.2
Phase correlation 0.62 5.1
PB and MMI 0.63 39
Our method 0.63 4.1
Figure 2 SIFT 1.15 407
Phase correlation
PB and MMI
Our method 1.15 11.5
Figure 3 SIFT 0.72 111.0
Phase correlation 0.59 5.3
PB and MMI 0.65 3.5
Our method 0.73 3.1
Figure 4 SIFT 0.41 208.2
Phase correlation
PB and MMI
Our method 0.43 9.8
Figure 5 SIFT
Phase correlation 0.48 5.1
PB and MMI 0.36 6.2
Our method 0.49 54

better alignment accuracy and robustness, and its efficiency is also
very high. Moreover, we want to highlight that our method not
only registers multichannel images but also resolves the alignment
problem of time-series images in the same channel.
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