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(a) The reaction of virtual balls with different physical properties to varying level of pressing force decoded from forearm electromyography signals.
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(b) Our system provides a natural and intuitive interface for capturing user-generated forces and letting them take effects in the virtual environment.

Fig. 1. Electromyography (EMG)-based neural interface with learned muscular force decoder. With user-generated physical forces being decoded by our interface
and applied to virtual objects in real-time, (a) illustrates the deformation of a beach ball, a volleyball, and a bowling ball in VR, subject to pressing force of
varying intensities. The beach ball is softer than the volleyball and thus exhibits larger deformation under the same force level, while the bowling ball is rigid
and barely deforms within the force range of finger pressing. Our scheme helps users better perceive/distinguish the physical properties of virtual objects, in a
way similar to how they approach it in the real world. (b) shows force-enabled virtual interactions via our system, with enhanced physical realism. 3D asset
credits to SbbUtutuya, Virtual Method, TGameAssets at Unity, and TankStorm at Sketchfab.
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While tremendous advances in visual and auditory realism have been made
for virtual and augmented reality (VR/AR), introducing a plausible sense
of physicality into the virtual world remains challenging. Closing the gap
between real-world physicality and immersive virtual experience requires a
closed interaction loop: applying user-exerted physical forces to the virtual
environment and generating haptic sensations back to the users. However,
existing VR/AR solutions either completely ignore the force inputs from the
users or rely on obtrusive sensing devices that compromise user experience.

By identifying users’ muscle activation patterns while engaging in VR/AR,
we design a learning-based neural interface for natural and intuitive force
inputs. Specifically, we show that lightweight electromyography sensors,
resting non-invasively on users’ forearm skin, inform and establish a robust
understanding of their complex hand activities. Fuelled by a neural-network-
based model, our interface can decode finger-wise forces in real-time with
3.3% mean error, and generalize to new users with little calibration. Through
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an interactive psychophysical study, we show that human perception of
virtual objects’ physical properties, such as stiffness, can be significantly
enhanced by our interface. We further demonstrate that our interface enables
ubiquitous control via finger tapping. Ultimately, we envision our findings to
push forward research towards more realistic physicality in future VR/AR.

CCS Concepts: • Computing methodologies → Virtual reality; Mixed /
augmented reality; Perception; Neural networks; • Human-centered
computing → Haptic devices.

Additional Key Words and Phrases: Electromyography, Force-Aware Neural
Interface, Machine Learning, Haptic Perception
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1 INTRODUCTION
The visual gaps between real world and virtual environments have
been rapidly shrinking with the advance of novel display and ren-
dering technologies. However, developing matching realistic-feeling
interfaces that let users interact as if they were in the physical world,
stands out as a chronically persistent and doggedly resistant chal-
lenge [Torrens and Gu 2021]. Physical interactions, such as lifting,
grasping, brushing, pushing, and prodding involve a bi-directional
interchange between humans and the environment: our muscles
exert forces on objects, while we perceive the visual (and sometimes
haptic) feedback response in the objects’ reactions. To establish the
same loop in virtual environments, researchers have devoted exten-
sive effort to advance the quality of feedback sensations with haptic
devices and rendering methods. However, it has long remained
difficult to transfer real-world physical human applied forces of
dexterity and agility into convincing virtual form. This incomplete
loop leaves VR/AR disadvantaged in its ability to faithfully and
convincingly represent real experiences.

The idea of directly sensing, tracking, and decoding user-induced
forces has emerged as a promising line of research, with the impli-
cation that this information provides a scaffold for building natu-
ral and intuitive interaction experiences [Bergström and Hornbæk
2019; Ernst and Banks 2002]. Wearable force sensors now provide
high-precision and high-resolution data [Luo et al. 2021a; Sundaram
et al. 2019]. However, existing force-sensing technologies are of-
ten bulky, wired, and directly attached to hands. This hampers
their applications for natural interaction and makes the devices
undesirable as consumer-level interfaces. One solution has been to
skip devices altogether. Purely data-driven visual-to-force learning
methods [Ehsani et al. 2020a] have been proposed, allowing for
contactless estimation of user force. However, they may suffer from
occlusions, low precision, and action-perception delays due to the
high load of transmission and processing.
The advancement of neural sensing enabled central (from the

brain [Anumanchipalli et al. 2019;Willett et al. 2021]) and peripheral
(from the muscles [Liu et al. 2021; Salemi Parizi et al. 2021]) solu-
tions for decoding human action intentions, as electrophysiological
responses. However, decoding the intended force for interaction
has been so far unsolved due to the variance across human users,
the lack of correlated data, computational complexity that blocks

real-time performance, and the inevitable pervasive sensory noises
affecting biological signals [Hof 1991].
We introduce an end-to-end neural interface that reduces the

physicality gap between real experience and VR/AR. The result is a
real-time system for dexterity-enabled force-aware VR/AR. The sys-
tem’s chief advantages are that, (1) it allows for natural, unimpeded,
forearm and hand movement; (2) using off-the-shelf electromyogra-
phy sensors; (3) with low latency for force-and-response interactions
with computer graphics; (4) in ways that are generalizable across a
diversity of users.
Our research shows that very detailed and rich physical expe-

riences of manual dexterity can be delivered to VR/AR systems
and paired with high-fidelity graphics for visual similitude, in ways
that neatly and realistically close the loop between intention and
interaction in VR/AR experiences. Our system offers a tractable so-
lution to existing bottlenecks in directly sensing and resolving users’
physical intentions in VR/AR systems, using machine-learning on
skin-surface electromyography (sEMG) sensors to identify, track,
and decode signals of physical activity at rates that allow for match-
ing design and delivery of experiential content in VR/AR. These
developments, while preliminary, open-up new pathways for VR/AR
experience in gaming, design, and object control. While we describe
the research, development, and evaluation pipeline, we note that
the system is application-ready. We demonstrate practical examples
on low-cost commercially available sEMG sensors and widely used
VR/AR technology. We will also open-source both our dataset and
source code to the community to support future work.

While the system is shown towork parsimoniously in user-testing
and evaluation, the research behind it is non-trivial. To develop the
proposed neural interface, we start by collecting a large-scale joint
dataset via force-sensing and surface EMG devices. The dataset
consists of the time-synchronized signals between fingertip forces
and the corresponding EMG signals. By leveraging our specialized
dataset, we developed the first real-time learning-based framework
that tracks and decodes human physical forces from multichannel
muscle activation signals. The dataset is populated, initially, using a
set of participant experiments to record EMG signals from forearm
muscles while participants directly perform various natural hand-
object interactions, such as pressing and pinching. On this initial
dataset, we trained a convolutional neural network (CNN) model
on the frequency-transformed signals to robustly learn the com-
plex mapping between muscle activities and actions. The trained
model isolates the force-induced bio-electrical signals from hand
motions and estimates the forces exerted at the fingertips. During
run-time, the model only uses the past 624ms of EMG data, enabling
low-latency force inference in real-time. With this model on hand,
we show that only minimal calibration is required to transfer and
generalize it to unseen users.
In order to validate the system we have conducted a systematic

user study and evaluated users’ experience during interaction with
virtual objects. We will present a series of psychophysical experi-
ments and objective analysis that reveal our system to be robust
and generalizable. Moreover, we will show that the system can en-
hance users’ perceptual understanding of virtual objects’ physical
and material characteristics in VR, by extending their capabilities
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for natural human interaction with graphical objects. Our experi-
mentation also demonstrates that the system is broadly resilient to
variation in user physiology, sensor placement, and tasks.

In summary, this paper contributes:
• An end-to-end EMG-based neural interface that decodes,
transfers, and applies hand-induced forces with low-latency
in VR environments;

• A prototype interaction system that leverages our method
to enhance human’s perceptual understanding of material
characteristics in VR;

• A real-time and generalizable CNN-based model established
in the frequency demain of EMG-sensed muscular potentials
with a force-tailored loss design;

• A set of user experiments to demonstrate the generalizability
of the system to perturbations in sensor placement, shifting
task context, and uniqueness of users;

• Proofs of concept for natural interactionwith computer graph-
ics in VR.

We provide the source code for our force regression models, real-
time interaction system, and accompanying EMG-Force dataset at
https://github.com/NYU-ICL/xr-emg-force-interface.

2 RELATED WORK

2.1 Biometric Sensing for Immersive Interaction
Accurately sensing human behaviors is fundamental to favorable
human-environment interaction. With recent advancements of var-
ious sensing technologies, both in hardware and software, we are
now entering an era where unprecedented means of multi-modal
interaction with virtual environments are possible. For instance, eye
tracking enables real-time foveated rendering [Kim et al. 2019; Pat-
ney et al. 2016] and enhances VR redirected walking [Langbehn et al.
2018; Sun et al. 2018]; face tracking generates lifelike virtual avatars
for telecommunication [Chen et al. 2021; Chu et al. 2020; Ma et al.
2021]; whole-body tracking allows for intuitive control and feedback
for virtual interaction [Cao et al. 2017; Joo et al. 2018; Kanazawa et al.
2018; Newell et al. 2016]. In virtual environments, users largely rely
on hand-based interfaces for interaction, making hand behaviors
particularly indicative of their intention and status. As a result, hand
tracking has attracted considerable research interest in computer
graphics [Boukhayma et al. 2019; Han et al. 2020; Romero et al. 2017;
Wan et al. 2018]. However, tracked position information alone is
insufficient to achieve immersive VR experience. Without the feeling
of hands, positional tracking essentially casts ghost appendages in
users’ field of view. This misses the sense of corporeality and thus
the sense of capabilities that humans feel as they use their hands
in the real world. We reason that hand-induced interaction force is
another indispensable component of human embodiment in virtual
scenes that is often overlooked or only approximated [Pham et al.
2015; Zhu et al. 2016] in prior works.

2.2 Sensing and Interacting with Contact Forces
Contact forces are an essential modality for understanding and en-
hancing human-object interaction [Luo et al. 2021b; Sundaram et al.
2019]. Unlike visual stimuli, force information must be communi-
cated in a two-way fashion when we interact with and establish

understanding of virtual environments. While users apply forces to
a virtual object, they also receive haptic feedback from the object’s
response [Dangxiao et al. 2019; Gonzalez et al. 2021; Yoshida et al.
2020]. For the latter, which has been addressed in computer graph-
ics as haptic rendering [Lin and Otaduy 2008], researchers have
explored various ways of applying tactile effects to users, ranging
from grasping and touching [Choi et al. 2016, 2018; Verschoor et al.
2020] to texture [Benko et al. 2016], shear [Whitmire et al. 2018]
and gravity [Choi et al. 2017].
However, the inverse problem of naturally sensing and exploit-

ing human-exerted forces in the context of VR remains an open
challenge. Existing solutions are either based on hand-held input
devices or force-sensing wearables [Luo et al. 2021a; Sundaram et al.
2019]. While such methods can provide high-precision force mea-
surements during hand-object interaction, their obtrusive design
inevitably compromises finger dexterity, increases the frictions be-
tween users and virtual environments, and limits their availability
for daily usage. To develop a natural and intuitive force interface
for VR, we attempt to sense hand-applied forces from the control-
ling muscles located on the forearm by leveraging the biological
mechanism of human hands as described in Section 3.1. This al-
lows us to completely bypass on-hand measurements and achieve
force-enabled VR interaction in a natural bare-hand manner.

2.3 EMG-Based Human-Computer Interface
Recent advancements in neural interfaces have demonstrated the
great potential of interactive devices that directly interface with
the human body and interpret neuronal activities for downstream
tasks [Anumanchipalli et al. 2019; Flesher et al. 2021; Hochberg
et al. 2012; Willett et al. 2021]. Among these interfaces, EMG has
emerged as a promising interaction medium, especially in VR and
AR [Hirota et al. 2018; Koniaris et al. 2016; Tsuboi et al. 2017]. A
major benefit of EMG for immersive interaction is the potential
that it offers for completely bypassing the often-used solution of
camera-based tracking, which has serious side effects of being open
to limitation by occlusions and field of view [Pai et al. 2019]. To
advance EMG approaches, considerable research efforts have been
made to infer hand poses from forearm EMG, including gesture
recognition [Du et al. 2017; Gulati et al. 2021; Javaid et al. 2021;
Jo and Oh 2020; Rahimian et al. 2021; Sun et al. 2022], hand ori-
entation estimation [Andrean et al. 2019; Zhao et al. 2020], and
finger tracking [Liu et al. 2021; Qi et al. 2021; Zhang et al. 2022].
The knowledge may then be leveraged towards camera-free VR
control [Ahsan et al. 2009]. We reason, additionally, that tracking
hand-object interaction forces is indispensable to creating realistic
physical effects in VR, e.g., via physics-based simulation methods.
However, finger-exerted forces are continuous, transient, subtle,
and changeable, thus pitching fundamental challenges for decoding.

Prior research investigated the possibility of estimating hand/finger-
level forces from forearm EMG [Baldacchino et al. 2018; Bardizba-
nian et al. 2020a,b; Becker et al. 2018; Castellini and Koiva 2012;
Castellini and Van Der Smagt 2009; Cho et al. 2022; Fang et al. 2019;
Gailey et al. 2017; Hu et al. 2022; Liu et al. 2013; Mao et al. 2021;
Martínez et al. 2020; Martinez et al. 2020; Wu et al. 2020, 2021; Zhang
et al. 2022]. Despite exciting preliminary results, deploying them in
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practical VR applications is still in its infancy. Several open problems
remain mostly unresolved:

Flexibility for real-life usage. Existing solutions commonly as-
sume controlled laboratory settings. For example, work presented
by Castellini and Koiva [Castellini and Koiva 2012] can only operate
when the user’s hand is artificially pinned and constrained in a
flat wooden mold/guide. In the approach by Zhang et al. [Zhang
et al. 2022], it is necessary to place hard-wired electrodes up and
down an entire arm; moreover, force detection relies on an elaborate
mechanical metal force-sensing device that is hard-bolted to a table.
In the approach shown by Baldacchino et al. [Baldacchino et al.
2018], there is also a requirement that an entire arm be fitted with
electrodes. These systems are fantastic early proofs-of-concept, but
interacting in VR demands requires that free-form interaction is
supported—we would argue that it also needs to be as natural as
possible—and this necessitates a different approach over the current
state-of-the-art to successfully bypass those complications. Our ap-
proach introduces a relaxed, accessible, natural test-bed that can
accommodate freely realistic postures and gestures of the hand. The
level of authenticity that we have achieved relative to real-world
hand and finger forces contrasts with much of the prior art. Exist-
ing approaches are highly isometric, which artificially limits free
interaction in testing and in use.

Simultaneous and continuous multi-finger force measurement. To
reproduce natural dexterity, it is necessary to enable all fingers to
operate together and apply varied forces simultaneously. This is
critical to how we use our upper limbs to manipulate and explore
the world around us. Most existing approaches to reproducing this
in VR have focused on generalized hand-scale gestures [Fang et al.
2019; Gailey et al. 2017; Hu et al. 2022; Martínez et al. 2020; Wu
et al. 2021]. Humans rely on most muscles in the forearm and neural
control of these muscles produces electrical signals. These signals
are notably unambiguous and thus open to direct detection. This
is not always straightforward outside of clinical sensing. Beyond
a classification problem, regressing the exact force value positions
presents additional challenges due signal noise and individual vari-
ances. This has been tried before. For example, Baldacchino et al.
[Baldacchino et al. 2018] presented a regression approach, but rather
than sensing they tackled the challenge through data science on an
existing database [Atzori and Müller 2015], which was limited to
nine variations of a simple (and single) finger-on-surface pressing
motion (compare this to the free-form and multi-finger dexterous
gestures that our scheme tackles). Real humans of course use their
fingers as they please during dexterous tasks; limiting dexterity
to a single finger would seriously hamper usability. Continuity in
the temporal domain presents another challenge. As one can imag-
ine, the signal firing of muscles in the forearm is highly dynamic.
Previous work have addressed this by approximating dynamics as
“action shifts" between hand postures [Gailey et al. 2017]. This is
really just a workaround that substitutes state transition for ac-
tual dynamics. This is problematic for VR settings, which are often
highly dynamic, with users that are usually quite aware of how fast
their hands and fingers move in the real world. Building realistic
and fast-adaptive temporal continuity between user actions and

responding force-aware graphics is therefore critical in supporting
natural interaction.

Our approach, by comparison, simultaneously isolates and teases
out signal details for individual fingers with spatio-temporally con-
tinuous force prediction. Our aim, in doing so, is to support a wide
range of natural interactions in VR/AR, including those that re-
quire fine-grain dexterity maneuvers. The force-based dexterous
abilities that are accessible via our scheme (e.g., finger tapping) are
well beyond the capabilities of existing prior art (which focus on
finger posture (not force) or track very stylized dexterity such as
simple pressing actions). This is achieved via our machine learning
approach and an in-house dataset with robust interaction variety.

Generalizability. Daily interactive scenarios require generaliz-
able systems for everyone, without tedious pre-usage preparation.
The prior art in this domain adopts an approach that validates
cross-user force prediction accuracy with datasets under identical
settings [Bardizbanian et al. 2020a,b; Becker et al. 2018; Castellini
and Van Der Smagt 2009; Mao et al. 2021; Zhang et al. 2022]. By
contrast, our frequency domain neural network method tackles the
long-looming generalizability problem in EMG data decoding. In
this paper, we show that we can collect data on two completely dif-
ferent days (with associated shifts in placement of sensors) as well
as for completely different users (with shifting reactions, varying
arm and finger morphology, and different dexterity and skills) with
less than 2 minute calibration. Solving sensing generalizability and
subject generalizability—in tandem—is a significant contribution to
the literature. Moreover, it greatly expands the applicability of our
scheme for VR/AR, where there will necessarily be wide variation
gaps in sensing conditions and users.

3 METHOD
In the following, we first review the biological mechanism of human
hands and illustrate how muscles on the forearm control finger-
level forces in Section 3.1. Then, we describe how we tailored our
EMG-force joint data collection to capture the complex mapping
from muscle activations to finger-level forces in Section 3.2. Finally,
using the established dataset, we detail our frequency-domain mus-
cular force learning pipeline, with joint classification and regression,
in Section 3.3.

3.1 Biological Model of Human Hands
To bypass the limitations of passively measuring hand-exerted in-
teraction forces using cumbersome (and interfering) sensors such
as gloves, we argue that such information can be actively decoded
at the finger level from the bioelectric signals reflecting forearm
muscle activations, which wireless EMG sensors can in turn capture.

Hand-forearm joint biomechanical mechanism. As shown in Fig-
ure 2 (bottom), hands, the most dexterous limbs on the human body,
exhibit high degree-of-freedom (DOF) articulations through a large
number of finger joints, allowing us to perform complex and subtle
interactions with the surroundings. The muscles driving this deli-
cate articulated structure are: 1) extrinsic muscles spread over the
anterior and posterior compartments of the forearm; 2) intrinsic
muscles located right in the hand.
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Fig. 2. Anatomical illustration of forearm muscles controlling the flexion and
extension of thumb and four fingers.Our system predicts hand-induced forces
at finger level by sensing forearm muscle activations with EMG sensors,
preserving the dexterity necessary for delicate hand activities in VR/AR.

From the perspective of VR/AR applications, users most often
interact with their surroundings through bare-hand touching, press-
ing, pinching, and gripping [Von Hardenberg and Bérard 2001]. The
major contributing muscles in these interactions include flexor digi-
torum superficialis, flexor digitorum profundus, and flexor pollicis
longus, all residing in the anterior compartment of the forearm. In
particular, flexor digitorum superficialis controls the flexion of PIP
and MCP joints for the 4 fingers and the wrist; flexor digitorum
profundus controls the flexion of DIP joints for the 4 fingers as well
as the flexion of MCP joints for the 4 fingers and the wrist; flexor
pollicis longus controls the flexion of IP and MCP joints for the
thumb. Figure 2 illustrates the anatomical structure of these forearm
flexor muscles. By investigating the signals passed when invoking
these biomechanics, we reason that it becomes possible to sense and
learn hand operations from the connected forearm.

Bioelectric mechanism. Muscles are composed of constituent ele-
ments called motor units, and the contraction of each single muscle
is managed by a specific group of motor units. On the other hand,
motor units are made from more fundamental units called muscle
fibers. When activated by our brain, muscle fibers within the same
motor unit fire together and generate a propagating electrical po-
tential called motor unit action potential (MUAP) via the elevation
of 𝐶𝑎2+ in the sarcoplasm [Melzer et al. 1984]. When placed on our
skin, the EMG sensors record such electrical signals in real-time.
The various hand-object interactions that we can perform are re-
sults of varying activation patterns of the involved muscle fibers,
which are themselves reflected by the recorded signals. However,
how analytically or numerically the electrical signals are coupled
with mechanical forces remains an open challenge, especially given
the inevitable sensing noise. In the following section, we discuss
our attempts toward a robust electric-mechanic signal decoding in
the frequency domain.

EMG SignalsFingertip Forces

Fig. 3. Experimental setup for collecting time-synchronized EMG and force
data. During the data collection, participants were asked to interact with
a Morph Sensel trackpad through various pressing and pinching actions
while wearing 8 EMG sensors on his/her right forearm.

3.2 EMG-Force Joint Data Collection
We aim to establish a bioelectrical-mechanical bridge via a data-
driven approach. To this end, we first collect time-synchronized
EMG and force data in a supervised manner. To collect EMG electri-
cal signals, we adopt 8 Delsys Trigno EMG sensors (from Delsys Inc,
USA) and overlay them on the forearm in a way that all muscles
of interest are monitored. All 8 EMG sensors are wirelessly syn-
chronized at 2000 Hz. We note that this is a factor of ten times the
bandwidth of the (now discontinued) Myo sensor that is used in
prior art, e.g., Javaid et al. [Javaid et al. 2021]. In their review of the
accuracy of sEMG sensors, Pizzolato et al. [Pizzolato et al. 2017] dis-
cuss this issue directly, noting that “the Myo is not suited to record
high quality sEMG signal data including the full power spectrum
of sEMG (that can include frequencies of up to 300-500 Hz)” (p.10).
Our captured data are streamed to a desktop computer over WiFi in
real-time. To collect finger-wise force data, we employed a Morph
Sensel trackpad with pressure sensors arranged into a dense array.
The data collection setup is illustrated in Figure 3. In particular, we
divide the tracking area into 5 non-overlapping regions so that each
fingertip only taps onto its dedicated partition throughout the data
collection process. Detected contact points with force information
can then be correctly attributed to the corresponding fingers. Note
that this design choice is only adopted to ease force labeling ef-
forts and we do not assume any specific wrist/finger poses during
either training or testing. Also, the dividing strategy is user- and
motion-specific to accommodate the hand size and personal habit
of different users. The data collection code for both modalities is
launched using multi-threading, and the system timestamps are
exploited for overall synchronization.
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Fig. 4. Illustration of the deep learning pipeline embedded in our system. To optimize for parameter efficiency and resilience to data noise, we transform raw
EMG signals into frequency domain via STFT, treat the resulting spectrograms as multi-channel images, and employ a lightweight CNN model with bottleneck
design. Training is performed using a customized classification-regression joint loss tailored to the task of force estimation. When put into action, our system
uses a fixed-size sliding window to retrieve the latest frames from wirelessly streamed EMG signals and decodes finger-wise forces in real time.

Transformed data representation. As a typical bio-electric sensor,
EMGs also suffer from a certain level of measurement noise includ-
ing powerline noise and other electromagnetic artifacts. Existing
EMG processing approaches typically extract and learn from sta-
tistical features in the time domain, such as mean absolute value,
average amplitude change, interquartile range, etc [Spiewak et al.
2018]. Consequently, subtle noise or distortion may cause signifi-
cant feature-space error [Boostani and Moradi 2003], harming the
change-sensitive force-bioelectricity correlation.

Drawing inspirations from audio research, we compute the spec-
trograms of EMG signals using short-time Fourier transform (STFT)
so that high-frequency additive noise may be more distinctly iso-
lated. Another computational advantage of learning with frequency-
domain representation is that the EMG signal from each electrode,
or channel, is now a 2D array instead of a 1D time series and that
we can seamlessly take advantage of powerful convolutional neural
network (CNN) models for better parameter efficiency and general-
ization capability. Specifically, we adopt a Hanning window of size
256 sample points, which corresponds to a duration of 128ms, with
hop length set to 32, to obtain 129 frequency bins. In addition, a
resampling step is needed to temporally align raw force data (the
sampling frequency of Morph Sensel is around 125Hz) with com-
puted EMG spectrograms. A nearest-neighbor-based interpolation
is adopted for this purpose.

3.3 Muscular Force Learning Pipeline
A main roadblock for EMG sensors is the well-known challenge of
aligning the electrodes exactly on muscles. For instance, as seen
in Figure 2, sensors may commonly cross-ride on or fall in the gap
between the underlying interwoven muscle bundles. As a result, al-
though the activation information of all target muscles are captured
by EMG sensors, directly assigning the electric signals to individual

muscle-group and joints becomes unrealistic. To robustly recover
finger-wise force information from raw EMG data, we resort to the
data-driven paradigm and adopt powerful neural network models
to learn this highly non-linear correlation between forearm EMG
signal and finger-wise forces.

Model architecture. While recurrent neural network (RNN) has
been a common practice for sequential data learning, recent ad-
vancements in audio learning have shown that deep CNN models
with properly processed input data are capable of delivering better
performance in some cases, thanks to their highly efficient parame-
ter usage which allows for very deep design [Oord et al. 2016]. We
are inspired to exploit convolutional filters to extract deep features
from the 2D spectrograms. While our input data points live in a
high-dimensional space (129), those features containing the seman-
tic information of finger-wise forces are embedded in a subspace of
much lower dimension. To efficiently extract relevant information
and mitigate overfitting to training data, we employ an encoder-
decoder architecture to enforce a low-dimensional latent space. Also,
we only feed the 64 low-frequency components from the spectro-
grams to the encoder model to remove high-frequency data noise
and allow for accelerated performance. In addition, we provide the
model with sequential data from a long time interval (32 consecutive
frames in the spectrograms, which correspond to 624ms raw EMG
data) instead of a single frame to let it exploit information from
previous frames and better satisfy temporal constraints. The input
data size is thus (𝑁,𝐶, 𝐿, 𝑆), where 𝑁 , 𝐶 = 8, 𝐿 = 32, and 𝑆 = 64
denote the batch size, number of sEMG channels, input sequence
length, and number of EMG frequency components, respectively.
The encoder model consists of repeating Convolution-BatchNorm-
ReLU blocks, with each block followed by a 2 × 2 Maxpool layer
for downsampling in time and frequency dimensions. Similarly, the
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I-Press M-Press R-Press P-Press IM-Press MR-Press TI-Pinch TM-Pinch TIM-Pinch TIMR-Pinch TIMRP-Pinch

Fig. 5. Types of hand-object interaction selected for constructing our EMG-Force dataset. Capital letters before the hyphen, namely T, I, M, R, and P, stand for
thumb, index finger, middle finger, ring finger, and pinky finger, respectively.

decoder model also consists of repeating Convolution-BatchNorm-
ReLU blocks, with each block followed by a 2 × 2 bilinear Upsample
layer for increasing time dimension. After that, the decoder output
is transformed by a linear layer in the channel dimension to match
desired force outputs, e.g. 5 values for 5 finger-wise forces. The out-
put data size is thus (𝑁, 𝐹, 𝐿, 1), or (𝑁, 𝐹, 𝐿) with the fake frequency
dimension squeezed out, where 𝐹 denotes the pre-defined number
of force components. All convolutional layers have kernel size 3× 3.
When putting the model in action, spectrograms of streamed EMG
signals are computed on the fly and a sliding window of length
𝐿 = 32 feeds the latest data to the model for real-time inference.
Detailed model architecture, data flow and input/output dimension
at each layer are illustrated in Figure 4.

Joint classification and regression. Estimating continuous finger-
wise forces, by its nature, is a regression problem, and it is natural
to adopt common regression losses, such as 𝐿1 or 𝐿2 loss, as the
objective function. However, the muscle-generated forces in interac-
tive scenarios have two unique patterns: humans apply forces only
sparsely in the real-world; and the variance of force levels is com-
monly high, ranging from light touches to hard pushes. In practice,
regression-based learning oftentimes tends to predict non-zero val-
ues (false positive when we do not generate forces) or over-smooth
low-amplitude values (false negative for light forces). For our tar-
geted VR/AR applications, this seemingly small estimation error can
lead to visually noticeable artifacts and largely compromise user
experience (e.g., causing constant vibrations on objects or producing
no reaction on low-force touches).

A naïve solution to this problem is to set a cut-off threshold such
that the estimated values below it are treated as zero. Although
this modification enables zero-value output, tweaking the threshold
can be unworkable in practice and the performance is still barely
satisfactory as will be shown in Section 4.2. To address this issue,
we introduce a classification loss to better differentiate between
EMG sequences with and without forces. Specifically, for each time
frame 𝑡 and each finger 𝑖 , the model outputs a value 𝑝𝑡

𝑖
∈ [0, 1]

indicating the probability of that finger applying force at that time
frame. A cross entropy loss 𝐿𝑐 is employed to train the model for this
force/no-force binary classification task. On top of 𝑝𝑡

𝑖
, we compute

the predicted force as 𝐹 𝑡
𝑖
= 2𝐹max · max(0, 𝑝𝑡

𝑖
− 0.5), where 𝐹max

denotes the force upper-bound and defines the predicted force range.
A 𝐿2 loss is then employed to train the model for force regression.

𝐿𝑐 =
1

𝑇 · 𝐼

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝑦𝑡𝑖 · log 𝑝
𝑡
𝑖 + (1 − 𝑦𝑡𝑖 ) · log(1 − 𝑝𝑡𝑖 ) (1)

𝐿𝑟 =
1

𝑇 · 𝐼

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

∥𝐹 𝑡𝑖 − 𝐹 𝑡𝑖 ∥
2 (2)

where 𝑦𝑡
𝑖
and 𝐹 𝑡

𝑖
denote the ground-truth force label and value,

respectively, for finger 𝑖 at time frame 𝑡 .
A hyper-parameter 𝜆 is introduced to balance between classifica-

tion and regression, and the overall loss 𝐿 takes the form:

𝐿 = 𝐿𝑐 + 𝜆 · 𝐿𝑟 (3)

The joint loss above is designed such that, for finger 𝑖 at time frame
𝑡 : when 𝑝𝑡

𝑖
∈ [0, 0.5], we have 𝐹 𝑡

𝑖
= 0, only 𝐿𝑐 takes effect and

the model focuses on correcting wrong classifications; when 𝑝𝑡
𝑖
∈

(0.5, 1.0], we have 𝐹 𝑡
𝑖
= 2𝐹max · (𝑝𝑡

𝑖
− 0.5) ∈ (0, 𝐹max], 𝐿𝑐 and 𝐿𝑟

together push the model towards the joint classification-regression
goal. As a result, we are able to not only get zero-value outputs when
there is no force, but also prioritize classification over regression
at the beginning stage of training, since the estimated force value
will be useless if the predicted class is wrong in the first place. Note
that 𝑝𝑡

𝑖
is exploited to both differentiate between no-force and force

(classification with threshold 𝑝𝑡
𝑖
= 0.5) and compute the predicted

forces 𝐹 𝑡
𝑖
(regression).

4 EVALUATION
To evaluate our method and system, we first discuss in Section 4.1
the specifics of our EMG-Force dataset and the evaluation met-
rics for quantifying the performance of our CNN-based regression
model (detailed in Section 3.3). Then, we present the results of finger-
tip force estimation for various common hand-object interactions
in Section 4.2. Following that, we compare our approach with ex-
isting vision-based methods in Section 4.3. We further study the
time-efficient generalization of the pre-trained model to new users
in Section 4.4. In addition, we also analyze the resulting neural in-
terface in terms of latency and storage for real-time applications
in Section 4.5. Finally, we conduct a user study to demonstrate the
knowledge of contact force value could benefit material perception
and enhances physical realism for real-world VR/AR interaction
in Section 4.6.

4.1 EMG-Force Dataset and Evaluation Metrics
The relationship between forearm muscle activations and finger
actions exhibits a highly complex mapping [Farina and Holobar
2016]. On top of this complexity, its variations across subject iden-
tity, arm/hand posture, and subject’s physical condition further add
to the complexity of its precise characterization. Additionally, the
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(a) Action-wise and overall performance of user-independent model.

(b) Subject-wise and overall performance of user-independent model.

Fig. 6. Objective evaluation of user-independent model. (a) shows the action-wise performance of user-independent model in estimating finger-wise forces, with
95% confidence intervals overlaid. Similarly, (b) shows the subject-wise performance.

electric signal detected by each EMG sensor is inevitably a superpo-
sition of multiple muscles’ activities (as shown in Figure 2), which
only makes decoding finger-wise forces from EMG signals even
more difficult. Therefore, it is crucial to establish a comprehensive
training dataset covering common and natural hand-object contact
patterns, so that the neural network model can effectively capture
this relationship and acquire better generalization capability. Most
prior art relies on the NinaPro dataset [Atzori and Müller 2015]
which is actually intended for manipulating robotic arms and is
collated from the CyberGlove data glove (and therefore not repre-
sentative of natural hand or finger movements). Here, we introduce
an alternative data set that we have collected ourselves.

EMG-Force dataset. When users perform hand-object interactions,
whether in the physical or virtual world, pressing, pushing, pinching,
and holding are arguably among the most frequent actions [Ingram
et al. 2008]. These actions allow users to not only better perceive
surrounding objects, especially their physical properties, but also
pick them up for further interactions. Based on their respective force
exertion mechanism, we partitioned these actions into two repre-
sentative groups: pressing/pushing and pinching/holding. Eleven
common finger combinations were selected for data collection pur-
poses, with six for the former and five for the latter. This set of
actions, which we call action set A, is summarized in Figure 5.
To build our EMG-Force dataset, we recruited 9 participants (ages

21 − 30, 5 females, 4 males). Following the data collection and pre-
processing pipeline described in Section 3.2, we conducted three
collection sessions with each subject, capturing 30 seconds of data
for each action during each session. In total, each participant con-
tributed 990-seconds of time-synchronized EMG and force data. For
each subject, 2 randomly selected sessions (out of 3) were earmarked
for the construction of the training set. The remaining session was
withheld and only used for evaluation. When performing pinching
actions during data collection, participants were instructed to keep
their four fingers over the trackpad and their thumbs below the
table, so that they could pinch the ensemble of trackpad and table in
a natural manner. Besides, they kept the resultant force stable and
balanced (i.e., ∼ 0N). The ground-truth forces for the four fingers
were directly recorded by the trackpad, and the force for the thumb
was derived as the additive inverse. With the importance of data cov-
erage in mind, all subjects were instructed to randomize their force
intensity level within the natural range of each action. In addition, a
random spacing in time was enforced between adjacent interactions,
so that neural network models do not over-fit to unintended tempo-
ral features. The EMG-Force dataset contains light touch less than
1N and firm press up to 30N, covering the typical functional force
range of human fingers [Xu et al. 2020b]. In particular, the maximum
force for the five fingers in Newton, from the thumb to the pinky
finger, are 29.8, 24.4, 25.6, 20.4, and 14.7. The mean/standard devia-
tion/interquartile range are 10.1/8.1/13.9, 5.8/4.6/7.4, 5.7/4.7/7.6,
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Table 1. Performance comparison with regular regression losses 𝐿1 and 𝐿2
as well as the no-smoothing variant of our method.

Metric 𝐿1/𝐿2 regression No Smoothing Ours
Accuracy 85.68% / 85.12% 88.83% 88.83%
NRMSE 4.56% / 4.34% 4.02% 3.29%

𝑅2 81.89% / 82.21% 83.59% 85.82%

3.4/3.1/4.0, and 2.6/2.5/3.2. Our CNN model predicts force values
in [0, 30], which is configured through the force upperbound 𝐹max.

Evaluation metrics. To assess the performance of our CNN model
in estimating fingertip forces, we adopted three quantitative metrics:
(1) Classification Accuracy; (2) Normalized Root Mean Squared
Error (NRMSE); (3) Coefficient of Determination, 𝑅2. The model’s
performance in determining whether a finger exerts force or not at
a particular time frame is evaluated by the classification metric, and
we only count the model’s predictions for a time frame as correct
if all five fingers are correctly classified. Using the same notations
from Section 3.3, we have:

NRMSE =
1

𝐹max

√√√
1

𝑇 · 𝐼

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

(𝐹 𝑡
𝑖
− 𝐹 𝑡

𝑖
)2 (4)

𝑅2 = 1 −
∑𝑇
𝑡=1

∑𝐼
𝑖=1 (𝐹 𝑡𝑖 − 𝐹 𝑡

𝑖
)2∑𝑇

𝑡=1
∑𝐼
𝑖=1 (𝐹 𝑡𝑖 − 𝐹 𝑡

𝑖
)2

(5)

where 𝐹 𝑡
𝑖
gives the mean of 𝐹 𝑡

𝑖
.

4.2 Performance of Decoding Finger-Wise Forces
Experimental setup. Before considering how our scheme applies

to specific or new users, we first evaluate the performance of our
model in a user-independent setting, where a single model is trained
and shared by all users who contributed data. In particular, the entire
training set was used to optimize the model against the joint loss
defined in Equation (3) for 30 epochs. An Adam optimizer [Kingma
and Ba 2015] with constant learning rate of 1𝑒 − 4, 𝛽1 = 0.9, and
𝛽2 = 0.999 was adopted. A weight decay factor of 1𝑒 − 4 was en-
forced to mitigate over-fitting. As a post-processing step, we applied
a Gaussian filter of window size 10 to the sequence of predicted
force values for temporal smoothing. For ablation purposes, we also
trained the model using regular 𝐿1 or 𝐿2 regression loss only, and
cut off predicted force values below a small pre-defined threshold.
We used PyTorch [Paszke et al. 2019] to implement all our models
as well as to perform training and evaluation.

Results. The action-wise and subject-wise performance of the
user-independent model is summarized in Figure 6. The overall accu-
racy, NRMSE, and𝑅2 are 88.83±6.13%, 3.29±1.76%, and 85.82±14.96%,
respectively. On the action side, the model has the highest perfor-
mance for ring finger pressing, with 92.47±3.89% accuracy, 2.10±0.99%
NRMSE, 90.84±6.53% 𝑅2, and the lowest for index finger pressing,
with 85.21±11.37% accuracy, 4.12±3.04% NRMSE, 70.99±34.95% 𝑅2.
On the subject side, one-way repeated measures ANOVA gives
𝐹1,8 = 1.28, 𝑝 = 0.26 for accuracy, 𝐹1,8 = 1.18, 𝑝 = 0.32 for NRMSE,
and 𝐹1,8 = 0.82, 𝑝 = 0.59 for 𝑅2, indicating minor utility discrepancy
among subjects. Furthermore, the results of our ablation study are

Table 2. Performance comparison with vision-based methods [Fallahinia
and Mascaro 2021a, 2020, 2021b] in terms of NRMSE.

Method Index Middle Ring Mean
[Fallahinia and Mascaro 2020] 6.1% 5.3% 10.1% 6.2%
[Fallahinia and Mascaro 2021a] 6.1% 5.4% 9.0% 5.9%
[Fallahinia and Mascaro 2021b] 5.7% 4.2% 8.2% 4.9%

Ours 4.7% 3.7% 2.4% 3.7%

shown in Table 1, validating the effectiveness of the proposed joint
classification-regression loss and temporal smoothing.

Discussion. The results above demonstrate the feasibility of accu-
rately decoding finger-wise forces from forearm EMG signals and
building robust predictive models that can be shared by multiple
users. The statistical significance also suggests that the proposed
scheme has the potential of being extended beyond an experimental
setting and to more general application scenarios. In addition, it
is worth noting that such performance holds under the existence
of real-world challenges, such as variations across users in sensor
positioning, forearm muscle size, forearm hair thickness, etc. The
model is resilient to various discrepancies among users, capable of
capturing generalizable EMG-to-force patterns, and achieves utility
fairness for users, as evidenced by the ANOVA analysis above, all
the while maintaining favorable overall performance.

While these results are statistically rewarding, a remarkably large
amount of data is required from each user to support satisfactory
performance in practice. Specifically, each participant contributed
22 EMG-Force joint sequences to the training set for the experiment
above, which amount to 11 minutes of data. Consider also that there
are other inevitable preparations, such as device setup, session break,
data pre-processing, and model training. Such delay may become a
roadblock for many VR/AR applications in practice. To deploy our
neural interface in consumer-level applications, more time-efficient
training is essential. This aspect will be addressed in Section 4.4.

4.3 Comparison with Vision-Based Methods
Prior works in the literature have explored vision-based solutions
to body force estimation, such as inferring contact forces from the
dynamics of hand-object interactions using RGB videos [Ehsani et al.
2020b; Hwang and Lim 2017; Pham et al. 2015, 2017; Zhu et al. 2016]
and predicting finger-level forces from the color changes in finger-
nail imaging [Fallahinia and Mascaro 2021a, 2020, 2021b; Grieve
et al. 2010, 2015a,b; Sun et al. 2008]. Similar to our approach, a major
benefit of vision-based solution is to bypass on-hand force sensing
units. Among these solutions, those based on fingernail imaging
also have the potential of delivering accurate and flexible per-finger
force estimation for VR/AR applications involving complex hand-
object interactions. In this experiment, we compare the accuracy
and robustness between our method and three recent vision-based
methods [Fallahinia and Mascaro 2021a, 2020, 2021b].

Experimental setup. Due to the challenges of reproducing the
identical hardware prototype of data acquisition as in [Fallahinia
and Mascaro 2021a, 2020, 2021b], we evaluated our method under
the setting adopted by them and compared with their reported
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Fig. 7. Objective evaluation of user-specific model. Each user-specific model is calibrated using 165-second synchronized EMG-force data.
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Fig. 8. Data-efficient calibration of user-specific model via transfer learning.
The performance of user-specific model, as measured by classification accu-
racy, NRMSE and𝑅2, is plotted in function of the amount (i.e., time duration)
of data collected from the new user for transfer learning. The translucent
band around each curve gives the 95% confidence interval.

performance metrics. In particular, [Fallahinia and Mascaro 2021a,
2020, 2021b] only considered single-finger grasping actions and
evaluated their method using the index, middle, and ring fingers.
To accommodate their evaluation setting, we separated out the
partition corresponding to these three single-finger actions from
our EMG-Force dataset, i.e., 3x30 seconds (three sessions) of time-
synchronized EMG and force data for each subject and each of the
three fingers. Two randomly selected sessions were used to train
a single user-independent model, while the remaining session was
used to evaluate the trained model.

Results. The finger-wise and overall performance of force esti-
mation, as evaluated by NRMSE, is shown in Table 2. Our method
outperforms the three vision-based baselines by 2.5%, 2.2%, and
1.2% NRMSE on average, respectively. The advantage is especially
noticeable in performance for the ring finger, with our method’s
NRMSE being less than a quarter of [Fallahinia and Mascaro 2020]
and a third of [Fallahinia and Mascaro 2021a,b].

Discussion. Compared to our EMG-based solution, which actively
decodes finger-level forces from the controlling muscles’ activities,
vision-based methods rely on passive observations and are thus
highly sensitive to the variations in external factors, such as ambient
occlusions, viewing angles, and lighting conditions. Such degrading
effects are more problematic for applications involving complex
hand-object interactions or real-wild scenarios. On the contrary, our
EMG-based solution has shown high robustness to such mentioned
issues by its nature. Besides the vulnerability to environmental
factors, fingernail-imaging-based methods are also limited in their
functional force range, since the variations in fingernail color get
less and less detectable as the force intensity increases. The typical
functional range for these methods, as evaluated in [Fallahinia and
Mascaro 2021a, 2020, 2021b], is around 10N. By contrast, our EMG-
based solution is more scalable in terms of force intensity and can
robustly estimate forces up to 30N.

4.4 Individualization and Generalization
The analysis of user-independent training in Section 4.2 reveals the
need for time-efficient generalization. In this section, we investigate
how this goal is achievable by extending a pre-trained model for
new users using only minimal amounts of data from them. This
procedure is commonly referred to as calibration or individualiza-
tion in human research. Calibration is crucial for machine learning
on EMG data since large natural variations exist among different
people’s muscle-to-EMG patterns. Such discrepancies lead to the
well-known generalization challenge that a machine-learned model
trained on EMG data commonly fails if directly applied to an un-
seen user [Phinyomark and Scheme 2018]. Therefore, we decide
to perform transfer learning to reduce the data requirements for
deploying our model to a new user while maintaining satisfactory
prediction performance.

Experimental setup. To evaluate time-efficient generalization via
transfer learning, we adopted an experimental setup similar to cross-
validation practices for machine learning tasks. Specifically, we first
treated subject 1 (S1) as the new user and optimized the model using
two sessions of data from each of the other eight subjects. Next, we
fine-tuned the resulting model using a portion of data randomly
selected from S1’s first session, varying from 10% to 50%, to calibrate
it into a user-specific model dedicated to S1. Note that 10% session
corresponds to 33-second data. Adam optimizer [Kingma and Ba
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Fig. 9. Comparison between predicted finger-wise forces and ground truth.
The model is calibrated for subject 8 using only 165-second data from one
of his training session and evaluated on a randomly selected sequence from
his evaluation session.

2015] with constant learning rate of 5𝑒 − 5, 𝛽1 = 0.9, and 𝛽2 = 0.999
was adopted. Aweight decay factor of 1𝑒−4was enforced tomitigate
over-fitting. We cycled through the role of new user with each
subject to complete the experiment.

Results. The performance of a user-specific model transferred us-
ing 165-second data (50% of each subject’s first session), as measured
by classification accuracy, NRMSE, and 𝑅2, is summarized in Fig-
ure 7. At least 81.23% accuracy was consistently observed for all
subjects’ calibrated models except S6, whose model showed 77.77%
accuracy. S1/S4’s models achieved over 89.54% accuracy, surpassing
the overall performance of the user-independent model with much
less training data. The NRMSE metric revealed larger gaps across
subjects, which ranged from 2.80% to 5.91%. 𝑅2 is mostly above 75%,
with the exception of S6’s model yielding 67.73%.

To investigate the minimal amount of data required for calibrating
the model towards reasonable utility in practical applications, we an-
alyzed the trade-off between data volume for calibration and result-
ing model’s performance. Figure 8 visualizes the calibrated models’
average performance gain as a function of EMG-Force sequences’
total length in time. All subjects’ models demonstrated rapid im-
provements as the calibration kicked off and attained 83.33±4.47%
accuracy, 4.74±1.09% NRMSE, and 76.55±7.88% 𝑅2 with 66-second
data only. The growth rate of mean performance then slowed down,
and accuracy/NRMSE gradually plateaued when the duration of
data exceeded 150 seconds. Remarkably, these results verify the data
efficiency of transfer-learning-based individualization, as evidenced

by various accuracy metrics. Taking S8’s calibrated model (using 99-
second data) as an example, we show a visual comparison between
model-predicted and hardware-sensed force values for a randomly
selected EMG sequence from their evaluation session in Figure 9.
Despite the variations in force intensity and temporal spacing, pre-
dicted force values generally aligned well with the ground truth,
except for a few slight false positives for the ring finger.

Discussion. Exploiting transfer learning techniques, we demon-
strated the feasibility of effectively adapting existing models into
dedicated ones for previously unseen users using very limited data
from them. Further, as indicated by the above analysis and visual-
ized in Figure 8, the high-precision generalization is achieved with
simple and rapid (less than 2 minutes) calibration for novel users.
These findings also circle back to our goal of improving physi-

cality for VR/AR environments in two significant ways. First, our
system can harness users’ natural abilities and predilections for
manipulating things they encounter, thereby expanding the space
for developers to create VR/AR experiences that map to real-world
scenarios and user behaviors. Importantly, we show that this is
achievable for any user, with minimal retooling. Second, as shown
in the following section, our system is responsive with low latency.
This is crucial, in particular, if we consider that the visual compo-
nents of AR/VR now routinely refresh at 90 Hz. Any system designed
to communicate bodily forces with the virtual environment needs
to be agile in timing and nimble in response to data.

4.5 System Performance
Thanks to the moderate scale and bottleneck design of our CNN
model, our system’s storage and computing requirements are minor
for modern PC hardware. The compact model only contains 1.26M
32-bit floating point parameters (≃5MB memory). For the EMG
sequence streamed at a particular time frame, i.e., 1248 eight-channel
EMG samples, our model only generates around 29.19M Multiply-
Accumulate Operations (MACs). Note that while our model requires
an EMG sequence of 1248 samples (624ms) as input, these data are
only retrieved from history to make predictions for the current time
step. When applied in practice, our system’s latency performance
has two important interfering dimensions: 1) runtime speed, i.e., the
time needed to complete the force predictions on an EMG sequence
of 1248 samples; 2) reaction latency, i.e., the duration between EMG
data generation and force prediction.

As an implementation detail, we performed GPU parallelization
with two consecutive EMG sequences that differ by 32 samples and
achieved ≃1.2-1.4ms inference time using a GTX TITAN XP GPU,
thus obtaining an approximate 0.7ms latency (i.e. over 1000FPS).
Note that this result characterizes the system itself rather than the
force output, which is also determined by the spectrogram frame
rate. With this setting, the system shall wait for both sequences
to arrive, introducing an additional 16ms (32 EMG samples) idle
time. That is, although GPU parallelization accelerates runtime
speed, it also introduces extra reaction latency. Together with the
wireless EMG data transmission latency (2ms) and model inference
(0.7ms), our system achieves an overall reaction latency of ≃18.7ms,
sufficient for most real-time VR/AR applications [Dangxiao et al.
2019].
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(a) Elastic sheet with FORCE (top) and POSITION (bottom).
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(b) Elastic rod with FORCE (top) and POSITION (bottom).

Fig. 10. Visualization of the stimuli used in our psychophysical experiment.
(a) illustrates the reaction of two identically-looking elastic sheets differing
in material stiffness to inputs from FORCE (top) and POSITION (bot-
tom). Compared with POSITION, the two objects exhibit more natural
and prominent difference given the same inputs from FORCE. (b) shows
similar results for an elastic rod. 3D asset credits to SbbUtutuya and Virtual
Method at Unity.

4.6 Psychophysical Study: Enhancing Material Perception
in Virtual Environments

A key aim of VR/AR is to create virtual experiences for users as
if they were in a physical environment. When interacting with
objects in the physical world, we perceive their material properties,
such as elasticity and stiffness, through a combination of haptic
and visual feedback [Baumgartner et al. 2013]. To recreate such
perceptual realism in virtual environments, it is essential to precisely

drive virtual objects’ motions and deformations via users’ muscular
forces. We hypothesize that interfaces with such capability may
significantly enhance human perception of virtual objects’ material
properties. In this study, we evaluate to what extent our system, as
a real-time force-aware interface, advances toward this goal.

Participants, setup, and calibration. We recruited 12 subjects (ages
20-35, 6 female) to participate in the study. A calibration procedure
was performed for each subject before starting the experiment by
collecting 1 minute of EMG-Force data from him/her to customize
the pre-trained user-independent model (as described in Section 4.4).
This calibrated model was then used to estimate finger-wise forces
on the EMG signals sensed from that subject in real-time. Estimated
force values were communicated to a Unity program via the Ze-
roMQ library. This pipeline allows for direct application of estimated
forces to virtual objects in real-time via physical simulation. During
the study, the subjects, wearing an Oculus Quest 2 head-mounted
display, remained seated and were free to observe a virtual scene.
They interacted with virtual objects in their field of view through
unconstrained movements of their forearms, hands, and fingers.

Stimuli. As shown in Figure 10, the visual stimuli were two geo-
metric primitives (elastic sheet and rod) that are soft and deformable.
To enable real-time softbody simulation for low-latency interaction
on portable VR headsets, we employed an efficient XPBD [Macklin
et al. 2016; Müller et al. 2007] implementation by Virtual Method
Studio [Méndez and Martínez 2021] and only used low-resolution
particle models of the virtual objects. It should be noted that simu-
lators’ efficiency is orthogonal to the accuracy of model-predicted
muscular forces. Therefore, our model can be readily incorporated
into any simulation system. We adopted deformation resistance of
elastic materials as the proxy to represent stiffness with the range
[0, 1]. Deformation resistance measures a physical material’s ability
to resist externally loaded forces. In this study, we aim to identify
participants’ discriminative thresholds of virtual objects’ stiffness
under varying conditions. To avoid visual cues biasing the results, all
objects were rendered with identical material and texture, regardless
of their physical properties.

Conditions. For evaluation purposes, all subjects were instructed
to employ two interaction methods in sequence during the study
(the order was random). Besides our data-driven system for force-
enabled interaction (FORCE), we also included position-based in-
teraction (POSITION) for comparison. Specifically, POSITION is
a commonly adopted solution in commercial VR/AR systems that
lacks force information. It allows users to modify virtual objects’
position, orientation, and shape by colliding their hands with the
objects. For FORCE, users interacted with virtual objects by manip-
ulating physical proxies while our system estimated their muscular
forces. These forces were then used to deform the two virtual objects,
including indenting the sheet’s center and bending the rod’s top.
For POSITION, we leverage the hand tracking capability of Oculus
Quest 2 to estimate the flexion level of users’ index finger (distance
from the index fingertip to the palm plane) and use it as input for the
identical interaction as FORCE. Specifically, this value determines
the indentation depth for the sheet’s center and the bending level
for the rod’s top. Figure 10 illustrates these interactions. Notably,
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(a) Discrimination threshold for FORCE and POSITION.
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(b) Discrimination threshold along the decision process of subject 8.
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(c) Discrimination threshold along the decision process of subject 10.

Fig. 11. Psychophysical study on material perception in VR. (a) shows 12 sub-
jects’ discrimination thresholds on two geometric primitives for FORCE and
POSITION. The error bars indicate 95% confidence intervals. A remarkably
and consistently lower threshold for FORCE can be observed. (b) and (c)
visualize the discrimination threshold along the decision process of two
subjects when they were engaging in our 1-up-2-down staircase protocol
with 2AFC trials (which object is stiffer). Note the consistent decreasing
trend of FORCE, indicating high confidence level when the subject made
2AFC decisions.

while physical proxies that resemble the virtual objects will enhance
users’ experience with FORCE, POSITION does not benefit from
them. To avoid users favoring FORCE due to irrelevant features of
the physical proxies, we intentionally used a hard and flat table.

Task. To measure participants’ (perceptual) discriminative thresh-
old of material stiffness, we employed a psychophysical task as a
2-alternative-forced-choice (2AFC) with a 1-up-2-down staircase
procedure (5-reversal to confirm convergence thus termination). For

softer and stiffer objects, the experiment started with deformation
resistance equal to 0.65 and 1.0, i.e. a threshold of 0.35. Each time
the threshold got updated, it was incremented or decremented by
a quarter of the current threshold, and the two deformation resis-
tance values were updated such that their mean was unchanged.
Specifically, the two interaction conditions (FORCE/POSITION)
were sequentially presented to the user for consideration (with a
random and counter-balanced order). During the experiment, the
participants were instructed to freely interact with the correspond-
ing stimuli and then indicate (using a keyboard) which one of the
two stimuli appeared stiffer. They observed the deformation pattern
along with the proactive intervention. After each trial, the partici-
pants chose one of the two stimuli that appeared stiffer. Each 2AFC
trial took 5 seconds. A warm-up session was first performed to
allow each individual user to familiarize with the stimuli and the
interaction design. For each participant, the entire experiment took
about half an hour. The number of trials (ranging from 25 to 38)
depended on the speed of the staircase convergence.

Metrics and results. Figure 11 visualizes our statistical results.
The mean discriminative thresholds of FORCE/POSITION were
0.09±0.07, 0.22±0.07 for the elastic rod, and 0.06±0.04, 0.23±0.07 for
the elastic sheet, indicating 61.3% and 72.1% improvements with
FORCE, respectively. One-way repeated measures ANOVA shows
that the effects of interaction method are statistically significant:
𝐹1,11 = 20.99 𝑝 = 1.46𝑒−4 for the elastic rod and 𝐹1,11 = 46.79
𝑝 = 7.16𝑒−7 for the elastic sheet.

Discussion. We designed our psychophysical experiment to test
whether users could quantitatively perceive realistic soft objects and
their material properties in AR/VR. We used primitive geometries
and their natural articulated abilities to explore, examine, and assess
them through force-based interaction with the forearm, hand, and
fingers. In other words, wewished to test whether users could simply
enter a VR/AR scene, start to prod and poke things in that scene, and
leave with a sense that the objects responded with realistic physics.
The results showed a statistically significantly lower discrimi-

nation threshold while participants interacted with virtual objects
with FORCE. That is, the force-visual correlated interaction fa-
cilitated significantly more realistic perception of virtual objects’
physical characteristics when users were engaged in free manipula-
tion within the virtual world. We regard this as a significant proof of
concept for our approach. Consider that, in the real world, humans
spend much of their infancy working out how to muster the forces
available to them in their arms, hands, and fingers, through ongoing
trial and error with the things that they encounter. In essence, we
capture the small electrical signals that human muscles cast as they
put their skills to use, and we are able to use these signals as indices
for machine-learning what that might mean in physics. Asking and
answering how our human users believe that the physical response
our system yields are realistic-seeming establishes the perceptual
foundation of various new possibilities of interfaces.

5 APPLICATIONS
Beyond enhancing the physical realism of hand-object interactions
in VR/AR through more natural and intuitive haptic inputs, our
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method of decoding forces from EMG signals can also benefit the
following general application scenarios. We note the following three
capabilities—representing virtual humans, virtual interfacing, and
virtual control—because they form the ingredients for many spe-
cific VR/AR applications, e.g., gaming, content creation, assistive
technology, training, social communication, etc.

Multimodal data sources for virtual human synthesis. Synthesizing
realistic human behaviors in virtual environments remains an open
and essential topic [Hassan et al. 2021; Yin et al. 2021]. While human
action data from optical motion capturing systems is common, the
knowledge of users’ forces on the surrounding physical space that
is essential in interactive and dynamic environments [Jain et al.
2009] remains missing. Our system may provide the data generation
foundation that collects the motion-force joint information in daily
actions.

Accessible interfaces. People with hand/limb impairments may
face challenges when interacting with common human-computer
interfaces, through actions such as touching and sketching. Bio-
prosthetic controls with neural sensors have been emerging as a
promising assistive technology [Srinivasan et al. 2021]. The pro-
posed research may predict the intended hand forces by sensing the
forearm remotely, allowing for potential applications on assistive
interfaces for people with hand impairment or under scenarios such
as during driving or cold outdoor temperature.

Ubiquitous control. The proposed neural interface enables bare-
hand interactions and introduces little if any distraction, since it
incurs unnoticeable change to the way we operate our hands. Be-
sides, it is usable in most daily situations without safety or privacy
concerns. As a result, we can leverage it to replace traditional off-
body input devices for ubiquitous control. For instance, we can map
patterns of finger pressing to the buttons in a software’s control
panel or the keys on a musical instrument. As illustrative of broader
applications, in the following, we demonstrate that our method can
be readily adapted to perform robust finger identification during
multi-finger tapping for ubiquitous control.

5.1 Case Study: Ubiquitous Control via Finger Tapping
Traditional computers typically equip with dedicated control de-
vices such as mouse and keyboard. However, the ultimate goal of
VR and AR platforms is a transformative natural and ubiquitous
control. To this end, researchers have recently attempted to infer
user intention from natural modalities, such as vision [Han et al.
2020; Kim et al. 2012; Stearns et al. 2018], acoustics [Harrison and
Hudson 2008; Xu et al. 2020a; Zhang et al. 2018], radar [Lien et al.
2016; Wang et al. 2016], and Wi-Fi [Abdelnasser et al. 2018, 2015].
Despite their support for eyes-free control, these methods are sus-
ceptible to environmental interference, such as occlusions and noise,
and may suffer from performance decay in complex environments.
By contrast, EMG-based solutions electronically tracks users’ fore-
arms as input devices. In this experiment, we validate our method’s
performance while being applied to detect “click” actions, which
are identified as any finger’s tapping.

True Positive (TP)

False Positive (FP)

False Negative (FN)

(a) Multi-finger tapping (right hand).

True Positive (TP)

False Positive (FP)

False Negative (FN)

(b) Multi-finger tapping (left hand).

Fig. 12. Finger identification during multi-finger tapping. (a) and (b) visualize
the ground-truth (orange bars) and the identification results by our method
(green bars) of two randomly-sampled sequences of multi-finger tapping
from the hold-out data. Bar width denotes tapping duration.

Table 3. Tapping finger identification performance.

Metric Thumb Index Middle Ring Pinky Mean
Precision 93.3% 88.8% 84.9% 98.4% 94.4% 92.0%
Recall 94.2% 78.4% 94.7% 100.0% 96.2% 92.7%

Experimental setup. All 10 fingers from both hands are included.
One male subject participated in the study. Following the data col-
lection and pre-processing pipeline (Section 3.2), we conducted
four collection sessions. During each of the first three sessions, the
subject performed single-finger tapping actions and captured 30
seconds of tapping data for each of the 10 fingers. During the last
session, the subject performed random multi-finger tapping actions
and captured 150 seconds of tapping data for each hand. The subject
was instructed to tap a trackpad in a natural unconstrained manner
in all four sessions. In total, the subject contributed 1200-second

ACM Trans. Graph., Vol. 41, No. 6, Article 268. Publication date: December 2022.



Force-Aware Interface via Electromyography for Natural VR/AR Interaction • 268:15

of time-synchronized EMG and force data. The force data was sub-
sequently converted into {0, 1} labels, i.e., “tap” and “no-tap”. Two
randomly selected sessions (out of the first three sessions) were
used to construct the training set. The remaining two sessions were
withheld and only used for evaluation. The CNN model was trained
using Adam optimizer and cross-entropy loss for the task of per-
frame finger-wise “tap” or “no-tap” classification for 20 epochs. The
learning rate started at 1𝑒 − 3 and dropped to 1𝑒 − 4 at epoch 10. A
weight decay factor of 1𝑒 − 4 was enforced to mitigate over-fitting.
As a post-processing step, we applied a mean filter of window size
10 to the sequence of predicted tapping probabilities for temporal
smoothing. The predicted tapping probability for each time frame
was compared with a threshold of 0.3 to determine if it is “tap”.

Metrics. We adapted two evaluation metrics from machine learn-
ing, precision (P) and recall (R), to accommodate our experimen-
tal setting. Here, P/R denotes the proportion of correctly detected
tapping among all detected/ground-truth tapping. Note that both
metrics are evaluated in a finger-wise manner.

P𝑖 =
TP𝑖

TP𝑖 + FP𝑖
; R𝑖 =

TP𝑖
TP𝑖 + FN𝑖

. (6)

Here, TP (true positive), FP (false positive), and FN (false negative)
denote the number of correctly detected tapping, falsely detected
tapping, and undetected ground-truth tapping, respectively. Fin-
gers are indexed by 𝑖 ∈ {1, 2, 3, 4, 5}. In particular, a sequence of
consecutive “tap” predictions of duration longer than 0.1 second is
considered as a detected tapping. We consider correct detection if
the temporal Intersection over Union (IoU) between its interval and
the ground-truth is greater than 0.5, and falsely detected otherwise.

Results. As shown in Table 3, our CNN model achieves mean
precision of 92.0% and mean recall of 92.7% using only 10-minute
data for training. The detection quality for the ring finger is the best,
with 98.4% precision and 100.0% recall. The index finger showed
lower recall 78.4%, while the middle finger showed lower precision
84.9%. Figure 12 visualizes the ground-truth (orange) and model-
detected tappings (green) for two randomly-sampled sequences
of multi-finger tapping from the last session, one for each hand.
As we can see, most tapping actions are correctly detected by the
model, with few false positives and false negatives. Accurate tapping
duration and detection latency can also be observed.

Discussion. The above results demonstrate our method’s applica-
bility to effectively detect finger tapping as an ubiquitous interface.
The definitions of precision and recall inherently establish a trade-
off between the two metrics: the higher a model achieves in terms of
recall, the lower it gets for precision, and vice-versa. Such trade-off
can be translated into the context of this specific task as: the more
sensitive the model is in detecting finger tapping (more positive
predictions), the more actual finger tapping made by the user it will
detect (higher recall), and the more mistakes it will make (lower
precision). Conveniently, we can increase or decrease the detection
threshold for “tap” to prioritize over precision or recall, depending
on the demand in the actual application scenario. For instance, if
we are considering an application where the accuracy of control
signals outweighs the response rate, we might consider lowering
the model’s sensitivity to sacrifice a bit of recall for better precision.

6 LIMITATIONS AND FUTURE WORK
In this paper, by leveraging EMG sensors on the forearm, we demon-
strate the possibility of tracking, predicting, and transferring hu-
man muscular forces in the physical world to interactions in virtual
representations and environments. In other words, we open-up
pathways for the virtual world to react precisely to human-induced
physical forces from the real world. Our objective measurements
and subject psychophysical experiments support the framework’s
robustness, accuracy, generalizability, and real-world benefits in
enhancing human perceptual understanding of physical materials.
This is achieved by our tailored dataset and real-time deep learning
approach on muscular signals.

However, several limitations remain for future investigation. First,
the dataset that trains our system (Figure 5) were generated by user
actions with an off-the-shelf pad-like force sensor. Consequently,
the method does not robustly encode complex hand or full-body
poses with higher dimensionality and degree-of-freedom, as would
be the case if a user was exerting force on more complicated three-
dimensional objects. This could be resolved by incorporating data
using recent advancements in wearable sensing devices [Luo et al.
2021a; Sundaram et al. 2019], which could enable broader data cover-
age and thus free-form interaction with complex geometric shapes.
Second, our method is practically generalizable but still requires a
short (1 minute) calibration process to ensure high-quality predic-
tions. An exciting future direction is extending the framework with
unsupervised learning. We believe an automated individualization
mechanism may unlock the potential of a fully adaptive framework
for arbitrary users without access to the calibration setup. Third,
the muscle signals may show different patterns with active (e.g.,
clenching fist) and resisting (directly interacting with physical ob-
jects) forces. Integrating hand tracking and arm pose data into the
model may shed light on differentiating the two means. Lastly, to
enable accessibility applications, we plan to extend the data and
evaluate the system’s performance on a larger population, including
people with limb impairments. Indeed the ability to sense hand and
finger forces and actions directly from forearm muscle signals could
establish VR/AR as an entirely new modality for democratizing ac-
cess to computer graphics applications across a much broader range
of interaction abilities. This, we consider, is where development of
force-aware VR/AR could be fantastically useful.
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