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The quadric Q2n is the Z-scheme defined by the equation ∑n
i=1 xiyi = z(1 − z). We show that Q2n is a homogeneous 

space for the split reductive group scheme SO2n+1 over Z. 
The quadric Q2n is known to have the A1-homotopy type 
of a motivic sphere and the identification as a homogeneous 
space allows us to give a characteristic independent affine 
representability statement for motivic spheres. This last 
observation allows us to give characteristic independent 
comparison results between Chow–Witt groups, motivic 
stable cohomotopy groups and Euler class groups.
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1. Introduction

Assume k is an arbitrary commutative (unital) base ring. Consider the hypersurface 
Q2n in A2n+1

k := Spec k[x1, . . . , x2n+1] cut out by the equation

n∑
i=1

xixn+i = x2n+1(1 − x2n+1);
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the quadric hypersurface so-defined is smooth over Spec k. Let q2n+1 be the standard 
split quadratic form 

∑
i xixn+i +x2

2n+1 in 2n +1-variables, and let us provisionally write 
S2n for the quadric hypersurface q2n+1 = 1 in A2n+1

k .
If 2 is invertible in k, then the standard action of SO2n+1 on A2n+1

k as isometries 
preserving q2n+1 yields, upon choice of a base-point, an isomorphism between S2n and 
the homogeneous space SO2n+1 / SO2n. Since 2 is invertible in k, the quadric Q2n is 
isomorphic to S2n and is thus itself a homogeneous space for SO2n+1 (see, e.g., [4, Lemma 
3.1.7]). If 2 is not a unit in k, then the quadric S2n fails to be smooth over k and thus 
is neither isomorphic to Q2n nor a homogeneous space for SO2n+1. Nevertheless, the 
following result shows that Q2n is still isomorphic to SO2n+1 / SO2n.

Theorem 1 (See Theorem 2.3.2). Assume k is a commutative ring and n ≥ 1 is an 
integer.

1. There is an action of SO2n+1 on Q2n such that taking the orbit through the point 
x0 ∈ Q2n(k) given by x2n+1 = 1, xi = 0, 1 ≤ i ≤ 2n yields a surjective smooth 
morphism SO2n+1 → Q2n that factors through an SO2n+1-equivariant isomorphism

ϕ : SO2n+1 / SO2n
∼−→ Q2n .

2. The induced SO2n-torsor SO2n+1 → Q2n is Zariski locally trivial.

While the action of SO2n+1 on S2n is classical, the action of SO2n+1 on Q2n is slightly 
less transparent. Once we have described the action, a sequence of standard algebro-
geometric results about actions of group-schemes reduces the proof of Theorem 1 to an 
elementary analysis of transitivity of actions of the special orthogonal groups in the spirit 
of [16, II.10-11]. Our main interest in the above result is due to its numerous concrete 
consequences, which stem from the fact that Q2n is “well-behaved” from the standpoint 
of A1-homotopy theory, for example the following result holds.

Theorem 2 (See Corollary 3.1.1). If k is a field and n ≥ 1 is an integer, then the scheme 
Q2n is A1-naive; in particular, for any smooth affine k-scheme X, there is a canonical 
bijection

π0(SingA1
Q2n(X)) ∼−→ [X, Q2n]A1 ,

i.e., naive A1-homotopy classes of maps coincide with “true” A1-homotopy classes of 
maps.

Remark 3. The notion of an A1-naive space was introduced in [4, Definition 2.1.1], and 
the final statement follows directly from the preceding statement by appeal to general 
results. If 2 is invertible in k, then Theorem 1 is the conjunction of [4, Lemma 3.1.7, 
Theorem 4.2.2] if k is infinite and [6, Theorem 2.15] if k is finite. If 2 is not assumed 
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invertible in k, then Theorem 1 was known when n ≤ 3 by appeal to various low-
dimensional exceptional isomorphisms: Q2

∼= SL2 /Gm, Q4
∼= Sp4 /(Sp2 × Sp2) (again [4, 

Theorem 4.2.2]), and Q6
∼= G2 / SL3 (see [5, Theorem 2.3.5]). The case n = 4 can be 

analyzed by using an interpretation of Q8 as the octonionic projective line.

The variety Q2n arises naturally in the theory of complete intersection ideals [26] and 
provides a smooth affine model of the motivic sphere S2n,n in the Morel–Voevodsky A1-
homotopy category (see [27, p. 111] for discussion of motivic spheres, and [1, Theorem 
2] for a precise statement). In [2], these points of view were united to establish links 
between Bhatwadekar–Sridharan Euler class groups (after M. Nori) [12], motivic stable 
cohomotopy groups, and Chow–Witt groups (as introduced by Barge–Morel [11]); we 
refer the reader to [2] for a more complete collection of references in this direction. 
Theorem 2 allows us to weaken the hypotheses in the main result of [2, Theorem 1], 
which we restate here for convenience (though we refer the reader to [2] for the relevant 
notation).

Theorem 4 (Asok, Fasel). Suppose k is a field, n and d are integers, n ≥ 2, and X is a 
smooth affine k-scheme of dimension d ≤ 2n − 2.

1. The motivic cohomotopy set [X, Q2n]A1 has a functorial abelian group structure, and
2. there is a functorial “Hurewicz” homomorphism [X, Q2n]A1 → C̃H

n
(X), which is an 

isomorphism if d ≤ n.
3. If, furthermore, k is infinite, then there is a functorial and surjective “Segre class” 

homomorphism s : En(X) → [X, Q2n]A1 from the Bhatwadekar–Sridharan Euler 
class groups to motivic cohomotopy;

4. if d ≥ 2, then the morphism s is an isomorphism.

In particular, under the hypotheses in Point (4), if X is a smooth affine k-scheme of 
dimension d, then there is a functorial isomorphism

Ed(X) ∼−→ C̃H
d
(X).

The proof of Theorem 1 was inspired by analysis of the case n = 3 from [5] mentioned 
above, which after various algebro-geometric reductions follows from [31, Corollary 1.7.5]. 
At the heart of those reductions is an interpretation of Q2n in terms of conditions on 
traces and norms of split octonion algebras. This paper can be viewed in a similar vein: 
SO2n+1 acts transitively on vectors in a representation space satisfying suitable “norm” 
and “trace” conditions. The algebraic structures underlying the notions of “norm” and 
“trace” we use in this paper are quadratic Jordan algebras, and Q2n may be interpreted 
as a “projective space” for such an algebra, in a sense that we explain momentarily. 
While the theory of (quadratic) Jordan algebras makes no appearance in the proofs, it 
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does suggest various avenues of generalization, so we add a few comments about this 
point of view here.

Assume (J, 1, U) is quadratic Jordan algebra over a commutative ring k; for us, J

is a finitely generated, projective k-module, 1 is a distinguished element of J and U :
J → Endk(J) (x �→ Ux) is a quadratic map satisfying various identities (see [23, §1.2 
Definition 3] for the general definition; the cases of interest will even be obtained by base-
change from k = Z). Of particular interest will be a class of quadratic Jordan algebras 
attached to quadratic spaces over k called a (quadratic) spin factors; see [23, Chapter 
1.7]. The special orthogonal group-schemes SOi act by automorphisms on quadratic spin 
factors, even when 2 is not invertible in k.

Given any quadratic Jordan algebra (J, 1, U) over a commutative ring k, the quadratic 
map U allows one to speak of “projection operators”. Indeed, if one defines x2 := Ux1, 
then a projection operator is one that satisfies x2 = x. Also attached to a quadratic spin 
factor is a suitable trace function, and one may consider “rank 1” projection operators 
by imposing a suitable trace condition. Granted these identifications, the scheme Q2n is 
precisely the projective space attached to a quadratic spin factor and SO2n+1 acts by 
Jordan algebra automorphisms.

While the above interpretation does not aid in any calculations, it does suggest var-
ious natural generalizations of the main result. For example, one can study “octonionic 
projective space” OP2 := F4 / Spin9 over an arbitrary commutative ring as a suitable 
“projective space” of the exceptional quadratic Jordan algebra of Hermitian 3 ×3-matrices 
over the octonions. Once again, this variety admits a description in terms of explicit “rank 
1” projection operators. Because of the applications of Theorem 1 stated above, we have 
decided to present a proof less encumbered by additional notation and terminology, and 
we defer possible generalizations to projective spaces of more general quadratic Jordan 
algebras to future work.
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2. Orthogonal group actions on split quadrics

Throughout this section we will assume that k is an arbitrary commutative base 
ring. Section 2.1 recalls some basic facts about orthogonal groups in this generality. 
Section 2.2 studies various properties of actions of reductive group schemes, and allows 
us to give a characteristic independent description of the action of SO2n+1 on Q2n. 
Finally, Theorem 1 is established in Section 2.3.
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2.1. Quadratic spaces and orthogonal groups

We begin by recalling some facts about orthogonal groups over k, in particular, we 
will not assume 2 is invertible in k. Assume (V, q) is a quadratic space over k; we will 
always assume that V is a projective k-module of constant rank, and that either (V, q)
is regular (a.k.a. non-singular) or, if V has odd rank, semi-regular (see [24, I.3.2] for the 
former and [24, §IV.3.1] for the latter).

Special orthogonal groups
We write O(V, q) for the associated orthogonal group of isometries of (V, q). We will 

mostly be interested in the “standard” split quadratic spaces:

q2n(x1, . . . , x2n) =
n∑

i=1
xixn+i, and q2n+1(x1, . . . , x2n+1) =

n∑
i=1

xixn+1 + x2
2n+1

on the free modules of rank 2n and 2n + 1 over k. We write Oi for the orthogonal group 
scheme; functorially, this group scheme assigns to a k-algebra R the usual orthogonal 
group O(R⊕i, qi) of automorphisms of R⊕i preserving qi. We also consider the group-
scheme GOi assigning to a k-algebra R the group of orthogonal similitudes, i.e., the 
group of linear automorphisms of R⊕n that preserve qi up to a unit.

Abusing notation slightly, we write Z/2 for the (constant) group scheme assigning to a 
k-algebra R the additive group of continuous functions Spec R → Z/2. To discuss special 
orthogonal group schemes, recall that there is a Dickson invariant homomorphism

D : Oi −→ Z/2;

(see [24, IV.5.1]) and a morphism χ : Z/2 → μ2 defined by f �→ (−1)f such that the 
composite χ ◦D coincides with the determinant homomorphism det : Oi → μ2. If i = 2n, 
the Dickson invariant is split and surjective and one defines SO2n to be the kernel of 
the Dickson invariant, while if i = 2n + 1, we define SO2n+1 to be the kernel of the 
composite map χ ◦ D. The group-scheme GOi has a subgroup scheme GSOi which is the 
fppf sub-group functor generated by Gm and SOi. The group schemes O2n and SO2n are 
both smooth k-group schemes; the group scheme SO2n+1 is a smooth k-group scheme, 
while O2n+1 is a smooth k-group scheme if and only if 2 is a unit in k (see [14, C.1.5] for 
these assertions). Likewise, the group scheme GSOi is a smooth k-group scheme while 
GOi fails to be smooth if i is odd (see, e.g., [14, Remark C.3.11] and the discussion just 
preceding that statement).

We view (k⊕2n+1, q2n+1) as a quadratic submodule of (k⊕2n+2, q2n+2) by the embed-
ding

(e1, . . . , e2n+1) �→ (e1, . . . , en, e2n+1, en+1, . . . , e2n+1).
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Likewise, we view (k⊕2n, q2n) as the subspace of (k⊕2n+1, q2n+1) where the coordinate 
function x2n+1 vanishes. These embeddings give rise to stabilization homomorphisms

Oi ↪→ Oi+1 . and SOi ↪→ SOi+1

that we will need in the sequel.

Bilinear forms, pointed quadratic spaces and traces
If q is a quadratic form, then we write B for the associated bilinear form obtained 

by polarization, i.e., B(x, y) = q(x + y) − q(x) − q(y). When we consider qi on k⊕i with 
coordinates x1, . . . , xi, the associated bilinear forms are

n∑
i=1

xiyn+i + xn+iyi, and
n∑

i=1
xiyn+i + xn+iyi + 2x2n+1y2n+1

depending on whether i is even or odd.
Recall that a pointed quadratic space over a commutative ring k is a triple (V, q, 1)

where (V, q) is a quadratic space and 1 ∈ V such that q(1) = 1 ∈ k. We point the 
split quadratic spaces (k⊕i, qi) as follows: for i = 2n, we define 1 ∈ k⊕2n to be xn =
1, x2n = 1, xi = xn+i = 0, i = 1, . . . , n − 1; for i = 2n + 1, we define 1 ∈ k⊕2n+1

by x2n+1 = 1 and xi = 0, 1 ≤ i ≤ 2n. With this convention, only the embedding 
(k⊕2n+1, q2n+1) → (k⊕2n+2, q2n+2) is pointed.

Given a pointed quadratic space (V, q, 1), there is an associated trace function t(x) :=
B(x, 1). In the special case (k⊕2n+2, q2n+2, 1), this trace function is given by the formula

t2n+2(x) = xn+1 + x2n+2.

Note that with this convention, (k⊕2n+1, q2n+1) is contained in the orthogonal comple-
ment of the k-subspace k · 1.

2.2. Orthogonal group actions

We now analyze various orthogonal group actions; what we say is well-known over a 
field, but we review the statements over an arbitrary base ring for the convenience of the 
reader. In order to streamline the analysis of actions over a general base, we begin by 
recalling some general facts about actions of reductive group schemes and homogeneous 
spaces by fiberwise techniques.

Homogeneous spaces for reductive group schemes
We recall the following result that allows us to deduce structural results about ho-

mogeneous spaces from “fiberwise” computations over geometric points. Recall that a 
reductive k-group scheme is a smooth affine k-group scheme G such that the geometric 
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fibers are connected reductive groups (e.g., [14, Definition 3.1.1]). Unfortunately, we will 
need to deal with possibly disconnected group schemes and here the notion of geometric 
reductivity will be more useful for us; we refer the reader to [7, Definition 9.1.1] for a 
modern treatment of this notion.

Proposition 2.2.1. Assume G is an equidimensional (finitely presented) reductive k-group 
scheme with connected fibers and (X, x) is an equidimensional, pointed, finitely presented 
smooth affine k-scheme equipped with an action of G. Consider the orbit morphism:

ϕ̃ : G −→ X

sending g to g ·x. Write Gx for the stabilizer subgroup scheme of G. If for every geometric 
point s of Spec k the action of Gκ(s) on Xκ(s) is transitive, then

1. ϕ̃ is finitely presented, faithfully flat and factors through a (pointed) isomorphism 
ϕ : G / Gx

∼→ X (in particular, G / Gx exists as a scheme), and
2. the group scheme Gx is a finitely presented flat affine group scheme that is moreover 

geometrically reductive;
3. if for every geometric point s ∈ Spec k, the fiber (Gx)s is regular, then Gx is a finitely 

presented smooth affine k-group scheme, Gx / G◦
x is a finite étale k-group scheme, 

and G◦
x is reductive.

Proof. The first assertion is the implication (ii) =⇒ (i) from [15, III §3 Proposition 2.1]. 
We repeat the proof of the result to clarify and strengthen the conclusions. Since G and 
X are both finitely presented over k, ϕ̃ is finitely presented [20, 1.6.2(v)]. In that case, 
since G is k-smooth and affine by assumption as a reductive k-group scheme, the fibral 
flatness criterion of [21, 11.3.10] states that ϕ̃ is flat if and only if the fibers of ϕ̃ at 
points s of Spec k are flat. Since flatness can be checked after faithfully flat extension, 
we reduce to considering the geometric fibers of ϕ̃.

Since X is smooth, it is automatically reduced. By generic flatness [29, Proposition 
052B], there is a dense open subscheme U of X such that ϕ̃−1(U) → U is flat and finitely 
presented. In that case, the transitivity of the action guarantees that we can cover X
by translates of U and thus conclude that ϕ̃ is faithfully flat. In conjunction with the 
discussion of the preceding paragraph, ϕ̃ is fppf. Moreover the geometric fibers of ϕ̃ are 
isomorphic to (Gx)s, so if they are regular, then ϕ̃ is smooth.

Since Gx → G is a closed subgroup scheme by construction, we see that Gx is a finitely 
presented, flat, affine k-group scheme. In that case, the second assertion is “Matsushima’s 
theorem”. In more detail, by [7, Theorem 9.4.1] we conclude that Gx is geometrically 
reductive group scheme. In that case, note that Gx / G◦

x is necessarily also a geometrically 
reductive k-group scheme.

If Gx happens to be smooth, which as we observed in the previous paragraph happens 
if and only if its geometric fibers are regular, then [7, Theorem 9.7.6] guarantees that 
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Gx is geometrically reductive if and only if G◦
x is reductive and Gx / G◦

x is finite. In that 
case, it is automatically also smooth and therefore étale. �
Remark 2.2.2. In Proposition 2.2.1, to guarantee smoothness of the fibers, the hypothesis 
that geometric fibers of Gx are smooth is essential. For example, the morphism Gm →
Gm given by t �→ tn is transitive at the level of geometric points and makes the source 
into the total space of a μn-torsor over the target. Thus, if k is a field having characteristic 
p with p|n, the morphism in question is flat but not smooth since it has non-reduced 
geometric fibers.

Checking transitivity
In order to apply Proposition 2.2.1 we need some group-theoretic facts to aid in 

checking transitivity at geometric points, especially in the case of orthogonal group 
actions. We review some distinguished classes of elements in orthogonal group schemes.

2.2.3 (Reflections). Suppose (V, q) is a quadratic space over a commutative ring k, and B
is the k-bilinear form obtained from q by polarization. Assume that v ∈ V is an element 
such that q(v) ∈ k×. In that case, the reflection rv is defined by the formula

rv(w) = w − q(v)−1B(v, w)v.

The reflection rv is an element of O(V, q). Note that if (V, q) = (k⊕2n, q2n), then the 
Dickson invariant of rv is equal to 1, while if (V, q) = (k⊕2n+1, q2n+1) the element rv has 
determinant −1 [9, §4.1.1].

Lemma 2.2.4 ([17, Lemma 8.2]). Suppose (V, q) is a quadratic space over a field k, and 
B is the k-bilinear form obtained from q by polarization. Suppose x and y are elements 
of v such that q(x) = q(y).

1. If q(x − y) is non-zero, then rx−y(x) = y.
2. If q(x −y) = 0, w is a vector such that q(w), B(x, w) and B(y, w) are simultaneously 

non-zero, then setting w′ = x − rwy, q(w′) 
= 0 and (rw ◦ rw′)(x) = y.

Representation spaces
Consider the standard action of GSO2n+2 on A2n+2

k . This action preserves q2n+2 = 0
by definition and there is an induced action of GSO2n+2 on the smooth affine k-scheme 
A2n+2

k � {q2n+2 = 0}. The base-point 1 defines a k-point of A2n+2
k and the next result 

yields an embedding of O2n+1 in GSO2n+2 as the subgroup stabilizing this point.

Proposition 2.2.5. The action of GSO2n+2 on A2n+2
k � {q2n+2 = 0} is transitive on geo-

metric points and taking the orbit through 1, there is an induced isomorphism of schemes

GSO2n+2 / O2n+1
∼−→ A2n+2

k � {q2n+2 = 0}.
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Proof. Suppose x is a geometric point of A2n+2
k � {q2n+2 = 0}. Henceforth, we write q

for q2n+2. By construction q(x) 
= 0 and q(1) = 1 
= 0. Since k is algebraically closed, we 
can always find λ ∈ k× such that q(λx) = q(1) = 1. In that case, if q(λx − 1) 
= 0, then 
the reflection rλx−1 moves λx to 1 (Lemma 2.2.4.1), and the composite of scaling by λ
and rλx−1 lies in GSO2n+2.

Thus, suppose that q(λx − 1) = 0. In that case, since λx 
= 0, we know that λx has 
a non-zero coordinate, and taking the standard basis vector ei for suitable i we see that 
B(λx, ei) is non-zero, i.e., the locus B(λx, −) 
= 0 is a non-empty open subscheme of 
A2n+2

k . Likewise, the locus B(1, −) 
= 0 is a non-empty open subscheme of A2n+2
k . Since 

k is algebraically closed and thus infinite, it follows that the intersection of B(λx, −) 
= 0
and B(1, −) 
= 0 with q(−) 
= 0 is non-empty. Therefore, by Lemma 2.2.4.2 there exists 
a composite of reflections taking λx to 1.

Appealing to the first two points of Proposition 2.2.1, there is an induced isomorphism

GSO2n+2 / Stab1
∼−→ A2n+2

k � {q2n+2 = 0},

and it remains to identify Stab1, which is a geometrically reductive flat affine k-group 
scheme. To this end, we analyze the fibers of Stab1 over points of Spec k. Note that 
any element of GSO2n+2 that stabilizes 1 necessarily fixes the restriction of q to the 
orthogonal complement to k · 1. In other words, any element of GSO2n+2 that stabilizes 
1 preserves the form q2n+1 and thus lies in O2n+1. Conversely any element of O2n+1
stabilizes 1, so we conclude that Stab1 = O2n+1. Note: we cannot appeal to the third 
point of Proposition 2.2.1 as O2n+1 fails to be a smooth group scheme. �
Remark 2.2.6. In line with the discussion of the introduction, Proposition 2.2.5 is a 
special case of a more general statement relating the structure group of quadratic Jordan 
algebra and the automorphism group. General results of [25, Corollary 6.6] guarantee 
that the structure group of a separable, unital, quadratic Jordan algebra is a reductive 
group scheme. The automorphism group of the Jordan algebra can be identified with 
the subgroup scheme of the structure group scheme that preserves the identity. The 
relationship between the structure group and the automorphism group for quadratic 
Jordan algebras was analyzed in [28, §14] and we refer the reader to [10, §3] for more 
general results in the spirit of the above proposition.

2.3. Proof of Theorem 1

Consider the pointed quadratic space (k⊕2n+2, q2n+2, 1). Recall that the trace form 
t2n+2(x) = B2n+2(x, 1) where B2n+2 is the bilinear form obtained from q2n+2 by polar-
ization. Explicitly, this trace form is given by t2n+2(x) = xn+1 +x2n+2. Proposition 2.2.5
shows that the stabilizer of 1 in GSO2n+2 is identified with O2n+1. It follows that there 
is an action of SO2n+1 ⊂ O2n+1 on A2n+2

k as automorphisms that preserve q2n+2 and fix 
1. This SO2n+1-action then preserves the hypersurface t2n+2(x) = 1 since it fixes 1 and 
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thus induces an action on the variety defined by q2n+2(x) = 0 and t2n+2(x) = 1. After 
renaming variables appropriately, the variety defined by q2n+2 = 0, t2n+2 = 1 is precisely 
Q2n. We summarize these observations in the following result.

Lemma 2.3.1. The closed subscheme of A2n+2
k defined by t2n+2 = 1 and q2n+2 = 0 is 

isomorphic to the scheme Q2n; this scheme comes equipped with the action of SO2n+1 as 
a subgroup of GSO2n+2 stabilizing the base-point 1 ∈ A2n+2

k .

We consider the point x0 ∈ Q2n(k) given by x2n+2 = 1, x1 = · · · = x2n+1 = 0, and 
we view Q2n as pointed by x0. Observe that under the inclusion O2n ↪→ O2n+1, there is 
an inclusion

O2n ↪→ Stabx0(O2n+1).

Our goal will be to use this fact to identify the stabilizer in SO2n+1 of the point x0. The 
next result yields Theorem 1 from the introduction.

Theorem 2.3.2. Assume k is a commutative ring and n ≥ 1 is an integer. Consider the 
action of SO2n+1 on Q2n of Lemma 2.3.1.

1. Taking the SO2n+1-orbit through the k-point x0 on Q2n yields a surjective smooth 
morphism

ϕ̃ : SO2n+1 → Q2n

that factors through an SO2n+1-equivariant isomorphism

ϕ : SO2n+1 / SO2n
∼−→ Q2n .

2. The SO2n-torsor SO2n+1 → Q2n is Zariski locally trivial.

Proof. Since all schemes and groups in question are defined over Z, it suffices to prove 
the result in that case and the results in the general case are deduced by base change. 
Thus, we assume k = Z in what follows. By appeal to Proposition 2.2.1, if SO2n+1 acts 
transitively on Q2n after base-change to geometric points of Z, then there is an induced 
isomorphism SO2n+1 / Stabx0

∼−→ Q2n, where Stabx0 is the stabilizer group-scheme of 
the point x0 in SO2n+1. Transitivity of the action at geometric points is Proposition 2.3.4
below.

Now, we identify the stabilizer explicitly. Since any element of the stabilizer fixes 
x0, it preserves k · x0. An explicit computation shows that one has a sequence of in-
clusions SO2n ⊂ Stabx0 ⊂ O2n. Suppose Stabx0 were all of O2n. In that case, the 
sequence of inclusions SO2n ⊂ O2n ⊂ SO2n+1 would yield an fppf Z/2-torsor of the form 
SO2n+1 / SO2n → Q2n. Since SO2n+1 is connected, SO2n+1 / SO2n must be a connected 
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affine scheme, so this torsor is necessarily non-trivial. On the other hand, this torsor is 
necessarily étale locally trivial since it is an associated fiber space for an O2n-torsor, and 
O2n is a smooth k-group scheme (see [19, XVII.8.1] or [22, Remarques 11.8.2]). In that 
case, since this Z/2-torsor is trivial upon base-change to the geometric generic point of 
SpecZ by appeal to Lemma 2.3.3 below, and since Z/2 is a constant group scheme, it 
must have been trivial to begin. It follows that Stabx0 must be isomorphic to SO2n and 
thus Q2n is isomorphic to SO2n+1 / SO2n.

For the third statement, recall that Witt cancellation holds for quadratic spaces over 
local rings. More precisely, assume R is a local ring, and consider a morphism Spec R →
SO2n+1 / SO2n. Such a morphism corresponds to an SO2n-torsor on Spec R that becomes 
trivial when viewed as an SO2n+1-torsor, i.e., a stably hyperbolic quadratic form. By [8, 
Corollary III.4.3], if q1 is a stably hyperbolic quadratic space over R, it follows that 
q1 is actually hyperbolic, i.e., the morphism Spec R lifts to SO2n+1. It follows that 
SO2n+1 → Q2n is Zariski locally trivial, since it has Zariski local sections. �
Lemma 2.3.3. If k is an algebraically closed field having characteristic not equal to 2, 
then for any integer n > 0, the variety Q2n has no non-trivial étale Z/2-torsors, i.e., 
H1

ét(Q2n, Z/2) = 0.

Proof. Under the hypothesis on k, the Kummer sequence identifies H1
ét(Q2n, Z/2) with 

the 2-torsion subgroup of Pic(Q2n). A straightforward induction argument using the 
localization sequence and the fact that Q2n has an open subscheme isomorphic to A2n−1×
Gm with closed complement Q2n−2 ×A1 then identifies Pic(Q2n) as Z if n = 1 and 0 if 
n > 1. In either case, it follows that the 2-torsion subgroup is trivial. �
Proposition 2.3.4. Suppose k is an infinite field and n > 0 is an integer. The action of 
SO2n+1(k) on Q2n(k) is transitive.

Remark 2.3.5. The case n = 0 is exceptional because Q0 is a disconnected scheme iso-
morphic to the disjoint union of two copies of Spec k.

Proof. If k has characteristic not equal to 2, then this fact is well-known, so let us assume 
that k has characteristic 2. In that case, note that the map SO2n+1(k) → O2n+1(k) is 
a bijection. Suppose x ∈ Q2n(k) is an arbitrary point not equal to x0. To establish the 
result, it therefore suffices to construct an element of O2n+1(k) that takes x to x0, which 
we will accomplish using explicit reflections. For the remainder of this proof, we write B
for the bilinear form obtained by polarizing q2n+2 and t for the associated trace function 
t2n+2.

Case 1. Suppose q2n+2(x − x0) 
= 0. Since t(x − x0) = t(x) − t(x0) = 0, it follows that 
x − x0 lies in the orthogonal complement of the linear space k · 1. In other words, the 
vector x −x0 lies in the subspace k⊕2n+1. In that case, the reflection rx−x0 sends x to x0
(Lemma 2.2.4.1).
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Case 2. Suppose q2n+2(x − x0) = 0. We claim that we can choose a such that t(a) = 0
and such that q2n+2(a) 
= 0, B(x, a) 
= 0 and B(x0, a) 
= 0.

The locus of points where t = 0 corresponds to imposing the equation xn+1 = x2n+2, 
which defines a closed subscheme of A2n+2

k isomorphic to A2n+1
k . The restriction of q2n+2

to this subspace is q2n+1. In particular, the locus where q2n+1 
= 0 is a principal open 
subset of A2n+1

k ; this open subset is non-empty since n ≥ 1 (the point x1 = xn+2 = 1, 
xi = 0 otherwise works).

Since 1 ∈ k⊕2n+2 has trace zero, and since x and x0 both lie on Q2n(k), we know 
that 1 = t(x0) = B(x0, 1) = B(x, 1) = t(x). In other words, the Zariski open subsets 
of the hypersurface t = 0 defined by intersection with B(x, −) 
= 0 or B(x0, −) 
= 0 are 
themselves non-empty. Since k is infinite, their intersection is non-empty and likewise 
the intersection with the open subset {q2n+1 
= 0} is non-empty.

Set a′ = x − ra(x0). In that case,

t(a′) = t(x) − t(ra(x0)) = q(a)−1B(a, 1)t(a) = 0

as well. The composite ra ◦ ra′ takes x to x0 (by Lemma 2.2.4.2) as required. �
Over fields of positive characteristic there are alternative group-theoretic arguments 

for transitivity, once the action above has been defined and the stabilizer computed. The 
following argument for transitivity was suggested by R. Guralnick.

Proposition 2.3.6. Over any algebraically closed field k of positive characteristic, the 
action of SO2n+1(k) on Q2n(k) is transitive.

Proof. To check transitivity over a given algebraically closed field, it suffices to check 
transitivity over an algebraically closed subfield by [18, Proposition 1.1]. In that case 
we may assume that k is the algebraic closure of a finite field. It then suffices to check 
transitivity over any finite field, and we do this by counting points. We can compute 
the number of points of Q2n over a finite field inductively. Indeed, for every n ≥ 1, the 
scheme Q2n has an open subscheme isomorphic to A2n−1 ×Gm with closed complement 
Q2n−2 ×A1. Since Q0 = Spec k � Spec k, one sees immediately that | Q2(Fq)| = q2 + q. 
The decomposition above gives the recursive formula

| Q2n(Fq)| = q2n−1(q − 1) + q(| Q2n−2(Fq)|),

and a straightforward induction argument allows one to conclude that | Q2n(Fq)| =
q2n + qn.

On the other hand, the formulas for the order of the special orthogonal group over 
a finite field [30, Theorem 25 on p. 77] allow one to compute that | SO2n+1(Fq)/
SO2n(Fq)| = q2n + qn as well. It follows immediately that the action of SO2n+1(Fq)
on Q2n(Fq) is transitive for every q = pn, and thus transitivity holds after passing to Fq

as well; the result follows. �
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3. Applications

In this section, we deduce a selection of consequences of Theorem 2.3.2. The results of 
this section assume familiarity with motivic homotopy theory, in particular, the results 
of [3,4,6].

3.1. Affine representability

For the convenience of the reader, we recall that Smk is the category of smooth k-
schemes, Smaff

k is the subcategory of Smk consisting of affine schemes, and sPre(Smk) is 
the category of simplicial presheaves on Smk. If t is a Grothendieck topology on Smk, 
then Rt is a fibrant replacement functor for the injective t-local model structure on 
sPre(Smk) (see [3, §3.1] for more details), while SingA1

is the singular construction (see 
[3, §4.1]). We write Ho(k) for the Morel–Voevodsky A1-homotopy category as discussed 
in [3, §5] and for X, Y ∈ Smk, we write [X, Y ]A1 for HomHo(k)(X, Y ). First, we establish 
Theorem 2 about affine representability of Q2n over any field.

Corollary 3.1.1. Assume k is a field.

1. The simplicial presheaf RZar SingA1
Q2n is Nisnevich local and A1-invariant.

2. If X ∈ Smaff
k , then the canonical map

π0(SingA1
Q2n(X)) −→ [X, Q2n]A1

is an isomorphism.

Proof. Combine Theorem 2.3.2 and [6, Theorem 2.6]. �
Remark 3.1.2. In fact, it seems likely that Corollary 3.1.1 will extend to the case k =
Z. Indeed, this would follow immediately if one knew the Bass–Quillen conjecture for 
Nisnevich locally trivial SO2n+1-torsors for smooth Z-algebras, i.e., if for any smooth 
Z-algebra A, and any integer i ≥ 0, the map

H1
Nis(Spec A, SO2n+1) −→ H1

Nis(Spec A[x1, . . . , xi], SO2n+1)

is an isomorphism.

3.2. Euler class groups and motivic stable cohomotopy

In this section, we establish Theorem 4 from the introduction and a further application 
to weak Euler class groups.
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Proof of Theorem 4. That the set [X, Q2n]A1 has a functorial abelian group structure 
under the stated hypotheses on the dimension of X and k is a consequence of [2, Propo-
sition 1.2.1] replacing appeal to [2, Theorem 1.1.1] by appeal to Corollary 3.1.1. The 
second statement then follows from [2, Theorem 1.3.4].

For the third statement, we appeal to [2, Theorem 3.1.13 and Remark 3.1.14]; the 
latter statement explains exactly how characteristic hypotheses enter the story. The last 
statement then follows from [2, Theorem 3.2.1] �

Finally, we can also make some statements about weak Euler class groups. Assume k
is an infinite field, and X is a smooth affine k-scheme of dimension d ≥ 2. Let Z0(X) be 
the group of zero cycles on X and CI0(X) the subgroup generated by reduced complete 
intersection ideals in X. The quotient

E0(X) := Z0(X)/CI0(X)

is usually known as the weak Euler class group after the work of Bhatwadekar and 
Sridharan. There is a well-defined surjective homomorphism

E0(X) −→ CH0(X)

by [13, Lemma 2.5].

Theorem 3.2.1 (Asok, Fasel). If k is an infinite field and X is a smooth affine k-scheme 
of dimension d ≥ 2, then the map

E0(X) −→ CH0(X)

is an isomorphism.

Proof. Repeat the proof of [2, Theorem 3.2.6] appealing to Theorem 4 instead of [2, 
Theorem 3.2.1]. �
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