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1. Introduction

Assume k is an arbitrary commutative (unital) base ring. Consider the hypersurface
Q,,, in AF"*! = Speck[zy,...,Ta,41] cut out by the equation
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i=1
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the quadric hypersurface so-defined is smooth over Speck. Let g2, +1 be the standard
split quadratic form ), z; 2,44 +a3, 11 in 2n+ 1-variables, and let us provisionally write
Saop, for the quadric hypersurface ga,,41 = 1 in Ai"“.

If 2 is invertible in k, then the standard action of SOg,41 on Ai”“ as isometries
preserving gon,+1 yields, upon choice of a base-point, an isomorphism between S,,, and
the homogeneous space SOg;,41/SO3,. Since 2 is invertible in k, the quadric Q,,, is
isomorphic to Sa,, and is thus itself a homogeneous space for SOg, 11 (see, e.g., [4, Lemma
3.1.7]). If 2 is not a unit in k, then the quadric Sq, fails to be smooth over k and thus
is neither isomorphic to Q,, nor a homogeneous space for SOg,1. Nevertheless, the
following result shows that Q,,, is still isomorphic to SOg,41 / SO2p,.

Theorem 1 (See Theorem 2.3.2). Assume k is a commutative ring and n > 1 is an
integer.

1. There is an action of SOapy1 on Qg,, such that taking the orbit through the point
g € Qq, (k) given by xopy1 = 1, &, = 0, 1 < i < 2n yields a surjective smooth
morphism SOgp+1 — Qo, that factors through an SOay1-equivariant isomorphism

@ SOQn+1 / SOQn L) Q2n'

2. The induced SOqyp-torsor SOgn11 — Q,,, s Zariski locally trivial.

While the action of SOg,41 on Sg, is classical, the action of SOgy,41 on Q,,, is slightly
less transparent. Once we have described the action, a sequence of standard algebro-
geometric results about actions of group-schemes reduces the proof of Theorem 1 to an
elementary analysis of transitivity of actions of the special orthogonal groups in the spirit
of [16, I11.10-11]. Our main interest in the above result is due to its numerous concrete
consequences, which stem from the fact that Q,,, is “well-behaved” from the standpoint
of A'-homotopy theory, for example the following result holds.

Theorem 2 (See Corollary 3.1.1). If k is a field and n > 1 is an integer, then the scheme
Qo,, is Al-naive; in particular, for any smooth affine k-scheme X, there is a canonical
bijection

mo(Sing® Qu, (X)) 2 [X, Quplat,

i.e., naive A'-homotopy classes of maps coincide with “true” A'-homotopy classes of
maps.

Remark 3. The notion of an Al-naive space was introduced in [4, Definition 2.1.1], and
the final statement follows directly from the preceding statement by appeal to general
results. If 2 is invertible in k, then Theorem 1 is the conjunction of [4, Lemma 3.1.7,
Theorem 4.2.2] if k is infinite and [6, Theorem 2.15] if k is finite. If 2 is not assumed
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invertible in k, then Theorem 1 was known when n < 3 by appeal to various low-
dimensional exceptional isomorphisms: Q, = SLy /G,,,, Q4 = Sp, /(Spy X Sp,y) (again [4,
Theorem 4.2.2]), and Qg = Go /SL3 (see [5, Theorem 2.3.5]). The case n = 4 can be
analyzed by using an interpretation of Qg as the octonionic projective line.

The variety Q,,, arises naturally in the theory of complete intersection ideals [26] and
provides a smooth affine model of the motivic sphere S*™™ in the Morel-Voevodsky A-
homotopy category (see [27, p. 111] for discussion of motivic spheres, and [1, Theorem
2] for a precise statement). In [2], these points of view were united to establish links
between Bhatwadekar—Sridharan Euler class groups (after M. Nori) [12], motivic stable
cohomotopy groups, and Chow-Witt groups (as introduced by Barge-Morel [11]); we
refer the reader to [2] for a more complete collection of references in this direction.
Theorem 2 allows us to weaken the hypotheses in the main result of [2, Theorem 1],
which we restate here for convenience (though we refer the reader to [2] for the relevant
notation).

Theorem 4 (Asok, Fasel). Suppose k is a field, n and d are integers, n > 2, and X is a
smooth affine k-scheme of dimension d < 2n — 2.

1. The motivic cohomotopy set [X, Qq,]ar has a functorial abelian group structure, and

2. there is a functorial “Hurewicz” homomorphism [X, Qg,]ar — é\’f/fn(X), which is an
isomorphism if d < n.

3. If, furthermore, k is infinite, then there is a functorial and surjective “Segre class”
homomorphism s : E"(X) — [X,Qy,]ar from the Bhatwadekar—Sridharan Euler
class groups to motivic cohomotopy;

4. if d > 2, then the morphism s is an isomorphism.

In particular, under the hypotheses in Point (4), if X is a smooth affine k-scheme of
dimension d, then there is a functorial isomorphism

EYX) = CH (X).

The proof of Theorem 1 was inspired by analysis of the case n = 3 from [5] mentioned
above, which after various algebro-geometric reductions follows from [31, Corollary 1.7.5].
At the heart of those reductions is an interpretation of Q,, in terms of conditions on
traces and norms of split octonion algebras. This paper can be viewed in a similar vein:
SOay,41 acts transitively on vectors in a representation space satisfying suitable “norm”
and “trace” conditions. The algebraic structures underlying the notions of “norm” and
“trace” we use in this paper are quadratic Jordan algebras, and Q,,, may be interpreted
as a “projective space” for such an algebra, in a sense that we explain momentarily.
While the theory of (quadratic) Jordan algebras makes no appearance in the proofs, it
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does suggest various avenues of generalization, so we add a few comments about this
point of view here.

Assume (J,1,U) is quadratic Jordan algebra over a commutative ring k; for us, J
is a finitely generated, projective k-module, 1 is a distinguished element of J and U :
J — Endg(J) (x — U,) is a quadratic map satisfying various identities (see [23, §1.2
Definition 3] for the general definition; the cases of interest will even be obtained by base-
change from k = Z). Of particular interest will be a class of quadratic Jordan algebras
attached to quadratic spaces over k called a (quadratic) spin factors; see [23, Chapter
1.7]. The special orthogonal group-schemes SO; act by automorphisms on quadratic spin
factors, even when 2 is not invertible in k.

Given any quadratic Jordan algebra (J, 1, U) over a commutative ring k, the quadratic
map U allows one to speak of “projection operators”. Indeed, if one defines 22 := U, 1,
then a projection operator is one that satisfies 2 = . Also attached to a quadratic spin
factor is a suitable trace function, and one may consider “rank 1” projection operators
by imposing a suitable trace condition. Granted these identifications, the scheme Q,,, is
precisely the projective space attached to a quadratic spin factor and SO, 41 acts by
Jordan algebra automorphisms.

While the above interpretation does not aid in any calculations, it does suggest var-
ious natural generalizations of the main result. For example, one can study “octonionic
projective space” OP? := F, / Sping over an arbitrary commutative ring as a suitable
“projective space” of the exceptional quadratic Jordan algebra of Hermitian 3 x 3-matrices
over the octonions. Once again, this variety admits a description in terms of explicit “rank
1” projection operators. Because of the applications of Theorem 1 stated above, we have
decided to present a proof less encumbered by additional notation and terminology, and
we defer possible generalizations to projective spaces of more general quadratic Jordan
algebras to future work.
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2. Orthogonal group actions on split quadrics

Throughout this section we will assume that k£ is an arbitrary commutative base
ring. Section 2.1 recalls some basic facts about orthogonal groups in this generality.
Section 2.2 studies various properties of actions of reductive group schemes, and allows
us to give a characteristic independent description of the action of SOg,4+1 on Q.
Finally, Theorem 1 is established in Section 2.3.
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2.1. Quadratic spaces and orthogonal groups

We begin by recalling some facts about orthogonal groups over k, in particular, we
will not assume 2 is invertible in k. Assume (V,q) is a quadratic space over k; we will
always assume that V' is a projective k-module of constant rank, and that either (V] q)
is regular (a.k.a. non-singular) or, if V' has odd rank, semi-regular (see [24, 1.3.2] for the
former and [24, §1V.3.1] for the latter).

Special orthogonal groups
We write O(V, q) for the associated orthogonal group of isometries of (V,q). We will
mostly be interested in the “standard” split quadratic spaces:

n n
— . . d _ X 2
an(fﬂl, ceey -T2n) = TiTn+i, an Q2n+1($1, ceey -172n+1) = TiTpy1 + Topnt1
i=1 =1

on the free modules of rank 2n and 2n + 1 over k. We write O; for the orthogonal group
scheme; functorially, this group scheme assigns to a k-algebra R the usual orthogonal
group O(R®!,¢;) of automorphisms of R®? preserving ¢;. We also consider the group-
scheme GO; assigning to a k-algebra R the group of orthogonal similitudes, i.e., the
group of linear automorphisms of R®™ that preserve ¢; up to a unit.

Abusing notation slightly, we write Z /2 for the (constant) group scheme assigning to a
k-algebra R the additive group of continuous functions Spec R — Z /2. To discuss special
orthogonal group schemes, recall that there is a Dickson invariant homomorphism

D:0, —Z/2

(see [24, IV.5.1]) and a morphism x : Z/2 — o defined by f + (—1)/ such that the
composite x o D coincides with the determinant homomorphism det : O; — po. If i = 2n,
the Dickson invariant is split and surjective and one defines SOs,, to be the kernel of
the Dickson invariant, while if i = 2n + 1, we define SO, 41 to be the kernel of the
composite map x o D. The group-scheme GO, has a subgroup scheme GSO; which is the
fppf sub-group functor generated by G,,, and SO;. The group schemes Og,, and SOs,, are
both smooth k-group schemes; the group scheme SOs, 11 is a smooth k-group scheme,
while Og,,41 is a smooth k-group scheme if and only if 2 is a unit in &k (see [14, C.1.5] for
these assertions). Likewise, the group scheme GSO; is a smooth k-group scheme while
GO; fails to be smooth if 7 is odd (see, e.g., [14, Remark C.3.11] and the discussion just
preceding that statement).

We view (k92"+1 g9,.1) as a quadratic submodule of (k%2"+2 go,,12) by the embed-
ding

(617 cs€m41) (61, e €ny €21, €l e €204 1)
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Likewise, we view (k%27 qq,,) as the subspace of (k®2"*1 go,, 1) where the coordinate
function x4, 1 vanishes. These embeddings give rise to stabilization homomorphisms

Oi — Oi+1 . and SOz — SOiJrl
that we will need in the sequel.

Bilinear forms, pointed quadratic spaces and traces

If ¢ is a quadratic form, then we write B for the associated bilinear form obtained
by polarization, i.e., B(x,y) = q(x +vy) — q(x) — q(y). When we consider ¢; on k%% with
coordinates x1, ..., x;, the associated bilinear forms are

n

n
§ TiYnti + Tntili, and E TilYnti + Tnails + 2T2n41Y2n+1
| i=1

depending on whether ¢ is even or odd.

Recall that a pointed quadratic space over a commutative ring k is a triple (V,q, 1)
where (V,q) is a quadratic space and 1 € V such that ¢(1) = 1 € k. We point the
split quadratic spaces (k®%, ¢;) as follows: for i = 2n, we define 1 € k%?" to be z, =
Lze, = 1,2y = 2y = 0,0 = 1,...,n — 1; for i = 2n + 1, we define 1 € k®2n+!
by zon+1 = 1 and z; = 0,1 < ¢ < 2n. With this convention, only the embedding
(k22 gong1) = (K92" %2, gany2) is pointed.

Given a pointed quadratic space (V, ¢, 1), there is an associated trace function ¢(z) :=
B(x,1). In the special case (k®2"*2, ga,, 12, 1), this trace function is given by the formula

tont+2(T) = Tny1 + Tant2-

Note that with this convention, (k®2"*+1 gy, 1) is contained in the orthogonal comple-
ment of the k-subspace k - 1.

2.2. Orthogonal group actions

We now analyze various orthogonal group actions; what we say is well-known over a
field, but we review the statements over an arbitrary base ring for the convenience of the
reader. In order to streamline the analysis of actions over a general base, we begin by
recalling some general facts about actions of reductive group schemes and homogeneous
spaces by fiberwise techniques.

Homogeneous spaces for reductive group schemes

We recall the following result that allows us to deduce structural results about ho-
mogeneous spaces from “fiberwise” computations over geometric points. Recall that a
reductive k-group scheme is a smooth affine k-group scheme G such that the geometric
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fibers are connected reductive groups (e.g., [14, Definition 3.1.1]). Unfortunately, we will
need to deal with possibly disconnected group schemes and here the notion of geometric
reductivity will be more useful for us; we refer the reader to [7, Definition 9.1.1] for a
modern treatment of this notion.

Proposition 2.2.1. Assume G is an equidimensional (finitely presented) reductive k-group
scheme with connected fibers and (X, x) is an equidimensional, pointed, finitely presented
smooth affine k-scheme equipped with an action of G. Consider the orbit morphism:

p:G— X

sending g to g-x. Write G, for the stabilizer subgroup scheme of G. If for every geometric
point s of Speck the action of G5y on X, () is transitive, then

1. @ is finitely presented, faithfully flat and factors through a (pointed) isomorphism
v:G /G, 2 X (in particular, G /| G, exists as a scheme), and

2. the group scheme G is a finitely presented flat affine group scheme that is moreover
geometrically reductive;

3. if for every geometric point s € Speck, the fiber (G )s is reqular, then G, is a finitely
presented smooth affine k-group scheme, G, /G, is a finite étale k-group scheme,
and G, is reductive.

Proof. The first assertion is the implication (i) = (i) from [15, III §3 Proposition 2.1].
We repeat the proof of the result to clarify and strengthen the conclusions. Since G and
X are both finitely presented over k, ¢ is finitely presented [20, 1.6.2(v)]. In that case,
since G is k-smooth and affine by assumption as a reductive k-group scheme, the fibral
flatness criterion of [21, 11.3.10] states that ¢ is flat if and only if the fibers of @ at
points s of Spec k are flat. Since flatness can be checked after faithfully flat extension,
we reduce to considering the geometric fibers of .

Since X is smooth, it is automatically reduced. By generic flatness [29, Proposition
052B], there is a dense open subscheme U of X such that ¢=1(U) — U is flat and finitely
presented. In that case, the transitivity of the action guarantees that we can cover X
by translates of U and thus conclude that ¢ is faithfully flat. In conjunction with the
discussion of the preceding paragraph, ¢ is fppf. Moreover the geometric fibers of @ are
isomorphic to (G;)s, so if they are regular, then ¢ is smooth.

Since G, — G is a closed subgroup scheme by construction, we see that G, is a finitely
presented, flat, affine k-group scheme. In that case, the second assertion is “Matsushima’s
theorem”. In more detail, by [7, Theorem 9.4.1] we conclude that G, is geometrically
reductive group scheme. In that case, note that G, / G, is necessarily also a geometrically
reductive k-group scheme.

If G, happens to be smooth, which as we observed in the previous paragraph happens
if and only if its geometric fibers are regular, then [7, Theorem 9.7.6] guarantees that
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G, is geometrically reductive if and only if G, is reductive and G, / Gy, is finite. In that
case, it is automatically also smooth and therefore étale. 0O

Remark 2.2.2. In Proposition 2.2.1, to guarantee smoothness of the fibers, the hypothesis
that geometric fibers of G, are smooth is essential. For example, the morphism G,, —
G,, given by t — t" is transitive at the level of geometric points and makes the source
into the total space of a p,,-torsor over the target. Thus, if & is a field having characteristic
p with p|n, the morphism in question is flat but not smooth since it has non-reduced
geometric fibers.

Checking tramsitivity

In order to apply Proposition 2.2.1 we need some group-theoretic facts to aid in
checking transitivity at geometric points, especially in the case of orthogonal group
actions. We review some distinguished classes of elements in orthogonal group schemes.

2.2.3 (Reflections). Suppose (V, q) is a quadratic space over a commutative ring k, and B
is the k-bilinear form obtained from ¢ by polarization. Assume that v € V' is an element
such that ¢(v) € k™. In that case, the reflection r, is defined by the formula

ro(w) = w — q(v) ' B(v, w)v.

The reflection r, is an element of O(V,q). Note that if (V,q) = (k®?", g2,,), then the
Dickson invariant of 7, is equal to 1, while if (V,q) = (k®2"*! go,,41) the element 7, has
determinant —1 [9, §4.1.1].

Lemma 2.2.4 (17, Lemma 8.2]). Suppose (V,q) is a quadratic space over a field k, and
B is the k-bilinear form obtained from q by polarization. Suppose x and y are elements
of v such that q(x) = q(y).

1. If g(x —y) is non-zero, then r,_y(x) =y.
2. If q(x—y) = 0, w is a vector such that q(w), B(x,w) and B(y,w) are simultaneously
non-zero, then setting w' = & — ruy, a(w’) £ 0 and (ry 0 rr)(z) = y.

Representation spaces

Consider the standard action of GSOg,42 on Ai”“. This action preserves ga,4+2 = 0
by definition and there is an induced action of GSOsg,,+2 on the smooth affine k-scheme
Ai”“ ~ {g2n+2 = 0}. The base-point 1 defines a k-point of Ai"” and the next result
yields an embedding of Og,41 in GSOg,429 as the subgroup stabilizing this point.

Proposition 2.2.5. The action of GSOgy,10 on Ai"JrQ ~ {qant2 = 0} is transitive on geo-
metric points and taking the orbit through 1, there is an induced isomorphism of schemes

GSOgpt2/ Oanp1 — A2\ {ganta = 0}.
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Proof. Suppose z is a geometric point of Ai”” ~ {@2n+2 = 0}. Henceforth, we write ¢
for gap+2. By construction g(x) # 0 and ¢(1) =1 # 0. Since k is algebraically closed, we
can always find A € k* such that g(A\x) = ¢(1) = 1. In that case, if g(Ax — 1) # 0, then
the reflection ry,—1 moves Az to 1 (Lemma 2.2.4.1), and the composite of scaling by A
and ry,—1 lies in GSOqy, 2.

Thus, suppose that ¢(Ax — 1) = 0. In that case, since Ax # 0, we know that Az has
a non-zero coordinate, and taking the standard basis vector e; for suitable i we see that
B(\x,e;) is non-zero, i.e., the locus B(Az,—) # 0 is a non-empty open subscheme of
Ai”“. Likewise, the locus B(1,—) # 0 is a non-empty open subscheme of Ai”“. Since
k is algebraically closed and thus infinite, it follows that the intersection of B(Axz, —) # 0
and B(1,—) # 0 with g(—) # 0 is non-empty. Therefore, by Lemma 2.2.4.2 there exists
a composite of reflections taking Az to 1.

Appealing to the first two points of Proposition 2.2.1, there is an induced isomorphism

GSOap4a /Staby 5 A2\ {ga40 = 0},

and it remains to identify Stab;, which is a geometrically reductive flat affine k-group
scheme. To this end, we analyze the fibers of Stab; over points of Speck. Note that
any element of GSOsg, 1o that stabilizes 1 necessarily fixes the restriction of g to the
orthogonal complement to k - 1. In other words, any element of GSOs,, 1o that stabilizes
1 preserves the form go,41 and thus lies in Ogy,41. Conversely any element of Ogy, 41
stabilizes 1, so we conclude that Stab; = Og,, 1. Note: we cannot appeal to the third
point of Proposition 2.2.1 as Og,11 fails to be a smooth group scheme. O

Remark 2.2.6. In line with the discussion of the introduction, Proposition 2.2.5 is a
special case of a more general statement relating the structure group of quadratic Jordan
algebra and the automorphism group. General results of [25, Corollary 6.6] guarantee
that the structure group of a separable, unital, quadratic Jordan algebra is a reductive
group scheme. The automorphism group of the Jordan algebra can be identified with
the subgroup scheme of the structure group scheme that preserves the identity. The
relationship between the structure group and the automorphism group for quadratic
Jordan algebras was analyzed in [28, §14] and we refer the reader to [10, §3] for more
general results in the spirit of the above proposition.

2.8. Proof of Theorem 1

Consider the pointed quadratic space (k®2"2 go,,12,1). Recall that the trace form
tont2(2) = Bapia(x,1) where B, o is the bilinear form obtained from g¢o,42 by polar-
ization. Explicitly, this trace form is given by to,12() = @, 41+ Tont2. Proposition 2.2.5
shows that the stabilizer of 1 in GSOg,, 42 is identified with Og,41. It follows that there
is an action of SOgy,41 C Og,41 00 Ai"” as automorphisms that preserve ga,+2 and fix
1. This SOq,11-action then preserves the hypersurface ta,+2(z) = 1 since it fixes 1 and
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thus induces an action on the variety defined by go,y2(2) = 0 and to,12(z) = 1. After
renaming variables appropriately, the variety defined by ¢o,4+2 = 0, t2,+2 = 1 is precisely
Qg,,- We summarize these observations in the following result.

Lemma 2.3.1. The closed subscheme of Ai”” defined by topyo = 1 and qapyo = 0 s
isomorphic to the scheme Qs,,; this scheme comes equipped with the action of SO2p4+1 as
a subgroup of GSOay 1o stabilizing the base-point 1 € Ai””.

We consider the point 29 € Q,,, (k) given by xop12 =1, 21 = -++ = 29,41 = 0, and
we view Q,,, as pointed by xg. Observe that under the inclusion Oz, < Ogy,11, there is
an inclusion

Ogn — Stabro (Ogn+1).

Our goal will be to use this fact to identify the stabilizer in SO, 11 of the point xq. The
next result yields Theorem 1 from the introduction.

Theorem 2.3.2. Assume k is a commutative Ting and n > 1 is an integer. Consider the
action of SOzp41 on Q, of Lemma 2.3.1.

1. Taking the SOgpy1-orbit through the k-point xo on Q,,, yields a surjective smooth
morphism

@ 502011 = Qg

that factors through an SOqyy1-equivariant isomorphism

@ SOQn+1 / SOQn ; Q2n'

2. The SOgy,-torsor SOgp+1 — Qa, s Zariski locally trivial.

Proof. Since all schemes and groups in question are defined over Z, it suffices to prove
the result in that case and the results in the general case are deduced by base change.
Thus, we assume k = Z in what follows. By appeal to Proposition 2.2.1, if SOsq,,4+1 acts
transitively on Q,,, after base-change to geometric points of Z, then there is an induced
isomorphism SOsg,,+1 / Stab,, — Qs,,, where Stab,, is the stabilizer group-scheme of
the point xg in SOg,11. Transitivity of the action at geometric points is Proposition 2.3.4
below.

Now, we identify the stabilizer explicitly. Since any element of the stabilizer fixes
Tg, it preserves k - xg. An explicit computation shows that one has a sequence of in-
clusions SOg,, C Staby, C Os,. Suppose Stab,, were all of Og,. In that case, the
sequence of inclusions SOa,, C Og;, C SOg,41 would yield an fppf Z /2-torsor of the form
SO2p,41 / SOz, — Q,,,- Since SOgy,4+1 is connected, SOg,41 / SO2y, must be a connected
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affine scheme, so this torsor is necessarily non-trivial. On the other hand, this torsor is
necessarily étale locally trivial since it is an associated fiber space for an Os,-torsor, and
Og,, is a smooth k-group scheme (see [19, XVIL.8.1] or [22, Remarques 11.8.2]). In that
case, since this Z/2-torsor is trivial upon base-change to the geometric generic point of
Spec Z by appeal to Lemma 2.3.3 below, and since Z/2 is a constant group scheme, it
must have been trivial to begin. It follows that Stab,, must be isomorphic to SOz, and
thus Q,,, is isomorphic to SOg,41 / SOa;,.

For the third statement, recall that Witt cancellation holds for quadratic spaces over
local rings. More precisely, assume R is a local ring, and consider a morphism Spec R —
SO2p41 / SOy, Such a morphism corresponds to an SOsg,-torsor on Spec R that becomes
trivial when viewed as an SOaq,,11-torsor, i.e., a stably hyperbolic quadratic form. By [8,
Corollary I11.4.3], if ¢; is a stably hyperbolic quadratic space over R, it follows that
¢1 is actually hyperbolic, i.e., the morphism Spec R lifts to SOg,41. It follows that
SO2p+1 = Qo,, is Zariski locally trivial, since it has Zariski local sections. O

Lemma 2.3.3. If k is an algebraically closed field having characteristic not equal to 2,
then for any integer n > 0, the variety Q,, has no non-trivial étale Z /2-torsors, i.e.,

Hi’t(QmuZ/Q) =0.

Proof. Under the hypothesis on k, the Kummer sequence identifies Hg, (Q,,,, Z/2) with
the 2-torsion subgroup of Pic(Q,,). A straightforward induction argument using the
localization sequence and the fact that Q,,, has an open subscheme isomorphic to A27~1x
G,,, with closed complement Qs,, o xA! then identifies Pic(Q,,,) as Z if n = 1 and 0 if
n > 1. In either case, it follows that the 2-torsion subgroup is trivial. O

Proposition 2.3.4. Suppose k is an infinite field and n > 0 is an integer. The action of
SOg2p4+1(k) on Qa, (k) is transitive.

Remark 2.3.5. The case n = 0 is exceptional because Q is a disconnected scheme iso-
morphic to the disjoint union of two copies of Speck.

Proof. If k£ has characteristic not equal to 2, then this fact is well-known, so let us assume
that k has characteristic 2. In that case, note that the map SOagy,41(k) = Oazpi1(k) is
a bijection. Suppose x € Q,,, (k) is an arbitrary point not equal to xg. To establish the
result, it therefore suffices to construct an element of Os,,41(k) that takes x to x, which
we will accomplish using explicit reflections. For the remainder of this proof, we write B
for the bilinear form obtained by polarizing g2,+2 and ¢ for the associated trace function

toni2-

Case 1. Suppose gant2(x — o) # 0. Since t(x — x0) = t(z) — t(zo) = 0, it follows that
T — xq lies in the orthogonal complement of the linear space k - 1. In other words, the
vector & — x¢ lies in the subspace k®2" 1. In that case, the reflection r,_,, sends x to xg
(Lemma 2.2.4.1).
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Case 2. Suppose ¢an+2(z — x¢) = 0. We claim that we can choose a such that ¢(a) = 0
and such that gony2(a) # 0, B(z,a) # 0 and B(zg,a) # 0.

The locus of points where t = 0 corresponds to imposing the equation x,,+1 = ap+2,
which defines a closed subscheme of AZ"” isomorphic to Ai”“. The restriction of goy,42
to this subspace is ga,41. In particular, the locus where ¢o,41 # 0 is a principal open
subset of Ai""’l; this open subset is non-empty since n > 1 (the point 1 = @12 = 1,
x; = 0 otherwise works).

Since 1 € k®2"*2 has trace zero, and since z and x¢ both lie on Q,,, (k), we know
that 1 = t(x¢) = B(zo,1) = B(z,1) = t(x). In other words, the Zariski open subsets
of the hypersurface ¢ = 0 defined by intersection with B(x,—) # 0 or B(xg,—) # 0 are
themselves non-empty. Since k is infinite, their intersection is non-empty and likewise
the intersection with the open subset {gon+1 # 0} is non-empty.

Set ' = x — rq(xo). In that case,

t(a') = t(z) — t(ra(x0)) = q(a) ' B(a, 1)t(a) =0
as well. The composite r, o ry takes x to g (by Lemma 2.2.4.2) as required. O

Over fields of positive characteristic there are alternative group-theoretic arguments
for transitivity, once the action above has been defined and the stabilizer computed. The
following argument for transitivity was suggested by R. Guralnick.

Proposition 2.3.6. Over any algebraically closed field k of positive characteristic, the
action of SO2,41(k) on Qo, (k) is transitive.

Proof. To check transitivity over a given algebraically closed field, it suffices to check
transitivity over an algebraically closed subfield by [18, Proposition 1.1]. In that case
we may assume that k is the algebraic closure of a finite field. It then suffices to check
transitivity over any finite field, and we do this by counting points. We can compute
the number of points of Q,,, over a finite field inductively. Indeed, for every n > 1, the
scheme Q,,, has an open subscheme isomorphic to A2"~1 x G, with closed complement
Qqp,_o XAl Since Q, = Speck LI Speck, one sees immediately that | Q,(F,)| = ¢ + ¢.
The decomposition above gives the recursive formula

| Qon(F)l ="M (g — 1) + q(| Qa2 (Fg)]),

and a straightforward induction argument allows one to conclude that | Q,,(F,)| =
"+ q".

On the other hand, the formulas for the order of the special orthogonal group over
a finite field [30, Theorem 25 on p. 77] allow one to compute that |SOgp,41(F,)/
SO2,(F,)| = ¢*" + ¢" as well. It follows immediately that the action of SOg,41(F,)
on Q,,,(F,) is transitive for every ¢ = p”, and thus transitivity holds after passing to F,
as well; the result follows. O
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3. Applications

In this section, we deduce a selection of consequences of Theorem 2.3.2. The results of
this section assume familiarity with motivic homotopy theory, in particular, the results
of [3,4,6].

3.1. Affine representability

For the convenience of the reader, we recall that Smy is the category of smooth k-
schemes, Sm3T is the subcategory of Smy, consisting of affine schemes, and sPre(Smy,) is
the category of simplicial presheaves on Smy. If ¢ is a Grothendieck topology on Smy,
then R; is a fibrant replacement functor for the injective ¢-local model structure on
sPre(Smy) (see [3, §3.1] for more details), while SingAl is the singular construction (see
[3, §4.1]). We write Ho(k) for the Morel-Voevodsky Al-homotopy category as discussed
in [3, §5] and for X,Y € Smy, we write [X, Y41 for Hompe) (X, Y). First, we establish
Theorem 2 about affine representability of Q,,, over any field.

Corollary 3.1.1. Assume k is a field.

1. The simplicial presheaf Rya, SingAlQQn is Nisnevich local and A'-invariant.
2. If X € Smy®, then the canonical map

mo (Sing® Qzn (X)) — [X, Qalas
s an tsomorphism.
Proof. Combine Theorem 2.3.2 and [6, Theorem 2.6]. O
Remark 3.1.2. In fact, it seems likely that Corollary 3.1.1 will extend to the case k =
Z. Indeed, this would follow immediately if one knew the Bass—Quillen conjecture for

Nisnevich locally trivial SOg,1-torsors for smooth Z-algebras, i.e., if for any smooth
Z-algebra A, and any integer ¢ > 0, the map

Hyis(Spec A, SOqp, 1) — Hyy(Spec Alz, . .., 2i],S02,41)
is an isomorphism.
3.2. Euler class groups and motivic stable cohomotopy

In this section, we establish Theorem 4 from the introduction and a further application
to weak Euler class groups.
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Proof of Theorem 4. That the set [X,Q,,]ar has a functorial abelian group structure
under the stated hypotheses on the dimension of X and k is a consequence of [2, Propo-
sition 1.2.1] replacing appeal to [2, Theorem 1.1.1] by appeal to Corollary 3.1.1. The
second statement then follows from [2, Theorem 1.3.4].

For the third statement, we appeal to [2, Theorem 3.1.13 and Remark 3.1.14]; the
latter statement explains exactly how characteristic hypotheses enter the story. The last
statement then follows from [2, Theorem 3.2.1] O

Finally, we can also make some statements about weak Euler class groups. Assume k
is an infinite field, and X is a smooth affine k-scheme of dimension d > 2. Let Zy(X) be
the group of zero cycles on X and CIy(X) the subgroup generated by reduced complete
intersection ideals in X. The quotient

Eo(X) := Zo(X)/Cly(X)

is usually known as the weak Euler class group after the work of Bhatwadekar and
Sridharan. There is a well-defined surjective homomorphism

by [13, Lemma 2.5].

Theorem 3.2.1 (Asok, Fasel). If k is an infinite field and X is a smooth affine k-scheme
of dimension d > 2, then the map

Eo(X) — CHy(X)
is an isomorphism.

Proof. Repeat the proof of [2, Theorem 3.2.6] appealing to Theorem 4 instead of |2,
Theorem 3.2.1]. O
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