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Abstract—Moving target defense (MTD) using distributed
flexible AC transmission system (D-FACTS) devices is a promising
defense strategy to detect stealthy false data injection (FDI)
attacks against the power system state estimation. However, all
existing studies myopically perturb the reactance of D-FACTS
lines without considering the system voltage stability. In this
paper, we first illustrate voltage instability induced by MTDs
in a three-bus system. To address this issue, we further propose
a novel MTD framework that explicitly considers system voltage
stability by using continuation power flow and voltage stability
indices. We mathematically derive the sensitivity matrix of volt-
age stability index to line impedance, on which an optimization
problem for maximizing voltage stability index is formulated.
This framework is tested on the IEEE 14-bus and the IEEE
118-bus transmission systems, in which net load redistribution
attacks are launched by sophisticated attackers. The simulation
results show the effectiveness of the proposed framework in cir-
cumventing the voltage instability while maintaining the detection
effectiveness of MTD. We conduct case studies with and without
the proposed framework under different MTD planning and
operational methods. The impacts of the proposed two methods
on attack detection effectiveness and system economic metrics
are also revealed.

Index Terms—Moving target defense, voltage stability, load re-
distribution attack, continuation power flow, false data injection,
state estimation

I. INTRODUCTION

The landscape of smart grid, arguably one of the most com-
plex cyber-physical systems in history, is undergoing a radical
transformation [1]. Increasing renewable energy resources, in-
tegration of information and communication technologies have
organized a universal cyber-infrastructure interwoven with the
bulk power system, making it susceptible to cyber-physical
attacks. A wide variety of motivations exist for launching
such attacks, ranging from economic reasons, terrorism to
grudge (a disgruntled employee). The U.S. Department of
Energy received 368 power interruption reports related to
cyber-physical attacks between 2011 and 2014 [2].

The concept of moving target defense (MTD) has been
introduced in the smart grid in the face of emerging cyber-
physical attacks [3], [4]. MTD proactively perturbs the trans-
mission line impedance using distributed flexible AC trans-
mission system (D-FACTS) devices to invalidate attackers’
knowledge about the power system configurations. Without
knowing the true power system configuration, it is difficult
for an attacker to construct stealthy false data injection (FDI)
attacks against power system state estimation [1], [S]-[9]. The
recent proliferation of D-FACTS devices [10] has attracted in-
creasing research attention due to their add-on cyber-physical
security benefits via MTD.

The majority of MTD strategies in the literature are de-
signed to detect FDI attacks against state estimation [6], [8],

[9], [11]. Liu et al. [12] first propounded that there are two
intertwined and essential problems associated with MTD, i.e.,
MTD planning and MTD operation. The MTD planning refers
to optimally install MTD devices (e.g., D-FACTS devices)
on an appropriately identified subset of the system (e.g.,
transmission lines). The MTD operation determines how to
optimally dispatch MTD device setpoints in real-time. A ran-
dom MTD (RMTD) operation [11] was proposed to randomly
change the reactance of D-FACTS equipped transmission lines
without considering the detection effectiveness. A DC optimal
power flow (OPF) based MTD operation [13] was proposed to
minimize the generation cost while ensuring MTD detection
effectiveness. An AC-OPF based optimized MTD (OMTD)
strategy that minimizes the system loss is introduced in [5].
In [7], Stuxnet-like attacks, which can compromise the control
signals to mislead the system to unsafe conditions and inject
false sensor measurements to cover the ongoing attack, were
detected by MTD. Liu et al. [14] defined the ’hidden” MTD
(HMTD) which optimally changes the branch reactance in AC
network to minimize the system loss as well as line power flow
differences. An HMTD is stealthy to attackers, even when the
attackers are capable of checking the activation of D-FACTS
[6]. In [15], Cui et al. proposed an HMTD strategy for three-
phase unbalanced distribution systems. Lakshminarayana et al.
[16] proposed to actively perform MTD, thus, the attacker’s
knowledge to mask the effects of the physical attack is
outdated.

However, MTD operations may deviate the steady-state
operating point of a power system from its optimal one, caus-
ing massive economic and stability impacts [5]. In [17], the
voltage stability is defined as the ability of a power system to
maintain steady voltages at all buses in the system after being
subjected to a disturbance. One of the most common distur-
bances is the load increases which occur due to the peak load
period. To maintain stability after such disturbance, the system
needs the preserved capabilities of transmission network for
power transfer. The action of MTD perturbation which changes
the transmission line impedance may degrade the capability of
the power transfer and cause voltage collapse during peak load
period. Wang et al. [18] proposed an online line switching
methodology for increasing load margins to static stability
limit of a look-ahead power system. Cui et al. [19] proposed a
voltage stability constrained OPF model utilizing a sufficient
condition on power flow Jacobian nonsingularity. Wang et al.
[20] proposed a voltage stability constrained OPF by using
the minimum singular value of the power flow Jacobian as a
voltage stability index. To the best of our knowledge, there
is no research on MTD operation to detect FDI attacks while
guaranteeing system stability. Furthermore, even if existing



MTD operational approaches [15], [16], [21] are proposed to
follow some security constraints such as power flow limits
and safe voltage boundaries, all those approaches consider a
single-hour system load without taking into account forecasted
load variations in look-ahead time periods. This might be
plausible for AC OPF since it is frequently implemented, e.g.,
on an hourly basis. However, the frequency of the MTD can
be several hours to a few days depending on the attacker’s
capabilities as well as how a system operator executes it
(e.g., an event-based MTD strategy [22]). The lack of such
look-ahead capabilities in existing MTD methods may cause
system instability or even voltage collapse due to the reduction
of load margin or voltage stability degradation between two
consecutive MTD executions.

This paper aims to fill the gap by proposing a novel
voltage-stability-constrained MTD framework against highly
structured FDI attacks especially in the presence of stressful
system conditions. One important consideration here is that
the voltage-stability improvement ought to be minimally “in-
vasive”, meaning such an enhancement should not significantly
degrade the attack detection effectiveness of the MTDs or
incur a prominent increase in the system operating cost. The
contributions of this paper are described as follows:

« We reveal through a 3-bus system that a system with
the existing MTD operation methods can suffer voltage
instability or even experience voltage collapse at the peak
load.

« We propose a voltage stability (t-index) optimization
method to enhance the original MTD strategies. Specifi-
cally, we mathematically derive the sensitivity matrix of
the voltage stability index with respect to line impedance.
The proposed optimization method maximizes the lowest
index value among all the load buses with the minimum
impedance adjustment; therefore, the system voltage sta-
bility is considered while the impact on the original MTD
strategy is minimized.

e We develop a load margin constrained method based
on Continuation Power Flow [23] (CPF) to ensure a
sufficient load margin for system voltage stability at
the most stressful time period. The power injection to
impedance sensitivity is utilized to calculate safe MTD
setpoints adjustment with ample load margins.

e We present a new MTD framework that seamlessly
integrates the above two voltage stability constrained
methods into the original MTD operational methods.
Case studies on IEEE 14-bus and 118-bus systems are
conducted to test the proposed MTD framework against
one of the most sophisticated FDI attacks, i.e., net load
redistribution attacks.

The rest of this paper is organized as follows. In Section II,
we use a 3-bus toy system to show an MTD operation without
look-ahead capability can degrade the power transfer capabil-
ity and cause voltage instability at peak load. Preliminaries
and related work are provided in Section III. The two MTD
adjustment methods are proposed in Section IV. Case studies
are in Section V and conclusions are drawn in Section VI.
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Fig. 1. MTD-induced voltage instability in the 3-bus system

II. MTD-INDUCED VOLTAGE STABILITY ISSUES

In this section, we show the voltage instability issue in-
duced by existing MTD methods in a 3-bus system. Figure 1
illustrates this system, in which Bus 1 is the slack bus with
a generation capacity of 500 MVA. Buses 2 and 3 are load
buses where the off-peak load are 241.2 MVA and 80.4 MVA,
respectively. The load increases by 25% from the off-peak
hour to peak hour. The limits of Lines 1-2, 1-3, and 2-3 are
210 MVA, 210 MVA, and 100 MVA, respectively.

Assuming it is an off-peak hour, the system without MTD
is in a normal steady-state and so is the system at the peak
load as shown in Fig. 1(a). When an MTD is introduced at the
off-peak load, e.g., the impedance of Line 1-2 changes from
0.1 to 0.12 per unit, the MTD constructed at the off-peak load
would not cause any operational issues (see Fig. 1(b)) since all
MTD-ACOPF constraints are satisfied in the existing models
[5], [24]. However, this is not the case when it comes to the
peak load. It is seen in Fig. 1(c) that all line flow limits in
the system are violated. Figure 1(d) further compares nose
curves with and without MTD. A nose curve represents the
maximum power transfer that the system can handle given a
specific system configuration (line impedance). As seen, the
nose point without MTD is to the right of a vertical peak load
line, whereas the nose point with MTD is to the left of the peak
load. Figure 1(d) suggests that the load margin decreases with
the MTD implemented at the off-peak hour and the system
will suffer voltage instability issue at the peak hour.

The above issue resides in existing MTD methods that
myopically perturb the line impedance without looking-ahead
capabilities in the MTD rolling window for reserving sufficient
load margin. The lack of such capability in existing MTD
models may lead to insufficient margin for power transfer
and voltage support [17]. In reality, power systems are much
more complicated than this example of a 3-bus system. Thus,
voltage stability issue ought to be systematically addressed for
any realistic applications of MTD methods, particularly in the
presence of drastic net load variations caused by an increasing
amount of renewable generation. To distinguish the system
operation point with or without MTD, we define hereinafter



the D-FACTS operation point before MTD as pre-MTD, while
the operation point after MTD as post-MTD.

III. PRELIMINARIES

In this section, we introduce background knowledge of net
load redistribution attack, MTD, power injection to impedance
sensitivity matrix, and voltage stability index ¢ as preliminar-
ies.

A. Net Load Redistribution Attack

To bypass the detection mechanism, the FDI attack vectors
need to be consistent with the physical characteristics of
the attacked power system [25]. Yuan et al. [26] for the
first time proposed a special case of FDI attacks, i.e., load
redistribution (LR) attack. With the increasing penetration
of renewable-based distributed energy resources (DERs), the
malicious manipulation of net load measurements (load minus
DER generation) at DER buses can be disguised as the
renewable generation uncertainty. Therefore, considering the
attacker’s practical capability of manipulating the net load
measurements, we introduced an improved LR attack strategy,
namely net load redistribution attack [27]. The goal of the net
load redistribution attack is to mislead the AC state estimation
with an illusory over- or under-voltage issue by injecting
highly-structured attack vectors into the measurements. To
bypass the BDD, the net load redistribution attack stealthiness
constraints pertaining to boundary conditions between the
attack and non-attack areas were proposed. Those constraints
included restrictions on voltage magnitude measurements on
the boundary buses and power flow measurements on the tie
lines. With the required local information within the attack
region and the stealthiness constraints, the net load redistribu-
tion attack is modeled as an AC-OPF problem for attackers,
in which the prevailing AC-OPF constraints hold. Details on
the construction of net load redistribution attack can be found
in [27].

B. Moving Target Defense

MTD in power systems provides proactive defense in
contrast to the traditional remedial defense approaches. As
opposed to the MTD in the cyber communication network,
MTD in the physical layer of power systems is extremely
challenging as a small perturbation may deviate the system
steady-state operating point from its optimal one.

The upper box with solid lines in Fig. 2 shows an MTD-
enabled power system measurement-control-loop in wide area
monitoring, protection and control (WAMPAC). Attackers can
eavesdrop the power system measurement data and inject
the manipulated measurement back to the system. If the
attackers have the knowledge of the system configuration,
they can construct and inject stealthy FDI attack vector M,
into the SCADA system. M, can bypass an AC state esti-
mation based BDD [28] if there is no MTD activated. The
manipulated measurement (e.g., load pd,Qd) will be used
in the applications of energy management systems, including
the security constrained unit commitment and AC-OPF based
economic dispatch Pg, Q. When an MTD is activated, the

attacker’s knowledge about the system configuration h (+) will
be outdated and the injected attack vector that constructed
based on the outdated & (+) can be detected by BDD. In this
case, further investigation can be conducted to identify the
attack vector under some conditions [14].

C. Power Injection to Impedance Sensitivity

The power injection to impedance (PII) sensitivity is orig-
inally proposed, as an intermediate step in the chain rule
of calculus, to determine the relationship between the state
variables and line impedance [29]. In this paper, the PII is
utilized to calculate how much the system load margin can be
increased due to the adjustment of the original MTD setpoints,
when the system is near the power flow singularity (i.e., CPF
nose point). The sensitivities of power injections to a change
in line impedance is denoted as:
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The power injection at Bus ¢ is differentiated with respect to
x,; for all lines that connect Bus 7 and the adjacent Buses j.
With the help of PII, the necessary MTD setpoints adjustment
can be calculated under the most stressful system condition.

D. Voltage Stability Index (t-index)

The CPF method uses an iterative process involving pre-
dictor and corrector steps that require high computational cost
for large systems. A different strategy to represent the voltage
instability is by using the minimum singular value (MSV) of
the power flow Jacobian. Cui et al. [19] proposed a voltage
stability margin index to quantify the power flow Jacobian
nonsingularity. The proposed voltage stability index is derived
from a sufficient condition for the nonsingularity of power
flow Jacobian [30]. A voltage stability index ¢; for each load
bus 7 is defined as:
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where |V| is the voltage magnitude, S is the apparent power
injection, Z;; is the bus impedance matrix element, and N
is the set of n load buses. A larger t-index value indicates a
better voltage stability performance at a load bus. Contrasted
with the CPF method, the ¢-index calculation does not require
an iterative process which could greatly save computational
efforts for a large system. As opposed to the CPF method, the
t-index method is more suitable when the system operator is
only concerned about power flow Jacobian singularity, while
the tracing of the power flow solution path is not necessary.

IV. VOLTAGE-STABILITY-CONSTRAINED MTD
FRAMEWORK

In this section, we propose two voltage stability constrained
MTD methods, i.e., a t-index optimization method and a
load margin constrained method, to ensure the system voltage
stability with sufficient load margin.
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Fig. 2. Flowchart of the new MTD framework with the proposed methods built-in.

A. t-Index Optimization Method

In this subsection, we first derive ¢-index to impedance
sensitivity matrix (TII) and then form an optimization problem
to maximize the ¢-index for the most critical forecasted load
S" = max([St,, Sty Stss -, Sty]), Where t1 to tx are the
time indices of the look-ahead time periods within an MTD
windows. The basic idea of the ¢-index optimization method
is to maximize the lowest ¢-index among all the load buses of
a system implemented with an original MTD. Our method is
a post-MTD method that adjusts the original MTD setpoints.

1) TII Sensitivity Matrix: TII sensitivity matrix represents
the relationship between the change of ¢-index AT and the
change of MTD setpoints AX on the branches equipped with
D-FACTS devices. The TII sensitivity matrix is described as
follows:

AT =TII x AX “4)
A 8ti - 8ti 8Zij ..
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where TII is an N x £ matrix, £ is the set of D-FACTS
equipped transmission lines /. From (3), it is shown that the
t-indices at load buses are functions of the bus impedance
matrix elements. To get the derivative of the ¢-index, the t-
index at each load bus i is firstly differentiated with respect
to the bus impedance matrix Z. Then, chain rule can be used
to combine 0t;/0Z;; with 0Z;;/0xz;. During the derivative of

t-index, the net power injection can be assumed as constant.
Thus, ¢ is a function of Z and V, ¢, = f(Z, V). For each load
bus 7, the derivative of ¢; over Z is calculated by
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Note that for complex number C, |C|> = CC* holds, where
C* is the conjugate of C'. For a normal complex derivative,
ZZ-*J- is not differentiable. This is because, for a complex limit
calculation, a conjugate function variable can approach zero
from different directions in the complex domain and results
in different solutions, which is against the Cauchy—Riemann
equations. Since X > R in transmission systems, the line
resistance can be ignored, and assume Z consists of pure

imaginary variables. Then, we have Z?:j = —1 and
ot OWVil -~ I8il - 1851141 21y
0Zij  0Zi ; Vil ; vip 0z; 7

0|Vi| /0Z;; in (7) will turn to O|V;| /Ox; after the chain



rule (5). Since the derivative of voltage magnitude over line
impedance is equivalent to the state to impedance (SI) sensi-
tivity in [29], O |V;| /Ox; can be replaced with the SI elements.
The (,1)!" element in TII matrix can be calculated as,

ot; }
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For each transmission line equipped with D-FACTS devices,
0Z;;/0x; is calculated with respect to a unit step impedance
change Aux;.

2) t-Index Optimization Model: Based on the aforemen-
tioned TII sensitivity matrix, we further propose a t-index
maximization model (9) to adjust the MTD setpoints. To
facilitate the presentation, let subscript orig denote an original
post-MTD system state without using any voltage stability
enhancement methods, and subscript new represent the state
adjusted by using the proposed voltage stability methods. As
original MTD operation methods optimize D-FACTS setpoints
to achieve MTD hiddenness, maximize attack detection effec-
tiveness, minimize power generation costs, and to minimize
system losses [?], any adjustment on the original MTD set-
points would deviate from the optimal values. Therefore, the
proposed model (9) also minimizes the MTD setpoints adjust-
ment for a minimal impact on the original MTD performance.

AXI’I%‘ihfelMd 01||AX |2 — d2tthreshold )
.t tihreshold < Torig + AT (9a)

LB < Xoi + AX < UB (9b)

AT = TII x AX (9¢)

where AX is the MTD setpoint adjustment which will be
added to the setpoints in the original MTD X,. The final
output of the proposed model is the optimized setpoints
Xnew = Xorig+AX. 61 and 62 are the weighted coefficients to
balance the trade-off between the impact on the performance
of the original MTD and the ¢-index increase. The first com-
ponent of the objective function (9) minimizes the adjustment
of the MTD branch impedance which ensures the adjustment
will not significantly affect the performance of the original
MTD. The second component of (9) maximizes (i.e., minimize
negative) the ¢-index threshold #reshold, Which is equivalent to
maximizing the ¢-index at the most critical load bus. Ty is
the vector of ¢-index in the system with the original MTD at
the peak net load S’. Constraint (9a) is the ¢-index threshold
constraint to ensure the lowest ¢ at the most critical load bus
is greater than the t-index threshold. Constraint (9b) aims
to ensure the total impedance change after the adjustment is
within the physical capacity of D-FACTS devices. LB and UB
are the lower and upper bounds of line reactance perturbation,
where UB and LB are equal to £20% of the transmission line
impedance which is generally used in MTD [5], [6], [8], [9],
[11], [14]. In (9¢), AT is the vector of the incremental ¢-index
at all load buses calculated based on T'I1.

Algorithm 1 ¢-index optimization method

Input: X, S’
Output: Xy
1: Calculate TI1 from (8)
2: Solve the t-index optimization problem (9)
3: Xnew = Aorig +AX
4: return X .,

The steps of the proposed t-index optimization method are
shown in Algorithm 1. In general, T'I1 is calculated and the ¢-
index optimization method is carried out for the most critical
net load condition S' = max([St,, St,, Sty -y Sty ]) Within
an MTD window between time ¢; and . Since the proposed
model (9) maximizes the f-index at the most critical load bus,
the t-index at the load bus with high voltage stability may
degrade. However, this is typically acceptable as the entire sys-
tem remains voltage stable under the most stressful condition.
Note that the weight coefficients can be finely tuned to find
the trade-off between the MTD’s performance and the voltage
stability. For instance, when higher variability and uncertainty
of renewable generation are considered, a higher weight can
be placed on the voltage stability rather than maintaining a
small impact on the original MTD’s performance.

B. Load Margin Constrained Method

Load margin Lj; is another noteworthy metric for measur-
ing the system voltage stability. It is defined as the maximum
amount of load that the system can support given a system
configuration. With a specific system configuration and peak
load forecast, the load margin is calculated by CPF with
a predictor-corrector method. As previously discussed, all
existing MTD methods fail to consider the system load margin
that is very likely to degrade by MTDs. This motivates us
to develop a load margin constrained MTD method. The
proposed method is demonstrated in the dotted box of Fig. 2
and the steps, shown in Algorithm 2, are described as follows:

o Step I: Algorithm 2 checks the original D-FACTS set-
points Xz by using the CPF method. The load margin
Ljy is calculated given the original MTD and forecast
peak load. If the load margin of X, is able to satisfy the
most critical load forecast within an MTD window, i.e.,
S’ < Lyy, these setpoints can be applied to the system
without adjustment. Otherwise, the expected incremental
load margin can be calculated by ALy, = S’ — Lyy.

o Step 2: Algorithm 2 computes the sensitivity matrix PII
in (2). PII reveals the relationship between the expected
incremental load margin ALj; and the line impedance
change AX on the branches equipped with D-FACTS
devices. After computing PII, Algorithm 2 calculates the
expected MTD setpoint adjustment by AX = PIT! x
ALy . AX must ensure the MTD setpoint after the
adjustment is still within the physical limits of the D-
FACTS devices, ie., LB < Xu, + AX < UB. LB
and UB are the same as used in the ¢-index optimization
method.

o Step 3: The load margin constrained MTD setpoints are
calculated by adding AX to the original MTD setpoints,



Algorithm 2 load margin constrained method

Input: X, S’
Output: Xy
1: Solve CPF problem to get load margin Lj; of Xoe
2:if 8" < Lj; then (as they satisfy the load margin
constraint for the most critical condition)
return X,
else
Calculate the expected load margin increase ALy,
Compute the PII from (2)
Solve AX = PIT~' x ALy, subject to LB < Xopig+
AX <UB
Xnew = Xorig +AX
9: end if
10: return X,

A

®

i.e., Xnew = Xorig + AX. The new MTD setpoints are
then returned by Algorithm 2.

Notice that the scope of this paper is on the voltage stability
issue induced by MTD only. In other words, the pre-MTD
system state is voltage stable even under the most stressful
conditions without MTD. In view of the MTD setpoint that is
perturbed around the pre-MTD system state ALy, calculated
in Step 2 should be comparatively small. However, if the
system is not pre-MTD voltage sable ALj; can be large. In
such a case, feasible X,y may not exist due to the physical
limits of the D-FACTS devices. Other methods [31], [32]
including the potential load shedding as a last resort, need
to be considered to ensure the pre-MTD voltage stability of
the system.

C. Proposed Voltage Stability Constrained MTD Framework

Figure 2 illustrates the proposed flowchart of the voltage-
stability constrained MTD framework that integrates Algo-
rithm 1 and Algorithm 2 proposed in this section. These
two methods lie in the post-MTD process where original
MTD setpoints are calculated and can be adjusted if deemed
necessary. Our core idea in designing this framework is that
the proposed methods ought to greatly enhance the system
voltage stability within an MTD rolling window, but should
not significantly degrade the attack detection effectiveness of
the original MTD setpoints or incur a prominent increase in
the system operating cost.

By comparing the two proposed algorithms, the ¢-index
optimization method has an advantage over the load margin
constrained method that the adjusted MTD setpoints Xy, are
typically closer to the original MTD setpoints X, since the
minimization of the setpoint deviation in (9). This is much
desirable when the original MTD is an OPF-based MTD
strategy (e.g., OMTD and HMTD) with specific objectives in-
cluding system cost minimization, attack detection probability
maximization, and/or MTD hiddenness requirement. The ?-
index optimization method can improve the voltage stability
while maintaining the original OMTD performance as much
as possible. Both of the proposed methods are computationally
efficient since they only involve matrix computations, solving
a series of power flow problems, and solving a nonlinear min-
imization problem with all linear constraints. Our numerical
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tests show that the proposed methods can solve an IEEE 118-
bus case with 60 D-FACTS devices within 20 seconds on a
desktop computer. More comparative numerical results will be
shown in the next section.

V. NUMERICAL RESULTS

In this section, we present the case study and simulation
results on the proposed methods and framework. The net
load redistribution attack against MTD detection cases are
tested on the IEEE 14-bus and 118-bus systems available
from MATPOWER [33]. The t-index optimization problem
is solved by the FMINCON toolbox in MATLAB. The load
margin constrained method is implemented by using the CPF
toolbox in MATPOWER. In order to compare the performance
of the proposed methods with various MTDs, we use two
MTD placement methods, i.e., max-rank [5] and graph-based
placement [12], as well as two MTD operational strategies,
i.e., RMTD and OMTD in the case study. The simulations are
performed on a desktop with an Intel Core i5 processor and
8 GB RAM. The line impedance change in all the cases are
set to be within 20% of the original impedance.

A. Impact on Voltage Stability Metrics

To compare and evaluate the performance of the two
proposed methods, we construct 1000 RMTDs to form a
defense pool. We scale up the load of the two systems by
1.35 times to create a very stressful load condition. Figure
3 shows the heat-maps that compare the ¢-indices of all the
load buses in the IEEE 14-bus system with the original MTD
(Fig. 3(a)), and with the new t¢-index optimized MTD (Fig.
3(b)). In this figure, each row represents one RMTD from
the defense pool, while each column represents a load bus
in this system. By examining all the RMTDs in the defense
pool, it is found that 16% of the original RMTDs undergo
voltage collapse at the peak load. In comparison, all the failed
cases are saved from voltage collapse by implementing the ¢-
index optimization method. The ¢-indices in Fig. 3(b) indicates
that the proposed t-index optimization method significantly
increases the capability of voltage support of the systems with
the original MTD.

Figure 4 demonstrates the box plot of two voltage stability
metrics, i.e., load margin and the minimum t¢-indices value,
for all the load buses in the two systems before and after



implementing the proposed t-index optimization method. In
each box, the central mark indicates the median, and the
bottom and top edges suggest the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data
points exclude outliers, and the outliers are plotted individu-
ally. Three system states are compared including the pre-MTD
state, the original MTD state, and the new MTD state. It is
observed that when the system is transitioning from pre-MTD
to original MTD state, the CPF load margin and the ¢-indices
may increase or decrease. This is because the RMTDs in the
defense pool are constructed randomly without considering
the voltage stability. As seen, from the original to new MTD
state, the proposed t-index optimization method elevates both
the t-indices and the CPF load margin, indicating increased
system voltage stability. A similar trend, shown in Fig. 4(b)
can be observed in the IEEE 118-bus system. Two peak loads
are labeled as dashed red lines in the load margin figures.
These peak loads, which are not used here in Algorithm 1,
are added to be consistent with Fig. 5. The results in Fig. 4
show that the ¢-index optimization method can promote both
of those metrics, which in turn increase the voltage stability
of the system.

Analogously, Fig. 5 shows the box plots of those voltage
stability metrics before and after using the proposed load
margin constrained method. According to Algorithm 2, this
method only makes adjustment if the system cannot support
the forecasted peak load. Therefore, Fig. 5 only shows the
original MTDs that fail to do so, which is why the body
of the box plot in Fig. 5 is much shorter than that in Fig.
4. In the IEEE 14-bus system, the forecasted peak load is
351.2 MVA labeled by a horizontal red line. In the left
plot of Fig. 5(a), the load margin of the pre-MTD state is
365.1 MVA, which is greater than the forecasted peak load.
Hence, the pre-MTD system state is capable of supporting
the forecasted peak load. For all RMTDs whose original load
margin is less than the forecasted peak load (i.e., “problematic”
RMTDs), Lines 5-10 in Algorithm 2 are executed. It is seen
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Fig. 5. Voltage stability metrics before and after load margin constrained
method

in the left plot of Fig. 5(a) that the proposed load margin
constrained method significantly brings up the load margin
of those problematic RMTDs. As a result, the load margin
of all new MTDs are equal to or greater than the forecasted
peak load. The right plots in Fig. 5(a) shows the minimum
values of t-indices among all the load buses. As seen, the t-
indices of the system also increase by using the proposed load
margin constrained method. Nevertheless, the improvement is
not as significant as that in Fig. 4(a) since the ¢-indices are
not directly maximized in the load margin constrained method.
Similar plots for the IEEE 118-bus system are displayed in Fig.
5(b). The results in Fig. 5 demonstrate that the proposed load
margin constrained method can significantly increase the load
margin of original MTDs and ensure ample load margins to
support the forecasted peak load.

B. Impact on Generation Cost and Attack Detection

In this subsection, we evaluate the impact of the two
proposed methods on the system generation cost and MTD
performance with various MTD settings. Table I illustrates the
system generation costs for the peak load in four cases. The
ACOPF in MATPOWER is used to optimally dispatch the
generation for each case as illustrated in Fig. 2. In Table I, the
first case shows the pre-MTD generation cost of the systems,
while the second case represents the original-MTD generation
cost when an ACOPF-based OMTD [5] is executed. The last
two cases show the new-MTD generation costs after each
proposed method is implemented. As seen, for both the IEEE
14-bus and 118-bus systems, the lowest generation costs are
associated with the OMTD operation in the original MTD
state. This is expected since the OMTD operation without
considering the voltage stability is solely dedicated to the
cost minimization. The second lowest generation costs are
pertaining to the new MTD state after the ¢-index optimization
method is implemented. A relatively small cost increase is
induced by this method. This is because the ¢-index optimiza-
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tion method optimally adjusts the original OMTD setpoints to
improve the ¢-indices of load buses and the resulting new MTD
setpoints are close to the OMTD ones. The largest generation
cost emerges when the load margin constrained method is
applied due to much larger MTD setpoint deviation from the
OMTD ones. The generation cost results in Table I show that
the load margin method is able to guarantee the system voltage
stability at a higher system generation cost. In contrast, the
t-index optimization method can ensure the voltage stability
with a negligible increase in system generation cost.

Furthermore, simulations are carried out to test the MTD
effectiveness against net load redistribution attacks using AC
SE-based BDD. Four different D-FACTS placements are con-
sidered including zero placement (No-MTD), full placement,
max-rank placement [5], and graph-based placement [12]. The
measurement noise is assumed to be Gaussian distributed with
zero mean and the standard deviation as 1% of the actual
measurement. For each MTD placement, we again construct
1,000 RMTDs as the corresponding defense pool. We further
construct 1,000 net load redistribution attack vectors to form
an attack pool. Figure 6 shows the receiver operating charac-
teristic (ROC) curves of MTDs. These ROC curves are created
by plotting the true positive rate (TPR) versus the false positive
rate (FPR) at various BDD thresholds. Figure 6(a) compares
the attack detection effectiveness of the original MTD under
different MTD placements. As seen, , the ROC curve without
MTD passes through the bottom right of the graph, leading
to the smallest area under the curve (AUC) among all the
placement. A smaller AUC indicates a worse performance

TABLE I
COMPARISON OF GENERATION COSTS AT THE PEAK LOAD

Cases 14-bus ($/hr) 118-bus ($/hr)
Pre-MTD 8,083.2 129,725.8
OMTD operation 8,076.4 129,714.6
Constrained method 8,358.0 129,906.3
Optimization method 8,083.9 129,718.8

in attack detection effectiveness. Again, the results in Figure
6(a) demonstrates: 1) the net load redistribution attack is
stealthy against AC SE-based BDD; 2) instead of increasing
the BDD residual, the net load redistribution attack decreases
the residual [27], leading to a smaller TPR than the FPR at
a given threshold; and 3) the attack detection effectiveness is
related to the numbers of D-FACTS devices deployed. The
more D-FACTS devices deployed, the higher attack detection
effectiveness would be.

Further, we test the impacts of the two proposed methods
on the attack detection effectiveness under the other three
D-FACTS placements, whose attack detection effectiveness
is compared in Figs. 6(b) to 6(d). It is seen that both the
load margin constrained method and the ¢-index optimization
method will maintain similar attack detection effectiveness as
the original RMTD under the full and graph-based MTD place-
ment. A larger AUC difference between the original MTD and
the load margin constrained MTD emerges under the max-
rank placement. This can be explained by examining the line
impedance change in percentage induced by an MTD, which
is indicative of the average absolute MTD magnitude. The
average MTD magnitudes of the load margin constrained MTD
is 10.42% which is larger than that of the other two MTDs,
ie., 9.70%. Here, the observation that the attack detection
effectiveness increases with the MTD magnitude is consistent
with other MTD works [7], [24]. The results in Fig. 6(b) to
6(d) indicate that both of the proposed methods can maintain
similar attack detection effectiveness as the original MTD.
Moreover, by minimizing the MTD adjustment in (9), the -
index optimization method has a relatively smaller impact on
the attack detection effectiveness performance of the original
MTD compared with the load margin method.

VI. CONCLUSION

In this paper, we address a critical issue induced by ex-
isting MTDs that myopically perturb the transmission line
impedance and result in system voltage instability for varying
(net) load. A 3-bus example system is used as an example to
illustrate this issue and two methods are further proposed to
address it. For the first method, namely the ¢-index optimiza-
tion method, we derive the ¢-index to impedance sensitivity
matrix. By utilizing this matrix, we maximize the lowest
t among all the load buses with the minimum impedance
adjustment such that the system voltage stability is guaranteed
while keeping the performance of the original MTD strategy.
The second method, i.e., a load margin constrained method, is
developed based on CPF to ensure the load margin is beyond
the forecast peak load and thus keeps the system voltage stable
during the most stressful time period. Furthermore, we propose
a new MTD framework that seamlessly integrates the proposed
two methods.

Extensive simulation results show that both methods can
greatly improve the load margin and the voltage stability of a
system with an original MTD in critical net load conditions.
Moreover, the t-index optimization method can maintain the
objectives close enough to the original OMTDs. The load mar-
gin constrained method may induce the new MTD setpoints
further away from the original MTD, which is acceptable



when RMTD is originally implemented. In reality, system
operators can choose either of the two proposed methods
to enhance the system voltage stability for RMTDs. When
OMTD is originally implemented in the system, a better choice
is the t-index optimization method. In future work, we will
explore implementing the proposed MTD voltage stability
constrained methods under other advanced MTD strategies
including inverter-based MTDs to equivalently change system
configurations.
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