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Abstract—Moving target defense (MTD) using distributed
flexible AC transmission system (D-FACTS) devices is a promising
defense strategy to detect stealthy false data injection (FDI)
attacks against the power system state estimation. However, all
existing studies myopically perturb the reactance of D-FACTS
lines without considering the system voltage stability. In this
paper, we first illustrate voltage instability induced by MTDs
in a three-bus system. To address this issue, we further propose
a novel MTD framework that explicitly considers system voltage
stability by using continuation power flow and voltage stability
indices. We mathematically derive the sensitivity matrix of volt-
age stability index to line impedance, on which an optimization
problem for maximizing voltage stability index is formulated.
This framework is tested on the IEEE 14-bus and the IEEE
118-bus transmission systems, in which net load redistribution
attacks are launched by sophisticated attackers. The simulation
results show the effectiveness of the proposed framework in cir-
cumventing the voltage instability while maintaining the detection
effectiveness of MTD. We conduct case studies with and without
the proposed framework under different MTD planning and
operational methods. The impacts of the proposed two methods
on attack detection effectiveness and system economic metrics
are also revealed.

Index Terms—Moving target defense, voltage stability, load re-
distribution attack, continuation power flow, false data injection,
state estimation

I. INTRODUCTION

The landscape of smart grid, arguably one of the most com-

plex cyber-physical systems in history, is undergoing a radical

transformation [1]. Increasing renewable energy resources, in-

tegration of information and communication technologies have

organized a universal cyber-infrastructure interwoven with the

bulk power system, making it susceptible to cyber-physical

attacks. A wide variety of motivations exist for launching

such attacks, ranging from economic reasons, terrorism to

grudge (a disgruntled employee). The U.S. Department of

Energy received 368 power interruption reports related to

cyber-physical attacks between 2011 and 2014 [2].

The concept of moving target defense (MTD) has been

introduced in the smart grid in the face of emerging cyber-

physical attacks [3], [4]. MTD proactively perturbs the trans-

mission line impedance using distributed flexible AC trans-

mission system (D-FACTS) devices to invalidate attackers’

knowledge about the power system configurations. Without

knowing the true power system configuration, it is difficult

for an attacker to construct stealthy false data injection (FDI)

attacks against power system state estimation [1], [5]–[9]. The

recent proliferation of D-FACTS devices [10] has attracted in-

creasing research attention due to their add-on cyber-physical

security benefits via MTD.

The majority of MTD strategies in the literature are de-

signed to detect FDI attacks against state estimation [6], [8],

[9], [11]. Liu et al. [12] first propounded that there are two

intertwined and essential problems associated with MTD, i.e.,

MTD planning and MTD operation. The MTD planning refers

to optimally install MTD devices (e.g., D-FACTS devices)

on an appropriately identified subset of the system (e.g.,

transmission lines). The MTD operation determines how to

optimally dispatch MTD device setpoints in real-time. A ran-

dom MTD (RMTD) operation [11] was proposed to randomly

change the reactance of D-FACTS equipped transmission lines

without considering the detection effectiveness. A DC optimal

power flow (OPF) based MTD operation [13] was proposed to

minimize the generation cost while ensuring MTD detection

effectiveness. An AC-OPF based optimized MTD (OMTD)

strategy that minimizes the system loss is introduced in [5].

In [7], Stuxnet-like attacks, which can compromise the control

signals to mislead the system to unsafe conditions and inject

false sensor measurements to cover the ongoing attack, were

detected by MTD. Liu et al. [14] defined the ”hidden” MTD

(HMTD) which optimally changes the branch reactance in AC

network to minimize the system loss as well as line power flow

differences. An HMTD is stealthy to attackers, even when the

attackers are capable of checking the activation of D-FACTS

[6]. In [15], Cui et al. proposed an HMTD strategy for three-

phase unbalanced distribution systems. Lakshminarayana et al.

[16] proposed to actively perform MTD, thus, the attacker’s

knowledge to mask the effects of the physical attack is

outdated.

However, MTD operations may deviate the steady-state

operating point of a power system from its optimal one, caus-

ing massive economic and stability impacts [5]. In [17], the

voltage stability is defined as the ability of a power system to

maintain steady voltages at all buses in the system after being

subjected to a disturbance. One of the most common distur-

bances is the load increases which occur due to the peak load

period. To maintain stability after such disturbance, the system

needs the preserved capabilities of transmission network for

power transfer. The action of MTD perturbation which changes

the transmission line impedance may degrade the capability of

the power transfer and cause voltage collapse during peak load

period. Wang et al. [18] proposed an online line switching

methodology for increasing load margins to static stability

limit of a look-ahead power system. Cui et al. [19] proposed a

voltage stability constrained OPF model utilizing a sufficient

condition on power flow Jacobian nonsingularity. Wang et al.

[20] proposed a voltage stability constrained OPF by using

the minimum singular value of the power flow Jacobian as a

voltage stability index. To the best of our knowledge, there

is no research on MTD operation to detect FDI attacks while

guaranteeing system stability. Furthermore, even if existing
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MTD operational approaches [15], [16], [21] are proposed to

follow some security constraints such as power flow limits

and safe voltage boundaries, all those approaches consider a

single-hour system load without taking into account forecasted

load variations in look-ahead time periods. This might be

plausible for AC OPF since it is frequently implemented, e.g.,

on an hourly basis. However, the frequency of the MTD can

be several hours to a few days depending on the attacker’s

capabilities as well as how a system operator executes it

(e.g., an event-based MTD strategy [22]). The lack of such

look-ahead capabilities in existing MTD methods may cause

system instability or even voltage collapse due to the reduction

of load margin or voltage stability degradation between two

consecutive MTD executions.

This paper aims to fill the gap by proposing a novel

voltage-stability-constrained MTD framework against highly

structured FDI attacks especially in the presence of stressful

system conditions. One important consideration here is that

the voltage-stability improvement ought to be minimally “in-

vasive”, meaning such an enhancement should not significantly

degrade the attack detection effectiveness of the MTDs or

incur a prominent increase in the system operating cost. The

contributions of this paper are described as follows:

• We reveal through a 3-bus system that a system with

the existing MTD operation methods can suffer voltage

instability or even experience voltage collapse at the peak

load.

• We propose a voltage stability (t-index) optimization

method to enhance the original MTD strategies. Specifi-

cally, we mathematically derive the sensitivity matrix of

the voltage stability index with respect to line impedance.

The proposed optimization method maximizes the lowest

index value among all the load buses with the minimum

impedance adjustment; therefore, the system voltage sta-

bility is considered while the impact on the original MTD

strategy is minimized.

• We develop a load margin constrained method based

on Continuation Power Flow [23] (CPF) to ensure a

sufficient load margin for system voltage stability at

the most stressful time period. The power injection to

impedance sensitivity is utilized to calculate safe MTD

setpoints adjustment with ample load margins.

• We present a new MTD framework that seamlessly

integrates the above two voltage stability constrained

methods into the original MTD operational methods.

Case studies on IEEE 14-bus and 118-bus systems are

conducted to test the proposed MTD framework against

one of the most sophisticated FDI attacks, i.e., net load

redistribution attacks.

The rest of this paper is organized as follows. In Section II,

we use a 3-bus toy system to show an MTD operation without

look-ahead capability can degrade the power transfer capabil-

ity and cause voltage instability at peak load. Preliminaries

and related work are provided in Section III. The two MTD

adjustment methods are proposed in Section IV. Case studies

are in Section V and conclusions are drawn in Section VI.

(a) peak load w/o MTD (b) off-peak load w/ MTD

(c) peak load w/ MTD (d) Nose curves at peak load

Fig. 1. MTD-induced voltage instability in the 3-bus system

II. MTD-INDUCED VOLTAGE STABILITY ISSUES

In this section, we show the voltage instability issue in-

duced by existing MTD methods in a 3-bus system. Figure 1

illustrates this system, in which Bus 1 is the slack bus with

a generation capacity of 500 MVA. Buses 2 and 3 are load

buses where the off-peak load are 241.2 MVA and 80.4 MVA,

respectively. The load increases by 25% from the off-peak

hour to peak hour. The limits of Lines 1-2, 1-3, and 2-3 are

210 MVA, 210 MVA, and 100 MVA, respectively.

Assuming it is an off-peak hour, the system without MTD

is in a normal steady-state and so is the system at the peak

load as shown in Fig. 1(a). When an MTD is introduced at the

off-peak load, e.g., the impedance of Line 1-2 changes from

0.1 to 0.12 per unit, the MTD constructed at the off-peak load

would not cause any operational issues (see Fig. 1(b)) since all

MTD-ACOPF constraints are satisfied in the existing models

[5], [24]. However, this is not the case when it comes to the

peak load. It is seen in Fig. 1(c) that all line flow limits in

the system are violated. Figure 1(d) further compares nose

curves with and without MTD. A nose curve represents the

maximum power transfer that the system can handle given a

specific system configuration (line impedance). As seen, the

nose point without MTD is to the right of a vertical peak load

line, whereas the nose point with MTD is to the left of the peak

load. Figure 1(d) suggests that the load margin decreases with

the MTD implemented at the off-peak hour and the system

will suffer voltage instability issue at the peak hour.

The above issue resides in existing MTD methods that

myopically perturb the line impedance without looking-ahead

capabilities in the MTD rolling window for reserving sufficient

load margin. The lack of such capability in existing MTD

models may lead to insufficient margin for power transfer

and voltage support [17]. In reality, power systems are much

more complicated than this example of a 3-bus system. Thus,

voltage stability issue ought to be systematically addressed for

any realistic applications of MTD methods, particularly in the

presence of drastic net load variations caused by an increasing

amount of renewable generation. To distinguish the system

operation point with or without MTD, we define hereinafter
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the D-FACTS operation point before MTD as pre-MTD, while

the operation point after MTD as post-MTD.

III. PRELIMINARIES

In this section, we introduce background knowledge of net

load redistribution attack, MTD, power injection to impedance

sensitivity matrix, and voltage stability index t as preliminar-

ies.

A. Net Load Redistribution Attack

To bypass the detection mechanism, the FDI attack vectors

need to be consistent with the physical characteristics of

the attacked power system [25]. Yuan et al. [26] for the

first time proposed a special case of FDI attacks, i.e., load

redistribution (LR) attack. With the increasing penetration

of renewable-based distributed energy resources (DERs), the

malicious manipulation of net load measurements (load minus

DER generation) at DER buses can be disguised as the

renewable generation uncertainty. Therefore, considering the

attacker’s practical capability of manipulating the net load

measurements, we introduced an improved LR attack strategy,

namely net load redistribution attack [27]. The goal of the net

load redistribution attack is to mislead the AC state estimation

with an illusory over- or under-voltage issue by injecting

highly-structured attack vectors into the measurements. To

bypass the BDD, the net load redistribution attack stealthiness

constraints pertaining to boundary conditions between the

attack and non-attack areas were proposed. Those constraints

included restrictions on voltage magnitude measurements on

the boundary buses and power flow measurements on the tie

lines. With the required local information within the attack

region and the stealthiness constraints, the net load redistribu-

tion attack is modeled as an AC-OPF problem for attackers,

in which the prevailing AC-OPF constraints hold. Details on

the construction of net load redistribution attack can be found

in [27].

B. Moving Target Defense

MTD in power systems provides proactive defense in

contrast to the traditional remedial defense approaches. As

opposed to the MTD in the cyber communication network,

MTD in the physical layer of power systems is extremely

challenging as a small perturbation may deviate the system

steady-state operating point from its optimal one.

The upper box with solid lines in Fig. 2 shows an MTD-

enabled power system measurement-control-loop in wide area

monitoring, protection and control (WAMPAC). Attackers can

eavesdrop the power system measurement data and inject

the manipulated measurement back to the system. If the

attackers have the knowledge of the system configuration,

they can construct and inject stealthy FDI attack vector Ma

into the SCADA system. Ma can bypass an AC state esti-

mation based BDD [28] if there is no MTD activated. The

manipulated measurement (e.g., load P̂d, Q̂d) will be used

in the applications of energy management systems, including

the security constrained unit commitment and AC-OPF based

economic dispatch PG, QG. When an MTD is activated, the

attacker’s knowledge about the system configuration h (•) will

be outdated and the injected attack vector that constructed

based on the outdated h (•) can be detected by BDD. In this

case, further investigation can be conducted to identify the

attack vector under some conditions [14].

C. Power Injection to Impedance Sensitivity

The power injection to impedance (PII) sensitivity is orig-

inally proposed, as an intermediate step in the chain rule

of calculus, to determine the relationship between the state

variables and line impedance [29]. In this paper, the PII is

utilized to calculate how much the system load margin can be

increased due to the adjustment of the original MTD setpoints,

when the system is near the power flow singularity (i.e., CPF

nose point). The sensitivities of power injections to a change

in line impedance is denoted as:
[

∆p
∆q

]

= [PII] [∆xij ] (1)

PII
∆
=

[

∂p
∂xij

∂q
∂xij

]

(2)

The power injection at Bus i is differentiated with respect to

xij for all lines that connect Bus i and the adjacent Buses j.

With the help of PII, the necessary MTD setpoints adjustment

can be calculated under the most stressful system condition.

D. Voltage Stability Index (t-index)

The CPF method uses an iterative process involving pre-

dictor and corrector steps that require high computational cost

for large systems. A different strategy to represent the voltage

instability is by using the minimum singular value (MSV) of

the power flow Jacobian. Cui et al. [19] proposed a voltage

stability margin index to quantify the power flow Jacobian

nonsingularity. The proposed voltage stability index is derived

from a sufficient condition for the nonsingularity of power

flow Jacobian [30]. A voltage stability index ti for each load

bus i is defined as:

ti = |Vi| −
n
∑

j=1

|ZijSj |

|Vj |
, i, j ∈ N (3)

where |V | is the voltage magnitude, S is the apparent power

injection, Zij is the bus impedance matrix element, and N
is the set of n load buses. A larger t-index value indicates a

better voltage stability performance at a load bus. Contrasted

with the CPF method, the t-index calculation does not require

an iterative process which could greatly save computational

efforts for a large system. As opposed to the CPF method, the

t-index method is more suitable when the system operator is

only concerned about power flow Jacobian singularity, while

the tracing of the power flow solution path is not necessary.

IV. VOLTAGE-STABILITY-CONSTRAINED MTD

FRAMEWORK

In this section, we propose two voltage stability constrained

MTD methods, i.e., a t-index optimization method and a

load margin constrained method, to ensure the system voltage

stability with sufficient load margin.
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Fig. 2. Flowchart of the new MTD framework with the proposed methods built-in.

A. t-Index Optimization Method

In this subsection, we first derive t-index to impedance

sensitivity matrix (TII) and then form an optimization problem

to maximize the t-index for the most critical forecasted load

S′ = max([St1 , St2 , St3 , ..., StN ]), where t1 to tN are the

time indices of the look-ahead time periods within an MTD

windows. The basic idea of the t-index optimization method

is to maximize the lowest t-index among all the load buses of

a system implemented with an original MTD. Our method is

a post-MTD method that adjusts the original MTD setpoints.

1) TII Sensitivity Matrix: TII sensitivity matrix represents

the relationship between the change of t-index ∆T and the

change of MTD setpoints ∆X on the branches equipped with

D-FACTS devices. The TII sensitivity matrix is described as

follows:

∆T = TII ×∆X (4)

TII
∆
=

[

∂ti
∂xl

]

=

[

∂ti
∂Zij

×
∂Zij

∂xl

]

, i, j ∈ N , l ∈ L (5)

where TII is an N × L matrix, L is the set of D-FACTS

equipped transmission lines l. From (3), it is shown that the

t-indices at load buses are functions of the bus impedance

matrix elements. To get the derivative of the t-index, the t-
index at each load bus i is firstly differentiated with respect

to the bus impedance matrix Z. Then, chain rule can be used

to combine ∂ti/∂Zij with ∂Zij/∂xl. During the derivative of

t-index, the net power injection can be assumed as constant.

Thus, t is a function of Z and V , ti = f(Z, V ). For each load

bus i, the derivative of ti over Z is calculated by

∂ti
∂Zij

=
∂ |Vi|

∂Zij

−
1

2

n
∑

j=1

(

ZijSjZ
∗

ijS
∗

j

VjV ∗

j

)

−
1

2

∂

∂Zij

(

ZijSjZ
∗

ijS
∗

j

VjV ∗

j

)

=
∂ |Vi|

∂Zij

−
1

2

n
∑

j=1

(

ZijSjZ
∗

ijS
∗

j

VjV ∗

j

)

−
1

2

SjS
∗

j

∂

∂Zij

(

ZijZ
∗

ij

VjV ∗

j

)

=
∂ |Vi|

∂Zij

−
1

2

n
∑

j=1

|Sj |

|Zij | |Vj |

(

∂
(

ZijZ
∗

ij

)

∂Zij

−
|Zij |

2

|Vj |
2

∂
(

VjV
∗

j

)

∂Zij

)

(6)

Note that for complex number C, |C|2 = CC∗ holds, where

C∗ is the conjugate of C. For a normal complex derivative,

Z∗

ij is not differentiable. This is because, for a complex limit

calculation, a conjugate function variable can approach zero

from different directions in the complex domain and results

in different solutions, which is against the Cauchy–Riemann

equations. Since X ≫ R in transmission systems, the line

resistance can be ignored, and assume Z consists of pure

imaginary variables. Then, we have
dZ∗

ij

dZij
= −1 and

∂ti
∂Zij

=
∂ |Vi|

∂Zij

+

n
∑

j=1

|Sj |

|Vj |
+

n
∑

j=1

|Sj | |Zij |

|Vj |
2

∂ |Vj |

∂Zij
(7)

∂ |Vi| /∂Zij in (7) will turn to ∂ |Vi| /∂xl after the chain
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rule (5). Since the derivative of voltage magnitude over line

impedance is equivalent to the state to impedance (SI) sensi-

tivity in [29], ∂ |Vi| /∂xl can be replaced with the SI elements.

The (i, l)th element in TII matrix can be calculated as,

TIIil =

[

∂ti
∂xl

]

= SIil +
n
∑

j=1

|Sj |

|Vj |

∂Zij

∂xl

+
n
∑

j=1

|Sj | |Zij |

|Vj |
2

SIil

(8)

For each transmission line equipped with D-FACTS devices,

∂Zij/∂xl is calculated with respect to a unit step impedance

change ∆xl.

2) t-Index Optimization Model: Based on the aforemen-

tioned TII sensitivity matrix, we further propose a t-index

maximization model (9) to adjust the MTD setpoints. To

facilitate the presentation, let subscript orig denote an original

post-MTD system state without using any voltage stability

enhancement methods, and subscript new represent the state

adjusted by using the proposed voltage stability methods. As

original MTD operation methods optimize D-FACTS setpoints

to achieve MTD hiddenness, maximize attack detection effec-

tiveness, minimize power generation costs, and to minimize

system losses [?], any adjustment on the original MTD set-

points would deviate from the optimal values. Therefore, the

proposed model (9) also minimizes the MTD setpoints adjust-

ment for a minimal impact on the original MTD performance.

min
∆X,tthreshold

δ1‖∆X‖2 − δ2tthreshold (9)

s.t. tthreshold ≤ Torig +∆T (9a)

LB ≤ Xorig +∆X ≤ UB (9b)

∆T = TII ×∆X (9c)

where ∆X is the MTD setpoint adjustment which will be

added to the setpoints in the original MTD Xorig. The final

output of the proposed model is the optimized setpoints

Xnew = Xorig+∆X . δ1 and δ2 are the weighted coefficients to

balance the trade-off between the impact on the performance

of the original MTD and the t-index increase. The first com-

ponent of the objective function (9) minimizes the adjustment

of the MTD branch impedance which ensures the adjustment

will not significantly affect the performance of the original

MTD. The second component of (9) maximizes (i.e., minimize

negative) the t-index threshold tthreshold, which is equivalent to

maximizing the t-index at the most critical load bus. Torig is

the vector of t-index in the system with the original MTD at

the peak net load S′. Constraint (9a) is the t-index threshold

constraint to ensure the lowest t at the most critical load bus

is greater than the t-index threshold. Constraint (9b) aims

to ensure the total impedance change after the adjustment is

within the physical capacity of D-FACTS devices. LB and UB
are the lower and upper bounds of line reactance perturbation,

where UB and LB are equal to ±20% of the transmission line

impedance which is generally used in MTD [5], [6], [8], [9],

[11], [14]. In (9c), ∆T is the vector of the incremental t-index

at all load buses calculated based on TII .

Algorithm 1 t-index optimization method

Input: Xorig, S′

Output: Xnew

1: Calculate TII from (8)

2: Solve the t-index optimization problem (9)

3: Xnew = Xorig +∆X
4: return Xnew

The steps of the proposed t-index optimization method are

shown in Algorithm 1. In general, TII is calculated and the t-
index optimization method is carried out for the most critical

net load condition S′ = max([St1 , St2 , St3 , ..., StN ]) within

an MTD window between time t1 and tN . Since the proposed

model (9) maximizes the t-index at the most critical load bus,

the t-index at the load bus with high voltage stability may

degrade. However, this is typically acceptable as the entire sys-

tem remains voltage stable under the most stressful condition.

Note that the weight coefficients can be finely tuned to find

the trade-off between the MTD’s performance and the voltage

stability. For instance, when higher variability and uncertainty

of renewable generation are considered, a higher weight can

be placed on the voltage stability rather than maintaining a

small impact on the original MTD’s performance.

B. Load Margin Constrained Method

Load margin LM is another noteworthy metric for measur-

ing the system voltage stability. It is defined as the maximum

amount of load that the system can support given a system

configuration. With a specific system configuration and peak

load forecast, the load margin is calculated by CPF with

a predictor-corrector method. As previously discussed, all

existing MTD methods fail to consider the system load margin

that is very likely to degrade by MTDs. This motivates us

to develop a load margin constrained MTD method. The

proposed method is demonstrated in the dotted box of Fig. 2

and the steps, shown in Algorithm 2, are described as follows:

• Step 1: Algorithm 2 checks the original D-FACTS set-

points Xorig by using the CPF method. The load margin

LM is calculated given the original MTD and forecast

peak load. If the load margin of Xorig is able to satisfy the

most critical load forecast within an MTD window, i.e.,

S′ ≤ LM , these setpoints can be applied to the system

without adjustment. Otherwise, the expected incremental

load margin can be calculated by ∆LM = S′ − LM .

• Step 2: Algorithm 2 computes the sensitivity matrix PII

in (2). PII reveals the relationship between the expected

incremental load margin ∆LM and the line impedance

change ∆X on the branches equipped with D-FACTS

devices. After computing PII, Algorithm 2 calculates the

expected MTD setpoint adjustment by ∆X = PII−1 ×
∆LM . ∆X must ensure the MTD setpoint after the

adjustment is still within the physical limits of the D-

FACTS devices, i.e., LB ≤ Xorig + ∆X ≤ UB. LB
and UB are the same as used in the t-index optimization

method.

• Step 3: The load margin constrained MTD setpoints are

calculated by adding ∆X to the original MTD setpoints,
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Algorithm 2 load margin constrained method

Input: Xorig, S′

Output: Xnew

1: Solve CPF problem to get load margin LM of Xorig

2: if S′ ≤ LM then (as they satisfy the load margin

constraint for the most critical condition)

3: return Xorig

4: else
5: Calculate the expected load margin increase ∆LM

6: Compute the PII from (2)

7: Solve ∆X = PII−1×∆LM , subject to LB ≤ Xorig+
∆X ≤ UB

8: Xnew = Xorig +∆X
9: end if

10: return Xnew

i.e., Xnew = Xorig + ∆X . The new MTD setpoints are

then returned by Algorithm 2.

Notice that the scope of this paper is on the voltage stability

issue induced by MTD only. In other words, the pre-MTD

system state is voltage stable even under the most stressful

conditions without MTD. In view of the MTD setpoint that is

perturbed around the pre-MTD system state ∆LM calculated

in Step 2 should be comparatively small. However, if the

system is not pre-MTD voltage sable ∆LM can be large. In

such a case, feasible Xnew may not exist due to the physical

limits of the D-FACTS devices. Other methods [31], [32]

including the potential load shedding as a last resort, need

to be considered to ensure the pre-MTD voltage stability of

the system.

C. Proposed Voltage Stability Constrained MTD Framework

Figure 2 illustrates the proposed flowchart of the voltage-

stability constrained MTD framework that integrates Algo-

rithm 1 and Algorithm 2 proposed in this section. These

two methods lie in the post-MTD process where original

MTD setpoints are calculated and can be adjusted if deemed

necessary. Our core idea in designing this framework is that

the proposed methods ought to greatly enhance the system

voltage stability within an MTD rolling window, but should

not significantly degrade the attack detection effectiveness of

the original MTD setpoints or incur a prominent increase in

the system operating cost.

By comparing the two proposed algorithms, the t-index

optimization method has an advantage over the load margin

constrained method that the adjusted MTD setpoints Xnew are

typically closer to the original MTD setpoints Xorig since the

minimization of the setpoint deviation in (9). This is much

desirable when the original MTD is an OPF-based MTD

strategy (e.g., OMTD and HMTD) with specific objectives in-

cluding system cost minimization, attack detection probability

maximization, and/or MTD hiddenness requirement. The t-
index optimization method can improve the voltage stability

while maintaining the original OMTD performance as much

as possible. Both of the proposed methods are computationally

efficient since they only involve matrix computations, solving

a series of power flow problems, and solving a nonlinear min-

imization problem with all linear constraints. Our numerical

(a) Xorig (b) Xnew

Fig. 3. t-indices before and after the t-index optimization method in the
14-bus system

tests show that the proposed methods can solve an IEEE 118-

bus case with 60 D-FACTS devices within 20 seconds on a

desktop computer. More comparative numerical results will be

shown in the next section.

V. NUMERICAL RESULTS

In this section, we present the case study and simulation

results on the proposed methods and framework. The net

load redistribution attack against MTD detection cases are

tested on the IEEE 14-bus and 118-bus systems available

from MATPOWER [33]. The t-index optimization problem

is solved by the FMINCON toolbox in MATLAB. The load

margin constrained method is implemented by using the CPF

toolbox in MATPOWER. In order to compare the performance

of the proposed methods with various MTDs, we use two

MTD placement methods, i.e., max-rank [5] and graph-based

placement [12], as well as two MTD operational strategies,

i.e., RMTD and OMTD in the case study. The simulations are

performed on a desktop with an Intel Core i5 processor and

8 GB RAM. The line impedance change in all the cases are

set to be within 20% of the original impedance.

A. Impact on Voltage Stability Metrics

To compare and evaluate the performance of the two

proposed methods, we construct 1000 RMTDs to form a

defense pool. We scale up the load of the two systems by

1.35 times to create a very stressful load condition. Figure

3 shows the heat-maps that compare the t-indices of all the

load buses in the IEEE 14-bus system with the original MTD

(Fig. 3(a)), and with the new t-index optimized MTD (Fig.

3(b)). In this figure, each row represents one RMTD from

the defense pool, while each column represents a load bus

in this system. By examining all the RMTDs in the defense

pool, it is found that 16% of the original RMTDs undergo

voltage collapse at the peak load. In comparison, all the failed

cases are saved from voltage collapse by implementing the t-
index optimization method. The t-indices in Fig. 3(b) indicates

that the proposed t-index optimization method significantly

increases the capability of voltage support of the systems with

the original MTD.

Figure 4 demonstrates the box plot of two voltage stability

metrics, i.e., load margin and the minimum t-indices value,

for all the load buses in the two systems before and after
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implementing the proposed t-index optimization method. In

each box, the central mark indicates the median, and the

bottom and top edges suggest the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data

points exclude outliers, and the outliers are plotted individu-

ally. Three system states are compared including the pre-MTD

state, the original MTD state, and the new MTD state. It is

observed that when the system is transitioning from pre-MTD

to original MTD state, the CPF load margin and the t-indices

may increase or decrease. This is because the RMTDs in the

defense pool are constructed randomly without considering

the voltage stability. As seen, from the original to new MTD

state, the proposed t-index optimization method elevates both

the t-indices and the CPF load margin, indicating increased

system voltage stability. A similar trend, shown in Fig. 4(b)

can be observed in the IEEE 118-bus system. Two peak loads

are labeled as dashed red lines in the load margin figures.

These peak loads, which are not used here in Algorithm 1,

are added to be consistent with Fig. 5. The results in Fig. 4

show that the t-index optimization method can promote both

of those metrics, which in turn increase the voltage stability

of the system.

Analogously, Fig. 5 shows the box plots of those voltage

stability metrics before and after using the proposed load

margin constrained method. According to Algorithm 2, this

method only makes adjustment if the system cannot support

the forecasted peak load. Therefore, Fig. 5 only shows the

original MTDs that fail to do so, which is why the body

of the box plot in Fig. 5 is much shorter than that in Fig.

4. In the IEEE 14-bus system, the forecasted peak load is

351.2 MVA labeled by a horizontal red line. In the left

plot of Fig. 5(a), the load margin of the pre-MTD state is

365.1 MVA, which is greater than the forecasted peak load.

Hence, the pre-MTD system state is capable of supporting

the forecasted peak load. For all RMTDs whose original load

margin is less than the forecasted peak load (i.e., “problematic”

RMTDs), Lines 5-10 in Algorithm 2 are executed. It is seen

(a) IEEE 14-bus system.

(b) IEEE 118-bus system.

Fig. 4. Voltage stability metrics before and after t-index optimization method

(a) IEEE 14-bus system.

(b) IEEE 118-bus system.

Fig. 5. Voltage stability metrics before and after load margin constrained
method

in the left plot of Fig. 5(a) that the proposed load margin

constrained method significantly brings up the load margin

of those problematic RMTDs. As a result, the load margin

of all new MTDs are equal to or greater than the forecasted

peak load. The right plots in Fig. 5(a) shows the minimum

values of t-indices among all the load buses. As seen, the t-
indices of the system also increase by using the proposed load

margin constrained method. Nevertheless, the improvement is

not as significant as that in Fig. 4(a) since the t-indices are

not directly maximized in the load margin constrained method.

Similar plots for the IEEE 118-bus system are displayed in Fig.

5(b). The results in Fig. 5 demonstrate that the proposed load

margin constrained method can significantly increase the load

margin of original MTDs and ensure ample load margins to

support the forecasted peak load.

B. Impact on Generation Cost and Attack Detection

In this subsection, we evaluate the impact of the two

proposed methods on the system generation cost and MTD

performance with various MTD settings. Table I illustrates the

system generation costs for the peak load in four cases. The

ACOPF in MATPOWER is used to optimally dispatch the

generation for each case as illustrated in Fig. 2. In Table I, the

first case shows the pre-MTD generation cost of the systems,

while the second case represents the original-MTD generation

cost when an ACOPF-based OMTD [5] is executed. The last

two cases show the new-MTD generation costs after each

proposed method is implemented. As seen, for both the IEEE

14-bus and 118-bus systems, the lowest generation costs are

associated with the OMTD operation in the original MTD

state. This is expected since the OMTD operation without

considering the voltage stability is solely dedicated to the

cost minimization. The second lowest generation costs are

pertaining to the new MTD state after the t-index optimization

method is implemented. A relatively small cost increase is

induced by this method. This is because the t-index optimiza-



8

(a) RMTD w/ diff. placements (b) Under full placement

(c) Under graph-based placement (d) Under max-rank placement

Fig. 6. ROC curves of BDD residual in IEEE 118-bus system.

tion method optimally adjusts the original OMTD setpoints to

improve the t-indices of load buses and the resulting new MTD

setpoints are close to the OMTD ones. The largest generation

cost emerges when the load margin constrained method is

applied due to much larger MTD setpoint deviation from the

OMTD ones. The generation cost results in Table I show that

the load margin method is able to guarantee the system voltage

stability at a higher system generation cost. In contrast, the

t-index optimization method can ensure the voltage stability

with a negligible increase in system generation cost.

Furthermore, simulations are carried out to test the MTD

effectiveness against net load redistribution attacks using AC

SE-based BDD. Four different D-FACTS placements are con-

sidered including zero placement (No-MTD), full placement,

max-rank placement [5], and graph-based placement [12]. The

measurement noise is assumed to be Gaussian distributed with

zero mean and the standard deviation as 1% of the actual

measurement. For each MTD placement, we again construct

1,000 RMTDs as the corresponding defense pool. We further

construct 1,000 net load redistribution attack vectors to form

an attack pool. Figure 6 shows the receiver operating charac-

teristic (ROC) curves of MTDs. These ROC curves are created

by plotting the true positive rate (TPR) versus the false positive

rate (FPR) at various BDD thresholds. Figure 6(a) compares

the attack detection effectiveness of the original MTD under

different MTD placements. As seen, , the ROC curve without

MTD passes through the bottom right of the graph, leading

to the smallest area under the curve (AUC) among all the

placement. A smaller AUC indicates a worse performance

TABLE I
COMPARISON OF GENERATION COSTS AT THE PEAK LOAD

Cases 14-bus ($/hr) 118-bus ($/hr)

Pre-MTD 8,083.2 129,725.8
OMTD operation 8,076.4 129,714.6

Constrained method 8,358.0 129,906.3
Optimization method 8,083.9 129,718.8

in attack detection effectiveness. Again, the results in Figure

6(a) demonstrates: 1) the net load redistribution attack is

stealthy against AC SE-based BDD; 2) instead of increasing

the BDD residual, the net load redistribution attack decreases

the residual [27], leading to a smaller TPR than the FPR at

a given threshold; and 3) the attack detection effectiveness is

related to the numbers of D-FACTS devices deployed. The

more D-FACTS devices deployed, the higher attack detection

effectiveness would be.

Further, we test the impacts of the two proposed methods

on the attack detection effectiveness under the other three

D-FACTS placements, whose attack detection effectiveness

is compared in Figs. 6(b) to 6(d). It is seen that both the

load margin constrained method and the t-index optimization

method will maintain similar attack detection effectiveness as

the original RMTD under the full and graph-based MTD place-

ment. A larger AUC difference between the original MTD and

the load margin constrained MTD emerges under the max-

rank placement. This can be explained by examining the line

impedance change in percentage induced by an MTD, which

is indicative of the average absolute MTD magnitude. The

average MTD magnitudes of the load margin constrained MTD

is 10.42% which is larger than that of the other two MTDs,

i.e., 9.70%. Here, the observation that the attack detection

effectiveness increases with the MTD magnitude is consistent

with other MTD works [7], [24]. The results in Fig. 6(b) to

6(d) indicate that both of the proposed methods can maintain

similar attack detection effectiveness as the original MTD.

Moreover, by minimizing the MTD adjustment in (9), the t-
index optimization method has a relatively smaller impact on

the attack detection effectiveness performance of the original

MTD compared with the load margin method.

VI. CONCLUSION

In this paper, we address a critical issue induced by ex-

isting MTDs that myopically perturb the transmission line

impedance and result in system voltage instability for varying

(net) load. A 3-bus example system is used as an example to

illustrate this issue and two methods are further proposed to

address it. For the first method, namely the t-index optimiza-

tion method, we derive the t-index to impedance sensitivity

matrix. By utilizing this matrix, we maximize the lowest

t among all the load buses with the minimum impedance

adjustment such that the system voltage stability is guaranteed

while keeping the performance of the original MTD strategy.

The second method, i.e., a load margin constrained method, is

developed based on CPF to ensure the load margin is beyond

the forecast peak load and thus keeps the system voltage stable

during the most stressful time period. Furthermore, we propose

a new MTD framework that seamlessly integrates the proposed

two methods.

Extensive simulation results show that both methods can

greatly improve the load margin and the voltage stability of a

system with an original MTD in critical net load conditions.

Moreover, the t-index optimization method can maintain the

objectives close enough to the original OMTDs. The load mar-

gin constrained method may induce the new MTD setpoints

further away from the original MTD, which is acceptable
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when RMTD is originally implemented. In reality, system

operators can choose either of the two proposed methods

to enhance the system voltage stability for RMTDs. When

OMTD is originally implemented in the system, a better choice

is the t-index optimization method. In future work, we will

explore implementing the proposed MTD voltage stability

constrained methods under other advanced MTD strategies

including inverter-based MTDs to equivalently change system

configurations.
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