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Abstract—Cyber physical security of power systems with high
penetration of renewable generation has attracted attention from
researchers. One critical issue is that cyber-physical attacks,
disguised as uncertain renewable generation, can target conven-
tional power system state estimation (SE). Moving target defense
(MTD) is a promising defense strategy to detect stealthy false data
injection (FDI) attacks against SE. However, all existing studies
myopically perturb the reactance of transmission lines equipped
with distributed flexible AC transmission system (D-FACTS)
devices without adequately considering the system voltage sta-
bility. Exacerbated by the renewable generation uncertainty,
existing MTD may cause voltage instability when the power
grid is under stress. To address this issue, we propose a novel
MTD framework that explicitly considers system voltage stability
by using continuation power flow. We utilize the sensitivity
matrix of power injection to line impedance, on which an
optimization problem for maximizing load margin is formulated.
This framework is validated on the IEEE 14-bus system and the
IEEE 118-bus system, in which net load redistribution attacks
are launched by sophisticated attackers. Steady-state simulations
and dynamic simulations on PSS/E show the effectiveness of
the proposed framework in circumventing the voltage instability
while maintaining the detection effectiveness of MTD. The impact
of the proposed method on attack detection effectiveness is also
revealed.

I. INTRODUCTION

The emerging renewable generation in modern power sys-
tems has increased the attack surface and provided adversaries
with more opportunities to conduct highly structured and
stealthy cyber-physical attacks. Smart grids with high pene-
tration of renewable generation require decentralized control
methods and sophisticated communication channels to ensure
continuous and stable operation. Such reliance on communi-
cation reliability makes smart grids more vulnerable to cyber-
attacks [1]. The concept of moving target defense (MTD)
has been introduced in smart grids in the face of emerging
cyber-physical attacks [2], [3]. MTD proactively perturbs
the transmission line impedance using distributed flexible
AC transmission system (D-FACTS) devices to invalidate
attackers’ knowledge about the power system configurations.
Without knowing the true power system configuration, it
is difficult for an attacker to construct stealthy false data
injection (FDI) attacks against power system state estimation
[4]–[9]. The recent proliferation of D-FACTS devices [10]
has attracted increasing research attention due to their add-
on cyber-physical security benefits via MTD.

The majority of MTD strategies in the literature are de-
signed to detect FDI attacks against state estimation [6], [8],

[9], [11]. Liu et al. [12] first propounded that there are two
intertwined and essential problems associated with MTD, i.e.,
MTD planning and MTD operation. The MTD planning refers
to optimally installing MTD devices (e.g., D-FACTS devices)
on an appropriately identified subset of the system (e.g.,
transmission lines). The MTD operation determines how to
optimally dispatch MTD device setpoints in real-time. A ran-
dom MTD (RMTD) operation [11] was proposed to randomly
change the reactance of D-FACTS equipped transmission
lines without considering the detection effectiveness. An AC
optimal power flow (AC-OPF) based optimized MTD strategy
that minimizes the system loss is introduced in [5]. Liu et
al. [13] defined the “hidden” MTD (HMTD) which optimally
changes the branch reactance in AC network to minimize the
system loss as well as line power flow differences. An HMTD
is stealthy to attackers, even when the attackers are capable
of checking the activation of D-FACTS [6]. In [14], Cui et
al. proposed an HMTD strategy for three-phase unbalanced
distribution systems. Lakshminarayana et al. [15] proposed to
actively perform MTD, thus, the attacker’s knowledge to mask
the effects of the physical attack is outdated.

However, MTD operations may deviate the steady-state
operating point of a power system from the optimal one, caus-
ing massive economic and stability impacts [5]. The MTD-
induced instability combined with the renewable generation
uncertainty can further reduce the load margin and cause
power flow Jacobian singularity [16]. It has been validated that
a power flow singularity problem is equal to a voltage collapse
problem [17]. In [18], the voltage stability is defined as the
ability of a power system to maintain steady voltages at all
buses in the system. Voltage magnitude violation may occur
at peak hour if the system does not preserve capabilities of
transmission network for power transfer. The action of MTD
perturbation which changes the transmission line impedance
may degrade the capability of the power transfer and cause
voltage collapse during peak load period. Wang et al. [19]
proposed an online line switching methodology for increasing
load margins to static stability limit of a look-ahead power
system. Cui et al. [20] proposed a voltage stability constrained
OPF model utilizing a sufficient condition on power flow
Jacobian nonsingularity. Wang et al. [21] proposed a voltage
stability constrained OPF by using the minimum singular value
of the power flow Jacobian as a voltage stability index. To the
best of our knowledge, there is no research on MTD operation
to detect FDI attacks while guaranteeing system stability. Fur-



thermore, even if existing MTD operational approaches [14],
[15], [22] are proposed to follow some security constraints
such as power flow limits and safe voltage boundaries, all
those approaches consider a single-hour system load without
taking into account forecasted load variations in look-ahead
time periods. This might be plausible for AC OPF since it is
frequently implemented, e.g., on an hourly basis. However,
the frequency of the MTD can be several hours to a few
days depending on the attacker’s capabilities as well as how a
system operator executes it (e.g., an event-based MTD strategy
[23]). The lack of such look-ahead capabilities in existing
MTD methods may cause system instability or even voltage
collapse due to the reduction of load margin or voltage stability
degradation between two consecutive MTD executions.

This paper aims to fill the gap by proposing a novel
voltage stability constrained MTD framework against highly
structured FDI attacks especially in the presence of stressful
system conditions. One important consideration here is that
the voltage-stability improvement ought to be minimally “inva-
sive”, meaning such an enhancement should not significantly
degrade the attack detection effectiveness of the MTDs. In
this paper, we develop a load margin-constrained method
based on continuation power flow (CPF) [16] to ensure a
sufficient load margin for system voltage stability at the most
stressful time period. Then, we present a new MTD framework
that seamlessly integrates the proposed voltage stability con-
strained method into the original MTD operational methods.
Last, we run dynamic simulations on Power System Simulator
for Engineering (PSS/E) to show the proposed load margin-
constrained MTD framework can save the system from a
myopic MTD induced voltage collapse. The real-time voltage
responses are shown in the case study.

The rest of this paper is organized as follows. In Section
II, we introduce the system formulation and the proposed
framework. Case studies are in Section III and conclusions
are drawn in Section IV.

II. PROBLEM FORMULATION

The background and the formulation for the load margin-
constrained method is presented and proposed in this section.
To distinguish the system operation point with or without
MTD, we define hereinafter the D-FACTS operation point
before MTD as pre-MTD, while the operation point after
MTD as post-MTD. To facilitate the presentation, let subscript
orig denote an original post-MTD system state before imple-
menting the proposed load margin-constrained method, and
subscript new represent the new MTD state that is adjusted
by using the load margin-constrained method.

A. Power system with conventional MTDs

The outer solid box in Fig. 1 shows an MTD-enabled power
system measurement-control-loop in wide area monitoring,
protection and control (WAMPAC). Attackers can eavesdrop
the power system measurement data and inject the manipulated
measurement back to the system. If the attackers have the
knowledge of the system configuration, they can construct

and inject stealthy FDI attack vector Ma into the supervi-
sory control and data acquisition (SCADA) system. Attack
vector Ma can bypass an AC state estimation based bad
data detection (BDD) [24] if there is no MTD activated. The
manipulated measurement (e.g., load P̂d, Q̂d) will be used
in the applications of energy management systems, including
the security constrained unit commitment and AC-OPF based
economic dispatch PG, QG. When an MTD is activated, the
attacker’s knowledge about the system configuration h (•) will
be outdated and the injected attack vector that was constructed
based on the outdated h (•) can be detected by BDD.

B. D-FACTS application: power injection to impedance sen-
sitivity

D-FACTS devices are used to manage power flows and
minimize system losses in the power system operation. The
power injection to impedance sensitivity (PII) is originally
proposed, as an intermediate step in the chain rule of calculus,
to determine the relationship between the state variables and
line impedance [25]. The potential of PII remains unexplored.
In this paper, we utilize the PII to indicate how much the
system power transfer capability can be improved due to the
change in MTD setpoint, when the system is near the power
transfer limit (i.e., CPF nose point). The PII is calculated as:

PII
∆
=

[
∂p
∂xij
∂q

∂xij

]
(1)

C. Load margin optimization

Load margin, LM , is a metric for measuring the system
voltage stability. It is defined as the maximum amount of
load that the system can support given a system configuration.
With a specific system configuration and peak load forecast,
the load margin is calculated by CPF with a predictor-
corrector method. The PII reveals the relationship between
the line impedance change and the system load margin change
∆LM = PII ×∆X . With the revealed relationship, a linear
programming problem can be formed to maximize the load
margin of the system with the original MTD by re-dispatching
the MTD setpoint. The optimization problem is shown below:

max
∆X

N∑
i=1

µi × rowi(PII)×∆X (2)

s.t. ∆LM ≤ PII ×∆X (2a)
LB ≤ Xorig +∆X ≤ UB (2b)

Equation 2 maximizes the total incremental load margin of
the system with the original MTD Xorig, where ∆X is the
MTD setpoint adjustment which will be used to construct the
new MTD Xnew = Xorig +∆X . Parameter µ is the coefficient
to balance the load margin increase on the load buses i ∈ N ,
where N is the set of load buses. System operators can choose
a large µi to increase more load margin on a critical load
at bus i. For each load bus, the incremental load margin is
rowi(PII) × ∆X . Constraint 2a ensures the MTD setpoint
adjustment can provide the expected incremental load margin,



Fig. 1. Flowchart of the new MTD framework with the proposed load margin-constrained method.

Algorithm 1 load margin-constrained method

Input: Xorig, S′

Output: Xnew
1: Solve CPF problem to get load margin LM of Xorig
2: if S′ ≤ LM then (as they satisfy the load margin

constraint for the most critical condition)
3: return Xorig
4: else
5: Calculate the expected load margin increase ∆LM

6: Compute the PII from (1)
7: Solve the optimization problem (2)
8: Xnew = Xorig +∆X
9: end if

10: return Xnew

∆LM . The determination of ∆LM is discussed in Section
II-D. Constraint 2b ensures the total impedance change after
the adjustment is within the physical capacity of D-FACTS
devices. UB and LB are the upper and lower rated capacity
of D-FACTS devices, where UB and LB are equal to ±20%
of the transmission line impedance which is generally used in
MTD [5], [6], [8], [9], [11], [13].

D. Load margin-constrained MTD framework

As previously discussed, all existing MTD methods fail to
consider the system load margin that is very likely to degrade
by MTDs. Without look-ahead capability, the degraded load
margin may not be capable of supporting the most critical
forecasted load S′ = max([St1 , St2 , St3 , ..., StN ]), where t1 to
tN are the time indices of the look-ahead time periods within
an MTD window. This motivates us to develop a load margin-
constrained MTD method as a post-MTD method to increase
the load margin of the original MTD at S′. The proposed
method is demonstrated in the dotted box in Fig. 1, the steps

of which are shown in Algorithm 1. In this algorithm, the
expected incremental load margin ∆LM = S′ − LM is the
difference between the forecast peak load and the load margin
of the unconstrained MTD operation. In addition, the load
margin-constrained MTD setpoints are calculated by adding
∆X to the original unconstrained MTD setpoints, i.e., Xnew =
Xorig +∆X .

III. CASE STUDY

In this section, we present the case study and computational
results on the proposed load margin-constrained MTD frame-
work. The load margin-constrained method is implemented
by using the CPF toolbox in MATPOWER [26]. We use the
IEEE 14-bus system and IEEE 118-bus system as the test
systems. The average execution time of the proposed algorithm
in IEEE 14-bus and 118-bus systems are 0.012 seconds and
0.043 seconds, respectively. The computing environment for
the simulations is a desktop with an Intel Core i5 processor
and 8 GB RAM.

A. Impact on voltage stability

Figure 2 depicts a box plot of load margin in the two sys-
tems before and after implementing the proposed load margin-
constrained method. The load margin of the pre-MTD system
with no MTD operation is also shown as a baseline. In each
box, the central mark indicates the median, and the bottom and
top edges suggest the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points excluding
outliers, and the outliers are plotted individually. Three system
states are compared including the pre-MTD state, the original
MTD state, and the new MTD state. According to Algorithm 1,
this method only makes adjustment if the system cannot
support the forecasted peak load. Therefore, Fig. 2 only shows
the original MTDs that fail to do so, which is why the body of



the box plot of the original MTD is lower than the forecasted
peak load. In the IEEE 14-bus system, the forecasted peak
load is 327.2 MVA labeled by a horizontal red line. In Fig.
2(a), the load margin of the pre-MTD state is 343 MVA, which
is greater than the forecasted peak load. Hence, the pre-MTD
system state is capable of supporting the forecasted peak load.
For all RMTDs whose original load margin is less than the
forecasted peak load, Lines 5-10 in Algorithm 1 are executed.
It is seen in the new MTD box that the proposed load margin-
constrained method significantly brings up the load margin
of those RMTDs. As a result, the load margin of all new
MTDs are equal to or greater than the forecasted peak load.
Similar plots for the IEEE 118-bus system are displayed in
Fig. 2(b). The results in Fig. 2 demonstrate that the proposed
load margin-constrained method can significantly increase the
load margin of original MTDs and ensure ample load margins
to support the forecasted peak load.

PSS/E simulations are further carried out on the IEEE 14-
bus system. The dynamic voltage responses of this system
under the original MTDs and the proposed load margin-
constrained MTDs are compared in Fig. 3. As seen at the
beginning of the simulation, the system is at an off-peak
load without any MTDs. At 1s, both RMTD and the load
margin-constrained MTD are implemented. Compared with
the RMTD, the load margin constrained MTD decreases the
impedance on 11 transmission lines and increases the line
impedance on the rest 9 transmission lines. The voltage is
stable in both cases after the MTD operations. However, this
is not the case when it comes to the peak load (the total
load increases by 60% instantaneously) starting from 4s. The
system with the original MTD undergoes drastic and short
spikes of voltage oscillations and the voltage collapses at
4.6s. Such oscillations indicate that the system generators
strive to increase their generation to prevent the system from
voltage collapse, but unfortunately they fail to do so due to the
insufficient power transfer capability of the transmission lines.
In contrast, the system with the load margin-constrained MTD
undergoes a smaller voltage drop right after the load increase
due to the power mismatch, but the system voltage remains
stable at around 0.75 p.u.. Although the voltage magnitude
does not meet the ANSI requirement, the proposed method
still shows a much better dynamic voltage response, which,

(a) IEEE 14-bus (b) IEEE 118-bus

Fig. 2. Load margin before and after implementation of the load margin-
constrained method.

Fig. 3. Dynamic voltage magnitude response simulated by PSS/E.

(a) MTD impact (b) Proposed method impact

Fig. 4. ROC curves of BDD residual in IEEE 118-bus system.

in turn, can provide the system operator with sufficient time
to implement AC-OPF or dispatching other voltage supporting
devices [27], [28]. However, this is out of the scope of this
paper and will be studied in our subsequent efforts.

B. Impact on attack detection effectiveness

In addition, simulations are carried out to test the MTD
effectiveness against net load redistribution [29] attacks us-
ing AC state estimation-based BDD. One thousand RMTD
strategies are constructed as a defense pool to test the attack
detection effectiveness. The measurement noise is assumed
to be Gaussian distributed with zero mean and the standard
deviation as 1% of the actual measurement. We construct 1,000
net load redistribution attack vectors to form an attack pool.
Figure 4 shows the receiver operating characteristic (ROC)
curves of BDD residuals under different MTD scenarios.
These ROC curves are created by plotting the true positive
rate versus the false positive rate at various BDD thresholds.
We run the BDD tests with the measurements from attacked
cases and non-attacked cases. The true alarm rate indicates
the probability that the BDD alarms when the system is
under attack. The false alarm rate indicates the probability
that the BDD alarms when there is no attack. Figure 4(a)
compares the attack detection effectiveness of the BDD with
and without the help of original MTDs. As seen, the ROC
curve without MTD passes through the bottom right of the
graph, leading to the smaller area under the curve (AUC) than
the scenario with MTDs. A smaller AUC indicates a worse
performance in attack detection effectiveness. The results in
Figure 4(a) demonstrate: 1) the net load redistribution attack is
stealthy against AC state estimation-based BDD; 2) instead of



increasing the BDD residual, the net load redistribution attack
decreases the residual [29], leading to a smaller true positive
rate than the false positive rate at a given threshold.

Further, we test the impacts of the proposed method on
the attack detection effectiveness of the original MTD in
Fig. 4(b). It is seen that the load margin-constrained method
will maintain similar attack detection effectiveness as the
original RMTD. A slightly larger AUC than the original MTD
emerges under the load margin-constrained MTD case. This
can be explained by examining the line impedance change
in percentage induced by an MTD, which is indicative of the
average absolute MTD magnitude. The average absolute MTD
magnitude of the load margin-constrained MTDs is 10.42%
which is larger than that of the original MTDs, i.e., 9.80%.
Here, the observation that the attack detection effectiveness
increases with the MTD magnitude is consistent with other
MTD works [7], [30]. The results in Fig. 4(b) indicates that
the proposed method can maintain similar attack detection
effectiveness as the original MTD.

IV. CONCLUSION

In this paper, we address a voltage instability issue that is
induced by existing myopic MTDs. The proposed load margin-
constrained method, is developed based on CPF to ensure
the load margin is beyond the forecast peak load and thus
keeps the system voltage stable at peak time. Furthermore, we
propose a new MTD framework that seamlessly integrates the
load margin-constrained method. The case study shows that
the proposed load margin-constrained method can improve the
system load margin and save the system from an original MTD
induced voltage collapse at the peak load hour. Meanwhile,
the load margin-constrained MTD can maintain similar attack
detection effectiveness as the original MTD. Our future work
will explore implementing the proposed MTD load margin-
constrained method under other advanced MTD strategies
including inverter-based MTDs to equivalently change system
configurations. In addition, the PII sensitivity matrix in this
paper is calculated by using linear approximation. To maintain
higher accuracy, we will use machine learning methods such as
deep neural network and support vector regression to replace
the linear PII sensitivity matrix.
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