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The Benefits of Diversity: Permutation Recovery in
Unlabeled Sensing From Multiple
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Abstract— In “Unlabeled Sensing”, one observes a set of linear
measurements of an underlying signal with incomplete or missing
information about their ordering, which can be modeled in terms
of an unknown permutation. Previous work on the case of a single
noisy measurement vector has exposed two main challenges: 1) a
high requirement concerning the signal-to-noise ratio (snr), i.e.,
approximately of the order of n5, and 2) a massive computational
burden in light of NP-hardness in general. In this paper, we
study the case of multiple noisy measurement vectors (MMVs)
resulting from a common permutation and investigate to what
extent the number of MMVs m facilitates permutation recovery
by “borrowing strength”. The above two challenges have at least
partially been resolved within our work. First, we show that a
large stable rank of the signal significantly reduces the required
snr which can drop from a polynomial in n for m = 1 to a
constant for m = Ω(log n), where m denotes the number
of MMVs and n denotes the number of measurements per
MV. This bound is shown to be sharp and is associated with a
phase transition phenomenon. Second, we propose computational
methods for recovering the unknown permutation. For the
“oracle case” with known signal, the maximum likelihood (ML)
estimator reduces to a linear assignment problem whose global
optimum can be obtained efficiently. If both the signal and the
permutation are unknown, the problem becomes a quadratic
assignment problem; while such a problem is generally NP-hard
and hence poses a significant challenge, we propose to tackle
it via projected gradient descent with a non-convex constraint
set, and establish a monotonic descent property of this scheme.
Numerical experiments based on the proposed computational
approach confirm the tightness of our theoretical analysis.

Index Terms— Regression analysis (under statistical analysis),
optimal matching (combinatorial mathematics).

I. INTRODUCTION

NOISY linear sensing with m measurement vectors is
described by the relation

Y = XB∗ + W, (1)

where Y ∈ Rn×m represents the observed m measurements,
X ∈ Rn×p represents the sensing matrix, and the columns of
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B∗ ∈ Rp×m contain m signals of interest with dimension p
each, and W ∈ Rn×m represents additive noise. Model (1)
also arises in linear regression modeling with m response
variables and p explanatory variables [1]. Least squares regres-
sion yields the estimator B̂ = (X)†Y, where (·)† denotes
the Moore-Penrose inverse. The properties of B̂ under various
assumptions on the noise W are well-known. In this paper, we
consider the more challenging situation in which we observe
m measurements with missing or incomplete information
about their ordering, i.e., the correspondence between the rows
of Y and the rows of X has been lost. Put differently, we
observe data according to (1) up to an unknown permutation:

Y = Π∗XB∗ + W, (2)

where Π∗ is an n-by-n permutation matrix. Ignoring the
unknown permutation can significantly impair performance
with regard to the estimation of B∗. We herein consider recov-
ery of Π∗ given (X,Y). The latter suffices for signal recovery
since with restored correspondence the setup becomes stan-
dard. In addition, recovery of Π∗ may be of its own interest,
as can be seen from selected example applications sketched
below that motivate the setting (2). It is worth emphasizing that
the latter assumes that the permutation is shared across the m
sets of measurements, and hence does not apply to situations
in which each of those involves its individual permutation.

Header-Free Communication: As discussed, e.g., in [2], [3],
in sensor networks with stringent requirements concerning
latency and communication footprint, it can be beneficial to
omit sensor metadata when transmitting measurements to the
fusion center in an effort to minimize latency and communica-
tion cost. In this case, signal recovery without metadata such
as sensor identifiers involves an unknown permutation.

Post-Linkage Data Analysis: It is often much more cost-
efficient to combine data from existing databases rather than
collecting new data containing all variables of interest. Due
to data formatting and data quality issues, linkage of records
pertaining to the same entity can be error-prone. As a result,
downstream data analysis such as linear regression or estima-
tion of the cross-covariance between X and Y can be affected,
and modeling mismatches via a permutation has been studied
recently as a mitigation strategy [4].

Data Privacy: In linkage attacks, intruders aim at the
disclosure of sensitive data by using external data and record
linkage. There is a long history of attacks in which public data
was combined with de-identified data to reveal sensitive infor-
mation [5], [6]. Those examples involve direct comparison of
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two datasets Π∗X and Y; the regression setup (2) arises as a
natural generalization.

Unsupervised Alignment: Aligning two sets of points is a
fundamental task with applications in computer vision, curve
registration, and natural language processing. A problem of
recent interest is the alignment of embeddings of text corpora
into the unit sphere Sp−1 in Rp [7], [8]. For example, [7] for-
mulates the automated translation between different versions
of medical diagnosis codes used in electronic health systems
as a problem of the form (2) given two sets of vectors X and
Y in Sp−1 representing embeddings of two different versions
of medical diagnosis codes.

Additional examples can be found among the references
provided in the next section.

A. Related Work

The work [9] discusses signal recovery under setup (2)
dubbed “Unlabeled Sensing” therein for the case of a single
measurement vector (m = 1) and no noise (W = 0).
It is shown that if the entries of the sensing matrix X are
drawn from a continuous distribution over R, the condition
n ≥ 2p is required for signal recovery by means of exhaustive
search over all permutation matrices. The authors also motivate
the problem from a variety of applications, including the
reconstruction of spatial fields using mobile sensors, time-
domain sampling in the presence of clock jitter, and multi-
target tracking in radar. Alternative proofs of the main result
in [9] are shown in [10], [11].

A number of recent papers discuss the case m = 1 and
Gaussian W. The paper [12] establishes the statistical limits
of exact and approximate permutation recovery based on the
ratio of signal energy and noise variance henceforth referred
to as “snr”. In [12], it is also demonstrated that the least
squares estimation of Π∗ is NP-hard in general. In [13], a
polynomial-time approximation algorithm is proposed, and
lower bounds on the required snr for approximate signal
recovery in the noisy case are shown; related results can be
found in [4], [14]. The works [4], [7], [15], [16] discuss both
signal and permutation recovery if Π∗ only permutes a small
fraction of the rows of the sensing matrix. An interesting
variation of (2) in which Π∗ is an unknown selection matrix
that selects a fraction measurements in an order-preserving
fashion is studied in [17]. The papers [18], [19] develop
the approach in [17] further by combining it with a careful
branch-and-bound scheme to solve general unlabeled sensing
problems. In [20], sparsity assumption is put on the vector B∗

and the necessary condition n ≥ 2p for correct signal recovery
is relaxed to n # p.

Several papers [2], [15], [16], [21], [22] have studied
the setting of multiple measurement vectors (m ≥ 2) and
associated potential benefits for permutation recovery. The
paper [21] discusses a practical branch-and-bound scheme
for permutation recovery but does not provide theoretical
insights. The work [2] analyzes the denoising problem, i.e.,
recovery of Π∗XB∗, rather than individual recovery of Π∗

and B∗. In [15], [16], the number of permuted rows in the
sensing matrix is assumed to be small, and are treated as

outliers. Methods for robust regression and outlier detection
are proposed to perform signal recovery. While both [15],
[16] also contain achievability results for permutation recovery
given an estimate of the signal, none of these works provides
information-theoretic lower bounds to assess the sharpness of
the results. Moreover, the method in [15] limits the fraction
of permuted rows to a constant multiple of the reciprocal of
the signal dimension p, while the method in [16] requires
the number of MMVs m to be of the same order of p and
additionally exhibits an unfavorable running time that is cubic
in the number of measurements. In the present paper, we
eliminate the limitations in [15], [16] to a good extent.

B. Summary of Contributions

Results in [12] on the case m = 1 indicate that the maximum
likelihood (ML) estimator in (5) can be regarded as impractical
from both statistical and computational viewpoints. On one
hand, exact recovery of Π∗ requires snr = Ω(nc), where
c > 0 is a constant that is approximately equal to 5 according
to simulations. As n grows, this requirement becomes pro-
hibitively strong. On the other hand, the ML estimator (5) has
been proven to be NP-hard except for the special case m = 1
and p = 1. To the best of our knowledge, no efficient algorithm
has been proposed yet. In this paper, by contrasting m = 1
and m $ 1, our goal is to tackle both obstacles. Before giving
a detailed account of our contribution, we first define a crucial
quantity, the signal-to-noise-ratio (snr)

snr = ‖B∗‖2
F/(m · σ2), (3)

where ‖A‖F =
√∑

i,j A2
ij denotes the Frobenius norm of a

matrix A of arbitrary dimension.
• We improve the requirement snr = Ω(nc) in [4], [12]

to roughly snr = Ω(nc/!(B∗)) (cf. Theorems 5 and 7),
where "(B∗) = ‖B∗‖2

F
‖B∗‖2

OP
is the so-called stable rank of

B∗, which is given by the squared ratio of the Frobenius
norm and the operator norm ‖·‖OP of a matrix, and
constitutes a lower bound on its rank (e.g., Section
2.1.15 in [23]). Once "(B∗) is of the order Ω(log n),
we notice that the snr is only required to be of the
order Ω(1) and hence does no longer need to increase
with n. The underlying intuition is that larger values
of m lead to relaxed requirements on the snr since
1) the overall signal energy increases, 2) all MMVs
result from the same permutation matrix Π∗, which is
expected to yield extra information. In our analysis, 1) is
reflected by conditions on permutation recovery involving
dependence on the overall signal energy, while 2) enters
via a dependence on the stable rank "(B∗) of the signal
matrix B∗.

• We verify that the theoretical results can be attained
in practice. For this purpose, we develop a practical
algorithm for recovery of Π∗ and B∗ via least squares
fitting. This amounts to solving a quadratic assignment
problem which is NP-hard except for the special case with
p = m = 1. We propose to tackle this problem by means
of a projected gradient descent algorithm. The resulting
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TABLE I

OVERVIEW ON RESULTS IN RELATED WORK IN COMPARISON TO THOSE SHOWN HEREIN. THE COLUMN “hmax” REFERS TO THE MAXIMUM HAMMING
DISTANCE BETWEEN Π∗ AND THE IDENTITY MATRIX WITH hmax = n REFERRING TO THE FULLY SHUFFLED CASE. “COMPUTABLE” REFERS

TO THE AVAILABILITY OF PRACTICAL COMPUTATIONAL SCHEMES THAT ACHIEVE THE THEORETICAL GUARANTEES
ESTABLISHED IN EACH WORK

Fig. 1. A roadmap of the main results to be presented in the paper. Left panel: inachievability results (Section III); Right panel: achievability results (Section IV).

scheme is shown to exhibit monotonic descent, i.e.,
it generates a sequence of iterates with non-increasing
objective, despite the non-convexity of the underlying
constraint set. Extensive numerical results based on this
approach align with our theorems and confirm significant
reductions of the snr required for recovery of Π∗ as the
stable rank "(B∗) of the signal matrix B∗ increases.

We conclude this summary of contributions with an
overview presented in Table I that compares the results herein
to those obtained in related work.

C. Outline

The rest of the paper is organized as follows. The underlying
sensing model is reviewed in Section II. In Section III, we
establish conditions that imply failure of recovery (inachiev-
ability). This is followed by achievability results presented in
Section IV and a discussion of their tightness in relation to
the corresponding inachievability results. Our computational
scheme based on projected gradient descent is presented in
Section V. The empirical evaluation and concluding remarks
are provided in Section VI and Section VII, respectively.
A graphical representation of the structure of this paper is
provided in Figure 1.

II. SYSTEM MODEL

Recall that the sensing model under consideration reads

Y = Π∗XB∗ + W, (4)

where Y ∈ Rn×m represents the results of the sensing process,
Π∗ ∈ Rn×n denotes the unknown permutation matrix, X ∈
Rn×p (n ≥ 2p) is the sensing matrix, B∗ ∈ Rp×m is the
matrix of signals, and W ∈ Rn×m is the sensing noise. For
what follows, we assume that the entries (Xij) of X are

i.i.d. standard Gaussian random variables, i.e., Xij ∼ N (0, 1),
1 ≤ i ≤ n, 1 ≤ j ≤ p. Likewise, we assume that the entries
of W are i.i.d. N (0, σ2)-random variables, where σ2 > 0
denotes the noise variance. The ML estimator of (Π∗,B∗)
then results as the least squares solution

(Π̂, B̂) = argmin(Π,B) ‖Y − ΠXB‖2
F. (5)

Note that for a fixed permutation matrix Π, we obtain

B̂(Π) = (ΠX)†Y, (6)

where the superscript † denotes the generalized inverse. From
the above, we can see the importance of accurate estimation of
Π∗ in a least squares approach since errors may significantly
degrade the quality of the corresponding estimator B̂, while
exact permutation recovery, i.e., Π̂ = Π∗ yields the usual least
squares estimator as in the absence of Π∗. In the following,
we put estimation of B∗ aside and concentrate on analyzing
the determining factors for recovery of Π∗. Broadly speaking,
this task involves two main sources of difficulty.

• Sensing noise W. In the oracle case in which B∗ is
known, computation of the ML estimator of Π∗ reduces
to the linear assignment problem [24]

Π̂ = argmaxΠ

〈
Π, YB∗%X%〉 , (7)

where 〈U,V〉 = trace(U%V) here refers to the inner
product between matrices U and V that induces the
Frobenius norm. Even though the solution of (7) can be
obtained efficiently by solving a linear program, recovery
of Π∗ is still likely to fail if the noise level σ2 is large
enough.

• Unknown B∗. In contrast to the oracle case above, we
have no access to B∗ in practice, which suggests that
recovery becomes more challenging.
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In the sequel, we will show that the sensing noise W
constitutes the major difficulty in recovering Π∗ rather than
the missing knowledge of B∗. Before delving into our main
results, we first define the following notations.

Notations: Positive constants are denoted by c, c′, c0, c1,
etc. We write a ! b if there is a constant c0 such that a ≤ c0b.
Similarly, we define ". If both a ! b and a " b hold, we write
a + b. For two numbers a and b, we let a ∨ b = max{a, b}
and a ∧ b = min{a, b}. For a matrix A ∈ Rm×n, we denote
A:,i ∈ Rn as the ith column of A while Ai,: denotes its
ith row, viewed as a column vector. The Frobenius norm
of a matrix is represented as ‖·‖F while the operator norm
is denoted as ‖·‖OP whose definition can be found in [25]
(Section 2.3, P. 71). The ratio "(·) = ‖·‖2

F/‖·‖
2
OP represents the

stable-rank while r(·) represents the (usual) rank. We denote
the singular value decomposition (SVD) of the matrix A as
SVD(A), whose definition can be found in [25] (Section 2.4,
P. 76) and is listed in Appendix A as well. We let Pn denote
the set of permutation matrices of size n. Associating each
Π ∈ Pn with a mapping π of {1, 2, . . . , n} which moves
index i to π(i), 1 ≤ i ≤ n, we define the Hamming distance
dH(·; ·) between two permutation matrices as dH(Π1;Π2) #∑n

i=1 (π1(i) .= π2(i)). The signal-to-noise-ratio (snr) is

defined as snr = ‖B∗‖2
F/(mσ2). Additional notations can

be found in Appendix A.

III. INACHIEVABILITY RESULTS

In this section, we present conditions under which exact and
approximate recovery of Π∗ would fail with high probability.
To be specific, exact recovery refers to the event {Π̂ = Π∗},
and approximate recovery of Π∗ within a Hamming ball of
radius D ∈ {0, 1, . . . , n} refers to the event {dH(Π∗; Π̂) =∑n

i=1 (π∗(i) .= π̂(i)) ≤ D}, where π∗ and π̂ denote the
mappings associated with Π∗ and Π̂, respectively, 1 ≤ i ≤ n.
The investigation of these cases is intended to provide valuable
insights into the fundamental statistical limits. In order to
establish inachievability results, it suffices to consider the
oracle case with B∗ known. The resulting limits apply to the
case of unknown B∗ as well, since it is hopeless to recover
Π∗ even if knowledge of B∗ does not suffice for recovery.

Compared with the case m = 1 in which snr is the
only prominent factor in determining the recovery perfor-
mance [12], our analysis uncovers another crucial factor,
namely, the energy distribution over singular values of B∗.
Our work shows that a more uniform spread of the signal
energy over singular values can greatly facilitate the recovery
of Π∗.

A. Exact Recovery of Π∗

We start by presenting an inachievability result concerning
exact recovery.

Theorem 1: Let H be any subset of Pn. In the oracle case
with known B∗, we have

inf
Π

sup
Π∗∈H

PrX,W(Π̂ .= Π∗) ≥ 1
2

if log det
(
I +

B∗%B∗

σ2

)
<

log(|H |) − 2
n

, (8)

where the probability PrX,W(·) is w.r.t. X and W, and the
infimum is over all estimators Π̂.

Proof outline: Given knowledge of B∗, we view the sens-
ing relation (4) as a process such that 1) Π∗ is encoded via
the codeword Π∗XB∗ and 2) is passed through a Gaussian
channel with additive noise W. We complete the proof based
on Fano’s inequality following [26] (cf. Section 7.9, P. 206).
The key technical contribution is the derivation of a tight
upper bound on the conditional mutual information between
Π∗ and Y given X when Π∗ is drawn uniformly at ran-
dom from H .

Let us point out important implications of Theorem 1. When
H = Pn, we have log |H | = log n! ≈ n logn and the
condition in (8) simplifies as log det(I+B∗%B∗/σ2) ! log n.
With a smaller set H , the inachievability condition (8) is less
likely to be fulfilled. For example, consider the special case in
which H is a Hamming ball around the identity, i.e., H =
{Π ∈ Pn : dH(I;Π) ≤ D} for some fixed non-negative
integer D. Then the condition in (8) reduces to log det(I +
B∗%B∗/σ2) ! D/(n − D) # log n when n is sufficiently
large.

The second major ingredient in condition (8) is the term
log det(I + B∗%B∗/σ2) =

∑
i log(1 + λ2

i /σ2), where λi

denotes the ith singular value of B∗. Since each singular value
λi is determined by the matrix B∗ as a whole rather than
by individual columns, we conclude that linear independence
among multiple measurements can positively impact the recov-
ery of Π∗, which implies extra benefits apart from mere energy
accumulation.

When maximizing the term
∑

i log
(
1 + λ2

i /σ2
)

given fixed
signal energy ‖B∗‖2

F =
∑

i λ2
i , it is easy to determine the most

favorable configuration to avoid failure of recovery: the signal
energy is evenly spread over all singular values. In contrast,
if B∗ has rank one with all signal energy concentrated on the
principal singular value, condition (8) reduces to the same as
for a single MV (m = 1) with signal energy ‖B∗‖2

F since

log det
(
I +

B∗%B∗

σ2

)
= log

(
1 +

‖B∗‖2
F

σ2

)
. (9)

This indicates that in accordance with the intuition of
“borrowing strength” across different sets of measurements,
performance is expected to improve as the stable rank of
"(B∗) of B∗ increases. To give an illustration of the benefits
brought by large stable rank "(B∗), we numerically evaluate
the required snr = ‖B∗‖2

F/(mσ2) for the leftmost quantity
in (9) to exceed specific thresholds in dependence of selected
choices of "(B∗). The results are listed in Table II.

Example 2: In order to get a better sense of the scaling

of
log det(I+B∗"B∗/σ2)

log n , we consider the case in which the
entries of B∗ are sampled i.i.d. from a Gaussian distribution
with zero mean and variance p−1, i.e., B∗

ij
i.i.d∼ N (0, p−1).

We then have
log det

(
I + B∗%B∗/σ2

)

log n
+ "(B∗) log(1 + snr)

log n

1©
≈

m log
(
1 + σ−2

)
(
1 +

√
m/p

)2
log n

, (10)
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TABLE II

THE REQUIRED VALUES OF snr = ‖B∗‖2
F/(mσ2) FOR THE CONDITION

log det I + B∗"B∗

σ2 > c · log n TO HOLD, c ∈ {1, 2, . . . , 6}, WHEN

n = 1000, p = 100, AND B∗
:,i = ei , WHERE ei DENOTES

THE ith CANONICAL BASIS VECTOR, 1 ≤ i ≤ m, m ∈
{1, 10, 20, 50, 100} (LEFTMOST COLUMN)

Fig. 2. Comparing the theoretical values (cf. (54)) with the empirical values

of
log det I+B∗"B∗/σ2

log n for n = 5000, σ2 = 1, and m, p → ∞ with
fixed ratio m/p = τ .

where in 1© we use the fact |‖B∗‖F −
√

m| ≤ ε
√

m with
probability exceeding 1−e−cm, and Bai-Yin’s Law (see [27]),
namely, ‖B∗‖OP ≈ 1 +

√
m/p. The expression on the right

hand side of (10) aligns with the requirement m " log n for
achieving recovery. A more precise expression that yields the
visualization in Figure 2 is deferred to the Appendix, cf. (54).

The statement below provides a condition for failure of
recovery of Π∗ when using the ML estimator in (5), which is
computationally feasible if B∗ is known.

Proposition 3: Let Π∗ be an arbitrary element of Pn. The
ML estimator Π̂ given in (7) under the oracle case where B∗

is known, satisfies PrX,W(Π̂ .= Π∗) ≥ 1
2 for n ≥ 10 if

‖B∗‖2
F

σ2
≤ 2 logn

4
(
1 + c"−1/2(B∗)

)2 , (11)

where "(B∗) = ‖B∗‖2
F/‖B∗‖2

OP is the stable rank of B∗.
Proof outline: Without loss of generality, we may work

with Π∗ = I. We then use a direct argument involving
corresponding rows of Y and Π∗X and concentration of
measure results to show that if (11) holds, Π̂ cannot be I
with the stated probability.

The proposition states that the total signal energy given by
m ·snr should be at least of the order log n to avoid failure in
recovery. This is in agreement with Theorem 1 in the full-rank
case.

B. Approximate Recovery of Π∗

The following corollary of Theorem 1 yields a condi-
tion under which even approximate recovery of Π∗ within

Hamming distance D, i.e., dH(Π∗; Π̂) ≤ D, cannot be
guaranteed. Specifically, we state the following corollary of
Theorem 1.

Corollary 4: Considering the oracle case with known B∗,
we have

inf
Π

sup
Π∗∈Pn

PrX,W(dH(Π̂; Π∗) ≥ D) ≥ 1
2

(12)

if log det
(
I +

B∗%B∗

σ2

)
≤ log(n − D + 1)! − log 4

n
,

where the infimum is over all estimators Π̂.
Comparing the above result with Theorem 1, one can see

that the essentially only difference is the replacement of the
term log |H | by log(n − D + 1)!. An intuitive interpretation
is as follows:

• The set of n-by-n permutation matrices under consider-
ation can be covered by a subset
{Π(1),Π(2), · · · , Π((n−D+1)!)} such that for any per-
mutation matrix Π, there exists an element
Π† ∈ {Π(1),Π(2), · · · , Π((n−D+1)!)} such that
dH(Π; Π†) ≤ D.

• We would like to recover Π† from data (X,Y).
Consequently, since the cardinality of the covering is (n −

D + 1)!, we encounter the term log(n − D + 1)! in place of
log |H | ≤ log n!; setting D = 0 or 1 gives back Theorem 1.
Additionally, we can obtain a lower bound on the minimax
risk with respect to dH(·; ·) effortlessly from the proof of
Corollary 4, as

inf
Π

sup
Π∗

EX,WdH(Π̂;Π∗) ≥ max
d∈{0,1,...,n}

(d + 1)×

(
1 −

(n/2) log det
(
I + B∗%B∗/σ2

)
+ log 2

log(n − d + 1)!

)
, (13)

where EX,W(·) denotes the expectation w.r.t. X and W.
A unified proof for (12) and (13) can be found in

Appendix D. To an extent, (12) strengthens the assertion of
Theorem 1 in the sense that if log det(I + B∗%B∗/σ2) #
log n, Π̂ can be rather far from recovering Π∗ in the sense
that dH(Π̂;Π∗) = Ω(n).

To conclude this section, we would like to emphasize that
the above conditions reflect the price to compensate for the
uncertainty induced by the sensing noise W, as there is no
uncertainty in B∗ involved.

IV. SUCCESSFUL RECOVERY

In the previous section, we have studied conditions under
which recovery is expected to fail. In this section, we state
conditions under which the true permutation Π∗ can be
recovered with high probability, for both the oracle case with
known B∗ as well as the “realistic case” with unknown B∗.
For the conciseness of presentation, we hide explicit values
for numerical constants in most cases and provide them in the
appendix for interested readers. We believe that those values
can be improved further since no specific effort was made to
obtain optimal constants.
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A. Oracle Case: Known B∗

As previously mentioned, in this case the ML estimator
in (5) is given by (7). The condition on the snr in the
following statement can serve both as an upper bound for
the failure of permutation recovery and as a lower bound for
the more challenging case with unknown B∗.

Theorem 5: In the oracle case with known B∗, if

log

(
‖B∗‖2

F

σ2

)
≥ 8 log n

κ"(B∗)
+ log (κ"(B∗) ∨ α1 log n)

+ α2, (14)

then the ML estimator in (5) satisfies

PrX,W(Π̂ .= Π∗) ≤ 2α2κ!(B∗)
0

n2

(α0<1)
<

2
n2

,

where 0 < α0 < 1, κ > 0 are universal constants, α1 =
2/ log(α−1

0 ), and α2 = log(64α−4
0 log α−1

0 ).
Proof outline: We show that each row of Y is closest in

Euclidean distance to its matching row in XB∗ with the stated
probability, which implies the desired event {Π̂ .= Π∗}. The
key ingredient is a careful probabilistic lower bound on the
minimum distance between any pairs of rows in XB∗ based
on a small ball probability result in high-dimensional geometry
due to Latala et al. [28].

To illustrate the tightness of conditions in (14), we would
like to consider two special cases for B∗, namely, the full-rank
case and the rank-one case, and compare it with the condition
for failure of recovery in Theorem 1. First, we consider the
full-rank case with constant singular values, i.e., B∗%B∗ = γI,
where γ > 0 is a positive constant; in particular, "(B∗) =
m. Then a simple term re-arrangement of (14) suggests that
having

log

(
‖B∗‖2

F

"(B∗)σ2

)
= log

(
‖B∗‖2

F

mσ2

)

= log
( γ

σ2

)
" log n

"(B∗)
(15)

ensures success, while Theorem 1 suggests that

log

(
1 +

‖B∗‖2
F

mσ2

)
= log

(
1 +

γ

σ2

)
! log n

"(B∗)
(16)

implies failure. Conditions (15) and (16) thus match up to
multiplicative factors.

Next, we consider the rank-one case. Without loss of gener-
ality, we set B∗ = B∗

:,1 = γe1. Theorem 5 (cf. (14)) suggests

that log
(‖B∗‖2

F
σ2

)
= log

( γ
σ2

)
" log n ensures success, while

Theorem 1 suggests that log
(
1 + ‖B∗‖2

F
σ2

)
= log(1 + γ

σ2 ) !
log n leads to failure. Putting things together, we conclude
tightness for this case. For a more clear view of (14), we
omit the non-dominant terms, and state the implications in the
following remark.

Remark: Consider the oracle case with known B∗. The
ML estimator of Π∗ achieves permutation recovery with high

probability (w.h.p.) in the following situations:

{Π̂ = Π∗} holds w.h.p.

if

{
κ"(B∗) < α1 log n and log(snr) ≥ (8+κ) log n

κ!(B∗) + c0,

κ"(B∗) ≥ α1 log n and snr ≥ c1.

In summary, Theorem 5 yields a more relaxed requirement
on the snr needed to recover Π∗ as the stable rank "(B∗)
exceeds a certain threshold. More specifically, the requirement
becomes snr ≥ c1 for some positive constant c1 (in particular,
the right hand side does not grow with n) once κρ(B∗) "
log n.

B. Realistic Case: Unknown B∗

For this case with B∗ unknown, we first present a basic
result in Theorem 6 that will be improved upon later under
additional assumptions.

Theorem 6: Let ε > 0 be arbitrary, and suppose that n >
N1(ε), where N1(ε) > 0 is a positive constant depending only
on ε. Suppose the following conditions hold: (i) snr·n− 2n

n−p ≥
1; and (ii)

log(m · snr) ≥ (c0 + c1ε) log n, (17)

then the ML estimator in (5) equals Π∗ with probability
exceeding 1−c3n−ε

[
(nε − 1)−1 ∨ 1

]
, where c0, c1, c2, c3 > 0

are fixed positive constants.
Proof outline: The proof extends the proof strategy

employed in Pananjady et al. [12] for m = 1 to arbitrary
m, which amounts to showing that

∥∥P⊥
Π∗XY

∥∥
F <

∥∥P⊥
ΠXY

∥∥
F

holds true for all Π .= Π∗, where for Π ∈ Pn, P⊥
ΠX denotes

the projection on the orthogonal complement of the range
of ΠX. Several critical steps in [12] do no longer apply for
the case of multiple m considered herein, and prompt new
technical challenges to be overcome. More details are available
in Appendix F, including specific values of the constants c0

and c1.
Theorem 6 states that exact recovery of Π∗ can be achieved

with high probability if log(m·snr) " log n. For the rank-one
case, we can see that this result is tight up to multiplicative
constants in light of Theorem 1, which implies failure of recov-
ery with high probability provided that log(1+msnr) ! log n.
However, Theorem 6 suggests that multiple measurements
behave like a single measurement with the same energy level,
which can be far from the actual behavior beyond the rank-one
case. Unlike Theorem 5 concerning the oracle case, Theorem 6
thus fails to capture potential improvement brought by higher
measurement diversity as quantified by the stable rank "(B∗).
To address this limitation, we present a refined result that
comes at the expense of additional assumptions on dH(I;Π∗)
and "(B∗).

Theorem 7: Suppose that dH(I;Π∗) ≤ hmax with hmax

satisfying the relation hmaxr(B∗) ≤ n/8. Let further ε > 0 be
arbitrary, and suppose that n > N2(ε), where N2(ε) > 0 is
a positive constant depending only on ε. In addition, suppose
that the following conditions hold:

(i) snr > c0, (ii) "(B∗) ≥ c1(1 + ε) logn,

(iii) log (snr) ≥ c3(1 + ε) log n

"(B∗)
+ c4. (18)
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Then the ML estimator (5) subject to the constraint
dH(I;Π) ≤ hmax equals Π∗ with probability at least 1 −
10n−ε

[
(nε − 1)−1 ∨ 1

]
, where c0, . . . , c4 > 0 are some

positive constants.
Remark 8: The snr requirement in (18) matches the min-

imax bound in Theorem 1 up to a logarithmic factor, when
setting H as {Π ∈ Pn : dH(I;Π) ≤ hmax} and hmax + n

log n .
In contrast to Theorem 6, the above theorem uncovers the

benefits brought by larger stable rank "(B∗). The outline of
the proof strategy is given as follows with the technical details
being placed in Section G.

Proof outline: The proof is analogous to that of
Theorem 6. The key result is an improved upper bound on
the probability Pr

(∥∥P⊥
Π∗XXB∗∥∥

F ≤ c‖B∗‖2
F

)
, where P⊥

Π∗X

denotes the projection on the orthogonal complement of the
range of Π∗X. The above probability is bounded based on an
ε-covering of the set of sparse unit vectors whose relevance
is a consequence of the constraint dH(I;Π∗) ≤ hmax.

Let us comment on the additional constraint (i) dH(I;Π∗) ≤
hmax in Theorem 7. To ensure that signal diversity as quanti-
fied by "(B∗) improves the recovery performance, we require
"(B∗) = Ω (log n). In this case, we obtain the condition
snr ≥ C for some constant C > 0, which then also
matches the assertion in Theorem 5. At the same time, hmax

is required to be of the order hmax ! n
log n , which is only

slightly sub-optimal compared to hmax being a linear fraction
of n. We hypothesize that the constraint on dH (I;Π∗) can
be eliminated, either with the help of more advanced proof
techniques or by imposing more stringent constraints involving
the ratio n/p.

Since the order for the required snr to achieve correct
recovery remains the same as in Theorem 5, we can draw the
conclusion that the major difficulty in recovering (Π∗,B∗) is
due to the sensing noise W while the fact that B∗ is not given
a priori does not change the level of difficulty significantly.

V. COMPUTATIONAL APPROACH

In this section, we focus on computational aspects of the
problem. Recall that for the oracle case, the ML estimator
in (5) reduces to the linear assignment problem (7), and can
be solved efficiently by the Hungarian algorithm [29] or the
auction algorithm [30]. The emphasis in this section hence
concerns the realistic case with B∗ unknown. As proved
in [12], computation of the ML estimator in this case is
NP-hard except for the special case m = p = 1. In light
of (6), we have the following

min
Π,B

‖Y − ΠXB‖2
F = min

Π

∥∥P⊥
XΠ%Y

∥∥2

F, (19)

where P⊥
X denotes the projection onto the orthogonal comple-

ment of the space spanned by the columns of X. Problem (19)
can be expressed as a quadratic assignment problem (QAP),
cf. [31], [32]. This class is known to be challenging, and
there are generally no algorithms that can provably deliver
a global optimum. Approaches employed in practice are thus
often based on various heuristics. We here adopt a similar
strategy; specifically, we propose to tackle (19) via the pro-
jected gradient method as detailed in Algorithm 1. Given an

initial iterate, the proposed approach is shown to either reduce
the objective, or terminates (cf. Theorem 9 below).

Numerical experiments in Section VI show that Algorithm 1
performs well with a suitable initialization, and confirm the
scaling law predicted by Theorem 7.

Algorithm 1 Projected Gradient Descent for the Recovery
of Π∗

• Input: (X,Y), initial permutation matrix Π(0), step
size α > 0, convergence tolerance ε > 0, and iteration
limit Tmax.
• For t from 0 to (Tmax − 1): Update Π(t+1) as

D(t+1) = Π(t) + 2αYY%Π(t)PX, (20)

Π(t+1) = argmaxΠ

〈
Π,D(t+1)

〉
, (21)

where PX # X
(
X%X

)−1 X% is the projection onto
the column space of X.
• Termination: Stop the algorithm once∥∥Π(t+1) − Π(t)

∥∥
F ≤ ε ; or t = Tmax.

A. Convergence Analysis

The following Theorem states that the sequence
{
Π(t)

}

generated by Algorithm 1 yields non-increasing objective
values. Its proof is deferred to Section H.

Theorem 9: Consider the objective in (19). For any α > 0,
the iterates generated by Algorithm 1 satisfy

∥∥∥P⊥
XΠ(t+1)Y

∥∥∥
F
≤
∥∥∥P⊥

XΠ(t)Y
∥∥∥

F
,

where the inequality is achieved when Π(t+1) = Π(t).
We emphasize that the above result is non-trivial since the

underlying constraint, the set of permutation matrices of size
n, is not convex. Although the proposed algorithm converges,
it may not necessarily converge to the global optimum. The
choice of the initialization tends to be critical in this regard.
According to our numerical experiments, we have found that
when the Hamming distance between Π∗ and I is not too
large, we can simply initialize Π(0) = I.

B. Gradient Computation
Apart from the initialization, it turns out that the spe-

cific way of computing the gradient in (20) also plays an
important role. Instead of direct evaluation, which yields
∇
∥∥P⊥

XΠ%Y
∥∥2

F = 2YY%ΠP⊥
X , we use that for any per-

mutation matrix Π, it holds that
∥∥P⊥

XΠ%Y
∥∥2

F = ‖Y‖2
F −∥∥PXΠ%Y

∥∥2

F and hence

∇
∥∥P⊥

XΠ%Y
∥∥2

F = ∇
[
‖Y‖2

F −
∥∥PXΠ%Y

∥∥2

F

]

= − 2YY%ΠPX,

which proves to be a better search direction according to our
numerical experiments. One intuitive explanation is as follows.
In the regime of large snr, namely, snr $ 1, we have the
approximation

YY%ΠPX ≈ Π∗XB∗B∗%X%Π∗%ΠX
(
X%X

)−1
X%,
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Fig. 3. Oracle case (Rank-1): Correct recovery probability PrX,W(Π =

Π∗) versus snr (left panels) or
log det I+B∗"B∗/σ2

log n = log(1+m·snr)
log n

(right panels).

where ≈ reflects the omission of the noise W. Since
n $ p and Xij

i.i.d∼ N (0, 1), the matrix X%X/n is
close to the identity matrix, and furthermore X%Π∗ΠX ≈
EX%Π∗ΠX ∝ I if dH(Π∗,Π)/n # 1. In summary, this
yields the approximation

YY%ΠPX ≈ Π∗XB∗B∗%E
(
X%Π∗%ΠX

)
X%

∝ Π∗XB∗B∗%X%.

This implies that given sufficient proximity of
Π and Π∗ with respect to the Hamming distance,
YY%ΠPX will be roughly aligned with the direction
Π∗XB∗B∗%X%. The latter generates Π∗ after the projection
step in (21) since argmaxΠ

〈
Π,Π∗XB∗B∗%X%〉 =

argmaxΠ 〈ΠXB∗,Π∗XB∗〉 = Π∗.

VI. NUMERICAL RESULTS

In this section, we present simulation results and investigate
the relation between the correct recovery rate PrX,W(Π̂ =
Π∗) and the signal energy. The experiments are divided into
two parts: 1) the oracle case (known B∗) and 2) the realistic
case with B∗ being unknown.

Fig. 4. Oracle case (Full-rank): Correct recovery probability PrX,W(Π =

Π∗) versus snr (left panels) or log(1+m·snr)
log n

(right panels).

A. Oracle Case

In this subsection, we study the relation between the correct
probability PrX,W(Π̂ = Π∗) and the snr in the oracle case
with known B∗. As mentioned previously, the ML estimator is
obtained as the solution of the linear assignment problem (7).
The latter is here solved by the auction algorithm [30]. The
simulation results confirm our theoretical results in Theorem 1
and Proposition 3. In virtue of Theorem 1, we plot

log det(I + B∗%B∗/σ2)
log n

=
∑

i log
(
1 + λ2

i /σ2
)

log n

on the horizontal axis, and the empirical probability of per-
mutation recovery on the vertical axis. We also use snr on
the horizontal axis to illustrate the energy savings brought by
multiple measurement vectors.

1) Rank-One Case: We use B∗ such that all {B∗
:,i}m

i=1 are
identical. The simulation results are displayed in Figure 3.
The left panels use snr for the horizontal axis while the right

panels show the corresponding values of
log det(I+B∗"B∗/σ2)

log n ,

which can be rewritten as log(1+msnr)
log n in this case. Observing

that the curves coincide in the right panels, we conclude that
increasing values of m are irrelevant in this case given a fixed
ratio of the total signal energy to the noise variance ‖B∗‖2

F/σ2.
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Fig. 5. Realistic case: Correct recovery probability PrX,W(Π = Π∗) versus snr (left panels) or log det(I+B∗"B∗/σ2)
log n (middle panels), or log(msnr)

log n
(right panels).

2) Full-Rank Case: We consider the case in which the
columns of B∗ are orthogonal to each other, i.e., B∗

:,i ⊥ B∗
:,j ,

1 ≤ i .= j ≤ m. For simplicity, we set B∗
:,i ‖ ei, where

{ei} denotes the canonical basis. The simulation results for
this setting are shown in Figure 4. As for the rank-one case,
we observe that the curves displaying the correct recovery rate
PrX,W(Π̂ = Π∗) for different values of m almost coincide

when using the quantity
log det(I+B∗"B∗/σ2)

log n for the horizontal
axis. The latter is thus confirmed to be the central determining
factor in predicting whether Π∗ can be successfully recovered
or not. However, different from the rank-one case, we witness
a significant decrease regarding the required snr needed for
high recovery rates. For example, snr ≈ 1014 is required in
the rank-one case, while in the full-rank case, the required
value of snr is less than 10. As predicted by Theorem 1 and
Theorem 5, this reduction is a consequence of an increased
stable rank "(B∗).

B. Realistic Case
This subsection is concerned with the realistic case in which

B∗ is not known. We fix n = 500 and consider p = {50, 100}

as well as h = {50, 125}, where h = dH (I;Π∗). The estima-
tor of Π∗ is obtained by applying Algorithm 1. The results
are shown in Figure 5. Given the excessive requirements
regarding snr in the rank-one case even in the oracle case, we
here focus on the full-rank case. Apart from using snr and
log det(I+B∗"B∗/σ2)

log n for the horizontal axis, we additionally

consider log(msnr)
log n in virtue of Theorem 6.

Inspection of the left panels of Figure 5 indicates a similar
phenomenon as observed in the oracle case, namely, a sig-
nificant reduction of the required snr with large stable rank
"(B∗) = m. When m = 15, the snr required to achieve
recovery falls in the range [1, 10]. When m is increased to
50, the required snr drops below 1 in alignment with the
implications of Theorem 1 and Theorem 7.

However, different from the oracle case where the ratio
log det(I+B∗"B∗/σ2)

log n required for permutation recovery is
almost independent of the triple (n, p, h), we now observe
variation across different settings. When n = 500, p =
100, h = 50, permutation recovery is achieved if the quantity
log det(I+B∗"B∗/σ2)

log n exceeds 5, which is almost identical to
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the oracle case shown in Figure 4. However, the associated
recovery threshold is contained in [5, 6] when (n, p, h) =
(500, 100, 50), and further increases to 7 when (n, p, h) =
(500, 100, 125). Generally speaking, the larger the ratio n/p
and the smaller the Hamming distance h, the lower the

required value of the ratio
log det(I+B∗"B∗/σ2)

log n .

VII. CONCLUSION

In this paper, we have studied the unlabeled sensing prob-
lem given multiple measurement vectors. First, we estab-
lish the statistical limits in terms of conditions on the snr
implying failure of recovery with high probability, namely,
"(B∗) log (snr) ! log n. The tightness of these conditions
is consolidated by the corresponding condition for correct
recovery with B∗ being known. Without knowledge of B∗,
we need log (m · snr) " log n for correct recovery, which
matches the lower bound for the oracle case with "(B∗) = 1.
By imposing the additional assumption dH(I;Π∗) ≤ hmax !
n/ logn, it can be proved that "(B∗) log (snr) " log n is
also sufficient for correct recovery, which matches the cor-
responding minimax lower bound up to a logarithmic factor.
On the computational side, the underlying problem is cast as
a quadratic assignment problem, and a practical optimization
scheme based on the projected gradient method is proposed
to tackle the computational challenge associated with the ML
estimator. The results of our simulations based on the proposed
numerical scheme largely corroborate our theoretical findings.

APPENDIX A
NOTATIONS

We begin the appendix with a restatement of the notations
we use. For an arbitrary matrix A ∈ Rm×n, we denote by
A:,i ∈ Rn the ith column of A while Ai,: ∈ Rm denotes
the ith row, treated as column vector. Moreover, Aij denotes
the (i, j)th element of the matrix A. The pseudo-inverse A†

of the matrix A is defined as
(
A%A

)−1 A%. We define
PA = AA† as the projection onto the column space of A,
while P⊥

A = I−PA denotes the projection onto its orthogonal
complement. The singular value decomposition (SVD) of the
matrix A [25] (Section 2.4, P. 76) is represented by SVD(A),
such that SVD(A) = UΣV%, U ∈ Rm×m, Σ ∈ Rm×n,
and V ∈ Rn×n, where U%U = UU% = Im×m, V%V =
VV% = In×n. The operator vec(A) denotes the vectorization
of A that is obtained by concatenating the columns of A
into a vector. We write ‖·‖F for the Frobenius norm while
‖·‖OP is used for the operator norm, whose definitions can be
found in [25] (Section 2.3, P. 71). The ratio "(·) = ‖·‖2

F/‖·‖
2
OP

represents the stable rank while r(·) represents the usual rank
of a matrix.

We write π(·) for a permutation of {1, 2, · · · , n} that
moves index i to π(i), 1 ≤ i ≤ n. The corresponding
permutation matrix is denoted by Π. We use dH(·; ·) to denote
the Hamming distance between two permutation matrices, i.e.,
dH(Π1;Π2) =

∑n
i=1 (π1(i) .= π2(i)). Viewing Π as a RV

distributed among set H , we denote its entropy as H(Π).
The differential entropy is denoted as h(·) and the mutual
information is denoted as I(·; ·).

For an event E , we denote its complement by E , and use
Ψ(E ) to denote E (E ). In addition, we use a ∨ b to denote
the maximum of a and b while a ∧ b to denote the minimum
of a and b.

APPENDIX B
PROOF OF THEOREM 1

Proof: The proof of Theorem 1 heavily relies on
Lemma 10. We put a uniform prior on Π∗ over the support H ,
which maximizes the entropy H(Π∗) = log |H |, and exploit
the inequality

sup
Π

PrX,W(Π̂ .= Π) ≥ PrX,W,Π∗

(
Π̂ .= Π∗

)
, (22)

where the probability measure PrX,W,Π∗(·) is w.r.t. X, W,
and Π∗. Since Lemma 10 holds for arbitrary estimator Π̂, we
can safely add infΠ to the left-hand side in (22) and complete
the proof.

Lemma 10: Viewing Π∗ as a RV distributed among the set
H , we have

PrX,W,Π∗(Π̂ .= Π∗)

≥
H(Π∗) − 1 − (n/2) log det

(
I + B∗%B∗/σ2

)

log (|H |) ,

for an arbitrary estimator Π̂, where H(·) is the entropy of
Π∗, and the probability measure PrX,W,Π∗(·) is w.r.t. X, W,
and Π∗.

Proof: Without loss of generality, we assume that B∗ is
known. Note that if we cannot recover Π∗ even when B∗ is
known, it is hopeless to recover Π∗ with unknown B∗. We can
reformulate the sensing relation (4), i.e., Y = Π∗XB∗ + W,
as the following transmission process

Π∗ 1©→ Π∗XB∗ 2©→ Π∗XB∗ + W, (23)

where in 1© the signal Π∗ is encoded to the codeword
Π∗XB∗

:,i, and in 2© the n codewords Π∗XB∗
:,i are transmitted

through n i.i.d. Gaussian channels. With this reformulation, we
can treat the recovery of Π∗ as a decoding problem. Denote
the recovered permutation matrix as Π̂. Following a similar
approach as in [26] (cf. Section 7.9, P. 206), we have

H(Π∗)
3©
= H(Π∗ | X)

4©
= H(Π∗ | Π,X) + I(Π∗; Π | X)

5©
≤ H(Π∗ | Π) + I(Π∗; Π | X)

6©
≤ 1 + log (|H |) PrX,W,Π∗(Π #= Π∗) + I(Π∗; Π | X)

7©
≤ 1 + log (|H |) PrX,W,Π∗(Π #= Π∗) + I(Π∗; Y | X)

8©
≤ 1 + log (|H |) PrX,W,Π∗(Π #= Π∗)

+
n
2

log det I +
B∗"B∗

σ2
,

where λi denote the ith singular value of B∗, in 3© we use
the fact that X and Π∗ are independent, in 4© we use the
definition of the conditional mutual information I(Π∗; Π̂ | X),
in 5© we use H(Π∗ | Π̂,X) ≤ H(Π∗ | Π̂), in 6© we use
Fano’s inequality in Theorem 2.10.1 in [26], in 7© we use the
data-processing inequality, noting that Π∗ → Y → Π̂ forms
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a Markov chain [26], and in 8© we use Lemma 11 to upper
bound the conditional mutual information I(Π∗; Y | X).

We thus obtain the following lower bound on
PrX,W,Π∗(Π̂ .= Π∗) reading as

PrX,W,Π∗(Π #= Π∗) ≥
H(Π∗) − 1 − (n/2) i log 1 + λ2

i /σ2

log (|H |) ,

which is bounded below by 1/2 provided that

H(Π∗) > 1 +
n

2
log det

(
I +

B∗%B∗

σ2

)
+

log (|H |)
2

,

and complete the proof.
Lemma 11: For the channel described in (23), we have

I(Π∗; Y:,1,Y:,2, . . . ,Y:,m| X) ≤ n

2
log det

(
I +

B∗%B∗

σ2

)
,

where λi denotes the ith singular value of B∗.
Proof: Let vec (Y) (vec (W)) be the vector by concate-

nating Y:,1,Y:,2, · · · ,Y:,m (W:,1,W:,2, · · · ,W:,m), accord-
ing to the definition in Appendix A. For simplicity of
notation, we use I (Π∗; vec (Y) |X) as a shortcut for
I (Π∗; Y:,1,Y:,2, . . . ,Y:,m| X). We then calculate the con-
ditional mutual information I (Π∗; vec (Y) |X) as

I (Π∗; vec (Y) |X)

1©
= h(vec(Y)|X) − h(vec(Y)|X,Π∗)

2©
= EΠ∗,X,Wh (vec(Y)|X = x) − h(vec(W))

3©
= EΠ∗,X,Wh (vec(Y)|X = x) − mn

2
log σ2

4©
≤ EX

1
2

log det EΠ∗,W|X=xvec (Y) vec (Y)" − mn
2

log σ2,

≤ 1
2

log det EΠ∗,X,Wvec (Y) vec (Y)" − mn
2

log σ2, (24)

where in 1© we use the definition of the conditional mutual
information I(Π∗; vec (Y) | X), in 2© we have used that

h(vec (Y) | X,Π∗) = h(vec (Π∗XB∗ + W) |X,Π∗)
= h(vec (W) |X,Π∗),

in 3© we use that the mn entries of vec(W) are i.i.d Gaussian
distributed with entropy is 1

2 log(σ2) each, in 4© we use a
result in [26] (Theorem 8.6.5, P. 254) which yields

h(Z) ≤ 1
2

log det cov(Z) ≤ 1
2

log det E[ZZ%],

where Z is an arbitrary RV with finite covariance matrix
cov(Z), and we use the concavity: E log det(·) ≤ log det E(·).

In the sequel, we compute the entries of the matrix
EΠ∗,X,Wvec (Y) vec (Y)%. For simplicity of notation, the
latter matrix will henceforth be denoted by Σ. First note
that vec (Y) equals the concatenation of Y:,1,Y:,2, · · · ,Y:,m.
We decompose the matrix Σ into sub-matrices Σi1,i2 =
EΠ∗,X,WY:,i1Y%

:,i2 , 1 ≤ i1, i2 ≤ m, which corresponds to
the covariance matrix between Y:,i1 and Y:,i2 . The (j1, j2)th
element of sub-matrix Σi1,i2 is defined as Σi1,i2,j1,j2 . The

latter can be written as

Σi1,i2,j1,j2 = EΠ∗,X,W (Yj1,i1Yj2,i2)

= EΠ∗,X,W

[(
XB∗

:,i1

)
π∗(j1)

+ Wj1,i1

]

[(
XB∗

:,i2

)
π∗(j2)

+ Wj2,i2

]

= EΠ∗,X

(〈
Xπ∗(j1),:,B∗

:,i1

〉 〈
Xπ∗(j2),:,B∗

:,i2

〉)

+ EWWj1,i1Wj2,i2 ,

where π∗ is the permutation corresponding to the permutation
matrix Π∗ as defined in Appendix A.

We then split the calculation into three sub-cases:





Case i1 = i2, j1 = j2: Σi1, i1, j1, j1 = ‖B∗
:,i1‖

2
2 + σ2,

Case i1 .= i2, j1 = j2: Σi1,i2,j1,j1 =
〈
B∗

:,i1 ,B
∗
:,i2

〉
,

Case j1 .= j2: Σi1,i2,j1,j2 = 0.

In conclusion, the matrix Σ can be expressed as

Σ =

B∗
:,1

2

2
+ σ2 B∗

:,1,B
∗
:,2 · · · B∗

:,1, B
∗
:,m

B∗
:,2,B

∗
:,1 B∗

:,2
2

2
+ σ2 · · · B∗

:,2, B
∗
:,m

...
. . .

...
B∗

:,m, B∗
:,1 B∗

:,m,B∗
:,2 · · · B∗

:,m
2

2
+ σ2

! Σ1

⊗ In×n,

where ⊗ denotes the Kronecker product [25] (Section 1.3.6,
P. 27). According to [25] (Section 12.3.1, P. 709), we have

det (Σ) = (det (Σ1))
n (det (In×n))m

5©= σ2nm

(
det
(
I +

B∗%B∗

σ2

))n

, (25)

where in 5© we have calculated det(Σ1) as

det (Σ1) =det
(
σ2I + B∗%B∗)

=σ2m det
(
I +

B∗%B∗

σ2

)
.

Combining (24) and (25), yields the upper bound

I (Π∗; vec (Y) |X) ≤ n

2
log det

(
I +

B∗%B∗

σ2

)

6©=
∑

i

log
(

1 +
λ2

i

σ2

)
,

where 6© can be verified via the singular value decomposition
SVD (B∗) = UΣV% as introduced in Appendix A) and
by using basic properties of the matrix determinant [33]
(Section 0.3, P. 8).

APPENDIX C
PROOF OF PROPOSITION 3

A. Roadmap

Observe that the sensing relation Y = Π∗XB∗ + W is
equivalent to Π∗%Y = XB∗ + Π∗%W. As a consequence
of rotational invariance of the Gaussian distribution, Π∗%W
follows the same distribution as W. Since our proof applies
to any instance of the permutation matrix Π∗, we may assume
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Π∗ = I w.l.o.g. The proof is then completed with the
following three stages.

Stage I: Define W̃i,j as

W̃i,j =
〈
Wj,: − Wi,:,

B∗%(Xi,: − Xj,:)
‖B∗%(Xi,: − Xj,:)‖2

〉
,

for 1 ≤ i < j ≤ n, we would like to prove that
{
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗% (Xi,: − Xj,:)
∥∥

2

}
⊆
{
Π̂ .= I

}
.

We then lower bound the probability Pr
(
Π̂ .= I

)
as

PrX,W(Π̂ .= I)

≥ PrX,W

(
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗% (Xi,: − Xj,:)
∥∥

2

)
.

Stage II: We lower bound the probability
PrX,W

(
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗% (Xi,: − Xj,:)
∥∥

2

)
by two

separate probabilities, namely

PrX,W ∃ (i, j), s.t. Wi,j ≥ B∗" (Xi,: − Xj,:)
2

≥ PrX,W W1,j0 ≥ ρ0 PrX B∗" (X1,: − Xj0,:)
2
≤ ρ0 ,

where j0 is picked as argmaxjW̃1,j , and ρ0 is one positive
parameter waiting to be set.

Stage III: Provided Condition (11) holds, we are allowed
to set ρ0 = 2

√
2σ2 log n without violating the requirement of

Lemma 13. We thereby conclude the proof by setting ρ0 =
2
√

2σ2 log n and invoking Lemma 12 and Lemma 13.

B. Proof Details

Proof: Detailed calculation comes as follows.
Stage I: We conclude the proof by showing if{

W̃i,j ≥
∥∥B∗% (Xi,: − Xj,:)

∥∥
2

}
holds, we would have

∥∥Yi,: − B∗%Xj,:

∥∥2

2
+
∥∥Yj,: − B∗%Xi,:

∥∥2

2

≤
∥∥Yi,: − B∗%Xi,:

∥∥2

2
+
∥∥Yj,: − B∗%Xj,:

∥∥2

2
,

which implies that minΠ ‖Y − ΠXB∗‖2
F ≤ ‖Y − XB∗‖2

F
since Π can be chosen as the transposition that swaps Yi,: and
Yj,:. This implies failure of recovery, i.e., the event {Π̂ .= I}.

Stage II: We lower bound the error probability
PrX,W

(
Π̂ .= I

)
as

PrX,W Π #= I

≥ PrX,W ∃ (i, j), s.t. Wi,j ≥ B∗" (Xi,: −Xj,:)
2

1©
≥ PrX,W W1,j0 ≥ B∗" (X1,: −Xj0,:)

2

≥ PrX,W W1,j0 ≥ ρ0 B∗" (X1,: − Xj0,:)
2
≤ ρ0

× PrX B∗" (X1,: − Xj0,:)
2
≤ ρ0

2©
= PrW W1,j0 ≥ ρ0 PrX B∗" (X1,: −Xj0,:)

2
≤ ρ0 ,

where in 1© we pick j0 as argmaxjW̃1,j and in 2© we use the
independence between W̃i,j and

∥∥B∗% (Xi,: − Xj,:)
∥∥

2
.

C. Supporting Lemmas

Lemma 12: When n is large (n ≥ 10), we have

PrW

(
sup

j
W̃1,j ≥ 2

√
2σ2 log n

)
≥ 1 − n−1.

Proof: This result is quite standard and can be easily
proved by combining Section 2.5 (P. 31) and Theorem 5.6
(P. 126) in [34]. We omit the details for the sake of brevity.

Lemma 13: Given that ρ0 ≥ 2
(
1 + 2

√
log 2

c1!(B∗)

)
‖B∗‖F,

we have

PrX
(∥∥B∗% (Xi,: − Xj,:)

∥∥
2
≤ ρ0

)
≥ 5

9
,

where c1 > 0 is some constant, and "(B∗) is the stable rank
of the matrix B∗.

Proof: We begin the analysis by defining the following
notations,

A(i,j)
ρ0

#
{∥∥B∗% (Xi,: − Xj,:)

∥∥
2
≤ ρ0

}
, 1 ≤ i < j ≤ n,

B #
{
x|‖B∗%x‖2 ≤ ρ0

2

}
,

ζ = PrX
(
‖B∗%x‖2 ≤ ρ0

2

)
,

respectively, where x ∈ Rp is a Gaussian RV satisfying
N (0, Ip×p), and ρ0 is some positive parameter awaiting to be
set. First we prove the inequality PrX(A(i,j)

ρ0 ) ≥ ζ2. Provided

that Xi,: ∈ B,Xj,: ∈ B, we have A (i,j)
ρ0 be true because

∥∥B∗% (Xi,: − Xj,:)
∥∥

2
≤
∥∥B∗%Xi,:

∥∥
2

+
∥∥B∗%Xj,:

∥∥
2
≤ ρ0.

Then we conclude

PrX
(
A(i,j)

ρ0

)
≥ EX (Xi,: ∈ B,Xj,: ∈ B) 1©= ζ2, (26)

where 1© is because of the independence between Xi,: and
Xj,:. It thus remains to lower bound ζ, which is accomplished
by setting ρ0 to be ρ0 ≥ 2(1 + t)‖B∗‖F and invoking
Theorem 2.1 in [35]

Prx
(∥∥B∗%x

∥∥
2
≥ (1 + t)‖B∗‖F

)

≤ Prx
(∣∣‖B∗%x‖2 − ‖B∗‖F

∣∣ ≥ t‖B∗‖F

)
≤ 2e−c1t2!(B∗),

for t ≥ 0. Setting t = 1.4356/
√

c1"(B∗), we have ζ ≥
√

5/3,
which implies
Pr
(∥∥B∗% (Xi,: − Xj,:)

∥∥
2
≤ ρ0

)
≥ ζ2 ≥ 5/9 in view of (26)

and completes the proof.

APPENDIX D
PROOF OF COROLLARY 4

Proof: First we define E #
{
dH(Π̂;Π∗) ≥ D

}
, which

corresponds to the failure in obtaining an approximation of Π∗

within a Hamming ball of radius D. Moreover, we suppose that
Π∗ follows a uniform distribution over the set of all n! possible
permutation matrices. Using the same logic as in Section 1,
we conclude

inf
Π

sup
Π∗

PrX,W(dH(Π̂; Π∗) ≥ D) ≥ PrX,W,Π∗(E = 1).
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Then we consider the conditional entropy
H(E ,Π∗| Π̂,Y,X). The latter can be decomposed as

H(E ,Π∗| Π̂,Y,X)

= H(Π∗ | Π̂,Y,X) + H(E | Π∗, Π̂,Y,X)
1©= H(Π∗ | Π̂,Y,X) 2©= H(Π∗ | Y,X), (27)

where in 1© we have used that H
(
E | Π∗, Π̂,Y,X

)
= 0

since E is deterministic once Π∗, Π̂,Y,X are given, and in
2© we use the fact I(Π̂;Π∗ | Y,X) = 0 since Π̂ and Π∗ are
independent given X and Y. At the same time, we have

H E ,Π∗| Π, Y,X

= H E | Π + H Π∗ | E ,Π,Y,X

3©
≤ log 2 + H Π∗ | E ,Π,Y,X

≤ log 2 + PrX,W,Π∗(E = 1)H(Π∗|E = 1,Π,Y,X)

+ PrX,W,Π∗(E = 0)H(Π∗|E = 0, Π,Y,X)

≤ log 2 + PrX,W,Π∗ (E = 1) H(Π∗|E = 1, Π)

+ PrX,W,Π∗ (E = 0) H(Π∗|E = 0, Π)

≤ log 2 + (1 − PrX,W,Π∗ (E = 0))H(Π∗)

+ PrX,W,Π∗ (E = 0) log
n!

(n − D + 1)!

4©
= log 2 + H(Π∗) − PrX,W,Π∗ (E = 0) log(n − D + 1)!, (28)

where in 3© we use the fact that E is binary and hence
H(E |Π̂) ≤ log 2, and in 4© we use the fact that H(Π∗) =
log(n!). Combing (27) and (28) yields

PrX,W,Π∗ (E = 0) ≤ I(Π∗; Y, X) + log 2
log(n − D + 1)!

5©=
I(Π∗;X) + I(Π∗;Y|X) + log 2

log(n − D + 1)!
6©=

I(Π∗;Y|X) + log 2
log(n − D + 1)!

7©
≤

(n/2)
∑

i log
(
1 + λ2

i /σ2
)

+ log 2
log(n − D + 1)!

, (29)

which completes the proof of Corollary 4, where 5© is because
of the chain rule of I(Π∗;Y,X), 6© is because Π∗ and X are
independent and hence I(Π∗;X) = 0, and 7© is because of
Lemma 11.

In the end, we present the proof for (13), which proceeds
as

inf
Π

sup
Π∗

EX,WdH(Π̂;Π∗)

≥ (d + 1)PrX,W,Π∗

[
dH

(
Π̂;Π∗

)
≥ d + 1

]
,

where EX,W is the expectation taken w.r.t X and W, and d
is an arbitrary integer between 0 and n. Replacing D with d,
we finish the proof with (29).

APPENDIX E
PROOF OF THEOREM 5

A. Notations
We first define the events E0, E1(δ), E2(δ) as

E0 #
n

i=1

Yi,: − B∗"Xi,:

2

2
< min

j $=i
Yi,: − B∗"Xj,:

2

2
,

E1(δ) #
n

i=1 j $=i

2 Wi,:,
B∗" (Xj,: −Xi,:)

‖B∗" (Xj,: − Xi,:)‖2

≥ δ ,

E2(δ) #
n

i=1 j $=i

B∗" (Xj,: − Xi,:)
2
≤ δ ,

where δ > 0 is an arbitrary positive number. In addition, we
define probabilities P1 and P2 as

ζ1 #
n

i=1 j $=i

PrX,W 2 Wi,:,
B∗" (Xj,: − Xi,:)

‖B∗" (Xj,: − Xi,:)‖2

≥ δ ,

ζ2 #
n

i=1 j $=i

PrX B∗" (Xj,: − Xi,:)
2
≤ δ .

B. Roadmap

We start the proof by first outlining the proof strategy.
Stage I: We first show that

{
Π̂ .= I

}
⊆ E 0.

Stage II: We would like to upper bound the probability
of error PrX,W(Π̂ .= I) by Ψ(E 0). By re-arranging terms,
we show E 0 ⊆ E1(δ)

⋃
E2(δ), and separately upper bound

Ψ (E1(δ)) and Ψ (E2(δ)).
Stage III: Treating the above upper bounds as functions

of δ, we complete the proof by choosing δ appropriately and
invoking the Condition (14).

C. Proof Details

Proof: Following a similar argument as in Appendix C,
we assume that Π∗ = I w.l.o.g. and consider correct
recovery {Π̂ = I}.

Stage I: We first establish that
{
Π̂ .= I

}
⊆ E 0 by showing

that E0 ⊆
{
Π̂ = I

}
. Notice that E0 can be rewritten as

E0 =
n⋂

i=1

⋂

j )=i

{∥∥Yi,: − B∗%Xi,:

∥∥2

2
<
∥∥Yi,: − B∗%Xj,:

∥∥2

2

}
.

Based on the definition of the ML estimator (5), we must
have ∥∥∥Y − Π̂XB∗

∥∥∥
2

2
≤ ‖Y − XB∗‖2

2, (30)

Assuming that Π̂ .= I, then for each term∥∥Yi,: − B∗%Xi,:

∥∥
2

we have
∥∥Yi,: − B∗%Xi,:

∥∥2

2
≤ min

j )=i

∥∥Yi,: − B∗%Xj,:

∥∥2

2

<

∥∥∥∥Yi,: − B∗%
(
Π̂X

)

i,:

∥∥∥∥
2

2

,
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which leads to ‖Y − XB∗‖2
2 <

∥∥∥Y − Π̂XB∗
∥∥∥

2

2
,

contradicting (30). This proves that E0 ⊆
{
Π̂ = I

}
.

Stage II: In this stage, we will prove that E 0 ⊆
E1(δ)

⋃
E2(δ). First, we expand E 0 as

E 0 =
n

i=1 j $=i

Yi,: − B∗"Xi,:

2

2
≥ Yi,: − B∗"Xj,:

2

2
.

Note that for each event in the union, the left hand side can
be rewritten as ‖Wi,:‖2

2 and the right hand side can be written
as

Yi,: −B∗"Xj,:

2

2
= B∗"Xi,: + Wi,: − B∗"Xj,:

2

2

= ‖Wi,:‖2
2 + B∗" (Xi,: − Xj,:)

2

2

+2 Wi,:, B∗" (Xi,: −Xj,:) . (31)

Hence, the event E 0 is equivalent to

E 0 =
n⋃

i=1

⋃

j )=i

{
2
〈
Wi,:,

B∗% (Xj,: − Xi,:)
‖B∗% (Xj,: − Xi,:)‖2

〉

≥
∥∥B∗% (Xj,: − Xi,:)

∥∥
2

}
⊆ E1(δ)

⋃
E2(δ),

since otherwise we will have the inequality reversed. Hence,
we can upper bound Ψ(E 0) as

Ψ
(
E 0

)
≤ Ψ(E1(δ)) + Ψ(E2(δ)) ≤ ζ1 + ζ2,

where Ψ(·) denotes EX,W (·), and the terms ζ1 and ζ2 can
be bounded by Lemma 14 and Lemma 15 (given below),
respectively.

Stage III: Set δ2 as 16σ2 log n
ε0

, where ε0 = ακ!(B∗)
0 /n.

We can bound ζ1 as

ζ1 ≤ n2 exp
(
−16σ2

8σ2
log

n

ε0

)
= ε20. (32)

At the same time, we can show that ζ2 is no greater than
ε20. To invoke Lemma 15, first we need to verify the condition
δ2 < α2

0‖B∗‖2
F/2. This is proved by

‖B∗‖2
F

σ2

1©
≥ 32 log

(
n

ε0

)(
n

ε0

)4/κ!(B∗)

2©= 32 log
(

n

ε0

)(
n2

ακ!(B∗)
0

)4/κ!(B∗)

3©
≥ 32

α2
0

log
(

n

ε0

)
, (33)

where in 1© we use condition (14), in 2© we use the definition
of ε0 = ακ!(B∗)

0 /n, and in 3© we use α0 ∈ (0, 1) and n ≥ 1.
We can then invoke Lemma 15 and bound ζ2 as

ζ2 ≤ n2 2δ2

‖B∗‖2
F

κ#(B∗)/2

4©
= n2 exp −κ'(B∗)

2
log

‖B∗‖2
F

σ2
− log 32 log

n
ε0

5©
≤ n2 exp −κ'(B∗)

2
4

κ'(B∗)
log

n
ε0

= ε20, (34)

where in 4© we plug in the definition δ2 = 16σ2 log(n/ε0),
and in 5© we use Condition (13). Combining the bounds for
ζ1 in (32) and ζ2 in (34) will complete the proof.

D. Supporting Lemmas

Lemma 14: It holds that
n∑

i=1
j )=i

PrX,W

(
2
〈
Wi,:,

B∗% (Xj,: − Xi,:)
‖B∗% (Xj,: − Xi,:)‖2

〉
≥ δ

)

≤ n2e−δ2/8σ2
.

Proof: First, we consider a single term, namely
2
〈
Wi,:,

B∗"(Xj,:−Xi,:)
‖B∗"(Xj,:−Xi,:)‖2

〉
, (1 ≤ i < j ≤ n). With X fixed,

it is easy to check that this term is a Gaussian random variable
with zero mean and variance 4σ2. Then we obtain

PrX,W 2 Wi,:,
B∗" (Xj,: − Xi,:)

‖B∗" (Xj,: − Xi,:)‖2

≥ δ

= EXEW 2 Wi,:,
B∗" (Xj,: −Xi,:)

‖B∗" (Xj,: − Xi,:)‖2

≥ δ | X

1©
≤ EX e−δ2/8σ2

= e−δ2/8σ2
,

where in 1© we use the tail bound for the Gaussian RV
Wi,:. Combining the above together, we show that P1 ≤
n2e−δ2/8σ2

and complete the proof.
Lemma 15: Given that ‖B∗‖2

F > 2δ2/α2
0, we have

n

i=1
j $=i

PrX B∗"(Xj,: − Xi,:)
2
≤ δ ≤ n2 2δ2

‖B∗‖2
F

κ"(B∗)
2

,

where α0 ∈ (0, 1) is a universal constant.
Proof: We consider an arbitrary term ‖B∗%(Xi,:−Xj,:)‖2

and define Z = (Xi,: − Xj,:)/
√

2 (i < j). It is easy to
verify that Z is a p-dimensional random vector with i.i.d.
N (0, 1)-entries. We then have

PrX B∗"(Xi,: −Xj,:)
2
≤ δ = PrX B∗"Z

2

2
≤ 2δ2 .

According to Lemma 2.6 in [28] (which is re-stated in
Appendix I herein), this probability can be bounded as

PrX
(∥∥B∗%Z

∥∥2

2
≤ 2δ2

)
= PrX

(∥∥B∗%Z
∥∥

2
≤

√
2δ
)

≤
(

2δ2

‖B∗‖2
F

)κ!(B∗)/2

,

provided δ2 < α2
0‖B∗‖2

F/2, where α0 ∈ (0, 1) is a universal
constant. With the union bound, we complete the proof.

APPENDIX F
PROOF OF THEOREM 6

A. Notations

We define the events Ei(·) (3 ≤ i ≤ 6) as

E3(h)# P⊥
ΠXY

2

F
≤ P⊥

Π∗XY
2

F
, dH(Π;Π∗) = h ,

E4(t, h)# TΠ ≤
t‖B∗‖2

F

m
, dH(Π;Π∗) = h ,
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E5(t, h)# P⊥
ΠXY

2

F
− P⊥

ΠXW
2

F
≤ 2TΠ

3
,

dH(Π;Π∗) = h ,

E6(t, h)# P⊥
Π∗XW

2

F
− P⊥

ΠXW
2

F
≥ TΠ

3
,

dH(Π;Π∗) = h , (35)

where TΠ #
∥∥P⊥

ΠXΠ∗XB∗∥∥2

F. Additionally we define
Ti(t, h) (1 ≤ i ≤ 3) as

T1(t, h) # exp (−t × snr/72) ,

T2(t, h) # 2 exp
(
−
(

t2 × snr2

mh
∧ (t × snr)

)
/288

)
,

T3(t, h) # 6r

[
tn

2n
n−p

mh
exp

(
1 − tn

2n
n−p

mh

)] h
10

, (36)

respectively, where t < mh and r is the rank of B∗.

B. Roadmap

We first restate Theorem 6 with the specific values of c0, c1

and c2.
Theorem: Fix ε > 0 and let n > C(ε), where C(ε) > 0 is a

positive constant depending only on ε. Provided the following
conditions hold: (i) snr · n− 2n

n−p ≥ 1; and (ii)

log(m · snr)
380

≥
(

1 + ε +
n

190(n− p)

)
log n

+
1
2

log r(B∗), (37)

then the ML estimator in (5) gives the ground-truth
permutation matrix Π∗ with probability exceeding 1 −
c2n−ε

[
(nε − 1)−1 ∨ 1

]
.

With the requirement n ≥ 2p and r(B∗) ≤ (m∧ p) ≤ n/2,
we can further relax (37) to

log(m · snr) ≥ (571 + 380ε) logn,

which reduces to the form given in Theorem 6. Before
proceeding, we give an outline of our proof.

Stage I: We decompose the event
{
Π̂ .= Π∗

}
as

{
Π̂ .= Π∗

}
=

⋃

Π)=Π∗

{∥∥P⊥
ΠXY

∥∥2

F ≤
∥∥P⊥

Π∗XY
∥∥2

F

}

=
⋃

h≥2

E3(h), (38)

and bound the probability of each individual event in (38).
Stage II: For fixed Hamming distance dH(Π;Π∗) = h,

we will prove Ψ(E3(h)) ≤
∑3

i=1 Ti(t, h) + r exp
(
−n log n

2

)
,

where r denotes the rank of B∗, and t > 0 is an arbitrary
positive number.

Stage III: Under the condition specified by (17) and snr ·

mn− 2n
n−p ≥ 323, we set t as

√
mh log

(
snr · mn− 2n

n−p

)
/snr and show that

Ψ(E3(h)) ≤ 9n−(1+ε)h + r exp
(
−n log

n

2

)
. (39)

Stage IV: We prove that

PrX,W(Π̂ .= Π∗) ≤ 10.36
(

1
nε (nε − 1)

∨ 1
nε

)
,

when n is large, where ε > 0 is some positive constant.

C. Proof Details
Proof: As the outline of our proof, we start with providing

the details of Stage I and Stage IV, while the proofs of
Stage II and Stage III are given in Lemma 16 and Lemma 17,
respectively.

Stage I: From the definition of ML estimator in (5), failure
of recovery requires at least one pair (Π,B) distinct from
(Π∗,B∗) such that

‖Y − ΠXB‖2
F ≤ ‖Y − Π∗XB∗‖2

F.

Note that the optimal B corresponding to Π can
be expressed as B = (ΠX)†Y, where (ΠX)† #(
X%X

)−1 X%Π%. Back-substitution yields

∥∥Y − ΠX(ΠX)+Y
∥∥2

F =
∥∥P⊥

ΠXY
∥∥2

F,

which proves the claim.
Stage II and Stage III: As stated above, the detailed proof

can be found in Lemma 16 and Lemma 17.
Stage IV: We have

PrX,W(Π #= Π∗) ≤
h≥2

n
h

h!Ψ(E3(h))

1©
≤

h≥2

n
h

h! 9n−(1+ε)h + r exp −n log
n
2

2©
≤ 9

h≥2

nhn−(1+ε)h + r
h≥2

n! exp −n log
n
2

3©
≤ 9

h≥2

n−εh + r
h≥2

e
√

n exp n log n − n log
n
2

− n

≤ 9
nε (nε − 1)

+ e
h

rn
1
2 exp −n log

e
2

4©
≤ 9

nε (nε − 1)
+

e
2

h

n
3
2 exp −n log

e
2

≤ 9
nε (nε − 1)

+
e
2
n

5
2 exp −n log

e
2

5©
≤ 9

nε (nε − 1)
+

e
2

exp (−ε log n)

≤ 10.36
1

nε (nε − 1)
∨ 1

nε
,

where in 1© we use (39), in 2© we use n!
(n−h)! ≤ nh and

n!
(n−h)! ≤ n!, in 3© we use Stirling’s approximation in the
form n! ≤ enn+0.5e−n, in 4© we use r ≤ min(m, p) and
p ≤ n

2 (according to our assumption in Section II), and in 5©,
we use n log( e

2 ) >
(

5
2 + ε

)
log n when n is sufficiently large

(e.g., when ε = 0.5, we require n ≥ 36; when ε = 1, we
require n ≥ 44). The proof is hence complete.
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D. Supporting Lemmas

Lemma 16: We have

Ψ(E3(h)) ≤
3∑

i=1

Ti(t, h) + r

(
2
n

)n

,

where Ψ(·) denotes EX,W (·), and t < mh is an arbitrary
positive number.

Proof: The proof is completed by the following decom-
position, which reads

Ψ(E3(h)) ≤ Ψ(E4(t, h)) + Ψ
(
E3(h)

⋂
E 4(t, h)

)

1©
≤ Ψ(E4(t, h)) + Ψ

(
E 4(t, h)

⋂
E5(t, h)

)

+ Ψ
(
E 4(t, h)

⋂
E6(t, h)

)
,

where 1© is due to the relation E3(h) ⊆ E5(t, h)
⋃

E6(t, h).
A detailed explanation is given as follows. Conditional on
E5(t, h)

⋂
E6(t, h), we have∥∥P⊥

ΠXY
∥∥2

F −
∥∥P⊥

Π∗XY
∥∥2

F
2©=
∥∥P⊥

ΠXY
∥∥2

F−
∥∥P⊥

ΠXW
∥∥2

F +
∥∥P⊥

ΠXW
∥∥2

F−
∥∥P⊥

Π∗XW
∥∥2

F

≥
∥∥P⊥

ΠXY
∥∥2

F−
∥∥P⊥

ΠXW
∥∥2

F−
∣∣∣
∥∥P⊥

ΠXW
∥∥2

F−
∥∥P⊥

Π∗XY
∥∥2

F

∣∣∣
3©
>

2TΠ

3
− TΠ

3
> 0,

where in 2© we use the fact P⊥
Π∗XY = P⊥

Π∗XW, and in 3© we
use the definitions of E5(t, h) and E6(t, h). This suggests that
E5(t, h)

⋂
E6(t, h) ⊆ E 3(h), which is equivalent to E3(h) ⊆

E5(t, h)
⋃

E6(t, h). We then separately bound the above terms.
Term Ψ(E4(t, h)). We first perform SVD (B∗) =

UΣV% (as defined in Appendix A), such that Σ =
diag (β1, β2, · · · , βr, 0, · · · ), where r denotes the rank of B∗

(r ≤ min(m, p)), and βi denotes the corresponding singular
values.

Due to the rotational invariance of the Gaussian distribution
and V being unitary, it is easy to check that TΠ has the same
distribution as ‖P⊥

XΠXΣ‖2
F . Therefore, we have

Ψ(E4(t, h)) ≤
r

i=1

PrX P⊥
ΠXΠ∗Xβiei

2

F
≤ tβ2

i

m

4©
≤ r

2
n

n

+ 6
tn

2n
n−p

mh
exp 1 − tn

2n
n−p

mh

h
10

, (40)

where 4© follows from Lemma 5 in [12].
Term Ψ

(
E 4(t, h)

⋂
E5(t, h)

)
. We expand

∥∥P⊥
ΠXY

∥∥2

F −
∥∥P⊥

ΠXW
∥∥2

F

=
∥∥P⊥

ΠXΠ∗XB∗∥∥2

F + 2
〈
P⊥

ΠXΠ∗XB∗, P⊥
ΠXW

〉
.

Conditional on the sensing matrix X, we have that∥∥P⊥
ΠXY

∥∥2

F −
∥∥P⊥

ΠXW
∥∥2

F follows a Gaussian distribution,

namely, N (TΠ, 4σ2TΠ). Therefore, we obtain

Ψ (E5(t, h))

5©= EX

[ (
TΠ >

t‖B∗‖2
F

m

)

× EW

(∥∥P⊥
ΠXY

∥∥2

F −
∥∥P⊥

ΠXW
∥∥2

F ≤ 2TΠ

3

)]

6©
≤ EX

[ (
TΠ >

t‖B∗‖2
F

m

)
× exp

(
− TΠ

72σ2

)]

≤ exp
(
− t × snr

72

)
, (41)

where 5© results from the independence between X and W,
and in 6© we use a standard tail bound for Gaussian random
variables.

Term Ψ
(
E 4(t, h)

⋂
E6(t, h)

)
. We have

P⊥
Π∗XW

2

F
− P⊥

ΠXW
2

F
= ‖PΠXW‖2

F − ‖PΠ∗XW‖2
F

= PΠX\Π∗XW
2

F
− PΠ∗X\ΠXW

2

F
,

where ΠX \ Π∗X (Π∗X \ ΠX) is the short-hand for
range (ΠX) \ range (Π∗X) (range (Π∗X) \ range (ΠX)).
Setting k = p ∧ h, we have that

∥∥PΠX\Π∗XW
∥∥2

F/σ2 is
χ2-RV with mk degrees of freedom according to Appendix
B.1 in [12].

We conclude that

Ψ (E6(t, h))

≤ 2PrX,W

{ ∣∣∣
∥∥PΠX\Π∗XW

∥∥2

F − mkσ2
∣∣∣ ≥

TΠ

6
,

TΠ >
t‖B∗‖2

F

m

}

7©
≤ 2 exp

(
−1

8

(
t2 × snr2

36mk
∧ t × snr

6

))

≤ 2 exp
(
−1

8

(
t2 × snr2

36mh
∧ t × snr

6

))
, (42)

where in 7© we use the concentration inequality for χ2-RVs
given in Appendix I, Lemma 26. We complete the proof by
combing (40), (41) and (42).

Lemma 17: Given that snr · n− 2n
n−p ≥ 1 and log(m ·

snr) ≥ 380
(
1 + ε + n log n

190(n−p) + 1
2 log r(B∗)

)
, where ε > 0

is a constant, we have one positive 0 < t < mh such that∑3
i=1 Ti(t, h) ≤ 9n−(1+ε)h.

Proof: We complete the proof by choosing t as√
mh log

(
snr · mn− 2n

n−p

)
/snr and separately bounding

Ti(t, h), 1 ≤ i ≤ 3. Before proceed, we first check that
t < mh, which can be easily verified.

Term T1(t, h): We have

exp
(
− t × snr

72

)

= exp
(
−
√

mh

72
log
(
snr · mn− 2n

n−p

))

≤ exp
(
− h

72
log
(
snr · mn− 2n

n−p

))
. (43)

Term T2(t, h): Provided that
(
t2 × snr2/(mh)

)
∧(t × snr)

= t × snr, the term T2(t, h) is of a similar form as T1(t, h)
in (43). Here we focus on the case in which t2×snr2

mh ∧
(t × snr) = t2×snr2

mh . The right hand side of this equality can
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be expanded as

t2 × snr2

mh
= h log2

(
snr · mn− 2n

n−p

)

1©
≥ h log

(
snr · mn− 2n

n−p

)
,

where in 1© we use the fact snr ·mn− 2n
n−p ≥ 323, which can

be verified by (17). We then obtain

T2(t, h) ≤ 2 exp
[
− h

288
log
(
snr · mn− 2n

n−p

)]
. (44)

Term T3(t, h): We have

r
tn

2n
n−p

mh
exp 1 − tn

2n
n−p

mh

h
10

= r exp − h
10

log
mh

tn
2n

n−p

+
tn

2n
n−p

mh
− 1

2©
= r exp − h

10
−1

2
log m − log

log z
z

+

√
m log z

z
− 1

≤ r exp − h
10

−1
2

log m − log
log z

z
+

log z
z

− 1

3©
≤ r exp − h

10
log z
1.9

− log m
2

4©
≤ r exp − h

380
log(snr · mn− 2n

n−p ) , (45)

where in 2© we set z = snr · mn− 2n
n−p ≥ 323, in 3© we use

the fact log z
z − 1− log log z

z ≥ log z
1.9 for z ≥ 323, and in 4© we

use the fact snr · n− 2n
n−p ≥ 1.

Combining (43), (44) and (45), we conclude that∑3
i=1 Ti(t, h) ≤ 9r exp

[
− h

380 log
(
snr · mn− 2n

n−p

)]
. Under

the condition specified by (17), we have

log
(
snr · mn− 2n

n−p

)

380
=

log (m · snr)
380

− n logn

190(n− p)

≥ (1 + ε) log n +
1
2

log r.

Hence, we have

r exp
[
− h

380
log
(
snr · mn− 2n

n−p

)]

≤ r exp
[
−h (1 + ε) log n − h

2
log r

] 5©
≤ n−(1+ε)h,

where in 5© we have r1−h
2 ≤ 1 since h ≥ 2. This completes

the proof.

APPENDIX G
PROOF OF THEOREM 7

A. Notations

We define events E7(h), E8(t, h) as

E7(h) # 0 < ‖(I− Π)XB∗‖2
F ≤ h‖B∗‖2

F, dH(I;Π) = h ,

E8(t, h) # P⊥
X

(I− Π)XB∗

‖(I− Π)XB∗‖F

2

F

<
t
h

, dH(I;Π) = h .

Furthermore, we define the terms T4 as

T4(t, h) # exp
(

rh

2

(
log
(

t

h

)
− t

h
+ 1
)

+ 4.18rh

)
,

where r denotes the rank of B∗.

B. Proof Outline

We first restate Theorem 7 as the following, where the
specific values of ci (0 ≤ i ≤ 5) are given. Notice that our
proof focuses on the order and hence these values are not
sharpened to their limits.

Theorem: Suppose that dH(I;Π∗) ≤ hmax with hmax

satisfying the relation hmaxr(B∗) ≤ n/8. Let further ε > 0 be
arbitrary, and suppose that n > N2(ε), where N2(ε) > 0 is
a positive constant depending only on ε. In addition, suppose
that the following conditions hold:

(i) snr > 26.2, (ii) "(B∗) ≥ 5(1 + ε) logn/c0,

(iii) log (snr) ≥ 288(1 + ε) log n

"(B∗)
+ 33.44.

Then the ML estimator (5) subject to the constraint
dH(I;Π) ≤ hmax equals Π∗ with probability at least 1 −
10n−ε

[
(nε − 1)−1 ∨ 1

]
, where c0, . . . , c4 > 0 are some

positive constants.
Here we adopt the same proof strategy as in Theorem 6. For

the sake of brevity, we only present the parts that are different
compared with the proof of Theorem 6.

Stage I: Given the requirement dH(I;Π∗) ≤ hmax, the
triangle inequality implies that

dH(Π̂;Π∗) ≤ dH(I; Π̂) + dH(I;Π∗) ≤ 2hmax.

Hence, we can confine ourselves to the case in which
dH(Π;Π∗) ≤ 2hmax.

Stage II: We replace Lemma 16 with Lemma 18.
Stage III: We replace Lemma 17 with Lemma 19.
Stage IV: We use the same argument as Stage IV in proving

Theorem 6 and complete the proof.

C. Supporting Lemmas
Lemma 18: Given that rh ≤ n/4 and t ≤ 0.125h,

we have Ψ(E3(h)) ≤ T1(mt, h) + T2(mt, h) + T4(t, h) +

6 exp
(
− c0h!(B∗)

5

)
, where h ≥ 2, E3 is defined in (35), and

T1(·, ·), T2(·, ·) are defined in (36).
Proof: Similar to the proof of Lemma 16, we bound

Ψ(E3(h)) by decomposing it as

Ψ(E3(h)) ≤ Ψ(E3(h)
⋂

E 4(mt, h)) + Ψ(E4(mt, h))
1©
≤ Ψ(E3(h)

⋂
E 4(mt, h)) + Ψ(E7(h)) + Ψ(E8(t, h)),

where E3(h), E4(mt, h) are defined in (35), 1© is due to

E4(mt) =
{∥∥P⊥

XΠXB∗∥∥2

F ≤ t‖B∗‖2
F, dH(I;Π) = h

}
,

event {‖(I − Π)XB∗‖F = 0} being with measure zero, and
the relation

∥∥P⊥
XΠXB∗∥∥

F =
∥∥P⊥

X (I − Π)XB∗∥∥
F.
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Using the same argument as in proving Lemma. 16, we can
prove Ψ(E3(h)

⋂
E 4(mt, h)) ≤ T1(mt, h) + T2(mt, h). For

the clarify of presentation, we leave the proof for Ψ(E7(h))
and Ψ(E8(t, h)) to Lemma 20 and Lemma 21, respectively.
The proof is completed by summarizing the upper bounds.

Lemma 19: Given that snr > 26.2, rh ≤ n/4, t ≤ 0.125h,
"(B∗) ≥ 5(1 + ε) log n/c0, and

log (snr) ≥ 288(1 + ε) logn

"(B∗)
+ 33.44,

we have one positive number 0 < t < 0.125h such that

T1(mt,h) + T2(mt, h) + T4(t, h) + 6 exp − c0h'(B∗)
5

≤ 10n−(1+ε)h,

where c0, ε > 0 are positive constants.
Proof: We complete the proof by choosing t =

h log(snr)/snr. Note that if snr > 26.2, we have t < 0.125h.
Given (18), we have

log (snr) ≥ 288(1 + ε) log n

"(B∗)
1©
≥ 288(1 + ε) log n

m
, (46)

where in 1© we use "∗(B) ≤ r(B∗) ≤ m. First we verify

e−c0h!(B∗)/5 ≤ n−(1+ε)h, (47)

if "(B∗) satisfies "(B∗) ≥ 5(1+ ε) logn/c0. In the sequel we
will separately bound the terms.

Term T1(mt, h): We have

exp
(
−mt × snr

72

)
= exp

(
−mh

72
log(snr)

)

2©
≤ n−(1+ε)h, (48)

where in 2© we use (46).
Term T2(mt, h): Since we have snr ≥ 26.2, we obtain(

mt2×snr2

h ∧ (mt × snr)
)
≥ mh log(snr) and have

T2(mt, h) ≤ 2 exp
(
−mh

288
× log(snr)

)

3©
≤ 2n−(1+ε)h, (49)

where in 3© we use (46).
Term T4(t, h): We have

T4(t, h)
4©
≤ exp

(
−rh

8
log (snr) + 4.18rh

)

5©
≤ n−(1+ε)h, (50)

where in 4© we use log z
z − 1 − log log z

z ≥ log z
4 , for z ≥ 1.5,

and in 5© we use the assumption such that

log (snr) ≥ 8(1 + ε) log n

"(B∗)
+ 33.44.

We finish the proof by combining (47), (48), (49), and (50).

Lemma 20: We bound Ψ(E7(h)) ≤ 6 exp
(
− c0h!(B∗)

5

)
for

2 ≤ h ≤ n.

Proof: With SVD (B∗) = UΣV%, we first verify
‖(I− Π)XB∗‖F =

∥∥∥(I− Π) X̃Σ
∥∥∥

F
, where X̃ # XU.

Due to the rotational invariance of the Gaussian distribution,
X̃ has the same distribution X. We separately consider the
cases where h = 2 and h ≥ 3.

For h = 2, we assume w.l.o.g. that the first row and second
row are permuted. Then we have

PrX
(
‖(I− Π)X̃Σ‖2

F ≤ 2‖B∗‖2
F

)

= PrX

[
2

r∑

i=1

β2
i

(
X̃1,i − X̃2,i

)2
≤ 2

(
r∑

i=1

β2
i

)]

1©= PrX

[
r∑

i=1

β2
i z̃2

1,i ≤
∑r

i=1 β2
i

2

]

2©= PrX

[〈
z̃, Σ2z̃

〉
≤
∑r

i=1 β2
i

2

]

3©
≤ 2 exp (−c0"(B∗)) , (51)

where Σ = diag (β1, · · · , βr, 0, · · · ), βi denotes the ith singu-
lar values of B∗, X̃i,j denotes the (i, j) element of X̃, in 1©
we define z̃1,i = (X̃1,i − X̃2,i)/

√
2, in 2© we define z̃ as the

vectorized version, and E
〈
z̃,Σ2z̃

〉
=
∑r

i=1 β2
i , and in 3© we

use Theorem 2.5 in [28] (c.f. also Appendix I) and c0 is the
corresponding constant.

Then we consider the case where h ≥ 3, by studying the
index set I # {j : π(j) .= j}, where π(·) is the permutation
corresponding to the permutation matrix Π. Adopting the
same argument as in Lemma 8 in [12], we decompose the
index set I into 3 subsets {I1, I2, I3}, such that

•
∑3

i=1 |Ii| = h with |Ii| ≥ 9h/3:, 1 ≤ i ≤ 3.
• For arbitrary j, the indices j and π(j) will not be in the

same index set Ii, (1 ≤ i ≤ 3) at the same time.
We define a matrix Z̃i which consists of the rows (I −

Π)X̃Σ corresponding to indices in Ii. Accordingly, we can
verify that ‖(I− Π)X̃Σ‖2

F =
∑3

i=1 ‖Z̃i‖2
F. Let hi denote the

corresponding cardinality of |Ii|, i = 1, 2, 3. We have

PrX ‖(I− Π)XB∗‖2
F≤h‖B∗‖2

F ≤
3

i=1

PrX ‖Zi‖2
F ≤ hi‖B‖2

F .

In the sequel, we bound PrX
(
‖Z̃1‖2

F ≤ h1‖B‖2
F

)
; the other

two probabilities can be bounded similarly. Since j and π(j)
cannot be in I1 simultaneously, we define z̃j,k = (X̃j,k −
X̃π(j),k)/

√
2, j ∈ I1, 1 ≤ k ≤ r, and can treat the {z̃jk} as

independent N (0, 1)-RVs. Similar to the case h = 2, we have

PrX ‖Z1‖2
F ≤ h1‖B‖2

F

4©
= PrX z, diag(Σ2, · · · ,Σ2)z

5©
≤

h1(
r
i=1 β2

i )

2

6©
≤ 2 exp (−c0h1'(B∗))

7©
≤ 2 exp − c0h'(B∗)

5
, (52)

where the diagonal matrix diag(Σ2, · · · ,Σ2) in 4© consists of
h1 terms, in 5© we define z̃ as the vectorization of Z̃1, in 6©
we use Theorem 2.5 in [28] (also listed in Appendix I), and
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in 7© we use the fact hi ≥ 9h/3:. We hence bound Ψ(E7(h))
by combing the above cases in (51) and (52).

Lemma 21: We bound

Ψ(E8(t, h)) ≤ exp
(

rh

2

(
log
(

t

h

)
− t

h
+ 1
)

+ 4.18rh

)

for rh ≤ n
4 and t ≤ 0.125h.

Proof: For ease of notation, we define Θ = (I −
Π)XB∗/‖(I − Π)XB∗‖F. Then the probability of the event
E8 can be bounded as

Ψ(E8) = PrX

(∥∥P⊥
X Θ

∥∥2

F <
t

h
‖Θ‖2

F

)

= PrX

(
r∑

i=1

∥∥P⊥
XΘ:,i

∥∥2

F ≤ t

h
‖Θ:,i‖2

F

)

≤
r∑

i=1

PrX

(∥∥P⊥
XΘ:,i

∥∥2

F ≤ t

h
‖Θ:,i‖2

F

)

1©=
r∑

i=1

PrX

(∥∥P⊥
Xθi

∥∥2

2
≤ t

h

)
,

where in 1© we define θi as the normalized version of Θ:,i,
namely, Θ:,i/‖Θ:,i‖2. Here, we define the set Θh by

Θh =
{
θ ∈ Rn | ‖θ‖2 = 1,

θ has at most h non-zero elements
}
.

We can verify that θi ∈ Θh for 1 ≤ i ≤ r, since
dH(I;Π) = h ≥ 2. Before delving into detailed calculations,
we first summarize our proof strategy:

• Step I: We cover the set Θh with an ε-net Nε such that
for arbitrary θ ∈ Θh, there exists a θ0 ∈ Nε such that
‖θ0 − θ‖2 ≤ ε.

• Step II: Setting ε =
√

t/h, we define events EΘ and ENε

by

EΘ #
{
∃ θ ∈ Θh s.t.

∥∥P⊥
Xθ
∥∥

2
< ε =

√
t/h
}

,

ENε #
{
∃ θ0 ∈ Nε s.t.

∥∥P⊥
Xθ0

∥∥
2

< 2ε = 2
√

t/h
}

.

Then we will prove

PrX

(∥∥∥∥P
⊥
X

(I − Π)XB∗

‖(I − Π)XB∗‖F

∥∥∥∥
2

F

<
t

h

)

≤ rPrX (EΘ) ≤ rPrX (ENε) .

• Step III: We consider an arbitrary fixed element θ0 ∈
Nε, and study PrX

(∥∥P⊥
Xθ0

∥∥
2
≤ 2ε

)
. Adopting the union

bound

PrX (ENε) ≤ |Nε|× PrX
(∥∥P⊥

Xθ0

∥∥
2
≤ 2ε

)
,

we finish the bound of Ψ(E8).
The following analysis fills in the details.
Stage I: We cover the set Θh with an ε-net Nε. Its

cardinality can be bounded as

|Nε|
2©
≤
(

1 +
2
ε

)h 3©
≤
(

3
ε

)h

,

where in 2© we use that elements of Θh have at least (n− h)
zero elements, and accordingly we cover the sphere Sh−1 with

an ε-net Nε, whose cardinality can be bounded as in [36], and
in 3© we assume that ε ≤ 1.

Stage II: We will prove the relation

PrX

(∥∥∥∥P
⊥
X

(I − Π)XB∗

‖(I − Π)XB∗‖F

∥∥∥∥
2

F

<
t

h

)

4©
≤ rPrX (EΘ)

5©
≤ rPrX (ENε) ,

when ε =
√

t/h and 4© follows from the definition of EΘ.
We here focus on proving inequality 5©, which is done by

PrX (EΘ) = PrX
(
EΘ

⋂
ENε

)
+ PrX

(
EΘ

⋂
E Nε

)

≤ PrX (ENε) + PrX
(
EΘ

⋂
E Nε

) 6©= PrX (ENε) ,

where 6© is due to the fact PrX
(
EΘ
⋂

E Nε

)
= 0. A detailed

explanation is given as follows. Note that, given E Nε , it holds
that for all θ0 ∈ Nε, we have

∥∥P⊥
Xθ0

∥∥
2
≥ 2ε. Then for

arbitrary θ ∈ Θh, we consider an element θ0 ∈ Nε such that
‖θ − θ0‖2 ≤ ε and consequently

∥∥P⊥
Xθ
∥∥

2
≥
∥∥P⊥

Xθ0

∥∥
2
−
∥∥P⊥

X (θ − θ0)
∥∥

2

≥ 2ε −
∥∥P⊥

X (θ − θ0)
∥∥

2

7©
≥ 2ε − ‖θ − θ0‖2

8©
≥
√

t

h
,

where in 7© we use the contraction property of projections,
and in 8© the fact ‖θ − θ0‖2 ≤ ε =

√
t/h.

Stage III: We study the probability PrX
(∥∥P⊥

Xθ0

∥∥2

2
≤ 4t

h

)

for fixed θ0 ∈ Nε. In virtue of results in [37], we have

PrX

(∥∥P⊥
Xθ0

∥∥2

2
≤ α(n − p)

n
‖θ0‖2

2

)

≤ exp
(

n − p

2
(log α − α + 1)

)
, α ≤ 1.

We can set α = 4nt/((n − p)h) (< 1) and obtain

PrX

(∥∥P⊥
Xθ0

∥∥2

2
≤ 4t

h

)

= PrX

(∥∥P⊥
Xθ0

∥∥2

2
≤ α(n − p)

n

)

≤ exp
(

n − p

2

(
log
(

4nt

(n − p)h

)
− 4nt

(n − p)h
+ 1
))

9©
≤ exp

(
n

4

(
log
(

8t

h

)
− 8t

h
+ 1
))

,

where in 9© we use that (a) n ≥ 2p, (b) log x − x + 1 is
increasing in range (0, 1), and (c) log x + 1 ≤ x.

In the end, we bound Ψ(E8) as

Ψ(E8)

≤ r

(
3√
t/h

)h

exp
(

n

4

(
log
(

8t

h

)
− 8t

h
+ 1
))

= exp
[
h log(3) − h

2
log
(

t

h

)
+ log r

+
n

4

(
log
(

8t

h

)
− 8t

h
+ 1
)]
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A©
≤ exp

[
rh

2

(
log
(

t

h

)
− 16t

h
+ 1
)

+ 3.68rh + log r

]

B©
≤ exp

[
rh

2

(
log
(

t

h

)
− t

h
+ 1
)

+ 4.18rh

]
, (53)

where in A© we use the assumption that n ≥ 4rh, and in B© we
use that rh ≥ 2r ≥ 2 log(r). Combining (51), (52) and (53),
we finish the proof.

Remark 22: Note that we cannot improve h from Ω
(

n
log n

)

to n in general, since there is an inherent problem when
dealing with the case h → n. A detailed explanation is given
as the following. The key ingredient in bounding Ψ(E8) is
based on the step

Ψ(E8) ≤ PrX

(
∥∥P⊥

Xθ
∥∥

2
≤
√

t

h
, ∃ θ ∈ Θh

)

≤ |Nε| · PrX

(
∥∥P⊥

Xθ0

∥∥
2
≤
√

t

h
+ ε, ∃ θ ∈ Nε

)
< 1.

For the extreme case h = n, we cannot have |Nε| ·
Pr
(
‖P⊥

Xθ0‖2 ≤
√

t/h + ε, ∃ θ ∈ Nε

)
< 1 since

PrX

(
∥∥P⊥

Xθ
∥∥

2
≤
√

t

h
, ∃ θ ∈ Θn

)

≥ PrX

(∥∥∥∥P
⊥
X

XB∗

‖XB∗‖F

∥∥∥∥
F

≤
√

t

h

)
= 1.

The reason behind this is that we lose control of the
cardinality |Nε| ! (C/ε)rh when h → n.

APPENDIX H
PROOF OF THEOREM 9

Proof: Define the function f(Π) by f(Π) #
‖P⊥

XΠ%Y‖2
F. We would like to show that the sequence

of function values generated by Algorithm 1 is non-
increasing, i.e., f(Π(t+1)) ≤ f(Π(t)). Since the function f(·)
is quadratic w.r.t. Π, we conclude

f Π(t+1)

= f Π(t) + −2YY"Π(t)PX,Π(t+1) − Π(t)

− PX Π(t) − Π(t+1)
"

Y
2

F

≤ f Π(t) + −2YY"Π(t)PX,Π(t+1) − Π(t) .

Recalling the definition of D(t+1) in (20), we can rewrite
−2YY%Π(t)PX as α−1

(
Π(t) − D(t+1)

)
, and obtain

f Π(t+1) − f Π(t) ≤ 1
α

Π(t) − D(t+1),Π(t+1) − Π(t)

1©
≤ 1

α
Π(t), Π(t+1) −Π(t)

2©
≤ 0,

which completes the proof. In 1©, we use the property
of the projection step (21), namely,

〈
D(t+1),Π(t+1)

〉
≥〈

D(t+1),Π(t)
〉
; in 2©, we use the Cauchy-Schwarz inequal-

ity such that
〈
Π(t+1),Π(t)

〉
≤

∥∥Π(t)
∥∥

F

∥∥Π(t+1)
∥∥

F =∥∥Π(t)
∥∥2

F.

APPENDIX I
USEFUL FACTS

Theorem 23 (Theorem 2.35 in [38]): For a p×m matrix B
whose entries are independent zero-mean real RVs with vari-
ance p−1 and fourth moment of order O(p−2), we have the
empirical distribution of the eigenvalues of B%B converge to
the distribution with density

fτ (x) = 0 ∨ 1 − τ−1 δ(x)

+
(1 +

√
τ)

2 − x ∨ 0 × x − (1 −
√

τ )
2 ∨ 0

2πτx
,

as m, p → ∞ with m/p → τ .
Define ϑ(τ, σ) as

ϑ(τ, σ) #
(√(√

τ + 1
)2 + σ2 −

√(
1 −

√
τ
)2 + σ2

)2

.

With the above theorem, we can obtain a more accurate
formula of

log det(I+B∗"B∗/σ2)
log n when Bij

i.i.d∼ N (0, p−1),
which reads

log det
(
I + B∗%B∗/σ2

)

log n

→ pτ

log n

∫ (1+√
τ)2

(1−√
τ)2

fτ (x) log
(
1 +

x

σ2

)
dx

= − pϑ(τ, σ)
4 log n

+
p

log n
log
(

1 +
τ

σ2
− ϑ(τ, σ)

4σ2

)

+
pτ

log n
log
(

1 +
1
σ2

− ϑ(τ, σ)
4σ2

)
, (54)

when p, m → ∞ with m/p → τ (τ > 0 is some constant).
The comparison with the theoretical values of (54) and the
numerical values are plotted in Figure 2, which are almost
identical. For more details on the calculation above, readers
are referred to P. 8, (1.14) in [38].

Lemma 24 (Theorem 2.5 in [28]): Let A ∈ Rn×n be a
non-zero matrix and let ξ = (ξi)n

i=1 be a random vector with
independent sub-Gaussian entries such that (i) var(ξi) ≥ 1,
1 ≤ i ≤ n, and (ii) the sub-Gaussian constant of the {ξi} is
at most β. Then ∀y ∈ Rn, there exists a c0 > 0 such that

Pr
(
‖y − Aξ‖2 ≤ ‖A‖F

2

)
≤ 2 exp

(
− c0

β4
"(A)

)
.

Lemma 25 (Lemma 2.6 in [28]): Let A ∈ Rn×n be a non-
zero matrix and g be Gaussian N (0

¯
, In×n). Then we have

Pr (‖y − Ag‖2 ≤ α‖A‖F) ≤ exp (κ log(α)"(A)) ,

for any α ∈ (0, α0), where y ∈ Rn is an arbitrary fixed vector,
α0 ∈ (0, 1) and κ > 0 are universal constants.

Lemma 26 ( [36] (Example 2.11, P. 29)): For a χ2-RV Y
with 1 degrees of freedom, we have

Pr (|Y − 1| ≥ t) ≤ 2 exp
(
−
(

t2

81
∧ t

8

))
, ∀ t ≥ 0.
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