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Abstract

Data are often collected from multiple heterogeneous sources and are com-

bined subsequently. In combing data, record linkage is an essential task for

linking records in datasets that refer to the same entity. Record linkage is gen-

erally not error-free; there is a possibility that records belonging to different

entities are linked or that records belonging to the same entity are missed. It is

not advisable to simply ignore such errors because they can lead to data con-

tamination and introduce bias in sample selection or estimation, which, in

return, can lead to misleading statistical results and conclusions. For a long

while, this problem was not properly recognized, but in recent years a growing

number of researchers have developed methodology for dealing with linkage

errors in regression analysis with linked datasets. The main goal of this over-

view is to give an account of those developments, with an emphasis on recent

approaches and their connection to the so-called “Broken Sample” problem.

We also provide a short empirical study that illustrates the efficacy of correc-

tive methods in different scenarios.
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1 | INTRODUCTION

Record linkage or entity resolution has a long history of uses, for example in federal statistical agencies and healthcare
organizations. To study and answer research questions or to make informed decisions, researchers and policymakers
regularly rely on data and the results of statistical analysis. In many situations, data are combined from multiple
sources because a single dataset with all necessary information is unavailable and collecting data on additional vari-
ables is burdensome, time consuming, and costly. In the absence of common unique identifiers across datasets, an
important intermediate step in combing data is record linkage. Formally, record linkage is the task of finding records in
a dataset that refer to the same entity across different datasets. Unfortunately, since record linkage relies on quasi-iden-
tifiers, linkage can result in two types of errors: false matches or synonymously mismatches (when records of two differ-
ent entities are erroneously linked) and false non-matches or synonymously missed matches (when records belonging to
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the same individual are not linked). In statistical analysis with linked data, linkage error can invalidate basic assump-
tions made about data generation, such as the joint distribution of observations or random sampling. Simply said, link-
age error contaminates the data and introduces bias, which in return leads to misleading statistical results and
conclusions. We note that linkage error tends to be more likely when large datasets are merged, because as the size of
the datasets increases, there is a higher chance that quasi-identifiers such as names are non-unique.

For quite a while, this problem was not properly recognized, with the exception of few early studies by Neter et al. (1965)
and Scheuren and Winkler (1993, 1997), which show that even a small linkage error rate can have a significantly adverse
effect on subsequent statistical results and findings. In recent years, however, a variety of studies from different communities,
such as Abowd et al. (2019), Massey et al. (2018), Rentsch et al. (2018), Di Consiglio and Tuoto (2018), and Hof and
Zwinderman (2012), have emphasized the importance of the problem, and at the same time a growing number of research
papers have proposed methodologies for dealing with linkage errors in regression analysis of linked datasets.

Overall, record linkage and adjustment of post-linkage analysis to account for potential linkage errors is a vast and
active area of research in recent years; it is considered as one of the grand challenges in the Center for Statistical
Research Methodology at the United States Census Bureau. In light of this, we herein do not make the attempt to pro-
vide a comprehensive review on various topics within this area, but instead present a concise account of a specific prob-
lem of great relevance to post-linkage analysis. To be precise, we give an overview on remedies for regression analysis
contaminated by mismatch error. Without doubt, regression analysis in its many variants is the most essential and the
most widely used statistical technique across a myriad of application domains. It is therefore natural to consider it as an
anchor point in the development of a complete framework for post-linkage data analysis.

We emphasize that our exposition is limited to the impact of mismatches, that is, records that have been linked
despite not corresponding to the same entity. Missed matches need to be addressed quite differently, for example, by
using suitable missing data methodology as in Little and Rubin (1987), and will not be discussed in the sequel.

Moreover, our survey puts an emphasis on methods for secondary analysis as opposed to primary analysis. The latter
describes the situation in which the data analyst has access to the individual files underlying the merged file as well as
to the matching variables used during record linkage. By contrast, in the more challenging setting of secondary analysis
only the merged file is given and knowledge about the linkage process is incomplete at best. Secondary analysis is
rather common in order to limit the amount of data to be shared and to prevent access to sensitive information. For
example, consider a survey to be complemented by variables contained in a database containing information about a
much larger set of entities than those that participated in the survey. Common matching variables include demo-
graphics such as birthday, ZIP code of the residential address, and so on. It is well known, for example from
Sweeney (2001) and Hundepool et al. (2012), that releasing such information is associated with considerable
re-identification risks of individuals. Another important focus that is somewhat specific to this survey is the “Broken
Sample” perspective in DeGroot et al. (1971), DeGroot and Goel (1976, 1980), Goel (1975), Goel and Ramalingam (1987)
and recent developments in this regard, several of which have been put forth by the authors. The approach bears con-
siderable potential given advances in computation that were not available at the time of its introduction in the 1970s,
and specifically addresses underexplored settings in which no or only very little information about the data linkage pro-
cess is available to the data analyst beyond the final output, that is, the linked file. Several advances on the “Broken
Sample” problem were made in neighboring disciplines (machine learning and signal processing), and it is thus hoped
that this survey will contribute to the formation of connections between those disciplines on the one hand and the sub-
stantial body of research on record linkage conducted in the statistics community on the other hand.

The outline of this paper is as follows. In Section 2, we provide a short summary of record linkage to provide more
context for readers new to this area. Section 3 then introduces the central subject of this article and important notations.
Sections 3.1–3.7 discuss the impact of mismatch error on linear regression analysis and inference as well as series of
methods to adjust for or correct such error. Specific extensions of interest beyond the basic linear regression setting are
discussed in Section 4. A brief empirical study and illustrations are contained in Section 5. Concluding remarks are pro-
vided in Section 6.

2 | RECORD LINKAGE IN A NUTSHELL

In an effort to keep this article self-contained, we here provide basic background on record linkage. Excellent introduc-
tions to this area can be found in the monographs (Christen, 2012; Herzog et al., 2007) and survey articles (Binette &
Steorts, 2020; Brizan & Tansel, 2006; Enamorado et al., 2019; Winkler, 2006, 2014).
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The main goal of combing data from multiple sources is to collect and gather more comprehensive information
about a target population. In the absence of a common unique identifier, a main challenge is to identify which records
in different data files refer to the same entity. Record linkage, entity resolution, or data matching is a task that specifi-
cally deals with this problem. A brief introduction is as follows. Two files F1 and F2 consisting of n and N records,
respectively, pertaining to entities from a target population are to be combined. A record is a row in the data file that
consists of the attributes (or characteristics) of an individual on a number of fields (or synonymously variables). The
task of record linkage is to classify pairs of records i, jð Þ∈F1#F2 into two classes, the class of true matches M, that is,
both records refer to the same entity, and the class of true non-matches U , that is, i and j refer to different entities. In
the Fellegi–Sunter framework (Fellegi & Sunter, 1969), classification into M or U is based on the value of the ratio
R¼ p γij

!!M
" #

=p γij
!!U

" #
, in which γij is a vector that denotes the pattern of agreement/disagreement in each common

field (or matching variable) of i and j, and p γij
!!M

" #
is the probability of observing γij given that the pair is a match;

p γij
!!U

" #
is defined analogously. Given upper and lower thresholds TU and TL, respectively, a given pair i, jð Þ is declared

a match if R≥TU , and a non-match if R≤TL. If the value of R is between TL and TU , the pair is declared a possible
match. This basic template has been developed further in various methods, including several recent Bayesian
approaches (cf. Binette & Steorts, 2020).

A fundamental challenge in record linkage is the computational complexity associated with the comparison of a
large number of pairs of records. Most approaches rely on blocking techniques which are computationally inexpensive
operations to partition each data file into corresponding “blocks,” that is, subsets of records so that it is certain that
records from non-corresponding blocks are non-matches, and comparisons hence only need to be made for records
that are in the same corresponding block. A basic approach is to select categorical fields, for example, gender, month of
birth, or the zip code of an address, and then partition each data file by the levels of these fields. For a more comprehen-
sive review of blocking techniques, we refer the reader to Steorts et al. (2014).

Regardless of what methodology is employed, record linkage is rarely error-free and two types of errors can occur
when a pair is misclassified: a false match when a non-match is declared a match or a false non-match when a match is
declared a non-match. In the subsequent sections, we discuss the impact of false matches (mismatches) on regression
analysis of linked data files as illustrated in Section 3 (Figure 1).

3 | LINEAR REGRESSION WITH LINKED DATASETS

We start by fixing the setup and notation. We suppose that the covariates are contained in a file Fx ¼ xif gNi¼1 %Rd and
response variables are contained in another file Fy ¼ yif gni¼1 %Rm, where n≤N . The merged file is denoted by
Fx & y ¼ xi,yið Þf gni¼1, to be distinguished from the latent quantity F*

x & y ¼ xπ* ið Þ,yi
$ %& 'n

i¼1 containing x,yð Þ-pairs in their
correct correspondence. Here, π* : 1,…,nf g! 1,…,Nf g is an unknown one-to-one map. A pair xi,yið Þ is a mismatch in
Fx & y if i≠ π* ið Þ, 1≤ i≤n. We write XN , X, and Y for the matrices whose rows are given by xΤi

& 'N
i¼1, xΤi

& 'n
i¼1, and

yΤi
& 'n

i¼1, respectively. Unless noted otherwise, the response variable is one-dimensional m¼ 1ð Þ, in which case we drop

FIGURE 1 The setting of regression based on two linked files A and B. The response variable weeks_unemployed (duration of
unemployment in weeks) is contained in File B, while the two potential predictor variables Edu (education level) and Salary (past
monthly salary in US$) are contained in File A. The variables Age and Sex are potential predictor variables contained in both files. In
combination with ZIP (zip code of home address), these three variables can thus be used as matching variables in record linkage. Possible
sources of mismatch error corresponding to records with non-unique combinations of matching variables are highlighted via gray shading
and framed boxes, respectively. Reproduced from Wang et al. (2020)
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the boldface notation, that is, we write x,yð Þ, Fy, yif gni¼1, and so on. The restriction n≤N is necessary to rule out the
case of missed matches among the responses. The case n<N is typically referred to as sample-to-register linkage
(cf. Chambers & da Silva, 2020): here, the response is collected for a random subset of the population whose covariate
information is stored in the register. The requirement that π* be one-to-one is equivalent to not having duplicate enti-
ties in Fy . Note that if N ¼n, the map π* is a permutation of 1,…,nf g; even if n≠N , π* will be referred to as permuta-
tion for simplicity. The matrix representation of π* is denoted by Π* ¼ Π*

i,j

" #

1≤ i≤n,1≤ j≤N
where Π*

i,j ¼ 1 if π* ið Þ¼ j and

Π*
i,j ¼ 0 otherwise, 1≤ i≤n, 1≤ j≤N . Note that Π* is an element of the set of matching matrices

ℳ n,Nð Þ¼ Π∈ 0,1f gn#N :
PN

j¼1Πi,j ¼ 1,1≤ i≤n,
Pn

i¼1Πi,j ≤ 1,1≤ j≤N
n o

. Note that ℳ n,nð Þ≕P nð Þ is the set of
permutation matrices, that is, n-by-n binary matrices with unit row and column sums. In the literature, π* is predomi-
nantly treated as a latent random quantity, which makes sense intuitively given that the linkage process is associated
with uncertainty arising, for example, from random errors, incompleteness, spelling or formatting variations in the
matching variables.

We note that in several approaches to regression with linked data such as those reviewed in Sections 3.2 and 3.3, it
is implicitly assumed that π* is generated from a prior distribution on the set of permutations with known expectation.
In essence, this unspecified distribution is determined by the linkage mechanism and the data generating process for
the matching variables. However, in some situations, there may be little to no information about the linkage mecha-
nism and the data generating process to justify such an assumption and to propagate uncertainty about the random per-
mutation to subsequent statistical analysis. A remedy is to condition on the linkage mechanism and the matching
variables, and to treat π* as a parameter in the model; in fact, some works such as Pananjady et al. (2018), Hsu
et al. (2017), Slawski and Ben-David (2019), and Zhang et al. (2019) have adopted a minimax paradigm that aims at
safeguarding against all possible π* from suitable subsets of ℳ n,Nð Þ as elaborated in Section 3.5.

3.1 | Impact of mismatch error on linear regression analysis and possible remedies

Suppose the data analyst intends to a fit a linear regression model of a single response variable y on x given the merged
file Fx & y ¼ xi,yif gni¼1. Building on the setting outlined in the introductory portion of this section, we assume the follow-
ing model for all subsequent developments:

yi ¼ xΤπ* ið Þβ
*þσ*επ* ið Þ ,Y¼Π* XNβ

*þσ*ε
$ %

, Y¼ yið Þni¼1, ε¼ εið ÞNi¼1, ð1Þ

where the εi's are i.i.d. zero-mean, unit variance errors independent of Π* and XN , σ* is a non-negative number, and
β* ¼ argminβ∈RdEε Y(Π*XNβ

(( ((2
2

h i
. The solution β* is assumed to be unique and independent1 of Π*. For our discus-

sion, we assume that primary interest concerns inference for β*, which includes point estimation, confidence intervals
for individual coefficients, linear hypothesis tests, and so on. To reduce notation, we assume that a constant term (inter-
cept) is included in the xi's.

The naive estimator β̂N refers to the least squares solution based on Fx & y while ignoring the possibility of mismatch
error as reflected in Equation (1). The mean squared estimation error (MSE) of this estimator can be quantified as

E β̂N (β*
(( ((2

2

h i
¼E XΤX

$ %(1
XΤY(β*

(((
(((
2

2

) *
¼E XΤX

$ %(1
XΤΠ*XNβ*(β*

(((
(((
2

2

) *
þσ2*

tr XΤX=n
$ %(1

" #

n
, ð2Þ

where the two terms on the right-hand side represent squared bias and variance, respectively. The latter is not affected
by the presence of Π*. Expanding the bias term further, we obtain that (cf. Appendix for a detailed derivation)

E XΤX
$ %(1

XΤΠ*XNβ
*(β*

(((
(((
2

2

) *
≤ λ(1

min XΤX=n
$ %1

n

Xn

i¼1

E xπ* ið Þ (xi
$ %Τ

β*
n o2

) *
≤ λ(1

min XΤX=n
$ %k

n
β*

(( ((2
2D

2
XN
, ð3Þ
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where λmin &ð Þ returns the minimum eigenvalue of a real symmetric matrix, k¼ i : π* ið Þ≠ i
& '!! !! denotes the number of

mismatches, and DXN ¼max1≤ i,j≤N xi(xj
(( ((

2. Treating the minimum eigenvalue term and DXN as constants, we observe
that the squared bias roughly scales as k

n β*
(( ((2

2. This indicates that the estimator β̂N is not consistent unless k=n! 0.
Note that the second term in the rightmost expression in (2) represents the MSE of the oracle estimator based on an ora-
cle that is equipped with knowledge of Π*, or equivalently, the MSE of the usual least squares estimator if responses
and predictors are matched correctly without error. The excess error of the order k=n β*

(( ((2
2 relative to this oracle sug-

gests that the performance of β̂N is particularly poor if the so-called signal-to-noise ratio SNR¼ β*
(( ((2

2=σ
2
* is large, that

is, if the linear model achieves a good fit. In the same vein, (3) suggests that β̂N can be a catastrophic estimator since
even the trivial estimator β̂0 ¼ 0 independent of the observed data may achieve a comparable MSE!

The case of a single predictor variable (d¼ 1). For simplicity, let us assume that the underlying intercept is zero, and
can hence be omitted. In this case, Eε β̂N

+ ,!! !!¼
Pn

i¼1xixπ* ið Þ
!! !! β*

!! !!=
Pn

i¼1x
2
i ≤ β*

!! !!, which indicates that the naive estimator
suffers from an attenuation bias. An illustration is depicted in Figure 2, which also shows a massive degradation in
model fit, with a drop in the coefficient of determination R2 from 0:52 to 0:03.

Inference. The bias of β̂N immediately implies that subsequent inference as for the usual least squares solutions does
not yield valid conclusions. Using a similar reasoning as in that leading to (3), it can be shown that the error variance
σ2* will be over-estimated, which implies that hypothesis tests may suffer from substantially reduced power.

Remedies. The deficiencies of the naive solution β̂N are apparent in light of the preceding discussion. Different miti-
gation strategies pursue the following goals. Adjustment methods aim at bias reduction or the MSE in general. The
choice of the adjustment depends on multiple factors, including the goal of data analysis (e.g., valid inference
vs. predictive performance), the fraction of mismatched data, and the SNR. Several recent papers consider the more
ambitious goal of estimating Π* (permutation recovery), which subsumes adjustment since being able to estimate Π*

with small error or even exactly naturally yields an improved estimator for β*. Mismatch recovery aims at the identifica-
tion of the set i : π* ið Þ≠ i

& '
. Removing all mismatches yields an unbiased estimator, which, however, comes with a loss

in statistical efficiency, since only a subset of the given data is used. In the sequel, we discuss a variety of approaches
that pursue at least one of the aforementioned mitigation strategies under different assumptions.

3.2 | The Lahilri and Larsen estimator

Building on earlier work by Neter et al. (1965), Scheuren and Winkler (1993, 1997), and Winkler (1995), Lahiri and
Larsen (2005) propose an unbiased estimator of β* in Equation (1). Note that we have Y¼Π*Y* with Y* ¼XNβ*þσ*ε.
Suppose that (i) Y* and Π* are conditionally independent given XN , and (ii) E Π*

!!XN
+ ,

¼Q. It follows that

E YjXN½ * ¼E Π*Y*
!!XN

+ ,
¼E Π*

!!XN
+ ,

E Y*
!!XN

+ ,
¼QXNβ*, ð4Þ

where the first identity follows from assumption (i), which is typically, as in Han and Lahiri (2019), referred to as non-
informative linkage or linkage at random assumption in the literature, in analogy to the missing at random mechanism

FIGURE 2 Fictitious example dataset based on the Italian household survey discussed in Tancredi and Liseo (2015). Here, the monthly
household income (in 1000 Euros) in 2010 is regressed on the same quantity in 2008. Left: scatterplot and estimated regression line in the
absence of mismatch error (“oracle”). Middle: scatterplot and regression line (gray) after linking two files containing the records for 2008
and 2010, respectively. Mismatches are represented by Δ, correct matches by • . Right: summary of the linear regression fits corresponding to
the left and middle plot; R2 denotes the coefficient of determination
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in missing data analysis pioneered in Little and Rubin (1987). The relation in (4) immediately implies that least regres-
sion of Y on QXN yields the unbiased estimator

β̂
LL ¼ XΤ

NQ
ΤQXN

$ %(1
XΤ
NQ

ΤY: ð5Þ

Obtaining expressions for the asymptotic covariance of β̂
LL

is more intricate given the dependence of this quantity on
the distribution of Π*. As an intermediate result, Lahiri and Larsen (2005) show how to obtain a consistent estimator of
σ2*. In Lahiri and Larsen (2005) as well as Han and Lahiri (2019), Jackknife and bootstrap estimators are proposed to
assess the variability of β̂

LL
.

An obvious shortcoming of the estimator (5) is that it assumes that Q is known or at least estimable. If Q is esti-
mated, the additional uncertainty needs to be accounted for, and in the complete absence of information about the link-
age process with only the linked file being given, the approach cannot be applied. At the same time, the improvement
over the naive least squares solution can be good to excellent as long as blocking variables are given that partition the
observations into a reasonably number of disjoint bocks, and Π* is assumed to match uniformly at random within each
block. This is confirmed in our empirical study in Section 5 and has been also verified analytically in Wang
et al. (2020).

3.3 | Chambers' estimator

Kim and Chambers (2012) and similarly Chambers and da Silva (2020) propose a method that generalizes the approach
of Lahiri and Larsen (2005). Suppose the records in Fx can be partitioned into B blocks, that is, distinct and non-
overlapping sets such that linkage errors only occur within these blocks. The estimation of the regression parameters in
Chambers and da Silva (2020) and Kim and Chambers (2012) is then based on the following so-called adjusted estimat-
ing equation

H*
adj βð Þ≔

XB

b¼1

Gb Xb,βð Þ Yb(QbXbβð Þ¼ 0, ð6Þ

where Xb and Yb are the row submatrix and subvector associated with the bth block, and accordingly Qb is the
corresponding principal submatrix (bth diagonal block) of Q¼E Π*

!!XN
+ ,

as in the previous subsection, b¼ 1,…,B.
Moreover, Gb Xb,βð Þf gBb¼1 are weighting matrices that may depend on the respective submatrices Xbf gBb¼1 and β.

It is easy to see that the solution to Equation (6), henceforth denoted by β̂
C
, is an unbiased estimator of β*. We note

that in the absence of blocking, Equation (6) reduces to G XN ,βð Þ Y(QXNβð Þ¼ 0; for the particular choice
G XN ,βð Þ¼XΤ

NQ
Τ, we obtain the LL-estimator (5). The choice G XN ,βð Þ¼XΤ

N yields the Chambers' original proposal in
Chambers (2009). Both choices yield linear unbiased, but generally not efficient estimators. An optimal choice of the
weighting matrix would minimize the asymptotic covariance,2 that is, would generate a BLUE (best linear unbiased)
estimator. This yields Gb Xb,βð Þ¼XΤ

bQ
Τ
b Cov YbjXbð Þf g(1, b¼ 1,…,B; since the Cov YbjXbð Þf gBb¼1 are unknown, they need

to be estimated, cf. Chambers and da Silva (2020) and Chambers (2009).
A setting specifically considered in Chambers and da Silva (2020) and Kim and Chambers (2012) is termed exchangeable

linkage error (ELE), in which the off-diagonal elements of Qb are constant (and hence all diagonal elements are equal to a
complementary constant). Novel insights into the ELE setting are recently presented in Zhang and Tuoto (2020).

Han and Lahiri (2019) extend the approach pioneered by Chambers to a primary data analysis setting in which regres-
sion and record linkage are carried out simultaneously. In order to incorporate uncertainty resulting from the linkage pro-
cess, a jackknife method is employed to estimate bias, variance, and mean squared error of the proposed estimators.

3.4 | Bayesian approaches

In addition to the frequentist methods considered herein, there is also a significant line of research concerning Bayesian
approaches to the linear regression problem with linked data files, a selection of which is reviewed below.

6 of 19 WANG ET AL.
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Tancredi and Liseo (2015) propose an approach in which the observed matching variables in two files, denoted by
matrices Vy and Vx are possibly faulty versions of their true but latent matrices V*

y and V*
x respectively. The main

parameter that determines the true linkage is the n#N matching matrix Π* with Π*
ij ¼ 1 if i, jð Þ is a match and 0 if i, jð Þ

is a non-match. The main ingredients of this Bayesian approach are specifications for the distributions p VxjV*
x

$ %
,

p Vy
!!V*

y

" #
, p V*

x,V
*
y

!!!Π*
" #

, p X*
N

!!Π*$ %
for the distribution of the true but unobserved matrix of covariates X*

N , and finally
a prior p Π*$ %

for the matching matrix Π*. The approach then proceeds via posterior simulation by means of a
Metropolis–Hastings algorithm that updates Π* one-match at a time at each move. Whenever a move is accepted,
the values of the variables corresponding to that match are updated by drawing from the specified distributions. In the
end, the regression parameters β and σ2 are updated using Equation (1). Steorts et al. (2018) propose an extension of
this approach in which records are linked based on a random partition model.

Another influential Bayesian method is that of Gutman et al. (2013) (cf. also Section 3.7). In Gutman et al. (2013),
the matching variables are assumed to be error-free, and the resulting blocking serves as a key element in order to
reduce the number of paired comparisons. Dalzell and Reiter (2018) extend the approach of Gutman et al. (2013)
to allow faulty matching variables in the file containing the covariates. A brief summary of their approach is as follows.
For each block b, Fx and Fy are partitioned into corresponding sub-files Fx,b and Fy,b, b¼ 1,…,B. By adding dummy
records to either Fx,b or Fy,b, we can always assume that both are of the same size. When a record in Fx,b or Fy,b is
linked to a dummy record, we assume that the corresponding values for the response or the covariates are missing at
random. The matching matrix Π*

b associated with Fx,b and Fy,b is hence a permutation matrix, and the matching matrix
Π* for Fx and Fy is determined by Π*

1,…,Π*
B

$ %
. The approach proceeds by specifying distributions p VxjV*

x

$ %
,

p V*
x,Vy

!!Π*
$ %

, and p X*
N

!!Π*
$ %

; note that Vy is assumed not to be faulty, hence inclusion of V*
y is not needed. Each of the

Π*
b

& 'B
b¼1 follows a uniform prior. MCMC sampling is used to generate draws from the posterior distribution of Π*, and

the results are then used to estimate the regression parameter.

3.5 | “Broken Sample” perspective

The “Broken Sample” problem roots in a series of works by DeGroot and Goel such as DeGroot et al. (1971), DeGroot
and Goel (1976, 1980), Goel (1975), and Goel and Ramalingam (1987). Let Px,y denote the joint distribution of the ran-
dom variables x and y, and suppose interest concerns a functional θ* of Px,y such as, for example, the covariance
Σxy ¼Cov x,yð Þ. However, in order to perform this task, the data analyst is only given two separate samples Fx ¼ xif gni¼1
and Fy ¼ yif gni¼1 such that xπ* ið Þ,yi

$ %& 'n
i¼1 are i.i.d. from Px,y, with π* being an unknown permutation of 1,…,nf g. This

setting is obviously closely related to that outlined at the beginning of Section 3, essentially corresponding to the special
case N ¼n and the complete absence of information about which of the pairs xi,yj

" #

i≤ j
are likely to be matches. In

fact, in the “Broken Sample” the corresponding merged file Fx & y ¼ xi,yið Þf gni¼1 obtained by linking matching indices may
not contain a single correct match since the order of the samples in Fx may be arbitrarily shuffled relative to the order in Fy.

Perhaps somewhat surprisingly, the “Broken Sample” problem has recently experienced a revival in the engineering
and machine learning literature under terms such as “Unlabeled Sensing” in Pananjady et al. (2018), Haghighatshoar
and Caire (2017), Tsakiris (2018) or “Learning from Shuffled Data” in Hsu et al. (2017), Abid et al. (2017), Pananjady
et al. (2017), Slawski et al. (2019), Rigollet and Weed (2019), and Carpentier and Schlüter (2016), driven by specific
applications as well as as by computational advances. The hope is that some of the developments in those fields turn
out to be fruitful for the problem surveyed in this overview article.

Inference. In the original formulation of the “Broken Sample” problem, inference concerns θ* while π* is treated as
a nuisance parameter. Unsurprisingly, even basic estimation problems become rather challenging in comparison to
their conventional counterparts. In addition, the unknown permutation π* may impose substantial computational
challenges given the combinatorial nature of this quantity. The linear regression problem under the “Broken
Sample” setting, which has been dubbed “Unlabeled Sensing” in Haghighatshoar and Caire (2017) in the area
of signal processing, has been subject to extensive study during recent years, such as in Pananjady
et al. (2018), Haghighatshoar and Caire (2017), Hsu et al. (2017), and Abid et al. (2017). The associated setting
offers immediate insights into the principal challenges. Along this line, consider the modified least squares
problem
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min
β ∈ Rd,Π ∈ P nð Þ

Y(ΠXβk k22 ¼ min
Π ∈ P nð Þ

P ⊥
X ΠY

(( ((2
2, ð7Þ

where Y¼ yið Þni¼1, the rows of X are given by xΤi
& 'n

i¼1, P nð Þ denotes the set of n-by-n permutation matrices, and P ⊥
X

denotes the projection on the orthogonal complement of the subspace spanned by the columns of X. For ease of exposition,
we suppose for (the remainder of this section) that both Y and X are centered so that the intercept can be dropped.

The identity in (7) shows that given the permutation Π̂ that minimizes the right-hand side, the corresponding solu-
tion β̂¼ β̂ Π̂

$ %
can be obtained by least squares regression of Y on Π̂X. At the same time, the problem on the right-hand

side of (7) is a specific instance of a quadratic assignment problem—a class of optimization problems notorious for their com-
putational hardness that includes, among others, the famous traveling salesman and graph isomorphism problems (see
Burkard et al., 2009). Indeed, it was established recently in Pananjady et al. (2018) that (7) is in general NP-hard for d>1.

For d¼ 1, problem (7) can be solved in closed form. It is shown in Pananjady et al. (2018) that the minimizing per-
mutation matrix is characterized by the condition

Y,Π̂X
- .!! !!¼max

Xn

i¼1

x ið Þy ið Þ,
Xn

i¼1

x ið Þy n(ið Þ

!!!!!

!!!!!

( )

, ð8Þ

where the subscript ið Þ refers to the ith order statistic, 1≤ i≤n, for example, x 1ð Þ ≤ x 2ð Þ ≤ & & &≤ x nð Þ. Equation (8) implies
that Π̂ can be obtained by sorting xif gni¼1 and yif gni¼1. The corresponding solution for the regression coefficient is given
by β̂¼ Y,Π̂X

- .
= Xk k22. It is shown in Abid et al. (2017) that β̂ suffers from an amplification bias: under model (7), it

holds that β̂! sign β*
$ % ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β*
$ %2þσ2*

q
, and the corresponding estimator for the error variance σ2* converges to zero as

n!∞. This can be understood as a manifestation of a broader over-fitting phenomenon noted in Hsu et al. (2017), and
Slawski and Ben-David (2019) that affects the statistical properties of the solution of (7), independent of the computa-
tional challenge. Subsequent discussion hence focuses on strategies addressing at least one of the two major limitations
of the “Broken Sample” formulation (7).

3.6 | Approaches for sparse and partial shuffling

Solving “Broken Sample” problems is somewhat too ambitious since this amounts to performing record linkage and
inference for an unknown parameter simultaneously, without any additional information on potential matches. In
other words, the “Broken Sample” problem can be seen as an extreme instance of post-linkage data analysis in which
(almost) all of the xi,yið Þ are mismatched; in fact, it is well known that when matching pairs at random, the number of
correct matches approximately follows a Poisson distribution with expectation one (see Diaconis, 1988), that is, the frac-
tion of correct matches scales as 1=n. By contrast, linked files encountered in practice typically exhibit low to moderate
mismatch rates given that record linkage is performed in an informed fashion (i.e., based on matching variables that
pinpoint likely matches) rather than “blindly.” This suggests that a relaxed version of the “Broken Sample” problem in
which the underlying permutation π* is constrained to move a bounded fraction of indices 0≤ α* <1, that is,
i : π* ið Þ≠ i

& '!! !!≤ α*n. In the sequel, we distinguish between two regimes for α*, which we refer to sparse and partial
shuffling, respectively. The former refers to the case in which α* is small, say, less than 0:2, and certainly less than 0:5,
that is, mismatches are the exception rather than the rule. Partial shuffling is less restrictive, requiring only that α* is bounded
away from one. Intuitively, consistent estimation should still be possible in this regime as long as the correct matches
can be separated from mismatches, and the latter can be eliminated when performing the statistical analysis of interest.

Sparse shuffling. Consider ξ* ¼ In(Π*$ %
Xβ*. The linear regression model (7) can then be rewritten as

Y¼Xβ*þ ξ*þσ*ε, which in turn suggests the penalized least squares optimization problem

min
β ∈Rd,ξ ∈ Rn

Y(Xβ(ξk k22þλ ξk k1, ð9Þ

8 of 19 WANG ET AL.
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where λ>0 is a tuning parameter. Adopting the “lasso trick” of Tibshirani (1996), the ℓ1-penalty is used to promote
sparsity in ξ in order to account for the fact that ξ* is sparse with at most α* &n nonzero entries. It is shown in She and
Owen (2012) that (9) is equivalent robust M-estimation with the Huber loss in Huber (1964). This connection can be
used, as in She and Owen (2012), Antoniadis (2007), and Loh (2018) for example, for the proper calibration of λ via con-
comitant scale estimation. Let β̂

rob
denote the minimizer of (9). It is shown in Slawski and Ben-David (2019) that under

regularity conditions, β̂
rob(β*

(((
(((
2

2
≤Cσ2* α*þd=nð Þ for some constant C>0 with high probability3 provided α* is suffi-

ciently small. Comparison with the corresponding MSE bound (2) and (3) for the naive estimator indicates that the

amount fof improvement achieved by β̂
rob

increases with the SNR¼ β*
(( ((2

2=σ
2
*.

Partial shuffling. Consider model (7) under the additional assumption of Gaussian errors, that is, εi +N 0,1ð Þ,
1≤ i≤n, and introduce latent mismatch indicators zi ¼ I π* ið Þ≠ ið Þ, 1≤ i≤n.

Assuming

• Independence between mismatched response and predictors, that is, ,
• Homogeneous mismatch probability, that is, P zi ¼ 1ð Þ¼ α* independent of i, the conditional distribution of yi given

xi is given by the two-component mixture model

yi j xi + 1(α*ð ÞN xΤi β
*,σ2*

$ %
þα*Fy, 1≤ i≤n, ð10Þ

where Fy represents the marginal distribution of the yif gni¼1. The mixture representation (10) suggests the “likelihood”

L β,α,σ2
$ %

¼
Yn

i¼1

1(αð Þ1
σ
ϕ

yi(xΤi β
σ

0 1
þαf y yið Þ

) *
, ð11Þ

where ϕ denotes the standard normal density and f y denotes the density associated with Fy. Since f y is unknown, one
may either follow a plug-in approach in which f y is estimated in a parametric or non-parametric fashion from the
yif gni¼1, or estimate it within (11) noting that marginally, the yif gni¼1 are generated by the Gaussian location mixture

f y yð Þ¼
Xn

i¼1

1
n

1
σ*

ϕ
y(μi
σ*

0 1
, μi ¼ xΤi β

*, 1≤ i≤n:

It is important to realize that (11) does not represent a proper likelihood since the joint distribution of the yijxi,
1≤ i≤n, is not given by product of the marginal distributions (10). Nevertheless, the “likelihood” (11) falls within the
framework of composite- or pseudo-likelihood of Lindsay (1988) and Varin et al. (2011). Theory for this framework
asserts that the minimizer of (11) is

ffiffiffi
n

p
-consistent and asymptotic normal (albeit generally not efficient), and that the

asymptotic covariance matrix can be estimated consistently as well.
Compared to (9), the pseudo-likelihood approach (10) has several advantages. First, it achieves faster estimation

rates (see below for details). Second, it yields consistent estimators of the error variance and the mismatch rate α*, and
inference for the parameters can be performed based on the expression for the asymptotic covariance matrix. Third, the
fraction of mismatches that can be tolerated is significantly higher; at least in theory, it can be any constant fraction less
than one. At the same time, the approach (10) has the following limitations: (1) unlike (9), optimization of the pseudo-
likelihood is a non-convex optimization problem, and heuristics such as the EM algorithm as proposed in Slawski,
Diao, and Ben-David (2020) are not guaranteed to deliver the global optimum, but may return spurious local optima
depending on the initialization; (2) the assumptions preceding (10) are somewhat restrictive, in particular the first bul-
let, since mismatches typically involve xi's that are correlated, where the correlation is induced by close agreement on
the matching variables used for record linkage.

Refinements. The approaches (9) and (10) can be built on to perform mismatch recovery and permutation recovery
(cf. Section 3.5). The former refers to identification of the set S* ¼ i : π* ið Þ≠ i

& '
. After the identification of S*, the data

analyst can simply obtain a linear regression fit based on the remaining data xi,yið Þf gi=2S* . The MSE of this estimator eβ
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is given by eβ(β*
(((

(((
2

2
≤ 1(α*ð Þ(1σ2*d=n, which is the limit of what can be achieved by the pseudo-likelihood approach

(10) and which can be significantly lower than the MSE bound for β̂
rob

. Note that in order to achieve a comparable
MSE rate of σ2*d=n, it suffices to identify a superset of S*. Under suitable conditions, this can be achieved by post-
processing the output of (9) and (10). Specifically, for (9) we consider the minimizer ξ̂ and compare its entries to σ*
respectively an estimate thereof: if ξ̂i

!! !! exceeds a certain multiple of σ*, consider the corresponding pair xi,yið Þ a poten-
tial mismatch. Alternatively, in order to circumvent the explicit selection of a threshold, one may sort the ξ̂i

!! !!& 'n

i¼1 and
remove the pairs corresponding to the α &n largest values, where α is a (guessed) upper bound on α*. Similar procedures
can be used in conjunction with (10) by considering plug-in estimates of the posterior mismatch probabilities

P z¼ 1j xi,yið Þð Þ¼
α*f y yið Þ

1(αð Þ 1
σ*
ϕ yi(xΤi β

*

σ*

" #
þα*f y yið Þ

, 1≤ i≤n:

For the purpose of mismatch recovery, all unknown quantities are substituted by their estimates.
Regarding permutation recovery, a crucial observation from a computational viewpoint is the following:

min
Π ∈ P nð Þ

Y(ΠXβk k22 ¼ min
Π ∈ P nð Þ

Y,ΠXβh iþ c¼ min
Π ∈ P nð Þ

tr ΠXβYΤ$ %
þ c¼ min

Π ∈ℬ nð Þ
tr ΠCð Þþ c, ð12Þ

for any fixed β, where c¼ Yk k22þ ΠXβk k22 ¼ Yk k22þ Xβk k22 does not depend on Π, C¼XβYΤ, and ℬ nð Þ is the convex
hull of P nð Þ, known as the set of doubly stochastic matrices or the Birkhoff polytope. The right-hand side of (12) is an
instance of a linear assignment problem (LAP) that are specific linear programs, and hence can be solved efficiently via
various algorithms in Burkard et al. (2009). In particular, in virtue the rightmost identity in (12), there are at least one
integral minimizer (i.e., in this case a permutation matrix) of the linear program. That minimizer can be obtained by
specialized algorithms such as the Hungarian algorithm in Kuhn (1955) or the Auction algorithm in Bertsekas and Cas-
tanon (1992). The principal implication of (12) is a computationally tractable two-stage estimation approach: in the first
stage, an estimator for the regression parameter is obtained, for example, from (9) or (10); in the second stage, that estimator
is substituted for β in (12) to obtain an estimate of Π*. As mentioned in Section 3.5 that estimate generally suffers from
an underlying overfitting phenomenon, which can be curbed by imposing suitable restrictions on Π such as a bound on
the number of indices i : π* ið Þ≠ i

& '
that can be moved, or block structure resulting from blocking variables used during

record linkage. We refer to section 2.4 in Slawski and Ben-David (2019) for more details on two-stage estimation.

3.7 | EM algorithm and data augmentation

One natural and hence also historically early take on the “Broken Sample problem” is the treatment as a missing data
problem, with the unknown permutation Π* representing missing data. This perspective prompts the use of a tradi-
tional tool for handling missing data: the expectation–maximization (EM) algorithm. Under the assumption of normal
errors, that is, εi +N 0,1ð Þ, 1≤ i≤n, the complete data negative log-likelihood is given by

ℓC β,σ2
!!X,Y,Π*$ %

/ Y(Π*Xβ
(( ((2

2=σ
2þn log σ2

$ %
¼ (2 Y,Π*Xβ

- .
þ Xβk k22

& '
=σ2þn log σ2

$ %
þ Yk k22: ð13Þ

Given initial iterates β̂ 0ð Þ and σ̂20ð Þ, the E-step with respect to Π* takes the form

Π 0ð Þ≔E Π*
!!X,Y, β̂ 0ð Þ, σ̂

2
0ð Þ

h i
¼

X

Π ∈ P nð Þ
Π &P Π*¼ΠjX,Y, β̂ 0ð Þ, σ̂

2
0ð Þ

" #
,

where P Π* ¼ΠjX,Y, β̂ 0ð Þ, σ̂
2
0ð Þ

" #
¼ exp (

Y(ΠXβ̂ 0ð Þ

(((
(((
2

2

2σ̂20ð Þ

0

B@

1

CA=
X

Π0 ∈ P nð Þ
exp (

Y(Π0Xβ̂ 0ð Þ

(((
(((k22

2σ̂20ð Þ

0

@

1

A

2

4

3

5:
ð14Þ
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Substituting Π* in (13) by Π 0ð Þ gives rise to the expected complete data negative log-likelihood whose minimization, that
is, the M-step, amounts to least squares regression of ΠΤ

0ð ÞY on X, which yields new iterates β̂ 1ð Þ and σ̂21ð Þ. Clearly, the E-
step (14) cannot be performed in practice unless n is tiny. Wu (1998) proposes to approximate the expectation via a spe-
cific MCMC sampling scheme known as the Fisher–Yates shuffling algorithm. This approach has been rediscovered
recently in Abid and Zou (2018), and has been developed further in Gutman et al. (2013) (cf. Section 3.4). That work
builds on the connection between the EM algorithm and data augmentation in Tanner and Wong (1987), which is
closely rated to Gibbs sampling. The scheme can be summarized as follows.

Augmentation step : sample Π jð Þ + p Π*
!!Y,X,β kð Þ,σ

2
kð Þ

" #
, j¼ 1,…,M, ð15Þ

Posterior step : sample β kþ1ð Þ +
1
M

XM

j¼1

p βjΠ jð Þ,Y,X,σ2 kð Þ

" #
, and sample σ2kþ1ð Þ +

1
M

XM

j¼1

p σ2
!!Π jð Þ,Y,X,β kð Þ

" #
, ð16Þ

where p & j &ð Þ is used generically to denote conditional distributions, and the subscript kð Þ refers to the kth iterate (sam-
ple). The augmentation step can be realized by adopting the same sampling algorithm that is used for approximating
the E-step (14), and the posterior step is realized by noting that p βj &ð Þ and p σ2j &ð Þ are Gaussian and inverse-χ2,
respectively.

The framework in Gutman et al. (2013) assumes that Π* is block-structured given blocking variables used for record
linkage, which yields considerable reductions in complexity. In this situation, the E-step in (14) as well as the above
augmentation step can be performed independently block-by-block. Moreover, the posterior distribution p Π*j &

$ %
can

be sampled from exactly without the need to resort to MCMC sampling. As mentioned in Section 3.4, Dalzell and
Reiter (2018), in a follow-up work, suggest an important refinement that addresses the possibility of errors in the block-
ing variables and hence incorrect block partitioning.

4 | EXTENSIONS

4.1 | Multivariate linear regression with linked datasets

There is specific motivation to consider the “Broken Sample” problem in regression with multiple response variables.
Intuitively, the hope is that multidimensional response will facilitate the identification of mismatches and permutation
recovery. The idea is that for a single response variable, the discrepancy between expected response given the response
and the observed must be quite substantial in order to be reliably detected, whereas for multiple responses, even small
discrepancies might add up and are thus more easily to detect. This intuition is confirmed and made precise in Zhang
et al. (2019), Pananjady et al. (2017), and Slawski, Ben-David, and Li (2020). While all the aforementioned practical
approaches to (simplified versions) of the “Broken Sample problem” can potentially benefit considerably from the avail-
ability of multiple response variables, we will herein focus on a generalization of the penalized least squares approach
(9) to showcase the central insights. The “Broken Sample” setting in the context of multivariate linear regression in
matrix form can be written as

Y¼Π*XB*þEΣ1=2
* , ð17Þ

where Y is an n-by-m matrix whose rows are given by yΤi
& 'n

i¼1, B
*∈Rd#m is the matrix of regression coefficients, the

rows of E are independent zero-mean, isotropic errors, and Σ*∈Rm#m is positive definite. To keep our exposition sim-
ple, we henceforth assume that Σ¼ σ2*Im, for σ

2
* >0. The approach (9) can be generalized seamlessly to the multivariate

response setting. Defining Ξ* ¼ In(Π*
$ %

XB*, and re-writing (17) accordingly, prompts the penalized least squares
problem

WANG ET AL. 11 of 19
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min
B ∈Rd#m ,Ξ ∈Rn#m

Y(XB(Ξk k2Fþλ
Xn

i¼1

ΞΤei
(( ((

2, ð18Þ

where &k kF denotes the Frobenius norm, and eif gni¼1 denotes the canonical basis of Rn. The penalty in (18) is known as
group lasso- or ℓ1(ℓ2 penalty in Yuan and Lin (2006). It promotes row-wise sparsity of Ξ rather than entry-wise spar-
sity by leveraging information across multiple columns (responses). It is shown in Slawski, Ben-David, and Li (2020)
that (18) indeed improves over m separate applications of the formulation (9) for a single response variable. The
improvements that can be achieved via multiple responses can be even more dramatic as far as mismatch recovery and
permutation recovery based on the solution of (18) in a two-stage fashion (cf. Equation (12) are concerned): it is shown
in Pananjady et al. (2017), Zhang et al. (2019), and Slawski, Ben-David, and Li (2020) that exact permutation recovery is
achievable under considerably relaxed conditions on the SNR in comparison to the univariate response case in Pan-
anjady et al. (2018) and Slawski and Ben-David (2019). This result hinges crucially on the so-called stable rank of the
matrix B*, a measure that quantifies the effective number of linearly independent columns in B*, which makes sense
since permutation recovery in the presence of noise cannot be expected to become easier if the different columns in Y
represent redundant information.

4.2 | Generalized linear models with linked datasets

Most of the methodology discussed herein is also applicable to the broader class of generalized linear models (GLMs,
McCullagh & Nelder, 1989) in which the distribution of the response belongs to an exponential family. The methods of
Lahiri & Larsen (cf. Section 3.2) and Chambers (cf. Section 3.3) can be used by defining suitable unbiased estimating
equations in alignment with the underlying GLM (Chambers, 2009; Chambers & da Silva, 2020; Han & Lahiri, 2019).
The approaches for sparse and partial shuffling outlined in Section 3.6 can be modified: for the penalized least squares
formulation (9), the ξif gni¼1 can be absorbed into the linear predictor, and the least squares objective is replaced by the
negative log-likelihood of the GLM under consideration in Wang et al. (2020); for the pseudo-likelihood method (11),
the Gaussian density needs to be replaced by the corresponding density of the exponential family response. Finally, the
approaches hinging on the missing data perspective in Section 3.7 can be adapted similarly: the EM algorithm can still
be applied since the complete data likelihood associated with GLMs can be expressed as a linear function in Π*.

4.3 | Other extensions

In this survey, we have focused on linear regression or closely related settings. A recent paper Shi et al. (2018) considers
the “Broken Sample” setting for spherical regression, a specific instance of multivariate regression in which both the
predictors and responses are related by a unitary transformation on the sphere in Rm; this setting has interesting appli-
cations in natural language processing. Thus far, not much work has been done beyond (generalized) linear regression
models. There is an evolving line of research on isotonic regression (Balabdoui et al., 2020; Carpentier & Schlüter, 2016;
Rigollet & Weed, 2019), even though the setting in those references concerns the case of complete shuffling of predic-
tors and responses, which, as mentioned before, is predominantly of theoretical interest rather than being applicable in
typical record linkage applications. The scarcity of work on more flexible (semi- or nonparametric) regression models
naturally suggests directions of future research, with the hope that some of the approaches discussed herein can be
built on.

5 | REAL DATA ANALYSIS

We consider three benchmark datasets for model (1) given in Table 1. The regression model used in here could be
found in Tancredi and Liseo (2015) for ISD and Slawski, Diao, and Ben-David (2020) for END and CPS. All of them
contain matching variables which could be used to generate blocks of records that have agreements on matching vari-
ables. We consider the following three settings for real data analysis.
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Sparse shuffling (estimation of β*). For each dataset, we consider multiple independent random permutations for
each value of α* ¼ k=n. Note that we are not considering any given blocking information in the datasets. The random
permutation is generated by shuffling α* fraction of indices in the data. We assume that the fraction of mismatches α*
varies from 0.15 to 0.4 in steps of 0.05. The following approaches are compared.

naive, oracle. Plain least squares and estimation of β* with knowledge of Π*, respectively.
robust. β* is estimated according to (9) based on the robustfit function in MATLAB with the argument wfun =
‘huber’ in light of the connection between (9) and Huber regression made in She and Owen (2012).
mixture. β* is given by the pseudo-likelihood approach (10) with initial solution of β* given by robust method.
EM. The permutation is initialized as the identity, and the number of MCMC iterations per EM iteration is set to 4000
for ISD, CPS and 80,000 for END given a “burn-in period” of half of MCMC iterations of their counterparts. The EM
iteration is set to be 200.
Lahiri and Larsen (LL), Chambers (C). The approach in Sections 3.2 and 3.3 with Q¼ 1(α*( α*

n(1

$ %
Inþ α*

n(11n1
Τ
n .

For evaluation of the approaches across experimental configurations, we mainly look at the relative estimation error

(REE) and R2. REE is defined by β̂
est( β̂

oracle
(((

(((
2
= β̂

oracle
(((

(((
2
, where β̂

est
denotes corresponding estimator given by specific

approaches. Note that REE equals zero for β̂
est ¼ β̂

oracle
, thus REE can be interpreted as the excess error relative to the

oracle estimator. The coefficient of determination R2 is computed as 1( Y*(Xβ̂
est

(((
(((
2

2
= Y*(Y*
(((

(((
2

2
where

Y* ¼
Pn

i¼1y
*
i =n. Higher values of R2 correspond to better performance.

As shown in Figure 3, some of results are not sensitive to the fraction of mismatches k=n. For the ISD and END
data, the EM and mixture approaches do not perform worse as the fraction of mismatches increasess. As discussed in
Sections 3.1 and 3.6, the estimation errors of naive and robust are proportional to α* ¼ k=n which is confirmed by the
study presented here.

Blocking (estimation of β*). Depending on the application, matching variables or additional information about the
linkage process are provided. In this case, the analyst will create blocks of records to reduce the burden for record link-
age for the whole dataset. Mismatches or permutation of records will only occur within blocks of records defined by
agreement on the matching variables, that is, mismatches will not involve pairs from different blocks. It is thus natural
to consider the case in which Π* is a “block permutation.” Formally, let P Gð Þ be the set of block permutations induced
by the resulting index subsets G¼ Gbf gBb¼1 and [ B

b¼1Gb ¼ 1,…,nf g. Denote Π*
b the permutation on the index subset Gb,

b¼ 1,…,B, and accordingly Π* ¼ diag Π*
b

& 'B
b¼1. The latter is generated by randomly permuting records within each block

sharing the same quasi-identifier given in each datasets. For example, for the ISD data, we only consider permutations
that permute indices within blocks defined by entities having the same value on the Sex, Year of birth, Marital
status, Employment status, and Working sector. We consider 20 independent replications of Π*. While met-
rics for evaluating the estimation of β* is the same as the one given in sparse shuffling, the approaches discussed here
differ from from those described under sparse shuffling in the sense that they are equipped with the knowledge about
the underlying blocks.

EM. EM algorithm approach with MCMC sampler for (14) in block-wise fashion. Each block permutation is initial-
ized as the identity, and the number of MCMC iterations per EM iteration and per block is set to 2000 given a “burn-in
period” of 500. The number of EM iterations is set as 200.

DA. Data augmentation approach given in Section 3.7 with MCMC sampler for the augmentation step (15) in block-
wise fashion. The regression parameter is estimated by the mean of posterior distribution of β*. Each block permutation

TABLE 1 Overview of datasets considered in this section

Dataset Abbreviation n d R2 σ2* B α* ¼ k=n

Italian Survey data ISD 2211 2 0.52 0.38 1301 0.41

El Nino data END 93,935 5 0.91 0.26 5029 0.95

CPS wage data CPS 534 11 0.70 0.04 465 0.12

Note: R2 and σ2* here refer to the case in the absence of mismatches. B denotes number of blocks. σ* represents the average fraction of mismatches given
random block permutation.
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is initialized as the identity, and the number of MCMC iterations per DA iteration is set to 1000. The overall number of
iterations is set to 200, and the number of samples for augmentation step M is set to be 25.

Lahiri and Larsen (LL), Chambers (C). The approach in Sections 3.2 and 3.3 with Q¼ diag Qbf gBb¼1, Qb ¼ 1
nb
1nb1

Τ
nb ,

and
PB

b¼1nb ¼n.
As can be seen from Table 2, the results are much different between with and without knowledge of blocks. The

approaches equipped with knowledge of blocks yield significant improvement over those without knowledge of blocks
as indicated by lower REE and higher R2. Among the approaches without knowledge of blocks, robust, DA, and mixture
perform the best. Among the methods with knowledge of blocks, Lahiri and Larsen (LL) is consistently better than the
other approaches, which make sense since it yields an unbiased estimator of β* given the matrix Q.
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FIGURE 3 Comparison of approaches without knowledge of blocks. Each maker corresponds to different approaches given above. Each
point in the graphs represents an average of the given metric over independent replications. The number of replications equals 100 for both
ISD and CPS and 20 for END given the large size of the dataset

TABLE 2 Comparison of approaches with and without knowledge of blocks

Methods without knowledge of blocking Methods with knowledge of blocking

Data Metric Naive Robust Mixture EM DA EM DA LL C

ISD REE 0.193 0.028 0.538 0.566 0.260 0.016 0.029 0.062 0.101

R2 0.518 0.522 0.477 0.473 0.513 0.524 0.524 0.523 0.522

END REE 0.985 0.800 0.278 0.761 0.171 0.433 0.272 0.029 0.303

R2 0.856 0.864 0.890 0.872 0.871 0.904 0.903 0.906 0.904

CPS REE 0.124 0.106 0.036 0.516 0.323 0.023 0.036 0.016 0.057

R2 0.687 0.691 0.698 0.474 0.612 0.699 0.699 0.699 0.697

Note: The bold numbers are either the lowest REE or highest R2 in each rows for corresponding estimator. Each cell is the average metric over 20 replications.
REE is defined by

(((β̂
est( β̂

oracle
(((
2
=
(((β̂

oracle
(((
2
and R2 is defined by 1(

(((Y ∗ (Xβ̂
est
(((
2

2
=
(((Y ∗ ( !Y ∗

(((
2

2
where !Y ∗ ¼

Pn

i¼1
y ∗
i =n.
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Blocking (estimation of Π*). As discussed in Section 3.6 under “refinements”, estimation of Π* can be done in a two-
stage fashion. After obtaining an estimator of β*, we can estimate Π* by solving a specific instance of a LAP. In this par-
agraph, we evaluate the performance of this approach. Formally, we consider the following optimization problem:

min
Π ∈ P Gð Þ

ΠΤY(Xβ̂
est

(((
(((
2

2
, ð19Þ

where we recall that P Gð Þ is defined as the set of block permutations induced by the collection of index subsets G. For
the β̂

est
in (19), we use the estimator with knowledge of blocks achieving the smallest REE for each of the datasets

according to Table 2. As shown in Figure 4, a substantial reduction in mismatch error is achieved, that is, Π̂Y is visibly
closer to Y* than Y (top row vs. middle row). The refitting of the regression model with corrected response Π̂Y indicates
that the resulting fitted values align well with the fitted values obtained from a mismatch-free dataset.

FIGURE 4 Comparison of two-stage approach for estimation of Π* for corresponding data in Table 1. Top row: fitted values based on
“mismatch-free” data X,Y*$ %

vs. fitted values based on data with mismatches X,Yð Þ. Middle row: fitted values based on “mismatch-free”
data X,Y*$ %

vs. fitted values based on the corrected data X,Π̂Y
$ %

with Π̂ denoting the solution of optimization problem (19). Bottom row: Q–
Q plots of the absolute differences between the true responses and their fitted values based on the oracle estimator y*i (xΤi β̂

oracle
!!!

!!!
n on

i¼1
vs. the absolute mismatch errors in the merged file y*i (yi

!! !!& 'n
i¼1 (dots) and their counterparts y*i ( yπ̂ ið Þ

!!!
!!!

n on

i¼1
after correction (triangles)

based on (19). The idea underlying the bottom plots is that after correction, the remaining mismatch error is supposed to exhibit a similar
distribution as the noise of the regression model, here approximated by the distribution of the residuals associated with the oracle estimator
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6 | CLOSING REMARKS

In this survey article, we reviewed the impact of mismatch error on regression analysis when the predictor and response
variables are originally contained in two separate files that are combined via record linkage. Several types of approaches
that aim to mitigate the effect of potential errors in that process were discussed, with an emphasis on recent advances
concerning the “Broken Sample” paradigm. In our opinion, the latter has an important benefit: by casting the problem
explicitly in terms of an unknown permutation, the problem at hand is addressed more directly compared to
approaches that primarily aim at unbiasedness or at least bias correction when averaging with respect to the random-
ness of the underlying permutation. In addition, recent computational and statistical advances have rendered the “Bro-
ken Sample” paradigm applicable in a much broader range of situations, and there is considerably more research under
way, not only in statistics, but also in signal processing and machine learning.

Regarding the current state of research, it is worth pointing out that at this point, there is not a single approach that
performs universally well independent of key parameters such as the fraction of mismatches, SNR, the amount of avail-
able information about the linkage process, and the goals of the data analyst. It is therefore important to keep those fac-
tors in mind when deciding on the type of mitigation method to apply.

Lastly, despite its importance and scope, the topic discussed herein can be seen as part of a significantly larger area
evolving around post-linkage data analysis, that is, the analysis of linked files with an awareness for potential linkage
errors. So far, corrective methods were mainly developed for regression, but needless to say, there is a whole array of
multivariate data analysis techniques (PCA, cluster analysis, etc.) that are vulnerable to linkage error and thus might
benefit from the use of suitable adjustment methods.

ACKNOWLEDGMENT
The first and the last author were partially supported by the NSF grant CCF-1849876.

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

AUTHOR CONTRIBUTIONS
Zhenbang Wang: Conceptualization (equal); data curation (equal); formal analysis (lead); investigation (equal); meth-
odology (equal); resources (equal); software (equal); validation (equal); visualization (equal); writing – original draft
(supporting); writing – review and editing (supporting). Emanuel Ben-David: Conceptualization (equal); investigation
(supporting); methodology (supporting); project administration (equal); resources (supporting); supervision
(supporting); writing – original draft (supporting); writing – review and editing (supporting). Diao Guoqing: Conceptu-
alization (equal); methodology (equal); supervision (supporting); visualization (equal); writing – review and editing
(supporting). Martin Slawski: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation
(equal); methodology (lead); supervision (lead); validation (supporting); visualization (supporting); writing – original
draft (supporting); writing – review and editing (supporting).

ORCID
Emanuel Ben-David https://orcid.org/0000-0002-4230-4497

ENDNOTES
1 This assumptions is mild since it is fulfilled as long as any row sub-matrix of XN with n rows has rank at least d.
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APPENDIX A.: DERIVATION OF EQUATION (2) AND EQUATION (3)

Consider Equation (2). We have
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where in (i), we substitute the model equation (1); in (ii), we expand the square and use the fact that the resulting
cross-term equals to zero since ε is zero-mean and is independent of X and Π*; in (iii), we expand the quadratic form in
terms of a trace; in (iv), we use linearity of expectation; in (v), we use the fact that Π*ε has i.i.d. unit variance entries,
and the shuffling property of the trace.

Regarding Equation (3), we have that
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In (i), we use that Avk k22 ≤ Ak k22 vk k22 for a matrix A and a vector v, where Ak k2 denotes the spectral norm of A; in (ii),
we use that XΤX=n

$ %(1XΤ=
ffiffiffi
n

p
is the pseudo-inverse of X=

ffiffiffi
n

p
; in (iii), we use the Cauchy-Schwarz inequality. The last

inequality follows from the fact that the number of mismatches 1≤ i≤n : π* ið Þ≠ i
& '!! !! is bounded by k.
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