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ABSTRACT
Recently, there has been signi!cant interest in linear regression in the situation where predictors and
responses are not observed in matching pairs corresponding to the same statistical unit as a consequence
of separate data collection and uncertainty in data integration. Mismatched pairs can considerably impact
the model !t and disrupt the estimation of regression parameters. In this article, we present a method to
adjust for such mismatches under “partial shu"ing” in which a su#ciently large fraction of (predictors,
response)-pairs are observed in their correct correspondence. The proposed approach is based on a
pseudo-likelihood in which each term takes the form of a two-component mixture density. expectation-
maximization schemes are proposed for optimization, which (i) scale favorably in the number of samples,
and (ii) achieve excellent statistical performance relative to an oracle that has access to the correct pairings
as certi!ed by simulations and case studies. In particular, the proposed approach can tolerate considerably
larger fraction of mismatches than existing approaches, and enables estimation of the noise level as well
as the fraction of mismatches. Inference for the resulting estimator (standard errors, con!dence intervals)
can be based on established theory for composite likelihood estimation. Along the way, we also propose
a statistical test for the presence of mismatches and establish its consistency under suitable conditions.
Supplemental !les for this article are available online.
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1. Introduction

A tacit assumption in linear regression is that each of the

Q1

(predictors, response)-pairs {(xi, yi)}n
i=1 is associated with the

same underlying statistical unit. However, there are scenarios
in which the {xi}n

i=1 and the {yi}n
i=1 were collected separately,

and there is uncertainty about which of the pairs {(xi, yj)}i≤j are
in correspondence to each other. Pioneering work by DeGroot,
Feder, and Goel (1971), DeGroot and Goel (1976, 1980), Goel
(1975), and Goel and Ramalingam (1987) has formalized this
setting under the notion of “broken sample”: it is assumed that
{(xπ∗(i), yi)}n

i=1 are iid observations from some joint distribu-
tion Px,y;θ∗ , where θ∗ is an unknown parameter and π∗ is an
unknown permutation of {1, . . . , n}. To give an example, Px,y;θ∗

might be a Gaussian distribution with θ∗ representing the mean
and covariance matrix. Depending on the problem, inference for
both θ∗ and π∗ can be of interest.

More recently, there has been a surge of interest in the above
setup in the context of linear regression, driven by applica-
tions in engineering and promising new developments in the
mathematical signal processing and machine learning literature.
Speci!cally, the following model has been studied under the
terms “unlabeled sensing” (Unnikrishnan, Haghighatshoar, and
Vetterli 2018), “regression with unknown permutation” (Panan-
jady, Wainwright, and Cortade 2018; Emiya et al. 2014), and
“regression with shu"ed data” (Abid, Poon, and Zou 2017; Hsu,

CONTACT Martin Slawski mslawsk3@gmu.edu Department of Statistics, George Mason University, Washington, DC 20006.
∗Work was conducted while the author was a!liated with George Mason University.
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Shi, and Sun 2017):

yi = x#
π∗(i)β

∗ + σ∗εi, i = 1, . . . , n,
⇐⇒ y = &∗Xβ∗ + σ∗ε, y = (yi)

n
i=1,

&∗ =
(
I(π∗(i) = j)

)n
i,j=1 , X# = [x1 . . . xn],

ε = (εi)
n
i=1.

(1)

In (1), β∗ ∈ Rd denotes the regression parameter, the {εi}n
i=1

represent iid zero-mean and unit-variance errors, and σ∗ is
referred to as “noise level.” Model (1) has been considered from
the point of view of signal recovery (with β∗ representing an
unknown signal of interest) based on (noisy) linear sensing at
the {xi}n

i=1, with the caveat that those linear measurements are
received in an unknown order. For example, each measurement
may come with an inaccurate time stamp, and as result, mea-
surements are received in a shu"ed order (Balakhrisnan 1962).
Speci!c applications of (1) in signal processing and sensors
networks are reviewed in Unnikrishnan and Vetterli (2013),
Unnikrishnan, Haghighatshoar, and Vetterli (2018), Pananjady,
Wainwright, and Cortade (2017, 2018), and Haghighatshoar
and Caire (2017).

Another important domain in which model (1) is of interest
is data integration. Speci!cally, consider two data !les A and
B, with A containing the response variable y and B containing
predictor variables x for a set of statistical units common to A

© 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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2 M. SLAWSKI, G. DIAO, AND E. BEN-DAVID

and B. For example, A may contain the annual income of a set
of individuals, while B may contain a collection of demographic
variables, and the goal is to !t a linear regression model for
income based on those variables. To perform this task, !le A
needs to be merged with !le B, which is straightforward only
if both !les are equipped with unique identi!ers. However, it
is common that the data analyst does not have access to such
identi!ers, for example, because of privacy concerns. In this
case, linkage of A and B needs to be based on a combination
of variables that are contained in both !les (so-called matching
variables), with the possibility of ambiguities and the potential
for linkage error, that is, a record in A is not matched to the
correct counterpart in B. Therefore, model (1) can be used
to account for errors (mismatches) in post-linkage regression
analysis, a long-standing problem in statistics dating back to the
work in Neter, Maynes, and Ramanathan (1965) that is partic-
ularly relevant in the area of o#cial statistics and the work of
government agencies like the U.S. Census Bureau (Scheuren and
Winkler 1993, 1997). The latter regularly combines data from
a variety of sources such as administrative data, sample survey,
and census data. The main purpose of combining data is to reuse
existing data, reduce the cost of data collection, research, and
the burden on responders. In spite of its relevance to this appli-
cation, model (1) has hardly been considered directly. Instead,
the common approach is to use information about the linkage
process, for example, the probability of a mismatch given a
certain con!guration for the matching variables, to construct
suitable estimators that curb the impact of linkage error on the
regression !t (e.g., Lahiri and Larsen 2005; Chambers 2009; Hof
and Zwinderman 2012, 2015; Gutman, Afendulis, and Zaslavsky
2013; Dalzell and Reiter 2018; Han and Lahiri 2019). However,
information about the linkage process may be scarce or unavail-
able, in which case it can be useful to resort to (1).

1.1. Related Work

Several recent articles have studied estimation of β∗ and/or
π∗ under model (1), predominantly under random Gaussian
design with {xi}n

i=1
iid∼ N(0, Id) and Gaussian errors. Unnikr-

ishnan, Haghighatshoar, and Vetterli (2018) showed that in the
noiseless case (σ∗ = 0), β∗ can be uniquely recovered by
exhaustive search over permutations if n > 2d. Regarding the
noisy case, a series of properties have been established for the
least squares problem

min
&∈Pn, β∈Rd

∥∥y − &Xβ
∥∥2

2 , (2)

where Pn denotes the set of n-by-n permutation matrices. Prob-
lem (2) is a speci!c quadratic assignment problem (Burkard,
Dell’Amico, and Martello 2009). A result in Pananjady, Wain-
wright, and Cortade (2018) shows that (2) is NP-hard. The
article Pananjady, Wainwright, and Cortade (2018) also derives
necessary and su#cient conditions for exact and approximate
recovery of &∗ based on (2), and elaborates on the signi!cance
of the signal-to-noise ratio (SNR) ‖β∗‖2

2 /σ 2 in this context.
An excessively large SNR of the order n2 is proved to be a
necessary condition for approximate permutation recovery for
any estimator. In a similar spirit, Hsu, Shi, and Sun (2017)

showed that the SNR needs to be at least of the order d/ log log n
to ensure approximate recovery of β∗. In fact, problem (2) can
be shown to su$er from over!tting due to the extra freedom
in optimizing & (Abid, Poon, and Zou 2017; Slawski and Ben-
David 2019).

Tractable algorithms for (2) with provable guarantees are
scarce at this point: the scheme in Hsu, Shi, and Sun (2017)
has polynomial time complexity, but is “not meant for prac-
tical deployment” as the authors state themselves. The convex
relaxation of (2) in which Pn is replaced by its convex hull, the
set of doubly stochastic matrices, was observed to yield poor
performance (Emiya et al. 2014). Wu (1998) and Abid and Zou
(2018) discussed alternating minimization as well as the use
of the expectation-maximization (EM) algorithm (combined
with MCMC sampling) in which &∗ constitutes missing data.
A recent article by Tsakiris (2018) discusses a branch-and-
bound scheme with promising empirical performance on small
datasets; the theoretical properties of the approaches in Wu
(1998), Abid and Zou (2018), and Tsakiris (2018) remain to be
investigated.

In view of the aforementioned computational and statistical
barriers, Slawski and Ben-David (2019) discussed a simpli!ed
setting of (1) in which π∗(i) = i except for at most k * n
elements of {1, . . . , n}; π∗ is called k-sparse in this case. Slawski
and Ben-David showed that under this restriction on π∗, the
constrained least squares estimator corresponding to (2) has
desirable statistical properties if the fraction k/n is not too
large. Moreover, a convex relaxation of that constrained least
squares problem yields an estimator of β∗ that is consistent
under suitable conditions on k/n; the permutation can be esti-
mated subsequently by sorting (cf. Equation (9)). The articles
(Slawski, Rahmani, and Li 2019; Slawski, Ben-David, and Li
2020) consider extensions to a multivariate regression setup in
which the {yi}n

i=1 have dimension m ≥ 1 each. It is shown that
permutation recovery, that is, the event {&̂ = &∗} for a suitable
estimator &̂ of &∗, can succeed without stringent conditions on
the SNR once m is at least of the order log n. Zhang, Slawski, and
Li (2019) complemented this result with matching information-
theoretic lower bounds. Motivated by applications in automatic
term translation, Shi, Lu, and Cai (2020) considered a closely
related setup which the authors term “spherical regression with
mismatch corruption” with responses and predictors being con-
tained in the unit sphere of Rm (in Shi, Lu, and Cai (2020),
m = d). In addition to sparsity, Shi, Lu, and Cai additionally
assumed &∗ to have a block structure. On the other hand, in
Shi, Lu, and Cai, &∗ is not required to be a permutation to allow
a slightly more general class of mismatches.

Finally, it is worth mentioning that instead of linear regres-
sion, Carpentier and Schlüter (2016) and Rigollet and Weed
(2019) studied isotonic regression, that is, yi = f ∗(xπ∗(i))+σ∗εi,
1 ≤ i ≤ n, with {xi}n

i=1 and {yi}n
i=1 being one-dimensional, and

a nondecreasing regression function f ∗.

1.2. Contributions

In this article, we build on the setup of sparse permutations
as put forth in Slawski and Ben-David (2019). The approach
proposed herein improves over the approach in Slawski and
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Ben-David (2019) with regard to two important aspects. One
of the downsides therein is that mismatches are treated as
generic data contamination, which leads to a substantial loss of
information. As a result, performance degrades severely as the
fraction of mismatches k/n increases. A second drawback of the
approach is its dependence on a tuning parameter involving the
noise level σ∗, which is generally not known nor easy to esti-
mate. By contrast, the approach proposed herein is in principle
tuning-free (apart from the choice of a suitable initial solution),
and produces estimates of the noise level σ∗ and the fraction
of mismatches α∗ = k/n in addition to an estimate of the
regression parameter. Moreover, the approach is far less a$ected
as α∗ increases and empirically performs rather closely to the
oracle least squares estimator equipped with knowledge of π∗

(cf. Section 4); while in theory, an arbitrary constant fraction of
mismatches can be tolerated, α∗ ≈ 0.7 typically constitutes the
limit in practice. In addition, the proposed approach also avoids
a quadratic runtime in n that is incurred for alternatives such
as the Lahiri–Larsen estimator (Lahiri and Larsen 2005). Opti-
mization is based on a pseudo-likelihood having the form of a
likelihood for !tting a two-component mixture model, with one
component corresponding to a regular linear regression model
without mismatches and the second component accounting for
extra variation due to mismatches. Despite the nonconvexity
of the resulting optimization problem, reasonable approximate
solutions can be obtained via the EM algorithm and one of its
variants (Titterington 1984; Lange 1995) whose initialization is
discussed in detail in Section 3.4. The EM schemes are easy
to implement and exhibit only a linear dependence in n. By
leveraging well-developed theory on composite likelihood esti-
mation, asymptotic standard errors and con!dence intervals for
(β∗, σ∗, α∗) can be obtained (cf. Theorem 1). Along the way, we
also propose a test for the null hypothesis H0 : &∗ = In, that is,
a test for the presence of mismatches, and show its consistency
under suitable conditions (Section 2.2).

2. Approach

We start by !xing notation. Densities are denoted by f and the
corresponding random variables appear as subscript. Moreover,
we write U ∼ f to express that the random variable U follows the
distribution speci!ed by the density f . We also use uppercase let-
ter notation to indicate distributions, for example, U ∼ N(m, s2)
for the Normal distribution with mean m and variance s2.

To formally introduce the approach proposed herein, we
make the following assumptions.

(A1) The permutation π∗ is assumed to be chosen uniformly at
random from the set of permutations {π :

∑n
i=1 I(π(i) -=

i) = k} moving exactly k indices of {1, . . . , n}.
(A2) Conditional on π∗, the pairs {(xπ∗(i), yi)}n

i=1 are iid zero-
mean random variables, drawn from a joint distribution
with density fx,y(x, y) = fy|x(y) · fx(x) with fy|x ∼
N(x#β∗, σ 2

∗ ).

De!ne indicator variables zi = I(π∗(i) -= i), i = 1, . . . , n, and
!x an arbitrary index i ∈ {1, . . . , n}. Under (A2), it then holds
that

yi|{xi, zi = 0} ∼ N(x#
i β∗, σ 2

∗ ), yi|{xi, zi = 1} ∼ fy, (3)

where fy(y) =
∫

fy|x(y)fx(x) dx. In fact, note that conditional
on {zi = 1}, yi is independent of xi, and as a result the condi-
tional distribution coincides with the marginal distribution of
y. In conclusion, (A1) and (3) imply that yi|xi follows a two-
component mixture with proportions 1 − α∗ and α∗ = k/n,
that is, with some slight abuse of notation

yi|xi ∼ (1 − α∗)N(x#
i β∗, σ 2

∗ ) + α∗fy. (4)

Remarks.

(i) Assumption (A1) can be considerably relaxed without
a$ecting (4). Speci!cally, it su#ces to assume that the indi-
cators {zi}n

i=1 are independent of {(xi, yi)}n
i=1 and satisfy

P(zi = 1) = α∗, 1 ≤ i ≤ n. In fact, the latter does not
even require π∗ to be a permutation of {1, . . . , n}.

(ii) The zero-mean assumption in (A2) is merely made for
convenience as it eliminates the need for an intercept.

(iii) Other regression settings such as logistic regression can
be covered by appropriately modifying the model for
yi|{xi, zi = 0} in (3).

Since estimation of the marginal density in fy (4) can be per-
formed based on the {yi}n

i=1 only and is thus not a$ected by the
presence of π∗, fy can be assumed to be e$ectively known given
that n is su#ciently large and can consequently be estimated
with small error, be it in a parametric (e.g., by assuming fy ∼
N(0, τ 2

∗ )) or in nonparametric fashion (by density estimation).
Observe that fy implicitly depends on β∗ via the linear predictor
x#β∗. Knowledge of the distribution of the latter as in the setting
discussed subsequently can thus bene!t statistical e#ciency in
estimation, but speci!c assumptions regarding the distribution
of x or x#β∗ are not critical to our approach.

In the sequel, we focus on isotropic Gaussian design as
considered in Pananjady, Wainwright, and Cortade (2018) and
Slawski and Ben-David (2019), that is, fx ∼ N(0, Id). In this
case, note that fy ∼ N(0, ‖β∗‖2

2 + σ 2
∗ ) since y is the sum of two

independent Gaussian random variables x#β∗ ∼ N(0, ‖β∗‖2
2)

and σ∗ε ∼ N(0, σ 2
∗ ). Accordingly, we have

yi|xi ∼ (1 − α∗)N(x#
i β∗, σ 2

∗ ) + α∗N(0,
∥∥β∗∥∥2

2 + σ 2
∗ ). (5)

The above considerations suggest the following “likelihood”
approach

max
β∈Rd , σ 2>0, α∈[0,1]

n∏

i=1
f (yi|xi), (6)

where f (yi|xi) refers to the density of the above Gaussian mix-
ture distribution, that is,

f (yi|xi) = 1 − α√
2πσ 2

exp
(

− (yi − x#
i β)2

2σ 2

)

(7)

+ α
√

2π(σ 2 + ‖β‖2
2)

exp
(

− y2
i

2(σ 2 + ‖β‖2
2)

)
,

i = 1, . . . , n.

The quotation marks above indicate that the objective in (6)
is not a genuine likelihood function since {yi|xi}n

i=1 are not
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4 M. SLAWSKI, G. DIAO, AND E. BEN-DAVID

independent observations from the Gaussian mixtures given in
(7). However, we can still treat (6) within the framework of
pseudo likelihood, or more speci!cally composite likelihood. The
pseudo-likelihood (6) is composed of likelihoods of individ-
ual observations, which constitutes the most basic variant of
a composite likelihood. Nevertheless, the approach enjoys sev-
eral attractive properties including asymptotic normality at the
standard rate and a closed form expression for the asymptotic
covariance matrix, while avoiding the computational barrier
that is associated with the unknown permutation as elaborated
in the introduction.

The asymptotic normality result is stated in Theorem 1.
Denote by θ∗ = (β∗, σ 2

∗ , α∗) the unknown parameter, which
is supposed to be an interior point of Rd × [0, ∞) × [0, 1]. Let
further )p(θ) = ∑n

i=1 )i,p, )i,p := − log(f (yi|xi; θ)) denote
the negative pseudo log-likelihood with f (yi|xi; θ) as in (7), θ =
(β , σ 2, α). The global minimizer argminθ )̂p(θ) is denoted by θ̂n.
Equipped with those de!nitions and the following assumption
(A3), we can state the following result.

(A3) The {)i,p}n
i=1 satisfy the regularity conditions speci!ed in

Theorem 5.23 or in Theorem 5.41 in van der Vaart (1998).

Theorem 1. Under (A1), (A2), and (A3), n1/2(θ̂n −
θ∗) → N(0, H−1

∗ G∗H−1
∗ ) in distribution as n →

∞, where H∗ = E
[
−∇2

θ log f (y|x; θ∗)
]

and G∗ =
E

[
∇θ log f (y|x; θ∗)∇θ log f (y|x; θ∗)#

]
. Here, ∇θ and ∇2

θ
denote the gradient and Hessian with respect to θ , respectively,
f (y|x; θ) denotes the density of a generic pair (x, y) according to
(4), and E denotes the expectation with respect to that density.
Moreover, H∗ and G∗ can be consistently estimated by

Ĥ = n−1∇2
θ )p(θ̂n), Ĝ = n−1

n∑

i=1
∇θ )i,p(θ̂n)∇θ )i,p(θ̂n)

#.

(8)

Theorem 1 can be proved by invoking well-established the-
ory on composite likelihood theory (see, e.g., Lindsay 1988;
Varin, Reid, and Firth 2011). Hence, we omit the details of
the proof. Explicit expressions for the estimators Ĥ and Ĝ,
which are relevant in practice to estimate standard errors and to
construct asymptotic con!dence intervals, are provided in the
supplement.

Remark. In this article, we do not develop any novel approach
for estimating the permutation π∗. If the latter is of interest,
the plug-in approach in Slawski and Ben-David (2019) can be
applied. The latter is based on the optimization problem

min
&∈Pn

∥∥y − &Xβ̂
∥∥2

2 = −2 max
&∈Pn

〈y, &Xβ̂〉 + c

= −2
n∑

i=1
y(i)(Xβ̂)(i) + c, (9)

where c =
∥∥y

∥∥2
2 +

∥∥Xβ̂
∥∥2

2 does not depend on &, and the
subscript (i) denotes the ith order statistic, that is, y(1) < · · · <

y(n) (assuming the absence of ties). The relations in (9) imply
that for !xed β , the optimal permutation can be found by

sorting {yi}n
i=1 and {x#

i β}n
i=1. Statistical properties of the plug-

in approach (9) are studied in Slawski and Ben-David (2019)
independent of speci!c properties of β̂ .

To account for partial shu"ing, approach (9) can be re!ned
by identifying the set of mismatches S∗ = {i : zi = 1} !rst,
and then solving (9) only with respect to observations in that
set. Note that the mixture model representation (3) naturally
lends itself to an estimator of S∗ by estimating the corresponding
posterior probabilities P(zi = 1|xi, yi), 1 ≤ i ≤ n, given
(β̂ , σ̂ 2, α̂).

2.1. Connection to Robust Regression

The above pseudo-likelihood approach can be related to robust
M-estimation as we elaborate below. This connection puts the
present work in perspective with prior work (Slawski and Ben-
David 2019). Consider the negative pseudo log-likelihood that
follows from (6) and (7), up to additive constants:

n∑

i=1
− log

{
1 − α

σ
exp

(

− (yi − x#
i β)2

2σ 2

)

+ α
√

σ 2 + ‖β‖2
2

exp
(

− y2
i

2(σ 2 + ‖β‖2
2)

)




. (10)

With α, σ 2 and τ =
√

σ 2 + ‖β‖2
2 considered as !xed, the above

expression can be written as the following loss function L(β), up
to additive constants:

L(β) =
n∑

i=1
)

(∣∣∣∣
ri(β)

σ

∣∣∣∣ ; γ ,
∣∣∣
yi
τ

∣∣∣
)

,

ri(β) := yi − x#
i β , 1 ≤ i ≤ n,

)(z; a, b) := − log
(

exp
(

−z2

2

)
+ a exp

(
−b2

2

))
,

γ := α

1 − α
· σ

τ
. (11)

Figure 1 visualizes )(·; a, b) for selected values of a and b; the
function scales have been rescaled to the range [0, 1]. The shape
of ) resembles a “capped loss” such as Tukey’s bisquare (e.g.,
Maronna, Martin, and Yohai 2006) commonly employed in
robust regression. In fact, ) is uniformly bounded by − log(a)+
b2/2. For α = 0, ) reduces to ordinary squared loss. As α

increases, ) levels o$ more quickly, and behaves like an indicator
loss in the limit α → 1. The above connection also highlights
the advantages of the pseudo-likelihood approach compared to
a plain robust M-estimation approach. The pseudo-likelihood
can be interpreted as the combination of observation-speci!c
and self-calibrated robust losses, where “calibration” refers to
tuning parameters that control the robustness versus e#ciency
trade-o$ (more informally speaking, parameters that control
the range in which the loss function levels o$). Moreover, the
pseudo-likelihood integrates estimation of the parameters α∗
and σ 2

∗ of potential interest.
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Figure 1. Visualization of the loss function (11) for γ ∈ {0.05, 0.5, 5} (from left to right) and y/τ ∈ {0.5, 1, 2, 3} (solid, dashed, dotted, dashed-dotted).

2.2. Testing for the Presence of Mismatches

Before applying the approach developed at the beginning of this
section, it is appropriate to test for the presence of mismatches.
We here consider a statistical test for the hypothesis H0 : &∗ =
In, or equivalently H0 : α∗ = 0. While one possible direction
is the formulation of this test within the setting of mixture
models (Chen and Li 2009; Zhu and Zhang 2004), a much more
straightforward test can be performed based on the residuals
ε̂ = P⊥

X y of the ordinary least squares !t, where P⊥
X denotes the

orthoprojector on the orthogonal complement U of the column
space of X. Letting U denote the n-by-(n − d) matrix whose
columns form an orthonormal basis of U , we have ε̂ = P⊥

X y =
UU#y and thus ξ := U#ε̂ = U#y. This yields

ξ = U#y = U#&∗Xβ∗ + σ∗U#ε = U#&∗Xβ∗ + ζ ,
H0= ζ where ζ ∼ N(0, σ 2

∗ In−d) ⇒ ‖ζ‖2
2

σ 2∗

H0∼ χ2(n − d).

(12)

This suggests the use of a chi-squared test based on the residual
sums of squares. For model (1) with Gaussian design, that is,

yi = x#
π∗(i)β

∗ + σ∗εi, xi ∼ N(0, Id), i = 1, . . . , n, (13)

results in Pananjady, Wainwright, and Cortade (2018) imply that
the power of the chi-square test tends to one under the alterna-
tive hypothesis as n → ∞ and ‖β∗‖2 − σ∗

√
log(n − d) → ∞.

Note that at least for small k, this condition appears inevitable
since max1≤i≤n−d |ζi|/σ∗ = OP

(√
log(n − d)

)
. More specif-

ically, we have the following statement (cf. supplement for a
proof).

Proposition 1. Suppose model (13) holds. Then for any t ∈
(0, k), we have

∥∥∥U#&∗Xβ∗
∥∥∥

2

2
≤ n − d

n · t
2

∥∥β∗∥∥2
2

with probability at most

6 exp
(

− k
10

[
log k

t + t
k − 1

])
+ exp(−(n − d)/24).

Observe that the above proposition implies a high probability
lower bound on the quantity

∥∥U#&∗Xβ∗∥∥
2 appearing in (12),

which a#rms the claim preceding the proposition.
The e$ect size associated with the above test grows with

the ratio ‖β∗‖2 /σ∗ and the fraction of mismatches α∗. Their
signi!cance with regard to the power of the test is corroborated
by the empirical results depicted in Figure 2. For the latter, ‖β∗‖2
is !xed to one while varying values of α∗ of σ∗ are considered in
the le% and right panel, respectively.

Unknown variance. The test considered above relies on σ 2
∗

to be known, which is o%en not the case in practice. However,
consistent estimation of σ 2

∗ in the situation of mismatches gen-
erally appears to be at least as challenging as the given testing
problem, and the fact that the proposed test statistic involves the
usual variance estimator indicates a close entanglement of both
aspects.

A common scenario in the analysis of linked !les is that a
subset Q ⊂ {1 ≤ i ≤ n : zi = 0} of observations are known
to be correctly matched. For instance, certain combinations of
variables used during record linkage turn out to be unique,
hence there is no danger of mismatching the corresponding
observations. In this case, σ 2

∗ can be estimated based on Q, and
a test statistic given by the ratio of independent residual sums of
squares can be employed. Speci!cally, we consider

|Q| − d
n − |Q| − d ·

∥∥∥P⊥
XQc yQc

∥∥∥
2

2∥∥∥P⊥
XQ yQ

∥∥∥
2

2

H0∼ F(n − |Q| − d, |Q| − d), (14)

where F(a, b) denotes the F-distribution with a and b degrees of
freedom, Qc = {1, . . . , n} \ Q, and the superscripts in X and y
refer to the corresponding row sub-matrices and -vectors.

A comparison of the empirical power of the test statistics (12)
and (14) given |Q|/n = 0.1 can be found in Figure 2.

3. EM Algorithm

The pseudo-likelihood (6) corresponds to the “regular” likeli-
hood of a mixture model, and inherits the computational prop-
erties of the latter. In particular, likelihood maximization in mix-
ture models is nonconvex, and thus one cannot hope to !nd the
global optimum of (6) in practice. At the same time, established
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Figure 2. Empirical power of the test statistics in (12) and (14) with |Q|/n = 0.1 (light color) for a signi"cance level of 0.05. The results are based on 10,000 replications
from model (13) under assumption (A1) with β∗ drawn uniformly at random from the unit sphere (d = 10) in dependence of n ∈ {200, 500, 1000} (shown in di#erent line
types/symbols), α∗ = k/n and σ∗ . Left: Empirical power for varying α∗ and "xed σ∗ = 1. Right: Empirical power for varying σ∗ and "xed α∗ = 0.05.

computational approaches for !tting mixture models like the
EM algorithm can be employed for !nding approximate max-
imizers of (6) in practice. The usual convergence properties of
the EM algorithm continue to hold regardless of the fact that (6)
is a misspeci!ed likelihood. In fact, for the derivation of the E-
step we can simply pretend that the {(xi, yi)}n

i=1 are independent
observations following the mixture distributions (7): the key
property of the EM algorithm to increase the likelihood at each
iteration does not require the likelihood to be correctly speci!ed.
In the following paragraphs, we provide the speci!cs of the
proposed computational scheme. We !rst note that given the
indicator variables {zi}n

i=1, the complete data negative (pseudo)
log-likelihood in (β , σ 2, α) is given by

n∑

i=1

{
(1 − zi)

(
− log(1 − α) + log(σ 2)

2
+ (yi − x#

i β)2

2σ 2

)

+ zi
(

− log(α) + log(σ 2 + ‖β‖2
2)

2
+ y2

i
2(σ 2 + ‖β‖2

2)

)}
.

(15)

3.1. Both σ 2
∗ and ‖β∗‖2 Known

Denote τ 2
∗ = σ 2

∗ + ‖β∗‖2
2. Given current iterates β̂(k), α̂(k), the

E-step is given by

π
(k)
i := E(k)[zi]

=
α̂(k)
τ∗ exp

(
− y2

i
2τ 2∗

)

α̂(k)

τ∗
exp

(
− y2

i
2τ 2∗

)
+ (1 − α̂(k))

σ∗
exp

(

− (yi − x#
i β̂(k))2

2σ 2∗

) ,

i = 1, . . . , n, (16)

where E(k) denotes the expectation if the unknown parame-
ters of the underlying distribution were given by (̂α(k), β̂(k)).
Accordingly, in light of (15) the M-step is given by the optimiza-
tion problem

min
α

n∑

i=1

(
−(1 − π

(k)
i ) log(1 − α) − π

(k)
i log(α)

)
(17)

+ min
β

n∑

i=1
(1 − π

(k)
i )(yi − x#

i β)2.

Both optimization problems have a closed form solution. The
optimization problem in β amounts to a weighted least squares
!t of (predictors, response)-pairs (xi, yi)n

i=1 and weights ω
(k)
i =

1 − π
(k)
i , i = 1, . . . , n. This yields the updates

α̂(k+1) ← 1
n

n∑

i=1
π

(k)
i , β̂(k+1) ← (X#W(k)X)−1X#W(k)y,

W(k) = diag(ω(k)
1 , . . . , ω(k)

n ),

which is well in line with the robust regression viewpoint in
Section 2.1. Alternatively, the M-step (17) can be performed
subject to the additional constraint ‖β‖2

2 ≤ ‖β∗‖2
2. The latter

is straightforward to accommodate.

3.2. Plug-In Approach

It is straightforward to estimate τ 2
∗ via

τ̂ 2 = 1
n

n∑

i=1
y2

i

since E[y2
i ] = τ 2

∗ , i = 1, . . . , n. A%er substituting τ 2
∗ by the

above estimator and σ 2
∗ by an iterate σ̂ 2(k), the scheme of the

previous subsection can still be applied. The counterpart to the
E-step (16) is given by

π
(k)
i ←

α̂(k)

τ̂
exp

(
− y2

i
2τ̂ 2

)

α̂(k)

τ̂
exp

(
− y2

i
2τ̂ 2

)
+ (1 − α̂(k))

σ̂ (k) exp
(

− (yi − x#
i β̂(k))2

2σ̂ 2(k)

) ,

i = 1, . . . , n, (18)
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and the iterate for σ 2 is updated as

σ̂ 2(k+1) ← 1
∑n

i=1(1 − π
(k)
i )

n∑

i=1
(1−π

(k)
i )(yi −x#

i β̂(k))2. (19)

Upon termination, to account for the usual bias of the ML esti-
mator of the error variance in linear regression with Gaussian
errors, σ̂ 2 may be replaced by a bias-corrected counterpart in
which the number of predictor variables d is subtracted in the
denominator of (19), cf. Aitkin (1981) for a related discussion
in the context of regression with censored response.

The constraint σ 2 + ‖β‖2
2 ≤ τ̂ 2 can optionally be imposed;

however, with the presence of this constraint, the simple closed
form updates for σ̂ 2(k) and β̂(k) in the M-step are no longer valid.
A compromise is the relaxed constraint ‖β‖2

2 ≤ τ̂ 2 that still
gives rise to closed form updates.

It is worth noting that the approach discussed in this subsec-
tion does not strongly hinge on the assumption x ∼ N(0, Id),
and remains applicable outside this setting as demonstrated in
Section 4. That assumption only enters in the speci!cation fy ∼
N(0, τ̂ 2), which can either simply be adopted as a reasonable
approximation or replaced by alternative models (parametric or
nonparametric).

3.3. Simultaneous Estimation of All Parameters

The plug-in approach of the previous section is convenient due
to its closed form updates by means of a reduction to weighted
least squares estimation. In addition, it does not require assump-
tions on the distribution of the {xi}n

i=1. However, for isotropic
Gaussian design, the plug-in approach essentially disregards the
part of the complete data log-likelihood that is associated with
the {zi}n

i=1. It is a cleaner, but also computationally signi!cantly
more involved approach to avoid the use of the auxiliary (and
eventually redundant) parameter τ 2

∗ , and to integrate all terms
of the complete data log-likelihood (15). While the E-step (18)
remains unchanged with the only modi!cation that τ̂ 2 gets
replaced by

∥∥β̂(k)∥∥2
2 + σ̂ 2(k), the M-step has no longer a closed

form solution for β̂(k+1), σ (k+1). Instead, the latter result as the
minimizers of the optimization problem

min
β∈Rd

σ 2>0

n∑

i=1
(1 − π

(k)
i )

log(σ 2)

2
+

n∑

i=1
(1 − π

(k)
i )

(yi − x#
i β)2

2σ 2

(20)

+
n∑

i=1
π

(k)
i

log(σ 2 + ‖β‖2
2)

2
+

n∑

i=1
π

(k)
i

y2
i

2(σ 2 + ‖β‖2
2)

.

This optimization problem fails to be convex. Rather than solv-
ing this problem, we suggest to update the parameters via one
iteration of Fisher scoring, which is also known as Titterington’s
algorithm in the literature on the EM algorithm (Titterington
1984). Speci!cally, we consider the following update:

[
β̂(k+1)

σ̂ (k+1)

]
=

[
β̂(k)

σ̂ (k)

]
+ γ (k)d(k), d(k) := −F(k) g(k),

(21)

where the step-size γ (k) ∈ [0, 1] is chosen by backtracking line
search (e.g., Bertsekas 1999, sec. 1.2), and the update direction

d(k) depends on the gradient g(k) of the expected complete data
negative log-likelihood as well as F(k), the expected Fisher infor-
mation (with respect to the current parameters β̂(k) and σ̂ (k)).
Since the gradient of the expected complete data log-likelihood
is known to coincide with the gradient of the incomplete data
log-likelihood (Lange 1995, p. 426), the above update scheme
reduces the latter at each iteration. Expressions for g(k) and F(k)

are provided in the supplement.

3.4. Initialization

While the EM iterations above can be shown to yield descent
at each iteration, they are not guaranteed to produce the global
minimizer of the incomplete data negative log-likelihood (10).
As a result, careful initialization, that is, choice of the initial
iterates β̂(0), σ̂ 2(0), and α̂(0) can greatly bene!t the performance.
As a starting point, one might consider β̂(0) = β̂LS, where β̂LS =
(X#X)−1X#y denotes the ordinary least squares estimator, that
is, the naive approach that ignores the presence of mismatches.
The result below indicates that under a uniform-at-random
model for &∗, this naive approach is still useful to the extent
that β̂LS

∥∥β̂LS
∥∥

2
provides an essentially unbiased estimator of β∗

‖β∗‖2
.

Proposition 2. Consider model (13) with n ≥ d+1 and suppose
that &∗ is chosen uniformly at random according to assumption
(A1), and let β̂LS = (X#X)−1X#y denote the ordinary least
squares estimator. We then have

EX,ε,π∗ [β̂LS] = (1 − α∗)β∗,

covX,ε,π∗ [β̂LS] = c2
∗

n − d Id + O(
∥∥β∗∥∥2

2 /n2),

where c2
∗ = (2α∗ − α2

∗) ‖β∗‖2
2 + σ 2

∗ .

Proposition 2 (proved in the supplement) suggests that β̂ =
1

1−α∗ β̂LS as an unbiased estimator. Since α∗ is typically unknown
and generally not easy to estimate, an alternative is

β̂ = β̂LS
∥∥β̂LS

∥∥
2

· ‖̂β∗‖2, ‖̂β∗‖2 =
(

1
n

n∑

i=1
y2

i − σ 2
∗

)1/2

,

(22)
which requires knowledge of σ 2

∗ (if ‖β∗‖2
2 8 σ 2

∗ , the variance
of the errors σ 2

∗ can be disregarded). While potentially giving
rise to an unbiased estimator, Proposition 2 also asserts that
the variance of the components of β̂LS (and in turn the MSE)
is rather substantial, growing with ‖β∗‖2

2 and α∗. In particular,
this implies that β̂LS and its rescaled counterparts discussed
above exhibit a poor statistical e#ciency relative to the oracle
estimators based on knowledge of &∗ or the set of correct
matches {1 ≤ i ≤ n : zi = 0}. In light of this, another option
is to employ robust regression methods like Huber’s estimator
as considered in Slawski and Ben-David (2019) even though the
latter is limited to the regime of small to moderate α∗.
Connection to the Lahiri–Larsen estimator. In their seminal work
on regression with linked data, Lahiri and Larsen (2005) pro-
posed the following estimator

β̂LL = (X#Q#QX)−1X#Q#y, where Q = E[&∗]. (23)
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Figure 3. Diagram visualizing the interdependence for initial estimators (β̂ , σ̂ , α̂)
in light of Proposition 2 and relation (22). Note that given an estimator β̂ , one can
use ‖̂β∗‖2 =

∥∥β̂
∥∥

2.

It is easy to see that the above estimator is unbiased, that is,
Eπ∗,ε[β̂LL] = β∗ uniformly in X. Assuming that &∗ is drawn
uniformly at random from the set of k-sparse permutations of n
elements, the matrix Q is given by

Q =
(

1 − α∗ − α∗
n − 1

)
In + α∗

n − 1
11#.

Discarding all terms in Q involving α∗/(n − 1), the estimator
(23) reduces to the estimator in Proposition 2. It is not hard
to establish asymptotic equivalence of the two estimators; the
formal derivation is omitted for the sake of brevity.

Equipped with an estimator of β∗, the quantities α∗ and σ∗
can be estimated according to Figure 3. Estimation of the three
quantities is generally interdependent in the sense that one of
the three parameters is supposed to be known or accurately
estimable. The latter requirement becomes signi!cantly more
di#cult to meet as the fraction of mismatches α∗ increases.

4. Empirical Results

4.1. Gaussian Design

Data is generated according to model (13) with n = 200,
d = 10, and β∗ drawn uniformly at random from the cor-
responding sphere. We vary σ∗ ∈ {0.1, 0.2, 0.5, 1} and α∗ ∈
{0.1, 0.2, . . . , 0.7}, and the permutation π∗ is drawn uniformly
at random according to (A1). For each con!guration of (σ∗, α∗),
100 independent replications are considered. To estimate the
parameters (β∗, σ∗, α∗), we consider the approaches in Sec-
tions 3.2 and 3.3. The former is computationally simpler as it
reduces to solving a sequence of weighted least squares prob-
lems. Both approaches were initialized with β̂(0) = β̂LS, σ̂ (0) =
n−1/2 ∥∥y − Xβ̂(0)

∥∥
2, and α̂(0) = 0.5. More sophisticated initial-

ization schemes as discussed in Section 3.4 did not yield sub-
stantial gains in performance. The approaches in Sections 3.2
and 3.3 are compared to the oracle estimator

β̂o =
(

X#X
)−1

X#&∗#y, (24)

and the robust regression method in Slawski and Ben-David
(2019) (abbreviated SB-D19); the latter is given an additional
advantage by equipping it with knowledge of the noise level σ∗,
which is required for the optimal choice of the regularization
parameter. The performance of β̂LS turns out to be rather far
from competitive and is thus not reported.

Results. Figure 4 displays (i) the )2-estimation errors∥∥β̂ − β∗∥∥
2 /

∥∥β̂o − β∗∥∥
2 relative to that of the oracle estimator

(le% column), (ii) the relative error for the noise level |̂σ/σ∗ −1|
(middle column), and the absolute error for the fraction of
mismatches |̂α−α∗| (right column). The plots show medians of
these measures of error over 100 independent replications and
bootstrap standard error bars. A table representation of the same
results can be found in the supplement, which also provides
a collection of complementary results including separate
investigations of bias/standard error/coverage of con!dence
intervals, as well as results regarding the identi!cation of
mismatches (mismatch recovery rate) and departures from
isotropic Gaussian design in model (13).

Figure 4 shows that for both variants of the proposed
approach, the estimation error for the regression coe#cients
in )2-norm are largely within factors of three or less of the
oracle estimator. Note that the error for the latter roughly scales
as σ∗

√
d/n, while the error of a less powerful oracle elimi-

nating all mismatches {i : π∗(i) -= i} and performing a
least squares !t with the remaining observation roughly scales
as σ∗

√
d/((1 − α∗)n); the performance observed for β̂ is thus

not far from this second oracle, and goes along with massive
improvements over β̂LS if ‖β∗‖2 /σ∗ 8 1. The errors can be
seen to vary more strongly with the fraction of mismatches
α∗ than with the noise level σ∗. For example, for α∗ = 0.1,
the errors are within a factor of 1.3 of the oracle, and increase
to a factor of 3 and higher as α∗ reaches 0.6; in particular,
note the visible change of slope for α∗ between 0.5 and 0.7.
Figure 4 also indicates that the computationally more com-
plex approach in Section 3.3 performs slightly better than the
plug-in approach in Section 3.2, with visible di$erences for
the smallest value of σ∗ under consideration (σ∗ = 0.1). As
σ∗ increases, these di$erences vanish. Both approaches signi!-
cantly outperform the robust regression method SB-D19 whose
performance degrades much more severely with the fraction
of mismatches α∗. The di$erences are most pronounced for
σ∗ ∈ {0.1, 0.2}, and partially disappear for σ∗ = 1. The
latter observation can be explained by the fact that in this
setting, ‖β∗‖2 /σ∗ = 1 in which case the error induced by
mismatches is of the same order as that induced by addi-
tive noise.

The middle and right columns of Figure 4 show that the
proposed approach also enables estimation of the parameters σ∗
and α∗ with small error in most settings. For α∗ ∈ {0.6, 0.7}
and/or σ∗ = 1, estimation becomes a serious challenge and
as result, the estimators β̂ , α̂, and σ̂ become less reliable. We
hypothesize that the reason is rather of a computational than
of a statistical nature, given the nonconvexity of the negative
pseudo-likelihood on the one hand (whose impact becomes
more pronounced as α∗ increases) and the assertions of The-
orem 1 on the other hand.
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Figure 4. Visualization of the simulation results according to the metrics described in the text for varying noise level σ∗ (top to bottom), divided by β̂ , σ̂ , and α̂ (left to
right).

4.2. CPS Wage Data

We use the CPS wage dataset available from STATLIB (http://
lib.stat.cmu.edu/datasets/) containing information on wages and
other characteristics of n = 534 workers, including sex, num-
ber of years of education, years of work experience, type of
occupation, and union membership. To mimic the situation
in record linkage, we complement this dataset with synthetic
demographic information (!rst name, last name, zip code etc.)

generated by the R package generator (Hendricks 2015)
matching the information on sex and age in the original dataset.
We recreate the response variable log(wage) (logarithm of the
hourly wage) according to

log(wage) = β∗
0 + β∗

1 · I(sex = “F”) + β∗
2 · experience

+ β∗
3 · experience2 + β∗

4 · education+
+ β∗

5 · I(occupation = “Sales”)

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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Figure 5. Top: Response variable before and after linkage for the CPS wage data (left) and the El Nino data (right); the angle bisector corresponds to the situation without
mismatch. Bottom: ROC curves regarding the discrimination between mismatches and correct matches for the CPS wage data (left) and the El Nino data (right) based on
the estimated posterior probabilities (18); the dashed ROC curve (right) is obtained when observations are considered mismatched only if the di#erence in the response
before/after linkage exceeds three times the residual standard error.

+ β∗
6 · I(occupation = “Clerical”)

+ β∗
7 · I(occupation = “Service”)

+ β∗
8 · I(occupation = “Professional”)

+ β∗
9 · I(occupation = “Other”)

+ β∗
10 · I(union = “Y”)

+ σ∗ε, ε ∼ N(0, 1).

Here, I(. . .) represents indicator variables: “F” is short for
female, “union = Y[es]” indicates membership in a union, and
the variable occupation represents one of six occupational
categories (reference category is “Management”). The variables
experience and education represent work experience
and education (in #years), respectively, and are both treated
as numerical variables. The regression coe#cients β∗

0 , . . . , β∗
10

were chosen as the coe#cients from the least squares !t of the
same model with the original wages. By recreating the response,
we fully maintain the correlation structure of the predictors
while achieving a better model !t (the choice σ∗ = 1.5 leads
to an R2 close to 0.7), which helps to demonstrate the impact of
linkage error and the ability of the proposed approach to provide
remedy. Linkage error is generated by splitting the entire !le into

two !les, one of which only contains the response variable and
the zip code of the individuals while the second !le contains all
variables except for the response. The thus obtained two !les
were linked based on the variable zip code using the R package
fastLink (Enamorado, Ei!eld, and Imai 2018). Since zip code
does not represent a unique identi!er, a fraction of α∗ ≈ 0.13
of the records are incorrectly matched. Figure 5 displays the
discrepancy between the response before and a%er !le linkage.
We compare the following approaches (i) oracle least squares
based on the original undivided !le, (ii) naive least squares
ignoring linkage error, (iii) the robust regression method (SB)
in Slawski and Ben-David (2019), (iv) the Lahiri–Larsen (LL)
estimator (23), where the matrix Q is constructed by assuming
that matching among observations with the same zip code is
done uniformly at random, and (v) the proposed approach in
the variant of Section 3.2 in which the solution of (iii) along with
a robust estimator of the noise level (properly rescaled median
absolute deviation of the residuals) is used for initialization.
These !ve approaches are compared in terms of

∥∥β̂ − β̂o∥∥
2

and
∑n

i=1(yi − x#
π∗(i)β̂)2 (mean squared error on the original

data). For a more detailed comparison, regression coe#cients
and standard errors of (i), (ii), and (iii) are reported in Table 1.
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Table 1. Summary of results for the CPS wage data.

Oracle Proposed LL SB Naive
∥∥β̂ − β̂o∥∥

2 0 0.03 0.07 0.17 0.20∑n
i=1(yi − x#

π∗(i)β̂)2 23.46 23.57 23.68 24.22 24.82

Oracle Proposed Naive

β̂0 1.01 (0.083) 1.02 (0.098) 1.2 (0.1)
β̂1 −0.21 (0.02) −0.22 (0.024) −0.19 (0.026)
β̂2 0.03 (0.0026) 0.03 (0.0035) −0.03 (0.0033)
β̂3 −0.0004 (0.000058) −0.0005 (0.00008) −0.0004 (0.000073)
β̂4 0.07 (0.0049) 0.07 (0.006) 0.06 (0.0062)
β̂5 −0.32 (0.045) −0.30 (0.063) −0.26 (0.058)
β̂6 −0.23 (0.038) −0.23 (0.035) −0.23 (0.048)
β̂7 −0.37 (0.04) −0.38 (0.046) −0.35 (0.051)
β̂8 −0.05 (0.036) −0.06 (0.031) −0.08 (0.045)
β̂9 −0.20 (0.037) −0.19 (0.034) −0.18 (0.048)
β̂10 0.20 (0.025) 0.21 (0.023) 0.18 (0.031)
σ̂ 2 0.045 (0.003) 0.043 (0.0044) 0.072 (0.004)
α̂ NA 0.14 (0.027) NA

NOTE: Top: )2-estimation error for the regression coe!cients and mean squared error. Bottom: Parameter estimates and their standard error estimates (in parentheses) of
the proposed method in comparison to oracle and naive least squares.

Results. The !gures in Table 1 show that the proposed approach
exhibits similar performance as the oracle estimator. The esti-
mated regression coe#cients and their standard errors are
rather close, and the fraction of mismatches is also estimated
accurately (̂α = 0.14 compared to α∗ = 0.13). For comparison,
the changes in the regression coe#cients are more noticeable for
the naive least squares solution, which also yields a considerably
reduced !t as is indicated by an in&ation of the estimated resid-
ual variance (0.072 compared to 0.045). The robust regression
method in Slawski and Ben-David (2019) yields improvements
relative to the naive approach, but they are less substantial
relative to the proposed approach. The latter also outperforms
the Lahiri–Larsen estimator, which is equipped with additional
information in terms of the matrix Q.

4.3. El Nino Data

We here build on the case study presented in §3.2 in Slawski and
Ben-David (2019) that is based on the El Nino dataset (Dheeru
and Taniskidou 2017). The latter contains meteorological mea-
surements recorded by a sensor network known as the Tropical
Atmosphere Ocean Array consisting of ∼70 buoys placed across
the equatorial Paci!c. Sensors positioned at those buoys record
zonal and meridional wind speeds (abbreviated zon and mer),
relative humidity (humidity), air temperature (air.temp),
sea surface temperature, and subsurface temperatures down to a
depth of 500 m (s.s.temp). The regression model considered
in Slawski and Ben-David (2019) is given by

air.temp = β∗
0 + β∗

z · zon.winds+ β∗
m · mer.winds

+ β∗
h · humidity+ β∗

s · s.s.temp+ ε.

Each set of measurements is uniquely identi!ed by the buoy
identi!er and the day of its recording. In Slawski and Ben-David
(2019), this information is discarded, and the response variable
(air.temp) is put into a separate !le that additionally contains
the longitude and latitude of the measurement as an inexact
identi!er. The latter is used subsequently as matching variable

byfastLink to merge the response variable with the predictor
variables. The right panel of Figure 5 shows that the error
induced by mismatches is rather substantial, with a fraction
of 0.82 of the n = 93,935 observations being mismatched.
However, not all mismatches lead to substantial changes in the
response: for example, only a fraction of 0.16 of the observations
is associated with an error in the response larger than twice the
residual standard error from the oracle least squares !t. The fact
that the majority of mismatches does not lead to major errors is
ultimately a consequence of the fact that meteorological mea-
surements sharing the same (latitude, longitude)-pair exhibit
spatial correlation even though they may not correspond to the
same observational unit.
Results. According to Table 2, the proposed method is not far
from the oracle estimator. The estimates for the regression coef-
!cients are noticeably closer than those of the naive approach.
The latter yields a poor !t, with the residual variance in&ated
by more than a factor of two (0.594 vs. 0.259). The proposed
approach also outperforms the method in Slawski and Ben-
David (2019) as well as the Lahiri–Larsen estimator (with Q
constructed analogously to the previous subsection, with zip
code replaced by (longitude, latitude)) in terms of the )2-
estimation error and mean squared error. The performance of
the Lahiri–Larsen is suboptimal here due to a small number
of distinct (latitude, longitude)-pairs relative to the sample size
(about 5k vs. 94k); by construction of the matrix Q, the Lahiri–
Larsen estimator here amounts to averaging predictors and
response with the same (latitude, longitude), and a subsequent
weighted least squares !t with the thus obtained averages. The
e$ective sample size is hence reduced to 5k. Moreover, it is
worth noting that the proposed approach estimates the fraction
of mismatches as approximately 0.073, whereas the nominal
fraction of mismatches is around 0.82. This gap results from
the fact that the majority of mismatches do not substantially
change the response compared to the error of the regression
model as explained above; cf. also the ROC curves in Figure 5.
The estimate α̂ = 0.073 turns out to be close to the fraction
of mismatches that change the response by three times the
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Table 2. Summary of results for the El Nino data.

Oracle Proposed LL SB Naive
∥∥β̂ − β̂o∥∥

2 0 0.04 1.56 0.59 1.57∑n
i=1(yi − x#

π∗(i)β̂)2 24.4k 24.7k 25.2k 25.1k 25.9k

Oracle Proposed Naive

β̂0 5.15 (0.049) 5.12 (0.073) 6.72 (0.075)
β̂z −0.056 (0.00055) −0.044 (0.00081) −0.037 (0.00083)
β̂m −0.031 (0.00058) −0.038 (0.00078) −0.045 (0.00089)
β̂h −0.022 (0.00034) −0.016 (0.00048) −0.017 (0.00051)
β̂s 0.844 (0.0011) 0.827 (0.0017) 0.774 (0.0017)
σ̂ 2 0.259 (0.0012) 0.358 (0.0026) .594 (0.0027)
α̂ NA 0.073 (0.0014) NA

NOTE: Top: )2-estimation error for the regression coe!cients and mean squared error. Bottom: Parameter estimates and their standard error estimates (in parentheses) of
the proposed method in comparison to oracle and naive least squares.

residual standard error or more. Even though the proposed
estimator is e$ective in curbing the impact of mismatch error,
the underlying assumption in Section 2 that the response is
independent of the predictors in the case of a mismatch appears
to be violated; this is a consequence of noticeable correlations
between the predictors and the variables used for linking as
mentioned above. The mixture model (4) is thus at least mildly
misspeci!ed. In light of this, it is plausible that α̂ and σ̂ 2 result as
underestimate and (slight) overestimate, respectively, while the
estimates for the regression coe#cients are subject to a minor
attenuation e$ect.

5. Conclusion

In this article, we have presented a pseudo-likelihood method
to account for mismatches in the response variables in linear
regression, an important problem in the analysis of linked !les.
The proposed method is computationally scalable, requires at
most minimum tuning, provides estimators of all parameters of
interest, and achieves promising empirical performance accord-
ing to the results in the preceding section. In light of these
appealing properties, we hope that the method will be widely
adopted to deal with the scenarios discussed herein. Owing to
its simple modular structure, the method considered herein can
be generalized to a variety of other regression models includ-
ing multiple response variables, generalized linear models and
nonparametric regression, which will be investigated in future
work. Another interesting direction of research concerns the
adjustment for mismatches in the situation where a subset of the
predictor variables is contained in the same !le as the response,
while the remaining predictors are contained in a separate !le.

Supplementary Materials

Supplement: The supplementary !le provides proofs of the statements
herein and further technical result and derivations, as well as additional
simulation results. (.pdf !le)

Code.zip: R and MATLAB code that reproduces the results of the simula-
tion studies and the real data analysis. (.zip !le)
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