
PACMAN: Attacking ARM Pointer Authentication with
Speculative Execution

Joseph Ravichandran∗

MIT CSAIL
Cambridge, MA, USA

jravi@mit.edu

Weon Taek Na∗

MIT CSAIL
Cambridge, MA, USA
weontaek@mit.edu

Jay Lang
MIT CSAIL

Cambridge, MA, USA
jaytlang@mit.edu

Mengjia Yan
MIT CSAIL

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT

This paper studies the synergies between memory corruption vul-
nerabilities and speculative execution vulnerabilities. We leverage
speculative execution attacks to bypass an important memory pro-
tection mechanism, ARM Pointer Authentication, a security feature
that is used to enforce pointer integrity. We present PACMAN, a
novel attack methodology that speculatively leaks PAC verifica-
tion results via micro-architectural side channels without causing
any crashes. Our attack removes the primary barrier to conduct-
ing control-flow hijacking attacks on a platform protected using
Pointer Authentication.

We demonstrate multiple proof-of-concept attacks of PACMAN
on the AppleM1 SoC, the first desktop processor that supports ARM
Pointer Authentication. We reverse engineer the TLB hierarchy on
the Apple M1 SoC and expand micro-architectural side-channel
attacks to Apple processors. Moreover, we show that the PACMAN
attack works across privilege levels, meaning that we can attack
the operating system kernel as an unprivileged user in userspace.

CCS CONCEPTS

• Security and privacy → Side-channel analysis and counter-

measures; Hardware reverse engineering.

KEYWORDS

Security, memory corruption attacks, micro-architectural side chan-
nels, pointer authentication

ACM Reference Format:

Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022.
PACMAN: Attacking ARM Pointer Authentication with Speculative Execu-
tion. In The 49th Annual International Symposium on Computer Architecture

(ISCA ’22), June 18ś22, 2022, New York, NY, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3470496.3527429

∗Both authors contributed equally to this research.

ISCA ’22, June 18ś22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527429

1 INTRODUCTION

Modern systems are becoming increasingly complex, exposing
a large attack surface with vulnerabilities in both software and
hardware. In the software layer, memory corruption vulnerabil-
ities [16, 56, 59, 61] (such as buffer overflows) can be exploited
by attackers to alter the behavior or take full control of a victim
program. In the hardware layer, micro-architectural side channel
vulnerabilities [18, 25] (such as Spectre [37] and Meltdown [43])
can be exploited to leak arbitrary data within the victim program’s
address space. Today, it is common for security researchers to ex-
plore software and hardware vulnerabilities separately, considering
the two vulnerabilities in two disjoint threat models.

In this paper, we study the synergies between memory corrup-
tion vulnerabilities and micro-architectural side-channel vulner-
abilities. We show how a hardware attack can be used to assist a
software attack to bypass a strong security defense mechanism.
Specifically, we demonstrate that by leveraging speculative execu-
tion attacks, an attacker can bypass an important software secu-
rity primitive called ARM Pointer Authentication [55] to conduct a
control-flow hijacking attack.

ARM Pointer Authentication. Memory corruption vulnerabili-
ties [22, 61, 65] pose a significant security threat to modern systems.
These vulnerabilities are caused by software bugs which allow an
attacker to corrupt the content of a memory location. The corrupted
memory content, containing important data structures such as code
and data pointers, can then be used by the attacker to hijack the con-
trol flow of the victim program. Well-studied control-flow hijacking
techniques include return-oriented programming (ROP) [56] and
jump-oriented programming (JOP) [16].

In 2017, ARM introduced Pointer Authentication (PA for short)
in ARMv8.3 [55] as a security feature to protect pointer integrity.
Since 2018, Pointer Authentication has been supported in Apple
processors, includingmultiple generations ofmobile processors [33]
and the recent M1, M1 Pro, and M1 Max chips [5, 7]. Multiple
chip manufactures, including ARM, Qualcomm, and Samsung, have
either announced or are expected to ship new processors supporting
Pointer Authentication. In a nutshell, Pointer Authentication is
currently being used to protect many systems, and is projected to
be even more widely adopted in the upcoming years.

Pointer Authentication makes it significantly more difficult for
an attacker to modify protected pointers in memory without being

685

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1145/3470496.3527429
https://creativecommons.org/licenses/by/4.0/


ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

detected. Pointer Authentication protects a pointer with a cryp-
tographic hash. This hash verifies that the pointer has not been
modified, and is called a Pointer Authentication Code, or PAC for
short. Considering that the actual address space in a 64-bit architec-
ture is usually less than 64 bits, e.g., 48 bits on macOS 12.2.1 on M1,
PA stores the PAC together with the pointer in these unused bits.
Whenever a protected pointer is used, the integrity of the pointer
is verified by validating the PAC using the pointer value (more
details are in Section 2.2). Use of a pointer with an incorrect PAC
will cause the program to crash. With Pointer Authentication in
place, an attacker who wants to modify a pointer must correctly
guess or infer the matching PAC of the pointer after modification.

Depending on the system configuration, the size of the PAC,
which ranges from 11 to 31 bits [55], may be small enough to be
bruteforced. However, simple bruteforcing approaches cannot break
PA. The reason is that every time an incorrect PAC is used, the event
results in a victim program crash. Restarting a program after a crash
results in changed PACs, as the PACs are computed from renewed
secret keys. Moreover, frequent crashes can be easily captured by
anomaly detection tools [26].

The PACMAN Attack. In this paper, we propose the PACMAN at-
tack, which extends speculative execution attacks to bypass Pointer
Authentication by constructing a PAC oracle. Given a pointer in
a victim execution context, a PAC oracle can be used to precisely
distinguish between a correct PAC and an incorrect one without
causing any crashes. We further show that with such a PAC ora-
cle, the attacker can brute-force the correct PAC value while sup-
pressing crashes and construct a control-flow hijacking attack on a
PA-enabled victim program or operating system.

The key insight of our PACMAN attack is to use speculative
execution to stealthily leak PAC verification results via micro-
architectural side channels. Our attack works relying on PACMAN

gadgets. A PACMAN gadget consists of two operations: 1) a pointer
verification operation that speculatively verifies the correctness
of a guessed PAC, and 2) a transmission operation that specula-
tively transmits the verification result via a micro-architectural
side channel. The pointer verification operation is performed by an
authentication instruction (new instructions in ARMv8.3), which
outputs a valid pointer if the verification succeeds and an invalid
pointer otherwise. The transmission operation can be performed
by a memory load/store instruction or a branch instruction taking
the output pointer as an address. If a correct PAC is guessed, the
transmission operation will speculatively access a valid pointer,
resulting in observable micro-architectural side effects. Otherwise,
the transmission step will cause a speculative exception due to
accessing an invalid pointer. Note that we execute both operations
on a mis-speculated path. Thus, the two operations will not trig-
ger architecture-visible events, avoiding the issue where invalid
guesses result in crashes.

We provide multiple proof-of-concept demonstrations of the
PACMAN attack on the Apple M1 SoC, the first desktop processor
that supports Pointer Authentication. We identified multiple key
challenges involved in researching Apple platforms. To begin with,
Apple platforms, including both the hardware and the operating sys-
tem, are scarcely documented. To the best of our knowledge, there

was no public documentation with enough micro-architectural de-
tails about Apple M1 processors for us to start a side-channel attack
during the timeframe of this project. Additionally, we found the M1
SoC, by default, to not expose a high-resolution timer to userspace,
which is generally essential for micro-architecture reverse engi-
neering.

In this paper, in addition to proposing the novel PACMAN attack,
we make significant contributions in expanding micro-architectural
side-channel attacks to Apple processors. We highlight two impor-
tant outcomes. First, we reverse engineer the TLB organizations and
perform the first TLB-based side-channel attack with speculative
execution on Apple M1 processors. Second, we show that the PAC-
MAN attack works across privilege levels, implying the feasibility
of attacking a PA-enabled operating system kernel.

Impact. Our attacks have significant security impact both in prac-
tice and academically. From a practical perspective, our attack is
general enough to be applicable to future ARM processors. Pointer
Authentication is becoming increasingly popular, and many chip
manufactures are planning to ship processors supporting it in the
near future [12]. If not mitigated, our attack will affect the majority
of mobile devices, and likely even desktop devices in the coming
years.

From an academic perspective, on one hand, we have seen an
extensive list of work that extends PA [23, 36, 40, 41, 49], whose
security properties have been examined solely under the memory
safety threat model. Since our attack breaks Pointer Authentication,
our work calls for re-evaluating the security properties of those
extended designs under a broader threat model involving specu-
lative execution attacks. On the other hand, fundamentally, our
attack highlights that security mechanisms that employ a security-
by-crash design principle and rely on low collision probability are
potentially vulnerable to speculative execution attacks, since spec-
ulation can serve as a primitive to suppress crashes. We envision
that our work can inspire future explorations of both attacks and
defenses to address the synergies between memory corruption
vulnerabilities and speculative execution vulnerabilities.

Contributions. The main contributions of this paper can be sum-
marized as follows:

• We identify fundamental security limitations of ARM Pointer
Authentication and propose the PACMAN attack to bypass
PA without causing crashes (Section 4).

• We develop micro-architectural timing side-channel attack
primitives and a reverse engineering tool for Apple M1 pro-
cessors (Section 6).

• We reverse engineer the memory hierarchy of Apple M1
processors, for the first time revealing micro-architectural
details of the TLBs on the Apple M1 SoC (Section 7).

• We demonstrate several proof-of-concept of PACMAN at-
tacks, including constructing PAC oracles, brute-forcing
PACs, and a control-flow hijacking attack targeting a PA-
enabled kernel module (Section 8).

Open-source Release. We have open-sourced our tools and proof-
of-concept attacks here: pacmanattack.com

686

https://pacmanattack.com/code
pacmanattack.com


PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

2 BACKGROUND

2.1 Memory Corruption Vulnerabilities

Memory corruption vulnerabilities are an old security problem
[4]. Having existed for more than 30 years, they still continue
to be a serious threat to modern systems [56, 61]. This type of
vulnerability exists in software written in low-level languages, such
as C and C++. According to the MITRE 2021 rankings [48], the top
10 most dangerous software weaknesses include multiple memory
corruption bugs, such as out-of-bound writes, out-of-bound read,
and use-after-free. Other memory corruption bugs include double-
free bugs, integer overflows and underflows, size confusion attacks,
and type confusion attacks.

A memory corruption attack exploits a software bug to corrupt
the content of a memory location, which contains important data
structures, such as data and code pointers. The set of attacks that
modify code pointers to change the control flow of the victim pro-
gram is called control-flow hijacking attacks, such as code injection
attacks, return-oriented programming (ROP) [31, 56, 66], and jump-
oriented programming (JOP) [11, 16].

Modern systems commonly adopt several forms of memory vul-
nerability protection mechanisms. These mitigations include stack
canaries [19], data execution prevention [64], address space layout
randomization (ASLR) [1, 47], and kernel address space layout ran-
domization (kASLR) [21]. Even though these mechanisms make
memory corruption attacks more difficult, several advanced at-
tacks [11, 16, 31, 56, 66] and various data disclosure attacks [29, 59]
still have the potential to bypass these memory protection mecha-
nisms, and show that none of the existing systems are impenetrable.

2.2 ARM Pointer Authentication

ARM introduced Pointer Authentication [55] (ARM PA for short) in
the ARMv8.3 instruction set [9] to protect pointer integrity and
make it significantly more difficult for an attacker to modify a pro-
tected pointer in memory without being detected. This security
feature provides cryptographically strong guarantees that point-
ers have not been tampered with by adversaries while optimizing
performance and attaining low runtime overhead. To this end, PA
adds two sets of instructions and a cryptography implementation
in hardware to sign and verify pointers.

Given a pointer to protect, PA generates a cryptographic hash
of the pointer. This hash is used as the signature of the pointer and
is called a Pointer Authentication Code or PAC1 for short. Since the
actual address space in a 64-bit architecture is usually less than 64
bits, PA stores the PAC together with the pointer in these unused
bits.

Signing and Verifying Pointers. We show the signing and verify-
ing process of AM PA in Figure 1. To sign a pointer (Figure 1(a)), the
processor computes the PAC from the pointer value and a context
value, and stores the PAC in the upper unused bits in the pointer.
The context value consists of a key, stored in a privileged register
inaccessible to userspace, and a program-specified salt.

1It is common to refer to Pointer Authentication, the security feature, as PAC. In this
paper, we use łPAž to represent the Pointer Authentication feature, and łPACž to
represent the cryptographic hash inserted into a pointer.

Figure 1: Signing and verifying pointers.

✞ ☎

1 pacia lr, sp

2 sub sp, sp, #0x40

3 str lr, [sp, #0x30]

4 ...
✝ ✆

(a) Function prologue.

✞ ☎

1 ldr lr, [sp, #0x30]

2 add sp, sp, #0x40

3 autia lr, sp

4 ret
✝ ✆

(b) Function epilogue.

Figure 2: Stack protection usingARMPointerAuthentication.

To verify a pointer (Figure 1(b)), i.e., to check whether a pointer
has been tampered with or not, the processor re-computes the PAC
from the pointer and the same context value, and compares the
re-computed PAC against the PAC bits embedded in the passed
pointer. If the two values match, the PAC bits will be cleared and
the resulting pointer can be used normally. Otherwise, the proces-
sor will store an invalid pointer in the output register by setting
up certain bits in the PAC region. De-referencing such a pointer
will trigger a virtual address translation fault. Notably, PA is not
transparent to the ISA; software must use special instructions to
gain the benefits of PA.

ISA Extension. To accomplish the above functionality, PA intro-
duces two sets of instructions. The pac prefix denotes instructions
used for signing pointers, and the aut prefix denotes instructions
for verifying pointers. Recall that a context value of computing a
PAC includes a key and a salt, which are encoded differently. PA
can store up to five keys at a time in hardware, and which key to
use is encoded in the instruction’s opcode. The salt is passed in as
an operand. For instance, łpacia ptr, saltž signs an instruction
pointer using the IA key, indicated by the i and the trailing a in
the opcode.

We show an example of protecting return addresses using PA in
Figure 2. We follow ARM’s symbolic register naming convention,
where lr stands for the procedure link register for storing the return
address, and sp stands for the stack pointer. The first argument for
each instruction is the destination register.

During the function prologue in Figure 2(a), the return address
(lr) of the given function is signed using the stack pointer (sp) as
a salt on line 1. The signed return address is then pushed onto the
stack on line 3. During the function epilogue in Figure 2(b), the
signed return address is popped from the stack on line 1 and is
verified (using the same salt it was signed with) on line 3. On line 4,
the verified return address is used to return to the caller. If verified
return address is valid (meaning the pointer was tampered with by
attackers), this jump will be successful. Otherwise, an exception
will occur.

687



ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

According to the Apple Platform Security [33], in addition to
protecting return addresses, macOS extensively uses Pointer Au-
thentication to protect various other data structures, including C++
vtable pointers, vtable entries, and Objective-C method caches.

2.3 Micro-architectural Side Channels

Micro-architectural side channels are serious security threats to
modern computing systems. It has been demonstrated that almost
any shared micro-architectural structures, including caches [44, 51,
53, 69], TLBs [28], functional units [3], and network-on-chips [52],
can be used to leak security-sensitive information. In this paper,
our PoC attacks use TLB-based side channels [28], which share
a lot of similarities with the extensively-studied cache-based side
channels.

Both TLB and cache side channels exploit the timing differ-
ences of memory accesses. Flush+Reload [69], Evict+Reload [42],
and Prime+Probe [44] are three commonly-used attack strategies.
Among the three attack strategies, Prime+Probe has the least
amount of restrictions, as both Evict+Reload and Flush+Reload
require sharing memory between the attacker and the victim.

An example of the Prime+Probe attack targeting a TLB works
as follows. The attacker starts by constructing a group of addresses
that map to the same set of a TLB with at least as many lines as the
associativity of the TLB. This group of address is usually referred
to as an łeviction setž. The attacker then repeats the following
operations: 1) łprimesž a TLB set by fully occupying the TLB set
using addresses from the eviction set; 2) waits for the victim to
either perform an access to the same set or do nothing; 3) łprobesž
the TLB set by re-accessing all the addresses in the eviction set and
measuring their latency. If the measured latency is high, it means
the victim has accessed the TLB set during step 2 (as the increased
latency means that the attacker’s eviction set was evicted from the
TLB); otherwise, it means the victim has not performed the access.

2.4 Speculative Execution Attacks

Speculative execution or transient execution attacks are a type of
information leakage attack that exploits the micro-architectural
side effects of instructions which are speculatively executed but
are squashed later. There exist numerous variants of speculative
execution attacks [37, 43, 58, 63]. Meltdown [43] exploits the side
channels caused by speculatively-executed instructions after an
hardware exception. The class of Spectre attacks [15, 37, 38] exploit
a broader attack surface and are considered much more difficult to
mitigate comprehensively. Spectre v1 exploits misprediction of con-
ditional branches [37], Spectre v2 exploits misprediction of indirect
branch targets [37], and other variants exploit return address mis-
prediction [38, 46] and speculative store-to-load forwarding [32].

3 THREAT MODEL

We consider an attacker whose ultimate goal is to conduct a control-
flow hijacking attack on a PA-enabled victim using the PACMAN
attack as a stepping stone. To this end, the goal of the PACMAN
attack is to construct a PAC oracle, offering the capability to precisely
distinguish between a correct PAC and an incorrect PAC for a
given pointer without causing any crashes. Specifically, before the
attacker modifies a protected pointer to a different address chosen

by the attacker, the attacker first uses the PAC oracle to brute-force
all possible PACs and find the matching PAC for the chosen address.
The attacker then bypasses the protection of Pointer Authentication
by modifying the protected pointer using the matching PAC and
hijack the control flow of the victim.

Our threat model has the following assumptions about the victim
and the attacker. First, there exists an exploitable memory corrup-
tion vulnerability in the victim program, which allows the attacker
to write to some memory locations in the victim process. This as-
sumption aligns with the threat model of PA, and matches the state-
ment from the open-source XNU kernel used by macOS.2 Second,
the victim is protected using Pointer Authentication and there exists
PACMAN gadgets in the victim execution context. We show that
such gadgets are commonly present in PA-enabled codebases in Sec-
tion 4.3. Third, the attacker is able to perform a micro-architectural
side-channel attack on the machine running the victim. This re-
quires the attacker to have access to a high-resolution timer and
use the timer to measure latencies of micro-architectural events.

Throughout this paper, we consider an attack scenario across
privilege levels, where the attacker is an unprivileged userspace ap-
plication and the victim is the operating system kernel. The attacker
can brute-force PACs for pointers signed using the kernelspace se-
cret keys and perform control-flow hijacking attacks against the
kernel.

4 THE PACMAN ATTACK

We propose the PACMAN attack, an attack that combines memory
corruption attacks and speculative execution attacks. An attacker
can use the PACMAN attack to construct a PAC oracle to distin-
guish between a correct PAC and an incorrect PAC for an arbitrary
pointer. The key insight of the PACMAN attack is to use specula-
tive execution attacks to leak PAC verification results stealthily via
micro-architectural side channels without causing crashes. We find
several code patterns to be effectively used for this purpose, and
we call these code patterns PACMAN gadgets.

A PACMAN gadget consists of two operations, i.e., a verification
operation and a transmission operation. The verification operation
speculatively verifies the PAC of a given pointer and produces the
verification result, and the transmission operation speculatively
transmits the verification result via a micro-architectural side chan-
nel. Specifically, the verification operation is usually performed by
a pointer authentication instruction (AUT), which outputs a valid
pointer if the verification succeeds and an invalid pointer other-
wise. The transmission operation can be performed by a memory
load/store instruction or a branch instruction that takes the output
pointer as its target address. If a correct PAC is used, the trans-
mission operation accesses a valid address, resulting in observable
micro-architectural side effects. Otherwise, the transmission oper-
ation causes a speculative exception due to accessing an invalid
address. Note that, both of the verification and the transmission
operations are performed under the shadow of a mis-speculated
branch, and thus only cause micro-architectural side effects and
will not trigger any architectural visible impacts (such as crashes).

2The XNU kernel [6] explicitly states that łPointer authentication’s threat model
assumes that an attacker has found a gadget to read and write arbitrary memory
belonging to a victim process, which may include the kernel.ž

688



PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

✞ ☎

1 if (cond): #BR1

2 verified_ptr = AUT(guess_ptr)

3 Load(verified_ptr)
✝ ✆

(a) A data PACMAN gadget.

✞ ☎

1 if (cond): #BR1

2 verified_ptr = AUT(guess_ptr)

3 BR verified_ptr #BR2
✝ ✆

(b) An instruction PACMAN gadget.

Figure 3: PACMAN gadgets and their corresponding execution timelines.

Depending on the type of instructions used in the transmission
step, we further divide PACMAN gadgets into two categories, i.e.,
data PACMAN gadgets and instruction PACMAN gadgets. In this
section, we first explain the different behaviors of the two types
of gadgets in Section 4.1 and Section 4.2. We then show that both
types of gadgets are common in PA-enabled programs in Section 4.3.
We put everything into the full picture by describing an end-to-
end example of using the PACMAN attack to assist a control-flow
hijacking attack in Section 4.4.

4.1 Data PACMAN Gadget

A data PACMAN gadget transmits PAC verification results via spec-
ulative data accesses. Figure 3(a) shows a minimal representation
of a data PACMAN gadget, which consists of three instructions:
a branch instruction, a pointer authentication instruction, and a
memory access instruction. The pointer authentication instruc-
tion (line 2) takes an attacker-supplied signed pointer, denoted as
guessed_ptr, as an operand, and verifies the correctness of the
PAC using a secret key and the current context (not shown in the
pseudocode for succinctness). The verification output, denoted as
verified_ptr, is then used as the target address of a load instruc-
tion (line 3). Both the pointer authentication instruction and the
load instruction are executed under the shadow of a mis-speculated
branch.

We show the corresponding timeline of executing the data PAC-
MAN gadget and highlight how the PAC verification result is leaked
in Figure 3(c).

• At t1, the branch mis-speculation starts.
• At t2, the processor speculatively executes the pointer
authentication instruction (AUT) on the guessed pointer
(guessed_ptr). The instruction generates a valid address
if the guessed PAC is correct and an invalid address other-
wise.

• At t3, if the verified pointer (verified_ptr) is a valid ad-
dress, the load instruction will be issued to the memory
hierarchy, resulting in observable micro-architectural side
effects. Otherwise, the load will not be issued to the memory
hierarchy and instead will cause a speculative exception.

• At t4, the processor squashes the speculatively executed
instructions, and suppresses any speculative exceptions. As

a result, even if the guessed PAC is incorrect, the program
will not crash.

Attack Variations. The gadget shown in Figure 3(a) is a minimal
representation of the data PACMAN gadget. Other instructions
between the verification and transmission instructions, such as
arithmetic instructions, can exist without affecting the attack. The
transmission operation can be either a load or store instruction, as
long as the processor issues store requests speculatively.

Our attack relies on using micro-architectural side channels to
distinguish whether a memory access or an exception occurred
at t3. Memory operations can leave side effects on various micro-
architectural structures, such as caches [30, 44, 51, 69], TLBs [28],
DRAM row buffers [54], and Network-on-chips [52]. Our attack is
general enough to work with a wide range of micro-architectural
side channels.

4.2 Instruction PACMAN Gadget

An instruction PACMAN gadget transmits PAC verification results
via speculative instruction fetches. Note that, compared to the data
PACMAN gadget, the instruction gadget has an additional require-
ment on the targeted processor for it to work, that is, the targeted
processormust use a speculationmechanism that can eagerly squash
nested branches. This behavior is common to many aggressively
optimized out-of-order processors, including the Apple M1 SoC.

Figure 3(b) shows a minimal representation of an instruction
PACMAN gadget, containing three instructions, a conditional
branch instruction (denoted as BR1), a pointer authentication in-
struction, and an indirect branch instruction (denoted as BR2). Simi-
lar to the data PACMAN gadget, the pointer authentication instruc-
tion verifies the correctness of the PAC of an attacker-supplied
pointer and outputs a verified pointer. The indirect branch can be
a call, jump, or return instruction that uses the verified pointer as
the target address.

We show the corresponding timeline of executing the instruction
PACMAN gadget and explain why eager squash is necessary for
the attack to work in Figure 3(d).

• At t1, the branch mis-speculation starts.
• At t2, the pointer authentication instruction (AUT) is exe-
cuted. However, before the verified pointer is generated,
the processor makes a prediction on BR2’s target using

689



ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

the branch target buffer (BTB). This is a common behav-
ior on modern processors, as these processors use aggressive
branch prediction and speculate across nested branches.

• At t3, the execution of the AUT instruction completes and
the verified pointer is generated. The processor detects a
branch misprediction on the inner branch BR2 and eagerly
squashes BR2 and any other instructions coming after BR2
in program order.

• At t4, after the eager squash is done, the processor attempts
to fetch instructions from the actual target address of BR2. If
the attacker guessed the PAC correctly, verified_ptr will
be a valid pointer and the instruction fetch will happen. Oth-
erwise, the fetch will not be issued to the memory hierarchy
and a speculative exception will be generated.

• At t5, the outer branch (BR1) is squashed, suppressing spec-
ulative exceptions if there is any.

To summarize, there are two constraints when using the instruc-
tion PACMAN gadgets to leak PAC verification results. First, the
instruction PACMAN gadget only works on processors that sup-
port eager squashing of nested branches. Following the example
above, if at t3, the processor decides to not squash BR2, the verified
pointer (verified_ptr) would never be used at all and thus the
verification result would not be leaked.

Second, the attacker needs to be able to distinguish between the
side effects caused by fetching the verified pointer and the BTB pre-
diction. Specifically, since the BTB predicted addresses are always
loaded, for the attack to work, accessing the verified pointer must
cause extra micro-architectural side effects in addition to fetch-
ing the BTB predicted addresses. For example, if the cache-based
Prime+Probe attack is used, the BTB prediction and the verified
pointer should map to different cache sets. In our case, as we use
TLB-based side channels in our proof-of-concept attack (Section 8),
our attack works when the BTB prediction and the verified pointer
are located in different pages.

4.3 Gadget Detection

We perform a preliminary analysis on how commonly PACMAN
gadgets exist in the XNU kernel. We built a static analysis tool using
Ghidra’s scripting API [50]. The tool starts by finding conditional
branches in the kernel, and then inspects 32 instructions in both
branch directions searching for PACMAN gadgets. We consider
a PACMAN gadget is found if the destination register of a verifi-
cation instruction (aut) matches the source register of a transmit
instruction (a memory access or a branch instruction).

We test our tool on the release version of the XNU kernel used
by MacOS 12.2.1 (xnu-8019.80.24) and find 55, 159 potential PAC-
MAN gadgets, of which 13, 867 are data PACMAN gadgets, and
41, 292 are instruction PACMAN gadgets. There is an average dis-
tance of only 8.1 instructions between the conditional branch and
the transmit instruction.

Our analysis is incomplete given that we only search for 32
instructions after conditional branches and we only track data-
dependence via registers, not memory. We envision that more
gadgets can be found with a comprehensive analysis. Thus, we
conclude PACMAN gadgets are readily discoverable in large PA-
enabled codebases.

✞ ☎

1 struct obj_t {

2 char buf[10];

3 void (*fp)(void);

4 };

5

6 void vulnerable_syscall(str, cond){

7 obj = new obj_t;

8

9 memcpy(obj.buf, str, strlen(str)); //buffer overflow

10

11 if (cond) { // instruction PACMAN gadget

12 auted_fp = AUT(obj.fp);

13 call auted_fp;

14 }

15 }
✝ ✆

Listing 1: An end-to-end attack example.

4.4 An End-to-End Illustrative Example

We provide an end-to-end example to show how to use the PAC-
MAN attack to bypass Pointer Authentication and assist a control-
flow hijacking attack. For illustration purpose, we use a simplified
example below. We additionally demonstrate a proof-of-concept
attack targeting real-world code patterns, e.g., the C++ method
dispatch process, in Section 8.3.

Listing 1 shows the victim code. The struct obj_t contains a
buffer and a function pointer fp, where fp is protected by Pointer
Authentication. The victim code contains a buffer overflow vul-
nerability on line 9 and an instruction PACMAN gadget on line
11-14. We assume the attacker is able to 1) trigger the buffer over-
flow by controlling the length of the input string str to overwrite
the function pointer fp, and 2) control the direction of the branch
(line 11) by setting the boolean variable cond. The attacker’s ulti-
mate goal is to modify the function pointer fp with its PAC to a
chosen address fp_jop pointing to a JOP gadget, and successfully
divert the control flow of the victim to execute the JOP gadget
without causing crashes. Since the function pointer is protected
using Pointer Authentication, if we simply overwrite the pointer,
the PAC verification operation (line 12) will fail.

The end-to-end attack consists of two steps. First, the attacker
constructs a PAC oracle and bruteforces the correct PAC for the ad-
dress of the JOP gadget. Following the example above, the attacker
starts by training the branch (line 11) to be taken. At this stage, the
attacker does not trigger the buffer overflow vulnerability and sets
the variable cond to be true. The training process also trains the BTB
entry for the indirect branch (line 13) to match the original value of
fp. After the training process, the attacker speculatively executes
the PACMAN gadget to find the correct PAC for the JOP gadget
address. This requires the attacker trigger the buffer overflow and
overwrite the function pointer <PAC,fp> with the address of the
JOP gadget and a guessed PAC <PAC_guessed,fp_jop>, while set-
ting the cond to be false. Using a micro-architectural side-channel
attack to detect the side effects of the above execution, the attacker
can determine whether the guessed PAC is correct or not. The
attacker repeats this process until the matching PAC is found.

Second, the attacker triggers the control-flow hijacking attack.
After the matching PAC is found, this step follows the standard

690



PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

memory corruption attack. The attacker triggers the buffer overflow,
overwriting the function pointer using the address of the JOP gadget
and its matching PAC. Besides, the cond variable is set to be true
so that the function call can execute and commit. Since obj.fp has
now become fp_jop with a matching PAC, the PAC check (line 12)
can be successfully passed, and the control flow will be diverted to
the attacker’s chosen gadget (line 13).

5 ATTACK PLATFORM

We demonstrate our attacks on the Apple M1 SoC (sometimes short-
ened to łM1ž), which is the first aarch64 desktop processor released
to market that supports the ARM v8.3 architecture extensions. It is
a non-trivial task to perform microarchitectural attacks on Apple
platforms due to the closed-source and undocumented nature of
both the macOS operating system and the M1 processor.

Apple M1 SoC. The Apple M1 is a desktop processor released in
late 2020 [5]. The processor uses the aarch64 architecture (some-
times referred to as ARM64) and supports the ARMv8.3 extensions,
including PA [55]. The aarch64 architecture separates execution
context privilege level into four different exception levels. EL0 is
the least privileged execution mode, and is where usermode pro-
grams execute. EL1 is the supervisor privilege level, and is where
the kernel executes. 3 We provide proof-of-concept demonstrates
of the PACMAN attack that can leak PAC verification results across
privilege levels from the kernel to the userspace.

The M1 processor uses a big.LITTLE design [10], with 4 perfor-
mance cores (also referred to as p-cores) and 4 efficiency cores (also
referred to as e-cores). We target our attack on the performance
cores, which have provided a more reliable attack surface due to a
higher degree of speculation.

macOS and XNU Kernel. Apple Mac computers run macOS,
which is a closed-source platform built on the open-source Dar-
win operating system and XNU kernel. The XNU kernel supports
loadable kernel extensions, called kexts. Our reverse engineering
effort utilizes kexts extensively for modifying the system to perform
detailed analysis, as well as probing model-specific registers (MSRs)
to read hardware configuration details.

Existing Reverse Engineering Efforts. The community has put
forth significant effort towards understanding the undocumented
internals of the M1 SoC. The Asahi Linux development team has
been working to port Linux to the M1 SoC, and has revealed many
of the undocumented hardware details specific to M1[2]. Addition-
ally, several efforts have been made to reverse engineer the M1
micro-architecture with a focus on core pipeline details [24, 34, 39].
Unfortunately, none of these open-source reverse engineering ef-
forts have uncovered sufficient details about the memory hierarchy
of the M1 processor to enable our attack.

6 REVERSE ENGINEERING TOOLS

Micro-architectural side-channel attacks on Apple platforms are
under-explored due to the closed-source and undocumented nature
of both the software and the hardware. In this paper, we make

3Operating systems can also run in EL2 when Virtualization Host Extensions (VHE) is
enabled.

MSR EL0 Enabled?

System Counter (24 MHz) CNTPCT_EL0 Yes
ARM Cycle Count Register PMCCNTR_EL0 No*
Apple Performance Counter PMC0 No

Multi-thread Counter Ð Yes

Table 1: Summary of timers on M1. (*This counter does not

exist on M1.)

significant contributions in expanding micro-architectural side-
channel attacks to Apple processors by providing two sets of useful
tools. First, we provide a comprehensive analysis of the timers
on the M1 and construct two high-resolution timers accessible to
EL0. Second, we develop PacmanOS, a bare-metal hypervisor that
runs on M1 and enables noiseless reverse engineering experiments.
We expect these tools to unblock the community from conducting
research on existing and future Apple Silicon devices.

6.1 High-Resolution Timers

We summarize our investigation of the timers on M1 in Table 1.
First, there exists a system counter, CNTPCT_EL0, which is shared

by all cores and is accessible from EL0 by default (tested on ma-
cOS Big Sur 11.5). However, this counter operates at a very low
frequency, i.e., 24 MHz according to the Counter-timer Frequency
register (CNTFRQ_EL0). This frequency is at the order of hundreds of
CPU cycles and is too low to measure the precise latency differences
required to properly reverse engineer the microarchitecture.

Second, most ARM Cortex processors are equipped with per-
formance monitoring units (PMU) which include a Cycle Count
Register (PMCCNTR_EL0). This cycle count register is extensively
used in prior work on reverse engineering ARM processors [18, 42].
However, the M1 SoC does not use the standard ARM PMU, so this
counter is unavailable on M1 at any privilege level.

With no high-resolution timers available in userspace, we con-
struct the following two timers by 1) exploring Apple’s undocu-
mented and proprietary performance counter system and 2) build-
ing our customized timer counter using multi-thread execution.

Exposing Apple Performance Counters to Userspace. Apple
has undocumented platform-specific performance counter regis-
ters, including PMC0 and PMC1, where PMC0 (S3_2_c15_c0_0) counts
cycles and PMC1 (S3_2_c15_c1_0) counts instructions.4 However,
these counters are only accessible in the kernel. To aid in the re-
verse engineering effort from userspace, we use a kext (XNU kernel
extension) to configure the performance counter control register
PMCR0 (S3_1_c15_c0_0) and make PMC0 readable from userspace.
Since this approach requires loading a kext, we only use these coun-
ters to aid in the reverse engineering process, and do not use them
in the actual attack.

Building A Custom Multi-thread Timer. We leverage multi-
threaded execution and shared memory to build a timer that is
accessible in userspace and does not require installing kernel ex-
tensions. This approach has been used in assisting attacks on ARM
mobile devices [42] and on integrated CPU-GPU systems [20].

4See osfmk/arm64/monotonic_arm64.c in the XNU kernel [8].

691



ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

✞ ☎

1 //a shared variable

2 volatile uint64_t counter;

3

4 void timerthread() {

5 while(1) {

6 counter++;

7 }

8 }
✝ ✆

(a) The dedicated timer thread.

✞ ☎

1 isb

2 ldr time1, [counter_addr]

3 isb

4 // operations to time

5 isb

6 ldr time2, [counter_addr]

7 isb

8 sub latency, time2, time1
✝ ✆

(b) The measuring thread.

Figure 4: The multi-thread timer.

Our customized timer requires two threads sharing a variable
called counter (pseudocode in Figure 4). One thread works as a
dedicated timer thread which increments the shared variable in an
infinite loop. The other thread works as a measuring thread which
reads the counter value before and after the operations to time.
We use the isb instruction (Instruction Synchronization Barrier)
to enforce the ordering of these operations.

We only use the isb instructions in the measuring thread, not
in the dedicated timer thread for the following reason. Using the
serialization instruction will slowdown the speed of incrementing
the counter variable, and thus decrease the resolution of our timer.
We tried both versions of the timer with and without isb instruc-
tions. We find that the absence of serialization barriers introduces
slightly higher variance of the timing measurements, but signifi-
cantly increases the resolution. Overall, we see higher reliability
with the dedicated timer thread without the serialization barriers.

6.2 PacmanOS

As part of our reverse engineering effort, we designed PacmanOS, a
bare-metal execution environment written entirely in Rust that can
boot directly on M1. When PacmanOS boots, it sets up a minimal
execution environment and runs a single experiment directly on
the bare hardware. PacmanOS allows researchers to have complete
control of the hardware, e.g., configuring and probing arbitrary
model-specific registers (MSRs), creating arbitrary paging configu-
rations, and performing noiseless reverse engineering experiments,
without interference from other system software. Other bare metal
hypervisor environments for M1 exist [2]; however, we wanted to
design a minimum viable environment with complete hardware
control for running noiseless experiments. We believe PacmanOS
will serve as a useful tool for further study of M1 and future Apple
Silicon devices.

7 REVERSE ENGINEERING

We reverse engineer the memory hierarchy of the M1 SoC with a
focus on the TLBs. We start by presenting the basic memory hierar-
chy information obtained using a kernel extension (kext), followed
by detailed reverse engineering findings of the TLB hierarchy on
M1. To the best of our knowledge, we are the first to report these
micro-architectural details.

Level Ways Sets Line Size Total Size

p
-c
o
re L1I 6 512 64 B 192 KB

L1D 8 256 64 B 128 KB
L2 12 8192 128 B 12 MB

e
-c
o
re

L1I 8 256 64 B 128 KB
L1D 8 128 64 B 64 KB
L2 16 2048 128 B 4 MB

Table 2: Cache configurations on M1 obtained via reading

system registers.

7.1 Basic Memory Hierarchy Information

The M1’s memory hierarchy has 2 levels of caches whose sizes are
different for the p-cores and e-cores. Using a kernel extension, we
read the CPU cache configuration registers to reveal the architec-
turally visible cache specification, shown in Table 2.

The private L1 instruction cache , L1 data cache, and shared
L2 cache sizes on the p-core side are 192KB, 128KB, and 12MB
respectively. The corresponding cache sizes on the e-core side are
128KB, 64KB, and 4MB respectively. There also exists a 16 MB
system level memory-side cache shared across all components on
the SoC. The cache line size of the L1 data and instruction caches
is 64 bytes, and the line size of the L2 caches is 128 bytes.

The macOS 12.2.1 kernel uses 48-bit virtual addresses and 16-bit
PACs with 16KB pages.

7.2 L1 Data TLB and L2 TLB

We focus on reverse engineering the memory hierarchy for the
p-cores. Unlike Linux which provides flexible commands to pin a
process to user-specified cores (via the taskset command), macOS
does not offer such interface to an unprivileged user. Instead we use
the pthread_set_qos_class_self_np API to suggest the kernel
to schedule an experiment on a p-core. In this section, we report
latency numbers using the Apple Performance Counter.

We start by analyzing the data access behaviors. The data access
latency can be influenced by multiple factors, including the caches
and TLBs. We first present our results on the TLBs, and then discuss
the interaction between the TLBs and the caches.

Experiments. To reverse engineer the TLB parameters and exclude
the impacts from the caches, we conduct the following experiment:

(1) Load an address x.
(2) Load N addresses that could potentially form an eviction set

for a data TLB set without causing cache conflicts.
(3) Reload address x and measure the reload latency.

The address in step (2) is derived using the following formula:

Addrs[i] = x + i × stride + i × 128B, where 1 ≤ i ≤ N

Recall that the M1 platform uses 64B or 128B as cache line size. The
term i×128B in the formula maps the addresses to different cache
sets, avoiding cache conflicts during the experiments.

Analyzing TLB conflicts. We perform a space search to under-
stand TLB conflicts by varying the value stride bymultiples of 16KB
and varying the number of addresses N from 1 to 30. In Figure 5(a),
we report the median reload latency of accessing the address x

692



PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

Figure 5: Access latency to the target address when varying the stride and the number of loads and branches executed. Labeled

strides are the lowest strides where we observe the increase and decrease in access latencies.

across 1000 samples. For succinctness, instead of plotting a line for
each stride value, we only show the lines of the lowest stride values
that cause increases in the access latencies.

The access latency starts around 60 cycles, increases to around 95
cycles when stride≥ 256×16KB and N≥ 12, and further increases
to 115 cycles when stride≥ 2048×16KB andN≥ 23. We hypothesize
that the two latency jumps are caused by L1 dTLB conflicts and
L2 TLB conflicts. It is very likely that the L1 dTLB is 12 ways with
256 sets and L2 TLB is 23 ways with 2048 sets if the TLBs are inclu-
sive. Even though we are confident about the eviction parameters
discovered by our analysis, we do not intend to conclude that the
M1 chip follows our hypothesized design, because there may exist
hidden structures in the micro-architecture that our analysis has
missed. We conclude with the following findings:

1) To evict a page table entry from the L1 dTLB, we can cre-
ate an eviction set with 12 or more addresses with a stride of
256×16KB.
2) To evict a page table entry from the L2 TLB, we can cre-
ate an eviction set with 23 or more addresses with a stride of
2048×16KB.

Interactions between TLBs and caches. To understand how TLB
conflicts and cache conflicts affect data access latency, we perform
a similar experiment by changing the address calculation in step (2)
to the formula below.

Addrs[i] = x + i × stride, where 1 ≤ i ≤ N

We vary the stride value to make it a multiple of 128B and we show
the observed latencies in Figure 5(b).

The access latency starts around 60 cycles as before, increases
to around 80 cycles when stride≥ 256×128B and N≥ 4, further in-
creases to around 110 cycles when stride≥ 256×16KB and N≥ 12,
and finally jumps to around 130 cycles when stride≥ 2048×16KB

and N≥ 23. We hypothesize that the first jump (N=4) is caused by
L1 data cache 5 conflicts and the 80-cycle latency corresponds to L2
cache hits and L1 dTLB hits. We hypothesize that the next 2 jumps
are caused by L1 dTLB conflicts and L2 TLB conflicts, because the 2
jumps happen when N=12 and N=23, which match what we have
observed for TLB conflicts.

5Note that the observed L1 data cache associativity is half of the number reported by
the system registers (Table 2). In this paper, we use the TLBs as the communication
channel and defer the reverse engineering of the caches as future work.

7.3 L1 Instruction TLB

We next investigate the instruction access behaviors and reverse
engineer the instruction TLB parameters. We additionally observe
important interaction patterns between the instruction TLB and the
data TLB which we find to be essential for conducting the PACMAN
attack.

To create desired instruction access patterns, we allocate a large
JIT memory region and fill the region with branch instructions
where the target of each branch is properly configured to achieve
the desired access pattern. Note that, an address in this memory
region can be both fetched as an instruction address and accessed
as a data address. Our experiment is then conducted as follows.

(1) Reset the L1 dTLB and L2 TLB by loading 23 data eviction
addresses with a stride of 2048×16KB.

(2) Branch to a target address x so that the addresswill be fetched
into the processor as an instruction.

(3) Execute N branch instructions that could potentially form
an eviction set for an instruction TLB set. We call this group
of addresses as our instruction eviction set.

(4) Load the target address x as data and measure the reload
latency.

The address in step (3) is derived using the following formula:

Addrs[i] = x + i × stride + i × 128B, where 1 ≤ i ≤ N

A subtle thing to note here is that the target address x is accessed as
an instruction in step (2), but accessed as data in step (4). We design
the experiment in this way because measuring data access latency
is much more reliable than measuring instruction fetch latency
and does not suffer from the noise caused by branch predictors
and aggressive instruction prefetchers. We then vary the stride of
the branches in step (3) by a multiple of 16KB and the number of
branch instructions N from 1 to 30 to obtain Figure 5(c).

Analyzing iTLB Conflicts. When the number of the instruction
eviction addresses is small (N < 4), we observe a high access latency
above 110 cycles. The access latency then drops from above 110
cycles to around 80 cycles when stride≥ 32×16KB and N≥ 4. The
observation that the access latency decreases when we increase
the number of eviction addresses contradicts the common under-
standing of how iTLBs and dTLBs are organized. Given that we
consistently observe this phenomenon, we hypothesize that the L1
iTLB and L1 dTLB follow a design explained below.

693



ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

Figure 6: The TLB hierarchy on M1.

First, the L1 iTLB and L1 dTLB are separate structures and the
L1 iTLB content is not visible from the load and store ports. This
would explain the high latency we observe when measuring the
latency of loading the target address as data while the correspond-
ing page entry is in the L1 iTLB. Second, the L1 dTLB serves as a
non-inclusive backing-store of the L1 iTLB. Increasing the L1 iTLB
eviction set causes the page table entry to be evicted from the L1
iTLB to the L1 dTLB. Thus, the entry becomes visible from the load
and store ports on the data-fetch side, and we start to observe L1
dTLB hit latencies. Third, the L1 iTLB has 4 ways with 32 sets, as
indicated by the line labeled with stride=32×16KB in Figure 5(c).

Back to Figure 5(c), we observe the access latency increases
from 80 cycles to around 110 cycles when stride≥ 256×16KB

and N≥ 12, and further increases to around 130 cycles when
stride≥ 2048×16KB and N≥ 23. These two increases completely
match our observation in the previous experiments about L1 dTLB
and L2 TLB (Section 7.2). We thus believe that once the a page table
entry is evicted from the L1 iTLB to the L1 dTLB, it behaves the
same as the other entries. Thus, we conclude with the following
finding:

3) To evict a page table entry from the L1 iTLB, we can create
an eviction set with 4 or more branch instructions with a stride
of 32×16KB.

7.4 Summary of Reverse Engineering Results

We now summarize our reverse engineering results focusing on the
information that is essential for conducting the proof-of-concept
PACMAN attacks. First, as we will demonstrate the PACMAN attack
across privilege levels, we repeat the reverse engineering exper-
iments above to reverse engineer how TLBs are shared between
userspace and kernelspace. Second, as we will use our customized
timer in the PoC attacks, we evaluate the reliability of the cus-
tomized timer and derive the threshold to distinguish between TLB
hits and misses.

The TLB Hierarchy on M1. According to our reverse engineer-
ing results, each p-core on M1 has four separate TLB structures
organized hierarchically as shown in Figure 6. The L1 iTLBs are

Figure 7: Latency measured using (a) Apple Performance

Counter, and (b) our customized multi-thread timer.

not shared between the kernelspace and userspace, while the L1
dTLB and the L2 TLB are shared across privilege levels. Both the
userspace L1 iTLB and the kernelspace L1 iTLB use the L1 dTLB as
a non-inclusive backing-store. When a page table entry is evicted
from one of the L1 iTLBs, it will be inserted into the L1 dTLB. We
also include our reverse engineered parameters for each TLB struc-
ture in Figure 6. Note that we do not draw conclusions about the
M1 design, since it is possible that Apple’s design just happens to
behave the same as our hypothesized design, but actually deviates
from our description.

Latency and Threshold. We show the distributions of the mea-
sured memory access latencies via the Apple performance counter
and our customized thread timer in Figure 7. Despite the differences
between the two distributions, we see that both timing methodolo-
gies are able to clearly distinguish the memory access latencies as
they hit or miss in different cache and TLB locations.

We can derive the threshold for distinguishing these accesses.
For our customized timer (Figure 7(b)), an L1 dTLB hit is never
beyond 27, while an L1 dTLB miss is never below 32. As such, the
threshold to distinguish between an L1 dTLB hit and miss can be
set to 30, to sufficiently monitor L1 dTLB accesses. This is also the
threshold that we consistently used in the PoC attacks.

8 PROOF-OF-CONCEPT ATTACKS

We build our proof-of-concept (PoC) attacks step by step. First, we
construct PAC oracles using the data PACMAN gadget and the
instruction PACMAN gadget in Section 8.1. Second, we use the PAC
oracle to brute-force PACs and further evaluate the speed and the
accuracy of the brute-force attack in Section 8.2. Finally, we demon-
strate a control-flow hijacking attack targeting the PA-enabled
kernel in Section 8.3. All the PoC attacks are performed across
privilege levels, where the attacker is an unprivileged userspace
program and the victim is the operating system kernel.

8.1 PAC Oracles

We start by constructing PAC oracles across privilege levels. To set
up the experiment, we install a kernel extension (kext) containing a

694



PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

0 5 10
Number of Misses

0%

50%

100%

Fr
eq

ue
nc

y

(a)
0 5 10
Number of Misses

0%

50%

100%

Fr
eq

ue
nc

y
(b)

Incorrect PAC Correct PAC

Figure 8: PAC oracle results. Number of observed L1 dTLB

misses when leaking via (a) data PACMAN gadget, and (b)

instruction PACMAN gadget.

PACMAN gadget that can be triggered via a syscall from userspace.
To evaluate the accuracy of the PAC oracle, we pass a pointer
embedded with a chosen PAC to the kext and monitor the TLB
modulations caused by the syscall. In each run, we randomly decide
whether to use the correct PAC or a randomly generated incorrect
PAC. We use our customized multi-thread timer to report the side-
channel attack results for 20,000 trials, where half of the trials used
an incorrect PAC, and half used the correct PAC.

Leaking via Data Accesses. As the userspace and kernelspace
share the L1 dTLB, we utilize Prime+Probe to monitor the L1 dTLB
activities of the data PACMAN gadget. Specifically, we prepare an
eviction set with 12 address with a stride of 256×16KB between
each address. Besides, as we find that the Prime+Probe attack is
sensitive to the TLB replacement policy, we additionally introduce
a reset operation which can help significantly increase the attack
accuracy. The attack process works as follows.

(1) Train the branch predictor in the data PACMAN gadget in
the kernel to be taken for 64 times.

(2) Reset the TLB hierarchy by accessing 23 addresses that map
to the same L2 TLB set. These addresses should not be part
of the eviction set used for Prime+Probe.

(3) Prime the L1 dTLB set by accessing the eviction set.
(4) Trigger the PACMAN gadget by passing in the pointer with

the PAC to test.
(5) Probe the L1 dTLB set by re-accessing the eviction set and

report the number of L1 dTLB misses.

We show the attack results in Figure 8(a). When an incorrect
PAC is used, in almost all cases (99.2%), we observe no L1 dTLB
misses. When a correct PAC is used, we observe at least 5 misses
for 99.6% of the time, which sufficiently indicates that our attack
can reliably distinguish between correct and incorrect PACs.

Leaking via Instruction Fetches. There exists a key challenge to
monitor the TLB modulations by the instruction PACMAN gadget.
The challenge lies in the fact that as the the L1 iTLBs are not shared
between the kernelspace and userspace (Section 7.4), the attacker in
the userspace is unable to observe the instruction fetches performed
by the victim in the kernelspace. We address this challenge by
creating self-conflicts in kernelspace to evict a target TLB entry
from the private L1 iTLB to the shared L1 dTLB, whose states can
be directly monitored from the userspace.

Our cross-privilege attack via the instruction PACMAN gadget
follows similar steps as leaking via the data PACMAN gadget and
only differs in the last step. Specifically, we replace the step (5) with
the two steps below.

(5) Evict the target TLB entry from the kernelspace L1 iTLB by
fetching 4 instructions with a stride of 32×16KB between
each of them. We make 4 system calls to perform these in-
struction fetches in the kernelspace.

(6) Probe the L1 dTLB set by re-accessing the eviction set and
report the number of L1 dTLB misses.

We show the attack results using the instruction PACMAN gad-
get in Figure 8(b). Similar to the previous attack, when an incorrect
PAC is used, we observe at most 1 accesses for 99.2% of the time,
and when the correct PAC is used, we observe at least 5 misses
for 99.8% of the time. Given that the two distributions are clearly
distinguishable, we consider the PAC oracle highly reliable.

8.2 Brute-Force Attack

Attack Speed. We perform a preliminary speed test of using the
PACMAN oracle to brute-force the correct PAC. When we train
the conditional branch in the instruction PACMAN gadget for 64
times, it takes 2.69 milliseconds on average to test one PAC value.
Considering that the M1 uses a 16-bit PAC, we estimate that it will
take around 2.94 minutes on average to try all possible PAC values.

We find the brute-force attack speed is dominated by the syscall
overhead during the training iterations. Therefore, the attack speed
can be further increased if one can reduce the number of training
iterations or reduce the kernelspace and userspace context switch
overhead. We do note that this speed analysis result is preliminary,
mainly because our tested syscall function is very short. The speed
of the PACMAN attack in a real-world setup depends on how long
the targeted syscall function takes.

Attack Accuracy. We evaluate the accuracy of the brute-force
attack by testing every possible PAC value starting from 0x0 to
0xFFFF. For each guessed PAC, we collect 5 samples and determine
whether the corresponding PAC is correct based on the median miss
count. For each brute-force experiment, we have three potential
outputs: 1) True Positive when the correct PAC is found; 2) False
Positive when an incorrect PAC is found; 3) False Negative when
no PAC is found. Note that, we cannot tolerate false positives, since
using an incorrect PAC can crash the system. However, our attack
can easily tolerate false negatives, because when no PAC is found,
the attacker can simply repeat the brute-force process until the
correct PAC is found.

We repeat the brute-force experiments 50 times, under a noisy
environment where we browse websites and make video calls. We
observe consistent results for attacks using the data PACMAN gad-
get and the instruction PACMAN gadget. Specifically, we found
the correct PAC in 90% of the experiments (45 out 50), while in the
remaining 10% of the experiments (5 out of 50), no PAC value was
found. Importantly, we observe no false positives. Since false nega-
tives are tolerable, our evaluation result indicates perfect reliability.

695



ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

✞ ☎

1 //call an object's ith method

2 vtable_ptr = AUT(*object_addr); // obtain vtable pointer

3 fp = AUT(vtable_ptr[i]); // obtain function pointer

4 call fp; // make a function call
✝ ✆

Listing 2: C++ method dispatch process.

Figure 9: A jump2win attack.

8.3 Jump2Win Attack

We extend our PACMAN attack to assist a control-flow hijacking
attack against the kernel via a single buffer overflow vulnerability.
Specifically, we demonstrate a Jump2Win attack where we modify
a function pointer protected using Pointer Authentication to the
address of a win function which exists in the kernel.

We exploit the C++ method dispatch process [33] shown in
Listing 2. In C++, the first 8 bytes of an object contain the vtable
pointer which points to a list of function pointers for the object’s
methods. In a PA-protected program, the method dispatch process
first loads the vtable pointer and verifies it using the data key (line
2). Next, the vtable is indexed to obtain the desired function pointer,
which is verified using the instruction key (line 3) before the actual
function call (line 4). In both verification operations, the salt is the
object address plus a compile-time constant value.

Our attack works by exploiting a buffer overflow vulnerability
to overwrite the vtable pointer in a victim object. We show the
memory content before and after the buffer overflow in Figure 9.
There are two objects allocated contiguously in memory, where the
first member variable in object1 is a buffer. The attacker overflows
the buffer and overwrites the other member variables in object1

as well as the vtable pointer in object2 (the corrupted memory
regions are highlighted). The attacker fills the buffer with a signed
address pointing to the win function, and overwrites object2’s
vtable pointer with a signed address pointing to the buffer (shown
in Figure 9(b)). The PACs for the two signed addresses can be
obtained using the PACMAN attack. Once the buffer overflow is
done, when a function call in object2 is triggered, the victim will
load the buffer address as the vtable pointer, and use the address of
the win function as the function pointer.

To show this attack pattern is viable, we created a kext with this
buffer overflow vulnerability present, and implemented an attack
against it from userspace. We successfully demonstrated that we

can perform the attack above and trick the kernel to execute a win
function.

9 COUNTERMEASURES

We discuss three potential directions in protecting against the PAC-
MAN attack. The first direction is to explore PAC-agnostic execution.
That is, modifying the microarchitecture or software to ensure that
the verification results of PAC are never used under speculation.
One approach is to pause speculative execution of using verified
pointers for memory access instructions and branch instructions.
This approach can be achieved by adding fence/isb instructions af-
ter any pointer authentication instructions. However, this approach
can incur significant performance penalty as these instructions
are very common programs protected using Pointer Authentica-
tion. Another approach is to always speculate a verified pointer
assuming the verification to be successful. However, such an ap-
proach could introduce a Meltdown-style vulnerability by allowing
speculatively de-referencing invalid pointers. Therefore, with such
an approach, the system would have to incorporate some form of
Meltdown mitigations [17] to fully patch the problem.

The second direction is to explore adapting prior work in de-
fending against Spectre to defend against PACMAN. Invisible spec-
ulation mechanisms, such as InvisiSpec [68], SafeSpec [35], and
Delay-on-Miss [57], should serve the purpose as they hide the side
effects of any speculative load instructions. However, the recent
speculative interference attacks [14] have demonstrated that these
defense mechanisms can still indirectly leak the timing of load in-
structions. They also need to extend their protection from caches
to TLBs considering our PoC attacks. Another set of mitigation
mechanisms leverage information flow tracking [60, 62] to block
leaking speculatively accessed secret, such as STT [70], NDA [67],
and Dolma [45]. However, we find these work consider that the
source of a taint starts from a load instruction. In our PACMAN
attack, the taint starts from a pointer authentication instruction. A
simple fix will be to re-purpose these mechanisms by marking the
output of any pointer authentication instructions as tainted.

Lastly, as the PACMAN attack needs to work with a memory
corruption bug to achieve exploitation, patching any memory cor-
ruption vulnerabilities would help.

10 RELATED WORK

We discuss related work of our PACMAN attack in the order of
how close they are to our work. First, to the best of our knowledge,
there exists only one work that also targets the synergies between
memory corruption attacks and speculative execution attacks. Spec-
ulative Probe [27] demonstrates an attack that starts from a single
memory corruption bug to probe every address in the kernel space
and break kASLR [21]. We share the insights of using speculative
execution for crash suppression. Similar to other speculative execu-
tion attacks, speculative probe focuses on leaking loaded content,
while our attack leaks PAC verification results.

Second, there exist several attempts to break Pointer Authen-
tication, documented in blog posts of Google Project Zero. For
example, Brandon Azad [13] found a bug in the PA implementation
of the Apple A12 processor: When giving an invalid pointer to a
pointer signing instruction (the set of instructions starting with

696



PACMAN: Attacking ARM Pointer Authentication with Speculative Execution ISCA ’22, June 18ś22, 2022, New York, NY, USA

pac), the instruction would generate a valid PAC, flip the top bit
and return it. This bug has been patched in iOS and macOS system
software [13]. However, it is not as trivial a task to defend against
our PACMAN attack, as our attack exploits hardware speculative
execution mechanisms which cannot be deactivated from system
software.

Third, there have been a plethora of research proposals in the
system and architecture community that extend the ARM PA fea-
ture increase its protection coverage or re-purpose it for detecting
other vulnerabilities. For example, PAC It Up [41] incorporates PA
into the LLVM compiler to monitor data accesses for misuse with
minimal performance overhead, PTAuth [23] uses PA to detect tem-
poral memory corruptions, Nasahl et. al [49] proposes to use PA
to enforce CFI (control-flow integrity), and AOS [36] re-purposes
PA to support memory safety protection of heap data. The security
properties of those designs have been rigorously examined under
the memory safety threat model. However, our work highlights the
essential to revisit the security properties of these designs under a
broader threat model, by taking speculative execution attacks into
consideration.

11 CONCLUSION

We have presented PACMAN, a novel speculative execution attack
against ARM Pointer Authentication. We have reverse engineered
the TLB organizations on Apple M1 and have demonstrated multi-
ple proof-of-concept attacks that work across privilege levels. We
believe that this attack has important implications for designers
looking to implement future processors featuring Pointer Authenti-
cation, and has broad implications for the security of future control-
flow integrity primitives.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was funded in part by the NSF under grant CNS-2046359,
and by the Air Force Office of Scientific Research (AFOSR) under
grant FA9550-20-1-0402.

REFERENCES
[1] 2001. Address Space Layout Randomization. https://pax.grsecurity.net/docs/aslr.

txt.
[2] 2021. Linux on Apple Silicon. https://asahilinux.org/about/.
[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE.

[4] Aleph One. 1996. Smashing the Stack for Fun and Profit. Phrack 7, 49 (November
1996). http://www.phrack.com/issues.html?issue=49&id=14

[5] Apple Inc. 2020. Apple unleashes M1. https://www.apple.com/newsroom/2020/
11/apple-unleashes-m1/

[6] Apple Inc. 2020. ARMv8.3 Pointer Authentication in xnu. https://github.com/
apple/darwin-xnu/blob/xnu-7195.50.7.100.1/doc/pac.md

[7] Apple Inc. 2021. Introducing M1 Pro and M1 Max: the most powerful chips Apple
has ever built. https://www.apple.com/newsroom/2021/10/introducing-m1-pro-
and-m1-max-the-most-powerful-chips-apple-has-ever-built/

[8] Apple Inc. 2021. The Darwin Kernel 7195.81.3. https://github.com/apple-oss-
distributions/xnu/tree/xnu-7195.81.3

[9] ARM Limited. 2021. ARM Architecture Reference Manual. https://developer.arm.
com/documentation/ddi0487/ga.

[10] ARM Limited. 2021. ARM big little. https://www.arm.com/why-arm/
technologies/big-little

[11] ARM Limited. 2021. Jump-oriented programming. https://developer.arm.com/
documentation/102433/0100/Jump-oriented-programming.

[12] ARM Limited. 2021. Secure and Scalable Performance for Next-Generation On-
The-Go Devices. https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-

a78c.
[13] Brandon Azad. 2019. Examining Pointer Authentication on the iPhone

XS. https://googleprojectzero.blogspot.com/2019/02/examining-pointer-
authentication-on.html

[14] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, et al. 2021. Speculative Interference Attacks: Breaking Invisible Spec-
ulation Schemes. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems.

[15] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: Exploiting Speculative Execution through Port Contention. In CCS.

[16] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.

[17] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. 2020. KASLR: Break it, fix it, repeat. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In 28th USENIX
Security Symposium (USENIX Security 19).

[19] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. 98 (01 1998).

[20] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Mar-
quez, and Kevin Barker. 2021. Leaky buddies: Cross-component covert channels
on integrated cpu-gpu systems. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE.

[21] Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/
Articles/569635/.

[22] Úlfar Erlingsson, Yves Younan, and Frank Piessens. 2010. Low-level software
security by example. In Handbook of Information and Communication Security.
Springer.

[23] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Tempo-
ral Memory Safety via Robust Points-to Authentication. In 30th USENIX Security
Symposium (USENIX Security 21).

[24] Andrei Frumusanu. 2020. The 2020 Mac Mini Unleashed: Putting Apple Silicon
M1 To The Test. https://www.anandtech.com/show/16252/mac-mini-apple-m1-
tested.

[25] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary Hardware.
JCEN 8, 1 (2018).

[26] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios
Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining Infor-
mation Hiding (and What to Do about It). In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/goktas

[27] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative Probing: Hacking Blind in the Spectre Era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security.

[28] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security.

[29] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering Se-
cure Software and Systems, Eric Bodden, Mathias Payer, and Elias Athanasopoulos
(Eds.). Springer International Publishing, Cham.

[30] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security.

[31] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In 2014 IEEE Symposium on
Security and Privacy. https://doi.org/10.1109/SP.2014.43

[32] Jann Horn. 2018. Speculative execution, variant 4: speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

[33] Apple Inc. May 2021. Apple Platform Security Guide. https://manuals.info.apple.
com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf.

[34] Dougall Johnson. 2021. Apple M1 Microarchitecture Research. https://dougallj.
github.io/applecpu/firestorm.html. Accessed on 24.11.2021.

[35] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In 2019 56th
ACM/IEEE Design Automation Conference (DAC).

[36] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. 2020. Hardware-based always-on
heap memory safety. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE.

697

https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://asahilinux.org/about/
http://www.phrack.com/issues.html?issue=49&id=14
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://github.com/apple/darwin-xnu/blob/xnu-7195.50.7.100.1/doc/pac.md
https://github.com/apple/darwin-xnu/blob/xnu-7195.50.7.100.1/doc/pac.md
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/
https://github.com/apple-oss-distributions/xnu/tree/xnu-7195.81.3
https://github.com/apple-oss-distributions/xnu/tree/xnu-7195.81.3
https://developer.arm.com/documentation/ddi0487/ga
https://developer.arm.com/documentation/ddi0487/ga
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78c
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78c
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/goktas
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/goktas
https://doi.org/10.1109/SP.2014.43
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html


ISCA ’22, June 18ś22, 2022, New York, NY, USA Ravichandran and Na, et al.

[37] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In S&P.

[38] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).

[39] Daniel Lemire. 2021. Memory access on the Apple M1 processor. https://lemire.
me/blog/2021/01/06/memory-access-on-the-apple-m1-processor/.

[40] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-Erik Ekberg, and N
Asokan. 2021. PACStack: an Authenticated Call Stack. In 30th USENIX Security
Symposium (USENIX Security 21).

[41] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N Asokan. 2019. PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In 28th USENIX Security Symposium (USENIX Security
19).

[42] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In S&P.

[45] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In 30th USENIX Security Symposium
(USENIX Security 21).

[46] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security.

[47] Hector Marco-Gisbert and Ismael Ripoll. 2019. Address Space Layout Random-
ization Next Generation. Applied Sciences 9 (07 2019). https://doi.org/10.3390/
app9142928

[48] MITRE. 2021. 2021 CWE Top 25 Most Dangerous Software Weaknesses. http:
//cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html.

[49] Pascal Nasahl, Robert Schilling, and Stefan Mangard. 2021. Protecting Indirect
Branches against Fault Attacks using ARM Pointer Authentication. In 2021 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).

[50] National Security Agency. 2022. Ghidra Software Reverse Engineering Frame-
work. https://github.com/NationalSecurityAgency/ghidra

[51] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: the Case of AES. In CT-RSA.

[52] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of
the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In USENIX Security.

[53] Colin Percival. 2005. Cache Missing For Fun And Profit. In BSDCan.
[54] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security.

[55] Inc. Qualcomm Technologies. 2017. Pointer Authentication on ARMv8.3:
Design and Analysis of the New Software Security Instructions.
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf.

[56] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012).

[57] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2020. Understanding Selective Delay as a Method for Efficient
Secure Speculative Execution. IEEE Trans. Comput. 69, 11 (2020). https:
//doi.org/10.1109/TC.2020.3014456

[58] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W Fletcher. 2019. MicroScope: Enabling Microarchi-
tectural Replay Attacks. In ISCA.

[59] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. 2009. Breaking the memory secrecy assumption. In Proceed-
ings of the Second European Workshop on System Security.

[60] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. 2004. Secure
program execution via dynamic information flow tracking. ACM Sigplan Notices
39, 11 (2004).

[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE.

[62] Mohit Tiwari, Hassan MG Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T
Chong, and Timothy Sherwood. 2009. Complete information flow tracking from
the gates up. In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems.

[63] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security.

[64] Arjan van de Ven. 2004. Exec shield. https://static.redhat.com/legacy/f/pdf/rhel/
WHP0006US_Execshield.pdf.

[65] Victor Van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. 2012. Memory errors:
The past, the present, and the future. In InternationalWorkshop on Recent Advances
in Intrusion Detection. Springer.

[66] Yuan Wei, Senlin Luo, Jianwei Zhuge, Jing Gao, Ennan Zheng, Bo Li, and Limin
Pan. 2019. ARG: Automatic ROP Chains Generation. IEEE Access 7 (2019).
https://doi.org/10.1109/ACCESS.2019.2937585

[67] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas FWenisch, and Baris Kasikci. 2019.
NDA: Preventing speculative execution attacks at their source. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

[68] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In 2018 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.2018.00042

[69] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[70] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-
hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture.

698

https://lemire.me/blog/2021/01/06/memory-access-on-the-apple-m1-processor/
https://lemire.me/blog/2021/01/06/memory-access-on-the-apple-m1-processor/
https://doi.org/10.3390/app9142928
https://doi.org/10.3390/app9142928
http://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
http://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://github.com/NationalSecurityAgency/ghidra
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1109/TC.2020.3014456
https://doi.org/10.1109/TC.2020.3014456
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://doi.org/10.1109/ACCESS.2019.2937585
https://doi.org/10.1109/MICRO.2018.00042

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Corruption Vulnerabilities
	2.2 ARM Pointer Authentication
	2.3 Micro-architectural Side Channels
	2.4 Speculative Execution Attacks

	3 Threat Model
	4 The PACMAN Attack
	4.1 Data PACMAN Gadget
	4.2 Instruction PACMAN Gadget
	4.3 Gadget Detection
	4.4 An End-to-End Illustrative Example

	5 Attack Platform
	6 Reverse Engineering Tools
	6.1 High-Resolution Timers
	6.2 PacmanOS

	7 Reverse Engineering
	7.1 Basic Memory Hierarchy Information
	7.2 L1 Data TLB and L2 TLB
	7.3 L1 Instruction TLB
	7.4 Summary of Reverse Engineering Results

	8 Proof-of-Concept Attacks
	8.1 PAC Oracles
	8.2 Brute-Force Attack
	8.3 Jump2Win Attack

	9 Countermeasures
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

