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ABSTRACT

With the development of information technology, various network systems are created to connect
physical objects and people by sensor nodes or smart devices, providing unprecedented opportu-
nities to realize automated interconnected systems and revolutionize people’s lives. However, net-
work systems are vulnerable to attacks, due to the integration of physical objects and human
behaviors as well as the complex spatio-temporal correlated structures of the network systems.
Therefore, how to accurately and effectively model and monitor a network system is critical to
ensure information security and support system automation. To address this issue, this article
develops a multivariate spatio-temporal modeling and monitoring methodology for a network sys-
tem by using multiple types of sensor signals collected from the network system. We first propose
a Multivariate Spatio-Temporal Autoregressive (MSTA) model by integrating a Gaussian Markov
Random Field and a vector autoregressive model structure to characterize the spatio-temporal cor-
relation of the network system. In particular, we develop an iterative model learning algorithm
that integrates the Bayesian inference, least squares, and a sum square error-based optimization
method to learn the network structure and estimate parameters in the MSTA model. Then, we
propose two spatio-temporal control schemes to monitor the network system based on the MSTA
model. Numerical experiments and a real case study of an loT network system are presented to

ARTICLE HISTORY
Received 6 January 2021
Accepted 9 August 2021

KEYWORDS

Multivariate spatio-temporal
autoregressive model;
spatio-temporal control
schemes; network structure
learning; loT

network system

validate the performance of the proposed method.

1. Introduction

With the development of information technology, various
network systems have been created to connect physical
objects and people using sensor nodes or smart devices,
which provides unprecedented opportunities to revolutionize
the way people live their lives including business, education,
entertainment, and healthcare (Kehoe et al., 2015; Zhou et al.,
2016). For example, the Internet of Things (IoT) is a network
system that creates a real-time interaction platform between
physical “things” and people. The IoT enables a key technol-
ogy to realize automated systems including smart cities, smart
healthcare, and smart homes, which has the great potential of
bringing significant benefits in economic competitiveness,
quality of life, public health, and essential infrastructure (Liu
and Shi, 2015). Other examples, such as machine networks
(Kontar et al, 2016) for smart manufacturing, traffic net-
works (Xian et al., 2020) for smart transportation, and ther-
mal networks for smart agriculture (Wang et al., 2020a) have
also been successfully applied in a wide range of domains.

A network system consists of distributed sensor nodes (or
smart devices) with a certain network structure that collects
signals to reflect the status of the system. In this sense, a net-
work system is a spatio-temporal stochastic system that is

represented by time-varying signals at each sensor node (or
smart device) in the spatial domain. In most engineering
practices, to fully reflect the status of a network system, mul-
tiple types of sensors are simultaneously deployed at each
sensor node to collect multiple types of signals, and each type
of signal commonly contains partial information on the status
of the network system. Therefore, a network system can be
considered as a multivariate spatio-temporal system, that is,
the network system has multiple types of sensor signals with
a certain network structure and each type of signal varies
with space and time. As a particular example, Figure 1 shows
an IoT testbed for running a distributed seismic ambient
noise tomography imaging program, which is a network sys-
tem built by six wireless Cyber-Physical System (CPS) units.
Spatial information is reflected based on the node relations of
the CPS units. In the IoT network system, three types of cyber
and energy consumption data including network transmis-
sion, power, and CPU are collected over time at each CPS
unit. These three types of data are critical indicators to pre-
sent states of the IoT network system.

Network systems face information security challenges,
such as attacks, because of the integration of physical objects
and human behaviors. Due to multivariate spatio-temporal
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Figure 1. A wireless loT network constructed by six CPS units. (Note: the dotted
yellow lines only indicate a possible spatial relationship.)

correlated structures of a network system, attacks may
spread among the network system in space and time, which
dramatically increases the vulnerabilities and complexities of
the attacks in the network system, leading to a great number
of unnecessary economic and social losses as a result.
According to a survey for IoT network systems (ISS Source,
2019). In 2018, 80% of industrial organizations experienced
attacks on their IoT devices, and suffered substantial losses
due to the attacks. The average financial impact for each
organization was shown to be more than $330,000.
Therefore, to ensure information security and support sys-
tem automation of network systems, accurately modeling
and monitoring of a network system is critical to fully
understand the multivariate spatio-temporal characteristics
of the network system and further achieve a timely and
effective detection of attacks occurring in the system.

In recent years, many methods have been developed to
model and monitor network systems. For the modeling of
network systems, statistical approaches have been employed
to describe spatio-temporal characteristics. For example,
kriging methods (Wang and Zhang, 2019), sparse matrix
algorithms (Furrer et al, 2006), reduced rank techniques
(Cressie and Johannesson, 2008), and full-scale approxima-
tion methods (Zhang et al., 2015) use covariance functions
to characterize spatio-temporal correlations of simple sys-
tems. The Gaussian Markov Random Field (GMRF) models
(Xu and Choi, 2012; Xu and Huang, 2012; Wang et al,
2019) and Spatio-Temporal Conditional Auto-Regressive
(STCAR) models (Mariella and Tarantino, 2010; Wang
et al., 2020b) characterize spatio-temporal correlations of
complex systems based on a single type of sensor signals.
For the monitoring of network systems, control charts are
the most commonly used methods, such as Shewhart charts
(Montgomery, 2009), Exponentially Weighted Moving
Average (EWMA) charts (Lucas and Saccucci, 1990), and
Cumulative Sum (CUSUM) charts (Crosier, 1998). The
supervised learning models including the Neural Network
(NN) (Li et al., 2019), Support Vector Machine (SVM)
(Liou et al., 2018), Decision Tree (DT) (Moon et al., 2017)
and Random Forest (RF) (Ambikavathi and Srivatsa, 2020),

the unsupervised learning models including Self Organizing
Map (SOM) (Altman, 1992) and K-Nearest Neighbors
(KNN) (Vesanto and Alhoniemi, 2000), as well as the signal
processing models including control charts of multivariate
Wavelet Transform (WT) features (Wu and Wang, 2011)
have also been applied for change point detection. These
existing methods mainly monitor a network system based
on a single type of sensor signals directly without fully cap-
turing spatio-temporal correlations of the network system.
In addition, existing models for the network modeling and
monitoring are established under the assumption that the
network structure is often known. Modeling and monitoring
a network system still face significant challenges as follows:
First, the network system is a complex multivariate spatio-
temporal system that simultaneously varies with space and
time. On the one hand, spatio-temporal characteristics
should be considered in the modeling of the network sys-
tem. On the other hand, the network system contains mul-
tiple types of signals at each sensor node. Although spatio-
temporal systems with a single type of signals have been
studied in recent years, the modeling of multivariate spatio-
temporal systems with multiple types of signals remains a
challenging task. Second, conventional statistical process
control methods (e.g., control charts) are designed without
fully capturing spatio-temporal correlations of the network
system, and are only applicable for cases when observations
of the monitored system are independent at different time
points. For network systems that are correlated in the time
domain, effective monitoring of the network systems
becomes a challenge. Third, in a network system, the net-
work structure reflects if any two sensor nodes are intercon-
nected in the spatial domain. However, in most engineering
cases, the network structure is unknown, which increases
the difficulty of modeling and monitoring of the net-
work system.

In this article, we develop a multivariate spatio-temporal
modeling and monitoring methodology for a network sys-
tem by using multiple types of sensor signals collected from
the network system. Since the network system is a multivari-
ate spatio-temporal system, we first propose a Multivariate
Spatio-Temporal Autoregressive (MSTA) model to fully
characterize the spatio-temporal correlation of the network
system. The proposed MSTA model integrates a GMRF and
a vector autoregressive structure that fully considers the spa-
tial correlation under the network structure and the tem-
poral correlation among multiple types of signals.
Specifically, we develop an iterative model learning algo-
rithm that integrates the Bayesian inference, least squares,
and a sum square error-based optimization method to learn
the network structure and estimate parameters in the MSTA
model. After characterizing the spatio-temporal correlation
of the network system, we then propose the multivariate
spatio-temporal control schemes to monitor the network
system. Compared with existing control schemes for net-
work systems, the developed control schemes construct con-
trol statistics by excluding the temporal dependence from
the spatio-temporal characteristics, and thus can monitor
the network system more effectively.



The remainder of this article is organized as follows.
Section 2 provides the literature review on spatio-temporal
modeling and monitoring of network systems. Section 3
introduces the proposed method including the multivariate
spatio-temporal modeling of a network system, parameter
estimation, network structure learning, and the monitoring
of the network system. Sections 4 and 5 present a number
of numerical experiments and a case study of an IoT net-
work system. Section 6 provides a conclusion and sugges-
tions for future research.

2. Literature review

The goal of this study is to model and monitor a network
system by fully considering multivariate spatio-temporal
characteristics. In this section, we review relevant studies
about the modeling and monitoring of a network system,
respectively.

2.1. Modeling of a network system

A network system is a multivariate spatio-temporal process.
In recent years, numerous statistical approaches have been
developed to model spatio-temporal processes. Conventional
studies have used covariance functions to describe spatio-
temporal correlations, including kriging methods (Wang and
Zhang, 2019), sparse matrix algorithms (Furrer et al., 2006),
reduced rank techniques (Cressie and Johannesson, 2008),
and full-scale approximation methods (Zhang et al., 2015).
However, these methods are only applicable to simple sys-
tems, as they describe spatio-temporal correlations just by a
covariance function. The modeling accuracy of these meth-
ods for complex systems is unsatisfactory, because complex
spatio-temporal correlations in the systems cannot be
adequately captured by the covariance function.

To address this issue, studies that combine spatial and
temporal modeling methods have been conducted to charac-
terize spatio-temporal correlations of complex systems. For
spatial modeling, the GMRF has received considerable atten-
tion in recent years. For example, the GMRF, which consid-
ers grid-based neighborhood structures to model spatial
correlation of a complex system, has been well validated in
nanowire growth (Xu and Huang, 2012). Xu and Choi
(2012) proposed a Gaussian process built on a GMRF to
model mobile distribution given resource-constrained
mobile sensor networks. Wang et al. (2019) integrated a
kriging model into a GMRF model to estimate the thermal
field of a grain storage system. These GMRF models have
been widely applied to characterize spatial correlations, but
fail to model temporal correlations. By extending the
GMREF, Mariella and Tarantino (2010) and Liu et al. (2018)
proposed an STCAR model, which is an autoregressive
model for a temporal sequence of GMRFs, to characterize
spatio-temporal correlations. However, the GMRF and
STCAR mainly model spatio-temporal systems based on a
single type of signals. To the best of our knowledge, few
studies have modeled multivariate spatio-temporal systems
based on multiple types of signals. In addition, when
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modeling a network system, the GMRF and STCAR are
established under the assumption that the network structure
is known. For engineering cases where the network structure
is not known, the GMRF and STCAR are not applicable.

For structure learning, several methods, including the
Bayesian regression graphical model (Dobra et al., 2004),
Gaussian graphical model (Lin et al., 2017), graphical lasso
algorithm (Friedman et al., 2008), and Min-Max conditional
covariance algorithm (Gao and Ye, 2019), have been devel-
oped to select neighborhoods and learn graphical structures.
However, few of these studies have integrated spatio-tem-
poral characteristics to model multivariate spatio-tem-
poral processes.

2.2. Monitoring of a network system

Different types of Statistical Process Control (SPC) charts
have been extensively adopted for monitoring processes to
quickly detect attacks in recent years (Cannon et al, 2011),
such as Shewhart charts (Montgomery, 2009), EWMA charts
(Lucas and Saccucci, 1990), and CUSUM charts (Crosier,
1998). CUSUM charts serve as a popular tool in many pro-
cess monitoring methods (Woodall, 2006). Specifically,
Multivariate CUSUM (MCUSUM) charts have been pre-
sented to monitor spatial and temporal processes
(Spiegelhalter et al., 2012). By considering spatial correlation
among locations, MCUSUM charts use process observations
to formulate statistics including Hotelling’s T statistics and
Log-likelihood Ratio (LR) statistics. For example, Boullosa-
Falces et al. (2017) obtained Hotelling’s T? statistics using
sensor data at each time point and then formed a CUSUM
chart based on a time sequence of the Hotelling’s T* statis-
tics. Jiang et al. (2011) and Lee et al. (2012) adopted an LR
statistic for each cluster in the spatial domain and scanned
all clusters to detect underlying attacks. However, these
MCUSUM charts are established under the assumption that
the monitored process is independent in the temporal
domain. Ignoring temporal dependence of the monitored
processes will lead to untimely and inaccurate monitoring
results of the MCUSUM charts. By considering temporal
dependence, Gombay and Serban (2009) considered the
problem of testing for parameter changes in time series
models based on a CUSUM test. Shao and Zhang (2010)
proposed a normalization-based Kolmogorov-Smirnov
CUSUM test for change point detection in time series.
Bodnar and Schmid (2017) developed CUSUM control
schemes for monitoring the covariance matrix of multivari-
ate time series. Although these CUSUM-based tests can
monitor processes by fully considering temporal depend-
ence, these tests are only applicable to time series models
and cannot be used to monitor spatio-temporal processes.
To the best of our knowledge, few researchers have devel-
oped control schemes that fully address the spatio-temporal
characteristics.

To fill the research gap, we propose a multivariate spatio-
temporal modeling and monitoring methodology tailored to
a network system. The proposed method addresses the chal-
lenges of modeling and monitoring of the network system
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Figure 2. The formulation of the proposed MSTA model.

in the following aspects: First, we propose an MSTA model
for a multivariate spatio-temporal process that can fully
characterize the spatio-temporal correlation of the network
system. Specifically, the proposed model integrates a GMRF
and a vector autoregressive structure to describe the spatial
and temporal characteristics of the network system based on
multiple types of signals. Second, we develop multivariate
spatio-temporal control schemes to monitor the network
system based on the proposed MSTA model. Compared
with existing control schemes, the developed control
schemes fully consider the spatio-temporal characteristics of
the network system and construct control statistics by
excluding temporal dependence from the spatio-temporal
characteristics to monitor the network system more effi-
ciently. Third, we propose a Bayesian inference method to
learn the neighborhood network structure of the network
system. The learnt network structure can reflect the inter-
connection of sensor nodes and provide useful information
for engineering practice.

3. Methodology

3.1. Multivariate spatio-temporal modeling of a
network system

The key to modeling a network system is to fully capture its
spatio-temporal characteristics. On the one hand, given that
multiple types of sensor signals are collected, and each type
of signal reflects partial information of the network system,
fully utilizing the multiple types of sensor signals to better
characterize the spatio-temporal correlation of the network
system is essential to the modeling of the network system.
On the other hand, the network structure provides structural
information of the network system and captures spatial
characteristics, i.e., it reflects if any two sensor nodes are
interconnected in the spatial domain. Thus, when modeling
the network system, we need to accurately learn the net-
work structure.

In a network system, multiple types of sensor signals are
collected that vary with space and time. We propose an
MSTA model to fully characterize the multivariate spatio-
temporal correlation of the network system. Figure 2
presents the formulation of the proposed MSTA model. As

shown in the figure, the proposed MSTA model integrates
an Improved GMRF (IGMRF) and a vector autoregressive
structure to fully characterize the spatio-temporal correlation
under the network structure among multiple types of sig-
nals. In particular, since the neighborhood network structure
is generally unknown in practice, it can lead to the ineffi-
ciency of the GMRF for spatial modeling of the network sys-
tem. We propose an IGMRF that learns the neighborhood
network structure using multiple types of signals to address
this issue. Without loss of generality, we assume that there
are n sensor nodes in the spatial domain S of the network
system, and there are L types of signals at each sensor node.
We represent the network system as an L-variate spatio-tem-
poral process {yi(s), teR",sCSeR", I=1, .., L},
where s is the location of a sensor node in the spatial
domain S and [ is the index of the signal type.

At each time t, we denote the spatial process for the Ith

T
signal type as Y = {yi(sl), o Yh(sn)| ER™Y, with =
1, .., L. The IGMRF for the spatial modeling of Yi can
learn the network neighborhood structure as well as charac-

terize the spatial correlation of Y. Specifically, for each sen-
sor node s;, we define its neighbors s; and specify the
conditional distribution of yl(s;) as
delney, =N (Z Fi(s). gg(s,-)), M
8j~8i, i s
™~ Si
0
ij
dependence coefficient that captures the spatial correlation
between y(s;) and yi(sj) with % = 0, and a larger [32 means

where s; ~'s; denotes s; is the neighbor of s;; f5;; is a spatial

a stronger spatial correlation between y!(s;) and yi(sj); and

o7 (s) is the conditional variance of the Ith sensor type at
node s;. When the network system is in the normal state,
we assume stationary spatial correlation patterns for each
sensor node in the spatial domain, that is, o7 (s;) = o7 for all
s; with i=1, ..., n, where 0'12 denotes the overall variance
of the Ith signal type. Here, we determine if s; ~ s; based on
the network neighborhood structure. To better represent the
network neighborhood structure, we denote y as the net-
work structure matrix, i.e., ¥ is an n X n binary latent state
matrix, where y; =1 (i #j) represents that s; and s; are
neighbors, and 7; =0 otherwise. We will introduce the
learning of the network neighborhood structure in Section
3.2 in detail. We denote the spatial dependence matrix as
Bo= o), R where By = £

,,,,,

if 7, =1

and ﬁg(yij) =0 if y; =0, and denote By =1, — B, where
I, is an n X n identity matrix. When B, is invertible and
B, 1 s symmetric and positive definite, we obtain from
Equation. (1) that Ylt follows

Y, ~ N(0,67B,"). )

We denote the spatial process for all the L signal types at
time t as Y, = [Yt1 Yf]T € R™*! In this article, we
assume Y}, ..., YL are independent across different signal
types. This is a reasonable assumption here since Y/, ..., YF
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Figure 3. Parameter estimation procedure.

capture the network structure in the spatial domain, respect-
ively. Actually, the correlation of different signal types is
mainly reflected in the temporal domain, and we will further
capture the correlation of different signal types when model-
ing temporal characteristics of the network system. Thus, Y,
follows

oiB, "
N|o, " >
By
that is,
Y, ~ N(0,C,®B;"), 3)
where C, = diag{d?, ..., 62} and ® denotes the

Kronecker product. Y; can also be written as a matrix form
Y =1,Q®B,Y; + 1, where I} is an L X L identity matrix
and m, is a vector of the pseudo errors. From m, =
(I, — L. ®B) Y, = (IL®B0)Y1, we obtain the distribution
of n, as follows:

n, ~N(0, C,®By). (4)

Then, we construct a time sequence of multivariate spa-
tial processes by integrating the temporal evolution to the
above multivariate spatial process model. In Equation (3),
we have Y, ~ N (0, C,®B; 1). Similarly, we obtain Y, , ~
N(0,C,®B_") for g=1, 2, ..., where B;=1I,—B,.
Considering the temporal sequence of multivariate spatial
processes from time t — Q to time ¢, where Q is a positive
integer value that denotes the order of the temporal
sequence, we establish the framework of MSTA model by
integrating the multivariate spatial processes into a vector
autoregressive structure to construct the relation between Y,

and Y;;, ..., Y, as follows:
Q
Yi =) Dy gYig+3dy, (5)
q=1
where =1, ..., Q D;; =X, ,_q):t:lq) g and X ;4

denotes the covariance matrix of Y, , with X, ,; , =
CU®Bq’1. The detailed formulation of the MSTA model in
Equation (5) and Dy, are illustrated in Appendix A of
supplemental online materials. Note that while we assume
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Y!, ..., YE are independent across different signal types, the
correlation of different signal types is captured in the tem-
poral domain when we model the temporal characteristics of
the network system in Equation (5). Network systems in
engineering practice can be considered as stationary proc-
esses when the systems are in the normal state, and the spa-
tial processes of the network systems at consecutive time
points Y;, Y,;, ..., and Y, o are temporal correlated.
Thus, we further capture the temporal correlation of the
network system by a vector autoregressive model structure
with temporal-associated matrix A, at time t — g, with g =
1, ..., Q, which captures the temporal correlation of mul-
tiple types of signals between time t — g and t. In particular,
we consider X;; ;= (A;®I, )X, 44 by inserting the
temporal-associated matrix A, ‘into the spatial covariance
matrix X, ;; 4, to characterize multivariate spatiotemporal
characteristics of the network system. In this way, we have

Dt, t—q = Aq ® (Bngq), (6)

where the calculation of Dy, is elaborated in Appendix B
of supplemental online materials in detail. It should be
noted that A,, with g=1, ..., Q, is assumed to be invert-
ible and symmetric. We define §; as the vector of pseudo
errors W, structured with a spatial component (I, ®By)
ie.,
-1

5 = (IL®By) .. (7)
By inserting Equations (6) and (7) into Equation (5), we
obtain the general expression of the MSTA model as fol-
lows:

Q
(1.®By)Y, = Z(Aq®Bq)YH1 + 1,
q=1
n, ~ N(0, C,®B}),

(8)

In the proposed MSTA model, we use a temporal-associ-
ated matrix A, spatial-associated matrices By and B,, and
the product of a temporal-associated matrix and spatial-
associated matrices A, ®@B,, with g =1, .., Q, to charac-
terize the temporal correlation of the multiple types of
sensor signals in the same node at different time points, the
spatial correlation in nearby nodes at the same time point,
and the spatio-temporal interaction of the multiple types of
sensor signals in nearby nodes at different time points,
respectively.

3.2. Network structure learning and
parameter estimation

When the network system is in the normal state, its corre-
sponding multivariate spatio-temporal process follows the
above proposed model distribution (Equation (8)). We use
the observed sensor data in the normal state with M time
points of the network system to learn the network neighbor-
hood structure and estimate parameters of the proposed
model. The proposed model contains a set of parameters to
be estimated, including the network structure matrix vy, the
overall variance g7 of the Ith signal type, with I =1, .., L,
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the spatial dependence matrices B, and B, with g=
1, .., Q, and the temporal-associated matrix A, with g =
1, ..., Q. We propose an iterative model learning algorithm
to estimate these unknown parameters, which includes two
procedures: parameter initialization and parameter update.

As shown in Figure 3, for parameter initialization, we
apply maximum likelihood estimation and least squares
methods to initialize the model parameters. The procedure
initializes the model’s temporal and spatial-associated
parameters by excluding the spatial dependence and tem-
poral dependence, respectively. The detailed procedure of
parameter initialization is provided in Appendix C of the
supplemental online materials. For parameter update, we
propose and integrate the least squares method, the
Bayesian inference method, and the sum square error-based
optimization method to respectively estimate the model
parameters. Specifically, the parameter update procedure
includes four steps: The first step is the calculation of D, =
A,® (By'By), with g =1, .., Q where D, is considered
as an intermediate auxiliary matrix for parameter estimation.
The second step is the update of A, withg=1, ..., Q by
the least squares method. In the third step, we propose a
Bayesian inference method to learn the network neighbor-
hood structure matrix y, as well as to estimate the spatial
dependence matrix P, and the overall variance o7 of the Ith
signal type. In the last step, we propose a sum square error-
based optimization method to estimate the spatial depend-
ence matrix B, with g =1, .., Q. The procedure of par-
ameter update is implemented iteratively until convergence.
We introduce the parameter update procedure in detail
as follows.

(a) Step 1: Calculate Dy = A,® (B;'B,), with q=1,
o Q.

(b)  Step 2: Update A,, with q =1,
squares method.

..., Q, using the least

We rewrite Equation (8) as G; = 23:1(Aq ®I,)Gi—g + Ny
where G; = (IL®B0)Yt and G;_; = (IL®Bq>Yt,q, with g =
I, ..., Q. We can see from this equation that our proposed
model can be considered as a vector autoregressive model

framework. Therefore, A = [A;, ---, Ag]" can be estimated
using the least squares method as follows

A= (G'G.) 'G'G.., )
where
Gi - Gf ... G Gg
G, = : e :
GJI\/FQ GILVFQ o GJI\;I—I Gﬁ;l—l

is an (M — Q)n x QL matrix, and

1 L
GQ+1 GQ+1
G = : :

Gy Gy

is an (M — Q)n x L matrix. Finally, the estimated value of
A, is obtained from A.

(c) Step 3: Network structure learning of y and parameter
estimation of B, and 0'12, with =1, ..., L, by propos-
ing a Bayesian inference method.

We calculate U; =Y, — Z;):l D,Y; , witht=1, .., M,
and then propose a Bayesian inference method for network
structure learning of y and parameter estimation of B, and

612, with I =1, ..., L, based on U;. We first introduce prior
distributions on 7y, ﬁg- (with i,j =1, .., n), and o (with
I=1, .., L), respectively. In particular, it is reasonable to

assume the prior distribution on y;, with i,j=1, .., n, is
Bernoulli, ie., P(y; = 1) = 1 — P(y; = 0) = q. Conditioning
on y;, ﬁg is assumed to follow a normal mixture distribu-
tion (George and McCulloch, 1997), ie, /32|yij ~
(1= 75)N(0, 75) +7;N(0, 1), where g, 73, and 1% are
prefixed hyperparameters. We assume an Inverse Gamma

(IG) prior on o7, with I=1, .., L, as o7 NIG(%, %)

Without loss of generality, we set v; = 0 in this article, and
the IG prior reduces to a flat prior (Li and Zhang, 2010).

Then, the posterior distributions of y, B,, and o7, with
I=1, .., L, are obtained as follows:

e Posterior distribution of B,

We denote V, = 31, UL, and V = (V,, ..., V)" The pos-
terior distribution of P, is obtained based on V. For the sensor
node s, with i=1, .., n, the subset O;={1, ..,
n} \ {i} corresponds to the indices of sensor nodes without s;.
For B, that is the ith column of B, excluding the ith element
in that column, its posterior distribution P(Bo,|V;) o
P(VilBio,)P(Bio,) is a multivariate Gaussian distribution

1 1 -1
Bio, Vi ~N<(V(T)IVO,, +a§umd;1) ViV, (—02 ViV, +d;1> )

sum

(10)
where V; is the ith column of V, Vo, is the corresponding
remaining columns of V and ¢, =Y} 07 We have

Bio, ~N(0, d;), where d; is an (n—1) X (n— 1) matrix
and the jth diagonal entry of d; takes the value as

(d)); = w0 if (o), =0
tjj — T%, lf (yioi)]' =1 >

in which 7,5 is the ith column of y excluding the ith elem-

ent in that column. The detailed information about the pos-

terior distribution P(B,o,|V;) is introduced in Appendix D

of supplemental online materials. We utilize the mean of the

posterior distribution P(B,,[V;) to update the point estima-

tor of B, ie, Bio, = (V(T)iVoi + 02, d-

sum i

-1
1) V(T)i V;. After

ﬁio,» with i =1, ..., n, is obtained, the updated estimate of
B, can be obtained.



Figure 4. The network structure of systems with sudden changes in mean.

e Posterior distribution of (512, withl=1, ..., L

We denote the set of Ui, with t=1, .., M, as Ul =
{ut, .., Ul,}. The posterior distribution of o7, with I =
1, .., L, ie, P(67|U") « P(U'|6?)P(0}), is an IG distribu-
tion

M
a|U' ~ IG G (v + Mn), % (m + ;UFBOUi)), (11)
where recall we set v; = 0 in this article. The detailed deriv-
ation of the posterior distribution P(¢?|U’) is introduced in
Appendix E of the supplemental online materials. We utilize
the mean of the posterior distribution P(¢?|U') to update
the point estimator of 012, ie.,

1 M 1
67 = 3 (Aul + Z UﬁTBouﬁ> / (5 (v + Mn) — 1) .
t=1

e Posterior distribution and updating of y

The columns of y can be updated independently. The pos-
terior distribution of yq,, i.., P(y,0,[Vi» Bio,)s is

P(vi0,IVis Bio,) o< P(Bio,IVis vio,)P(¥io,)-

Here P(Bio,[Vis 7i0,) can be calculated by Equation (10)
and P(y0,) = q"%(1 — q)" "%, where no, denotes the num-
ber of the elements that are equal to zero in y,,,.We update
the point estimator of y as P, = argmax{P(y,o|
Vi, Bio,) i=1, .., n}.

(12)

3.3. Multivariate spatio-temporal control schemes

We denote the observed L-variate spatio-temporal process of

. T
the network system at time t as X,= [X!, .., X!] €

R™! where X!, = |xi(s;), ...

ively monitor

T
xi(s,,)} € R™!. To effect-

a multivariate spatio-temporal network

IISE TRANSACTIONS (&) 7

system, we monitor the residual part &, at time ¢ obtained
from the proposed MSTA model as follows

Q
g = (IL®B)X, — Y A;®BX, ,. (13)
q=1

When X; is in the normal state, & ~ N(0, C,®B]) and is
independent over the temporal domain.

To better monitor the network system, we consider the
characteristic quantities for monitoring both the changes of
the means and the covariances of the network system as T} ;
and T;,, respectively. The characteristic quantity for moni-
toring the change of the mean T} ; is

T,, = (C,®BI) %,

The characteristic quantity for monitoring the change of the
covariance T}, is

Ty, = vech ( (C,®B]) _%ététT (C,®B}) _%) ,

where vech(+) transfers a symmetric nL X nL matrix to an
nL x (nL+1)/2 vector including the elements below and
on the diagonal. When X, is in the normal state, the mean
vector and the covariance matrix of T;; are E(T;;) = 0 and
Cov(Ty1) =L, and those of Ty, are E(T,) = vech(L,L)
and Cov(T;,) = Q. Finally, we consider the simultaneous
monitoring for both the mean change and the covariance
change. The characteristic quantity T; is a combination of

Tt,l and Tt,27 that iS,
| T
T, = [ TJ.

When X; is in the normal state, T; is normally distributed
with the mean

and the covariance matrix

Cov(T;) = Lo 0”L><nL(nL+1)/2:| .

l:onL(nL-&-l)/anL Q
We establish two CUSUM-based control charts (Garthoff

and Otto, 2017) based on the characteristic quantity T, to
monitor the network system as follows:

3.3.1. The first type of T;-based CUSUM (TCUSUM-1) con-
trol chart
At each time t, the TCUSUM-1 control chart is based on
the square of the Mahalanobis distance of T; from its in-
control mean and covariance matrix:
Vi = (T, — E(Ty))" Cov(T,) (T, — E(T})). (14)

Then, the control statistic TC1(¢) is equal to

TC1(t) = max{O, TCI(t — 1) + V, — ky (nL + 7”“"2 * U) }

(15)
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Figure 5. An example of a simulated network system.

with TC1(0) = 0, where k,; is the reference parameter with
ky > 0. An attack is detected whenever TC1(t) exceeds a
prespecified control limit hy, ie., TC1(t) > hy. h; is speci-
fied based on the requirement for satisfying a certain in-
control average run length (ARL;) through Monte Carlo
simulations, where ARL, represents the expected number of
runs until a false alarm occurs when an in-control network
system is actually monitored.

3.3.2. The second type of T;-based CUSUM (TCUSUM-2)
control chart

At each time t, a TCUSUM-2 control chart is based on the

cumulative sum in terms of T; from time t —n; +1 to t as

follows:

t
Stmpt = Ti—E(T).

(16)
t=t—n;+1
Then, the respective norm of S;_,, ; is
1St—netll covery = (S;rfnt,tCOV(Tt)ilst—ﬂuf>§' 17)
The control statistic TC2(t) is equal to
TC2(t) = max{O, 1S, tllcov(ry) — kznt} (18)

with TC2(0) = 0, where

1+ 1, if TC2(t—1) >0
ny =
0, if TC2(t—1)=0

and k, is the reference parameter with k, > 0. An attack is
detected whenever TC2(t) exceeds a prespecified control
limit h,. Similarly, h, is specified based on the requirement
for satisfying a certain ARL, through Monte Carlo
simulations.

4. Numerical experiments

We evaluate the performance of our proposed method
through numerical experiments under different scenarios
and compare it with various existing benchmark methods.

ACF

10 20 30 40 50
Time lag

Figure 6. The ACFs under different time lags.

In Sections 4.1 and 4.2, we first introduce the benchmark
methods and evaluation metrics of model performances.
Then, we compare the results of the proposed method with
the benchmark methods under four scenarios:

e Scenario 1: Network systems with sudden changes
in mean.

e Scenario 2: Network systems with sudden changes
in variation.
Scenario 3: A cyclical network system.

e Scenario 4: A chaotic-nonlinear network system.

We present Scenario 1 in Section 4.3, and the results of
Scenarios 2, 3 and 4 are provided in the supplemental online
materials.

4.1. Benchmark methods

We consider various benchmark methods for network mod-
eling and network monitoring, respectively.

For network modeling, we compare the proposed MSTA
model with several benchmark models for spatio-temporal
modeling as follows:

(i) Without consideration of multivariate spatio-temporal
modeling (NONE).

(i) The Gaussian Process model that uses a simple
covariance function for multivariate spatio-temporal
modeling (Wang and Zhang, 2019).

(iii) The VAR model that only considers multivariate tem-
poral correlation (Di Giacinto, 2010).
(iv) The STCAR model that considers univariate spatio-

temporal correlation for each signal and omits the cor-
relation among signals (Mariella and Tarantino, 2010).

For network monitoring, we compare the TCUSUM-1
and TCUSUM-2 in the proposed method with four types of
change point detection benchmark methods as follows:
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Figure 7. The MSE given various values of the hyperprior parameters: (a) 73, (b) co.
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(i) The control charts including Conventional CUSUM
(CCUSUM) (Woodall and Ncube, 1985), EWMA
(Lucas and Saccucci, 1990), multivariate Hotelling T2
(Grimshaw et al., 2013), TCUSUM-1-Mean, and T-
CUSUM-2-Mean. In particular, the frameworks of
the TCUSUM-1-Mean and the TCUSUM-2-Mean
charts are similar to TCUSUM-1 and TCUSUM-2
charts. The only difference is that the TCUSUM-I1-
Mean and the TCUSUM-2-Mean charts only consider
characteristic quantity of the mean change.

(ii) The supervised learning models including the NN (Li
et al, 2019), SVM (Liou et al., 2018), DT (Moon et al.,
2017), and RF (Ambikavathi and Srivatsa, 2020).

(iii) The unsupervised learning models including SOM
(Altman, 1992) and KNN (Vesanto and
Alhoniemi, 2000).

(iv)  The signal processing models including control charts

of multivariate WT features (Wu and Wang, 2011).

For the benchmark methods with respect to network
modeling, we first use the proposed MSTA model and
benchmark methods to model the network and then use the
TCUSUM-1 and TCUSUM-2 in the proposed method to
monitor the network. For the benchmark methods with
respect to network monitoring, we first use the proposed
MSTA to model the network and then use TCUSUM-1 and
TCUSUM-2 in the proposed method and the benchmark
methods to monitor the network. Besides, all evaluation
results of the proposed method and benchmark methods are
computed based on 1000 simulation runs.

4.2. Evaluation metrics

We employ several metrics to evaluate the model perform-
ance. One metric is the out-of-control average run length
ARL,, which denotes the number of time points until an
alarm occurs when the monitored network system is under
attack, to measure the timeliness of detecting an attack. A

IISE TRANSACTIONS (&) 9
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small ARL, value indicates the attack is detected quickly in
real time. The other metrics are widely used in the machine
learning literature and measure the efficiency and stability of
monitoring, including accuracy, precision, recall, and F1-
score. Large values of Accuracy, Precision, Recall, and F1-
Score indicate the attack is detected with high efficiency and
stability. The detailed introduction of the metrics is provided
in the supplemental online materials.

4.3. Network systems with sudden changes in mean

We simulate a network system that has n = 10 sensor nodes,
and there are L = 3 types of signals collected at each sensor
node. The network structure that reflects the interconnec-
tions of the sensor nodes is shown in Figure 4, and the net-
work structure matrix vy is set as

O O O OO O O~ = O
O O O OO O+~ O -
OO O OO = = O
OO0 OCO O - = O
S O = HH O =M= OO
O OO RO~ OO OO
—_ O = O = O O OO
——_O O = O O OO
— O = OO O O O O O
SO = = H,O O O O O O

The simulated data Y = {Y;},_, , = of the network system
are generated as follows: At the initial time point =1,
Y, = 0. Then, at each time point (t > 1), Y, is obtained

from Y;_q, ..., Y;_; following the equation:
Q -1
Y =Y (L®1-py)) (Aq® (1- [iq))Y[,q 15
q=1

where 9, is randomly generated from the multivariate nor-
mal distribution N(0, C,® (I—B,)~"). Here, we set
Q — 1’
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Figure 8. True values and estimated values of y, A;, By, and B,.
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Then, the observed data X = {X;},_, , = of the network
system, which have two states including the normal state
and the under-attack state, are generated based on the simu-
lated data Y = {Y;},_, , . For the normal state:

xl(s) = yl(s) for all s € S, (19)

where x/(s) and y!(s) denote the observed data and the

simulated data of the Ith signal at location s in X; and Y,,
respectively. For the under-attack state, we consider mean
shifts as follows:

I
gy = 1 ni(s), for s So,
*(s) = { o + yi(s), for s € S,,

where S, denotes the outbreak cluster, i.e., the set of all
nodes that have the change, and o; denotes the mean shift
of the Ith signal. In Equation (20), x!(s) = yi(s) represents
the Ith signal at node s and time ¢ of the network system is
in the normal state, and x!(s) = o; + y!(s) represents the Ith
signal at node s and time t of the network system is under

(20)

0 0
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
-0.2 -0.2
-0.25 -0.25
-0.3 -0.3
-0.35 -0.35

() Bo (g B4
® Bo (h) By

attack. Figure 5 shows an example of a simulated network
system that is in the normal state at the beginning and
becomes under attack at time 300 on nodes 4, 5, 6 and 7
with oy = 0.05 (I=1, .., L).

4.3.1. Multivariate spatiotemporal modeling by the
proposed MSTA method

We generate a number of observed data X = {X;},_, ,
with M = 10,000, of the network system in the normal
state, and take the generated normal data to estimate param-
eters of the proposed MSTA method. Before estimating
model parameters, we need to set the order Q and prefix
the hyperprior-parameters of the proposed MSTA method,
including g in the prior distribution of v, 72 and 7 in the
prior distribution of B, and the predefined threshold ¢, in
the initialization of y. To begin with, we first obtain candi-
date values of the order Q by using Auto-Correlation
Functions (ACFs) of the observed data under different time
lags. As shown in Figure 6, we choose the candidate values
of Q as one and two, whose ACFs are larger than 0.5
(William, 2019). For each candidate value of Q, we choose
the hyperprior-parameters using the following procedure:
Here, we take Q =1 as an example. For y, 7;; has two can-
didate values one and zero, with P(y;=1)=1-—
P(y; =0) = q. In this article, we set g = 0.5. For By, 75/7]
should be smaller than one. Without loss of generality, we
set 77 = 1. We should further adjust 73 and ¢, to find their
suitable values. We first fix ¢y as a randomly selected num-
ber close to zero, i.e., ¢ = 0.005. Then, given various values
of 73, ie, t§ =0.001, 0.005, 0.01, 0.05, 0.1, 0.2 and 0.5,
we estimate model parameters and predict X; following
Equation (8), and calculate the Mean Square Error (MSE) of
the predicted X, values and the true X, values. We choose
75 as the value with the smallest MSE. Figure 7(a) shows the
calculated MSE given the various values of 77, in which we



can see that the MSE has the smallest value when t = 0.01.
After 2 is chosen, we analyze the sensitivity of c;. Given
various values of ¢y, i.e., ¢y =0.0001, 0.0005, 0.001,
0.005, 0.01, and 0.02, we estimate model parameters and
predict X, following Equation (8). Figure 7(b) shows the cal-
culated MSE given the various values of ¢y, in which we can
see that ¢y has little effect on the MSE. A possible reason is
that ¢ is only used for the initialization of y and the esti-
mated result of y (ie., ¥) is obtained by iterative updates
based on the observed data, and thus ¢y will not significantly
influence ¥. Finally, we choose ¢y = 0.005. Similarly, for the
order Q = 2, we prefix the hyperprior parameters using the
aforementioned procedure and estimate model parameters.
We calculate the MSE of the proposed model and obtain
MSE = 7.168 x 10~* for Q = 1 and MSE = 7.185 x 10~* for
Q = 2. Finally, we select the order Q =1 for our proposed
model, which has the minimal MSE value.

After prefixing the hyperprior parameters and setting the
order, we estimate the network structure matrix vy, the tem-
poral-associated matrix A, with g =1, .., Q, the spatial
dependence matrices B, and B,, with g=1, .., Q and
the overall variance of the Ith signal type o7, with [ =
1, ..., L, using the generated normal data and repeat the
corresponding procedures 100 times to demonstrate the
robustness of the proposed parameter estimation algorithm.
Figure 8 presents the true values of y, A;, By, and B; and
the corresponding estimated values under 100 replications.
Table 1 shows the true values and the estimated values of o7
with [ =1, ..., L, where the estimated values include the
mean values and the standard deviations under 100 replica-
tions. The estimated value of y is demonstrated in the heat
map in Figure 8(b), and is very close to the true value
shown in Figure 8(a), which indicates the estimated vy learns

Table 1. True values and estimated values of o7, with /=1, ..., L.
%1073 ol 03 03
True values 0.9 0.4 0.1

0.8998 (0.0016) 0.3999 (0.0005) 0.1001 (0.0002)

Note: The estimated values are the mean values under 100 replications, and
the values in parentheses are the corresponding standard deviations.

Estimated values

IISE TRANSACTIONS 1

the network structure very well. For A, By, B, and o7,
with =1, ..., L, it can be observed that the estimations
for all four types of parameters are close to their true under-
lying values, which indicates the proposed MSTA method
accurately characterizes the spatial dependence, the temporal
association, and the overall variance of all signal types,
respectively. All of the parameters have small standard
deviations, which indicates the proposed parameter estima-
tion algorithm is satisfactory. In addition, we show the esti-
mated o7 with /=1, .., L at each iteration under one
replication as an example in Figure 9 to demonstrate the
convergence of the proposed parameter estimation algo-
rithm. We can see that o] converges quickly after iter-
ation 4.

4.3.2. Evaluation of network modeling and monitoring
We first specify the control limits h; and h, of the proposed
TCUSUM-1 and TCUSUM-2 control charts by setting
ARLy = 1000 for network monitoring. The control limits
and h, are determined by using the in-control data of the
network system generated from Equation (19). To better
evaluate our proposed model performance for monitoring of
a network system, we simulate a number of under-attack
scenarios of the network system as follows: we consider
three outbreak cluster states, i.e., small, medium, large out-
break cluster, corresponding to So = {5}, So = {5, 6},
and Sp = {4, 5, 6, 7}. In addition, we set three mean shift
magnitudes from small to large shifts, corresponding to o; =
0.03, 0.05, and 0.1 (with I=1, ..., L). We generate
observed data of the network system under each under-
attack scenario using Equation (20).

Then, we use the proposed method and the benchmark
methods to model and monitor the network system and repeat
the corresponding procedures 1000 times. Tables 2 and 3 pre-
sent average values of the metrics of the proposed method and
the benchmark methods based on 1000 replications for net-
work modeling and monitoring, respectively. For network
modeling in Table 2, the proposed MSTA + TCUSUM-1 and
MSTA 4+ TCUSUM-2 perform better at all under-attack scen-
arios by effectively characterizing the multivariate spatio-

x107*
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Figure 9. The convergence of 0,2, with /=1, .., L.
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Table 2. Modeling performances of the proposed and benchmark methods for systems with sudden changes in mean.

Control Charts NONE+TC ~ NONE+TC GP+TC GP+TC VAR +TC VAR+TC  STCAR4TC STCAR+TC MSTA+TC MSTA+TC
Metrics USUM-1 Usum-2 USUM-1 Usum-2 USUM-1 USUM-2 USUM-1 USum-2 USUM-1 USUM-2
o = 0.03,Sp = {5}
ARL, 33.60(31.06) 50.30(47.57) 154.88(75.8) 156.51(40.83) 16.68(15.6) 52.24(13.16) 9.79(8.99) 9.10(6.20)  4.72(3.75)  7.60(7.37)
Accuracy 0.81(0.10) 0.61(0.01) 0.61(0.12) 0.69(0.08) 0.69(0.03) 0.90(0.03)  0.71(0.03)  0.95(0.08)  0.99(0.01)  0.96(0.03)
Precision 0.98(0.07) 0.93(0.12) 0.80(0.35) 1.00(<0.01)  0.99(0.02) 1.00(<0.01) 0.99(0.02)  0.95(0.12)  1.00(0.01)  0.99(0.01)
Recall 0.54(0.26) 0.04(0.02) 0.16(0.30) 0.23(0.20) 0.23(0.09) 0.74(0.07)  0.29(0.08)  0.96(0.03)  0.98(0.02)  0.96(0.03)
F1-Score 0.66(0.24) 0.07(0.04) 0.17(0.28) 0.33(0.26) 0.37(0.11) 0.85(0.04)  0.44(0.10)  0.95(0.07)  0.99(0.01)  0.96(0.03)
o = 0.05, S() = {5}
ARL, 5.71(4.39) 8.17(8.06)  118.55(73.66) 112.99(33.3) 4.54(3.52) 18.20(7.60)  3.34(2.56) 3.80(2.52)  2.08(1.25)  2.61(2.00)
Accuracy 0.99(0.01) 0.70(0.03) 0.70(0.14) 0.78(0.07) 0.99(0.01) 0.97(0.02)  0.99(0.01)  0.96(0.08)  1.00(<0.01) 0.99(0.01)
Precision 0.99(0.02) 0.99(0.02) 0.87(0.26) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.95(0.12)  1.00(0.01)  1.00(<0.01)
Recall 0.97(0.02) 0.26(0.07) 0.38(0.35) 0.44(0.17) 0.97(0.04) 0.91(0.04)  0.97(0.03)  0.99(0.01)  0.99(0.01)  0.98(0.02)
F1-Score 0.98(0.02) 0.41(0.09) 0.42(0.34) 0.59(0.17) 0.98(0.02) 0.95(0.02)  0.98(0.02)  0.96(0.07)  1.00(<0.01) 0.99(0.01)
% =0.1, So= {5}
ARL, 1.84(1.14) 2.05(1.64) 28.92(17.7) 32.84(12.39)  1.69(1.05) 4.42(2.51)  1.40(0.75)  1.73(0.97)  1.26(0.53)  1.32(0.69)
Accuracy 0.99(0.01) 1.00(0.01) 0.89(0.10) 0.94(0.02) 1.00(<0.01)  0.99(0.01)  1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.92(0.15) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.96(0.11)  1.00(0.01)  1.00(<0.01)
Recall 1.00(0.01) 0.99(0.01) 0.86(0.09) 0.84(0.06) 1.00(0.01) 0.98(0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01)
F1-Score 0.99(0.01) 0.99(0.01) 0.88(0.08) 0.91(0.04) 1.00(<0.01)  0.99(0.01)  1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
o = 0.03, So = {5, 6}
ARL, 5.97(4.75) 8.52(7.89)  123.94(72.24) 113.00(34.67) 7.01(6.55) 25.93(9.11)  3.19(2.46) 3.83(2.44) 2.11(1.20)  2.64(1.93)
Accuracy 0.98(0.01) 0.70(0.03) 0.69(0.13) 0.78(0.07) 0.94(0.05) 0.95(0.02)  0.99(0.01)  0.97(0.07)  1.00(<0.01) 0.99(0.01)
Precision 0.99(0.02) 0.99(0.02) 0.86(0.27) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.95(0.11)  1.00(0.01)  1.00(<0.01)
Recall 0.97(0.03) 0.25(0.07) 0.36(0.34) 0.44(0.17) 0.85(0.12) 0.88(0.05)  0.97(0.03)  0.99(0.01)  0.99(0.01)  0.98(0.03)
F1-Score 0.98(0.02) 0.40(0.09) 0.40(0.33) 0.59(0.18) 0.91(0.08) 0.93(0.03)  0.98(0.02) 0.97(0.06)  1.00(<0.01) 0.99(0.01)
a =0.05, Sop = {5, 6}
ARL, 2.27(1.43) 2.64(2.13) 41.24(26.09) 49.39(16.84)  2.53(1.84) 8.39(4.34) 1.61(099) 1.97(1.15) 1.37(0.64)  1.49(0.90)
Accuracy 0.99(0.01) 0.98(0.02) 0.87(0.10) 0.90(0.03) 1.00(<0.01)  0.99(0.01)  1.00(<0.01) 0.97(0.08)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.92(0.16) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.95(0.11)  1.00(0.01)  1.00(<0.01)
Recall 0.99(0.01) 0.96(0.05) 0.80(0.13) 0.76(0.08) 0.99(0.01) 0.96(0.02)  1.00(0.01)  1.00(0.01)  1.00(<0.01) 1.00(<0.01)
F1-Score 0.99(0.01) 0.98(0.03) 0.84(0.10) 0.86(0.05) 0.99(0.01) 0.98(0.01)  1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
o = 0.1, So = {5, 6}
ARL, 1.28(0.56) 1.30(0.65) 10.23(6.55) 8.95(4.81) 1.29(0.61) 2.72(1.5) 1.10(0.32)  1.18(0.42)  1.06(0.23)  1.07(0.26)
Accuracy 1.00(0.01) 1.00(<0.01) 0.93(0.11) 0.98(0.01) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 0.97(0.08)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.91(0.15) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.95(0.11)  1.00(0.001) 1.00(<0.01)
Recall 1.00(<0.01)  1.00(<0.01) 0.95(0.03) 0.96(0.02) 1.00(<0.01)  0.99(0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01)
F1-Score 0.99(<0.01)  1.00(<0.01)  0.92(0.09) 0.98(0.01) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
% =003 So=1{4 5 6, 7}
ARL, 2.38(1.54) 2.93(2.59) 46.71(30.51) 54.56(18.56)  3.34(2.60)  12.12(5.76)  1.76(1.15)  2.13(1.27)  1.38(0.64)  1.49(0.82)
Accuracy 0.99(0.01) 0.96(0.03) 0.85(0.10) 0.89(0.04) 0.99(0.01) 0.98(0.01)  1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.91(0.16) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.96(0.10)  1.00(0.01)  1.00(<0.01)
Recall 0.99(0.01) 0.91(0.08) 0.77(0.15) 0.73(0.09) 0.98(0.02) 0.94(0.03)  1.00(0.01)  0.99(0.01)  1.00(<0.01) 1.00(<0.01)
F1-Score 0.99(0.01) 0.95(0.05) 0.81(0.10) 0.84(0.06) 0.99(0.01) 0.97(0.02)  1.00(<0.01) 0.97(0.06)  1.00(<0.01) 1.00(<0.01)
o =005 So={4, 5 6, 7}
ARL, 1.41(0.71) 1.46(0.89) 15.3(10.30)  16.03(7.82) 1.61(0.92) 4.44(243)  1.19(0.48)  1.35(0.63) 1.10(0.32)  1.13(0.41)
Accuracy 1.00(0.01) 1.00(<0.01) 0.92(0.10) 0.97(0.02) 1.00(<0.01)  0.99(<0.01) 1.00(<0.01) 0.97(0.08)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.92(0.15) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.95(0.11)  1.00(0.01)  1.00(<0.01)
Recall 1.00(<0.01)  1.00(0.01) 0.93(0.05) 0.93(0.04) 1.00(<0.01) 0.98(0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01)
F1-Score 0.99(0.01) 1.00(<0.01)  0.91(0.09) 0.96(0.02) 1.00(<0.01)  0.99(0.01)  1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)
w =01, So=1{4 5 6 7}
ARL, 1.07(0.27) 1.08(0.29) 4.55(3.03) 3.47(2.12) 1.11(0.34) 1.78(0.90)  1.03(0.18)  1.06(0.25)  1.02(0.14)  1.02(0.16)
Accuracy 1.00(0.01) 1.00(<0.01) 0.94(0.11) 0.99(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.97(0.08)  1.00(<0.01) 1.00(<0.01)
Precision 0.99(0.02) 1.00(0.01) 0.92(0.15) 1.00(0.01) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 0.95(0.11)  1.00(0.01)  1.00(<0.01)
Recall 1.00(<0.01)  1.00(<0.01) 0.98(0.02) 0.99(0.01) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01)
F1-score 1.00(0.01) 1.00(<0.01) 0.94(0.09) 0.99(0.01) 1.00(<0.01)  1.00(<0.01) 1.00(<0.01) 0.97(0.07)  1.00(<0.01) 1.00(<0.01)

Note: Values in parentheses denote the standard deviations of the metrics.

temporal correlation of the network system. Especially for
detecting small outbreak cluster (ie., So = {5}) and small
shift (i.e., oy = 0.03), the superior behaviors of the proposed
MSTA 4+ TCUSUM-1 and MSTA + TCUSUM-2 are more evi-
dent with much smaller ARL; values and larger values of
Accuracy, Precision, Recall, and Fl-score than NONE +
TCUSUM-1 and NONE + TCUSUM-2, GP + TCUSUM-1 and
GP 4 TCUSUM-2 with a simple multivariate spatiotemporal
covariance  function, VAR+TCUSUM-1 and VAR+
TCUSUM-2 that only consider multivariate temporal correl-
ation, as well as STCAR+TCUSUM-1 and STCAR+
TCUSUM-2 that omit the correlation among signals. For net-
work monitoring in Table 3, compared with the benchmark

methods, TCUSUM-1 and TCUSUM-2 in the proposed
method have comparable ARL; values and higher values of
Accuracy, Precision, Recall, and Fl-score, which indicates the
timeliness and stability of the proposed method. As the out-
break cluster and mean shift become large, both the proposed
method and benchmark methods perform better for net-
work monitoring.

5. Real case study

In this section, we use a real wireless 10T testbed to evaluate
our proposed method. The IoT testbed is a network system
built by six wireless CPS devices that include Raspberry PIs
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Figure 10. An example of the three types of the cyber and energy consumption data in the loT network system. (Note: the data have been de-trended and standar-

dized by 0-1 normalization.).
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Figure 11. Estimated values of y, Ay, B,, and B, of the loT network system.

as computation and communication units and geophones as
sensing units. We run a distributed seismic ambient noise
tomography imaging program in the testbed (Valero et al,
2019). The comprehensive distributed program performs
streaming data processing, RAM I/O (input/output) opera-
tions, Disk I/O operations, and communications (intermedi-
ate data and result transmissions). As shown in Figure 1,
spatial information can be reflected based on the node rela-
tions of the CPS units. We collect and store cyber and
energy consumption data generated by the nodes of the
Raspberry PIs using widely available Application
Programming Interfaces (APIs), such as collectd. At each
CPS node, three types of cyber and energy consumption
data are collected, including network tx, power, and CPU.
Network tx indicates the network transmission data, whose
pattern can help identify a cyber-attack over a network.
Power is the energy consumption of the CPS units, which
can reflect the hardware operating condition associated with
cyber and physical attacks. CPU denotes the computation
cost of the CPS units, which is highly related to both normal
tasks and abnormal system burdens.

The IoT network system is in the normal state in the
beginning, and becomes under attack at some time point
and remains in the under-attack state. Note that there are
six CPS nodes in the network system, and not all of them
are under attack. Figure 10 shows an example of the three
types of cyber and energy consumption data when the IoT
system is in the normal state in the beginning and becomes
under attack at one, two, and three nodes from the time

(d) B4
Table 4. Estimated values of o7, with /=1, .., L, of the loT net-
work system.
a? o2 o3 o3
Estimated values 0.0024 0.0011 0.0014

point 200. We can see that the attack affects the patterns of
the cyber and energy consumption data.

We first estimate the parameters of the proposed MSTA
method using the observed data of the IoT network system
in the normal state with M = 6000 time points. We select
the order and the hyperprior-parameters using the same
procedure in Section 4 with Q=1, ¢=0.5, 2 =0.01,
75 = 0.001, and ¢y = 0.01. Figure 11 and Table 4 show the
estimated values of y, Ai, By, B, and o7, with I=
1, ..., L. The estimated value of y is demonstrated in the
heat map in Figure 11(a), which represents the network
structure of the IoT network system. The learnt network
structure provides important engineering information of the
IoT network system and can be further used in a wide range
of engineering applications, e.g., optimum structural design,
resource management, and task arrangement. The estimated
A, By, and B, in Figure 11 and o}, with =1, .., L, in
Table 4 show the spatial dependence, the temporal associ-
ation, and the overall variance of the IoT network system,
respectively.

Before evaluating the monitoring performance, we deter-
mine the control limits h; and h, of the proposed
TCUSUM-1 and TCUSUM-2 control charts based on the
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Table 5. Modeling performances of the proposed and benchmark methods in the real case.

Control Charts NONE+TC  NONE+TC  GP+TC  GP+TC VAR+TC VAR+TC  STCAR+TC  STCAR+TC  MSTA4TC  MSTA+TC
Metrics USUM-1 USUM-2 USUM-1 Usum-2 USUM-1 USUM-2 USUM-1 Usum-2 USUM-1 USUM-2
ARLy 289.70 216.80 20.78 19.34 4.65 4.88 2.37 2.89 1.68 1.98
Accuracy 0.4226 0.5684 0.9824 0.9845 0.9899 0.9887 0.9974 0.9969 0.9983 0.9975
Precision 1.0000 1.0000 0.9945 0.9950 0.9977 0.9969 0.9995 0.9995 0.9995 0.9995
Recall 0.0377 0.2807 0.9899 0.9901 0.9945 0.9955 0.9971 0.9960 0.9977 0.9964
F1-Score 0.0725 0.4380 0.9922 0.9925 0.9961 0.9962 0.9983 0.9977 0.9986 0.9979

Table 6. Monitoring performances of the proposed and benchmark methods in the real case.

Control Charts

Metrics 7?7  CCUSUM EWMA SVM DT RF NN KNN  SOM WT  TCUSUM-1-Mean TCUSUM-2-Mean TCUSUM-1 TCUSUM-2
ARLy 3.01 2.64 172 143 321 205 197 249 6439 538 1.90 243 1.68 1.98

Accuracy 0.6848 0.9939 0.9901 0.8291 0.6514 0.6514 0.7403 0.6810 0.5823 0.5132 0.9978 0.9953 0.9983 0.9975
Precision 0.9999 0.9993 0.9997 0.9361 0.7527 0.5887 0.7624 0.6273 0.6659 0.4439 0.9994 0.9996 0.9995 0.9995
Recall 0.4747 0.9905 0.9839 0.5844 0.2970 0.7472 0.6802 0.5940 0.0479 0.3449 0.9970 0.9925 0.9977 0.9964
F1-Score 0.6432 0.9949 0.9917 0.7195 0.4259 0.6585 0.7189 0.6102 0.0894 0.3882 0.9982 0.9960 0.9986 0.9979

observed data of the IoT network system in the normal state
by setting ARLy; = 1000 and repeating the procedure 1000
times. Then, we evaluate the monitoring performance of our
proposed method and the benchmark methods. We have
100 under-attack processes of the IoT network system. Each
under-attack process has 500 time points, and is in the nor-
mal state in the beginning and becomes under attack at one,
two, and three nodes starting from the time point 200. We
monitor the under-attack processes using the proposed
method and the benchmark methods. Tables 5 and 6 present
the average values of the metrics of the proposed method
and the benchmark methods based on the 100 under-attack
processes. For network modeling in Table 5, the proposed
method has smaller ARL; values and larger values of
Accuracy, Precision, Recall, and Fl-score than
NONE + TCUSUM-1 and NONE + TCUSUM-2,
GP+TCUSUM-1 and GP+TCUSUM-2 with a simple
multivariate spatio-temporal covariance function,
VAR +TCUSUM-1 and VAR +TCUSUM-2 that only con-
sider multivariate temporal correlation, as well as
STCAR+ TCUSUM-1 and STCAR+ TCUSUM-2 that omit
the correlation among signals, which indicates the effective-
ness of the proposed MSTA for modeling the multivariate
spatio-temporal characteristics of the network system. For
network monitoring in Table 6, the proposed method per-
forms better than the benchmark methods, which indicates
the timeliness and stability of the proposed method for net-
work monitoring. In addition, by simultaneously considering
the characteristic quantities of the mean change and the
variance change, the proposed TCUSUM-1 and TCUSUM-2
perform better than TCUSUM-1-Mean and TCUSUM-2-
Mean with lower ARL; values.

6. Conclusion

The modeling and monitoring of a network system has been
reported to be a challenging task in the literature, due to the
complex spatio-temporal characteristics, multiple types of
sensor signals, and the unknown network structure. In this
article, we propose a multivariate spatio-temporal modeling
and monitoring methodology for a network system by using
multiple types of sensor signals. For the modeling of the

network system, we first propose an MSTA model that inte-
grates a GMRF and a vector autoregressive structure to fully
characterize the spatio-temporal correlation of the network
system. Specifically, we develop an iterative model learning
algorithm, which combines the Bayesian inference, least
squares, and a sum square error-based optimization method,
to learn the network structure and estimate parameters in
the proposed MSTA model. For the monitoring of the net-
work system, we then propose two multivariate spatio-tem-
poral control schemes, i.e., TCUSUM-1 and TCUSUM-2,
which construct the control statistics by excluding the tem-
poral dependence from the spatio-temporal characteristics.
The results of the numerical experiments and a case study
of an IoT network system demonstrate that the proposed
method achieves a much better modeling and monitoring
performance than a list of existing benchmark methods.

There are two related topics that are worth studying as
future works. First, network systems are vulnerable to attacks
with various strength levels in engineering practice. We will
extend our proposed method for quantifying the strength lev-
els of attacks when monitoring a network system. Second,
network systems (e.g., IoT) leverage a diverse set of comput-
ing resources, exposing to various types of attacks that
threaten network systems in various aspects. Identifying the
attack type when monitoring network systems is a potential
topic for future study based on our proposed method.
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