Hysteresis in viscoelastic flow instability of confined cylinders
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Viscoelastic flow through porous media is relevant in many industrial and biolog-
ical applications including enhanced oil recovery and biofluids’ transport inside the
body, where the presence of large polymeric stresses in the porous media leads to
viscoelastic instability. In the present study, we numerically investigate viscoelas-
tic instability-induced flow states in the channels consisting of (i) a single cylinder
and (ii) two streamwise located cylinders. We unravel the presence of a hysteresis
for pulsatile viscoelastic flows. For both geometries, the quantitative value of flow
asymmetry around the cylinder resulting from the viscoelastic instability forms a
closed hysteresis loop. We investigate the effects of fluid rheological properties and

periodic inlet flow rates on the hysteresis loop.

I. INTRODUCTION

The flow of viscoelastic fluids through confined geometries is common in several biologi-
cal, geophysical, and industrial processes such as targeted drug delivery, biofilm transport,
and enhanced oil recovery [1-3]. The flow of mucus through ciliary epithelial surfaces and
the transport of interstitial fluid through tissues are some of the examples of the flow of
viscoelastic biological fluids through confined geometries [4]. The biopolymers secreted by
the bacteria impart viscoelastic properties to biofilms, which flow through confined pores of
rock and soil [5]. The transport of biofilm also occurs through the poroelastic tissues inside
the body in the case of bacterial infection [2]. During enhanced oil recovery and groundwa-
ter remediation, polymeric solutions are injected into the porous rocks to mobilize capillary
trapped non-aqueous liquids [3, 6]. The micro-structure of porous media contains curved
surfaces [7, 8]. The stretching of polymeric chains along the curvature as the viscoelastic
solution passes through porous media creates large elastic stresses [9], which induces vis-
coelastic instability when the Weissenberg number is greater than a critical value [10, 11].

The Weissenberg number (Wi) is a dimensionless parameter representing the ratio of elastic



to viscous forces in viscoelastic flows [12]. Viscoelastic instabilities manifest into symmetry
breaking [13, 14], time-dependent flows [15], enhanced transport [16], elevated mixing [17],
and abnormal rise of pressure drop [18] in viscoelastic flows depending on the geometry,

elastic stress, and fluid rheology.

Simple isolated geometries such as cross-slot, isolated constriction, and confined cylinder
have been used to infer some information about viscoelastic instabilities in the different
portions of a porous geometry [1]. Elastic instability induces symmetry-breaking transition
at a small Wi and time-dependent flow at a large Wi for viscoelastic flow through a cross-slot
geometry [13, 14, 19]. The formation of unstable eddies takes place upstream of a sudden
constriction [20, 21] to mitigate the elastic stress induced due to the alignment of polymeric
chains [22-25]. For viscoelastic flows around a confined cylinder, viscoelastic instability leads
to the formation of eddies upstream of the cylinder at a large blockage ratio (> 0.5) [26-28],
whereas the flow becomes asymmetric around the cylinder for the geometries with a small
blockage (< 0.5). The manifestation of instability occurs downstream of the cylinder for
the geometry with a small blockage [29, 30]. The channels having an array of contractions
and cylinders have been widely used as a 1D model of porous geometry to investigate the
viscoelastic interaction between the successive pores and obstacles [31-34]. Viscoelastic
flows through channels consisting of multiple pores and cylinders lead to the formation of
distinct steady and transient flow states due to viscoelastic instabilities [34-38|. The pore-
scale viscoelastic instability ultimately regulates the sample-scale transport in 2D porous
geometries [16, 39, 40]. Viscoelastic instability in a 3D porous geometry induces a chaotic
flow due to complex connectivity and enhanced disorder, which leads to an abnormal rise of

flow resistance [18].

The topology of the polymeric stress field regulates the formation of distinct pore-scale
flow states in viscoelastic flows [36, 38, 41]. The magnitude of polymeric stress depends on
the stretching of the polymeric chains and the stretching or relaxation of these chains occurs
in finite time [9]. Therefore, viscoelastic instability-induced flow states exhibit hysteresis
when the flow rate (or Wi) is time-dependent. In the natural and industrial processes, the
mass flow rate of viscoelastic fluids through confined geometries is often transient due to
either time-dependent injection or viscoelastic instabilities. The time-dependent injection
rate of displacing fluid suppresses viscous fingering instability [42-44]. Hence, it is desirable

to inject displacing fluids into the reservoirs with a transient flow rate to enhance the oil



recovery [45]. In natural processes such as ciliary motion-induced flow of mucus through cilia-
covered epithelial surfaces, the flow rate is transient due to periodic beating of cilia [46, 47].
Furthermore, even for a constant sample-scale flow rate of polymeric solution through porous
media, the velocity fluctuations induced by viscoelastic instability lead to a locally transient
flow rate of viscoelastic fluid in the micro-structures of the porous media [18, 40]. Therefore,
it is essential to understand viscoelastic instability for transient flow rates through confined
geometries. In the present work, we study pulsatile viscoelastic flows through channels
consisting of cylinders and investigate hysteresis in the viscoelastic instability-induced flow
states. Further, we investigate the effect of fluid’s rheological parameters and the different

parameters of transient flow on the hysteresis.

II. GEOMETRIES AND GOVERNING EQUATIONS
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Figure 1: Schematic of the geometries used for simulations: (a) a single cylinder located
inside a channel and (b) a pair of streamwise located cylinders inside a channel. Uy, ()
represents time-dependent inlet flow velocity. Channel length, channel width, and cylinder
diameter have been denoted by [, w, and d, respectively. The separation between cylinders
for the channel consisting of a pair of cylinders is Iy = 2d. The values of different
geometrical parameters are [ = 4mm, w = 0.4mm, and d = 160um, respectively. The
channel length is much larger than the width (I = 10w) and cylinder diameter (I = 25d) to
avoid any entrance or exit effect (Appendix VIA). Black solid lines represent solid

boundaries, whereas green and red lines indicate inlet and outlet, respectively.

In the present work, we have numerically studied hysteresis in the viscoelastic instability-

induced flow states in a channel having one or two cylinders (Fig. 1). The flow of incom-



pressible viscoelastic fluid is described by the conservation of mass and momentum:
V-u=0, (1)

p(aa—?—i—u-Vu):—vaLV-‘r, (2)

where p is the fluid density, while u and p are the velocity and pressure fields, respectively.
The variable T represents the stress tensor, which has two components coming from the
solvent (75) and the presence of polymeric chains (7,). For Newtonian solvents, 75 can be
calculated as 7, = ny(Vu + Vu?), where 7, is the viscosity of the solvent. There are many
mathematical models available to calculate the polymeric contribution of the stress tensor
(1p) [48, 49]. We choose the FENE-P constitutive model to calculate 7,. The FENE-P
model includes fluid elasticity and shear-thinning effects which are primary characteristics
of most polymeric solutions and also considers the finite stretching of the polymeric chains

[49, 50]. The governing equation for 7, considering the FENE-P constitutive model can be

written as:
Av o oan, T D (1
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where A is the relaxation time of polymeric chains and I is the identity tensor. The material
derivative is shown as % = % +u - V. The polymer viscosity is 7, = 19 — 15, where 7 is

the total viscosity of the polymeric solution in the limit of zero-shear rate. The function f

has the following form:
L% + 2 tr(1y,)
anp P
f(Tp) = L2 _ 3 ) (4)

where L? represents the maximum stretching of the polymeric chains and a = L?/(L* — 3).

The value of L? used in the literature lies in the range of L? = 10 — 1000 [50-52] and it is
worth noting that the FENE-P model reduces into the Oldroyd-B constitutive model [53]
at a large value of L? (i.e., L? — o0), which is an excellent model for constant viscosity
highly elastic fluids (i.e., Boger fluid [54]). The term 7v_p used in the FENE-P model (Eq. 3)
represents the upper convective time derivative of 7, which is given by:

v DT,
T pr—
P Dt

—7,-Vu-vVu’ -7, (5)

The numerical simulation using the form of the FENE-P model described in Eq. 3 is
challenging at high Weissenberg numbers due to the exponential profile of stress tensor in

the regions of high deformation rate [55]. The log-conformation approach is an alternative



method to perform numerical simulation at a large Wi, where the equations are solved for
the logarithm of conformation tensor (®) rather than 7, [56, 57]. This method by default
ensures the positive definiteness of the stress tensor, which is essential for numerical stability
at high Weissenberg numbers. The following relation has been then used to calculate the

polymeric stress tensor (73,) from the log-conformation tensor (©):
— B (fe® — a1 6
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We perform 2D numerical simulations for viscoelastic flows through the geometries shown
in Figs. la and 1b. The numerical simulations have been performed using OpenFOAM,
which is an open-source CFD framework based on the finite volume method [58]. We in-
tegrate viscoelastic solver RheoTool [59] with OpenFOAM and use the log-conformation
approach to calculate the polymeric stress tensor [59, 60]. Gauss’s theorem has been used
to calculate the cell gradient (Gauss linear) and divergence [59]. The convective terms
in the governing equations have been discretized using the Gaussian deferred correction
component-wise schemes (GaussDefCmpw), where specifically the ?CUBISTA” scheme has
been used for the convective terms in the polymeric stress equation. The scheme based on
the Gauss theorem has been also used to discretize the Laplacian terms since the Laplacian
operator can be considered as a combination of the divergence and gradient operators. For
the temporal evolution of the solution, we have used the Crank—Nicolson scheme.

We have used n, xn, = 2560 x 256 static grid points to discretize the computation domain,
where the five layers in the vicinity of the cylinders have been further refined (Appendix
VIB). n, and n, are the grid points along the length and the width of the channel. The time-
step size in the simulation has been controlled by the maximum Courant number (Copayx)
and Copax = 0.025 has been used throughout the study. The values of grid points and the
maximum Courant number used for simulations are sufficient for the mesh and time-step
independent results (Appendix VIB). The inlet velocity in the channel is described by a
uniform periodic triangular waveform (Fig. 3a). The boundary conditions used at the inlet
for polymeric stress tensor and pressure field are 7, = 0 and n-Vp = 0, respectively. n is the
unit vector normal to the surface. At the outlet, the boundary conditions used for velocity,
polymeric stress tensor, and pressure are n-Vu,; = 0, n-Vr,,;; = 0, and p = 0, respectively. u;
and 7, ,; are the components of the velocity vector and polymeric stress tensor, respectively.

No-slip and no-penetration boundary conditions have been used for the velocity field at



the channel’s walls and the cylinder’s surface. Further, we use a linear-extrapolation for
polymeric stress tensor and zero-gradient for the pressure field as the boundary conditions

at the solid surfaces [59].

The Reynolds number (Re) is a relevant dimensionless number in any fluid flow, which
represents the ratio of inertial to viscous forces and can be defined as Re=pU;,d/n,. The
effect of inertia is negligible as the Re is small (Re = 0.0004 — 0.004) due to the small length
scale of the system. The Weissenberg number is defined as Wi=AU;,/d and its value lies
in the range Wi = 0 — 4 in the present study. We vary U,, to change the Wi keeping other
variables constant (Fig. 3a). Therefore the elasticity number (El=Wi/Re=Mn,/pd?), which
represents the ratio of elastic to inertial forces, has a constant value (El = 781.25) as it only
depends on the fluid rheology and geometrical length scale. The elastic effects dominate the
inertial effects since El > 1. We define viscosity-ratio § = 7s/mo to investigate the effect
of shear-thinning behaviour for the FENE-P constitutive model. The viscosity-ratio and
the relaxation time of the polymeric solutions generally used in the experiments are in the
range of f = 0.05 — 0.25 [16, 30] and A = 0.1 — 10 s [13, 16, 30, 40], respectively. The
values of fluid properties and dimensional parameters used in the present study have been
summarized in Table I. Throughout the study, we use A to normalize time (¢) and oscillation
time-period (7), and U, to normalize velocity. The Deborah number De which measures
the unsteadiness in viscoelastic flows [61] is directly related to the normalized oscillation
time-period as De = 1/T. The characteristic shear stress, 7oU;,/d, has been used to the

normalize the stress and pressure fields.

Table I: The value of fluid and flow parameters used in the present study.
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Figure 2: (a) Velocity field for the viscoelastic flow around a confined cylinder at (i)

Wi = 1.25 and (ii) Wi = 2.5. (b) Flow asymmetry, I, for the viscoelastic flow around a
confined cylinder at different Wi. The symbol and the error-bars represent the mean value
and the standard-deviation, respectively. The standard deviation is very small as the flow
remains almost steady (Appendix VIC). The fluid rheological parameters are 5 = 0.05
and L? = 1000.

IIT. RESULTS AND DISCUSSION
A. A single cylinder located inside a channel

Viscoelastic flows through channels consisting of a single cylinder have been widely ex-
plored in the literature assuming constant mass flow rate [28-30]. However, despite the
practical relevance, viscoelastic instability in the confined geometry having a transient mass
flow rate has not been explored. For steady mass flow rate, viscoelastic instability induces
flow asymmetry around the confined cylinder for the Wi greater than a critical value (Wi, )
[30]. To identify the critical Wi required for the flow asymmetry in the present study, we
first perform simulations considering constant flow rates (Fig. 2a). To quantify the flow

asymmetry around the cylinder, an asymmetry parameter (/) has been defined as:

I = ’Qupper - Qlowerl
Qupper + Qlower

where Qypper represents the mass flow rate through the gap between the cylinder and upper

, (7)

wall, whereas Qe represents the mass flow rate through the gap between the cylinder and



lower wall. The value of I varies from I = 0 for symmetric flow to I = 1 when the entire
fluid passes through one of the gaps. Wi, has been defined as the onset of the increase of
and its value for a fluid with 8 = 0.05 and L? = 1000 lies between Wi = 1.48 and Wi = 1.56
(Fig. 2b). Therefore, we consider Wi, = 1.52 £ 0.04.
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Figure 3: (a) The profile of time-dependent oscillatory Wi used in the simulation. Wiy,
Winax, and T are the minimum value, maximum value and time-period of Wi. The value
of flow asymmetry at different Wi for (b) 7= 10, (¢) 7' = 20, and (d) 7" = 40. Black
dashed lines show the startup regime for the hysteresis, whereas solid lines represent
different hysteresis loops. The values of other parameters are 3 = 0.05, L? = 1000,

Wi, = 0.62, and Wiy, = 3.12.

To investigate the effect of transient flow rate on the viscoelastic instability-induced flow,



we consider a time-dependent inlet velocity, corresponding to a transient Wi as shown in Fig.
3a. In this study, we change minimum Wi (Wi, ), maximum Wi (Wiy,y ), and time-period
(T) of the oscillatory Wi. Fig. 3b depicts the value of flow asymmetry (I) for the multiple
oscillations of Wi at a fixed oscillation’s time-period (7" = 10). The value of I converges to a
closed-loop after a few initial oscillations of Wi. The closed-loop of the flow asymmetry leads
to two possible values of I at a given Wi, depending on the route that has been followed
to get the specific value of Wi (Fig. 3b). Thus, the flow asymmetry exhibits hysteresis for
oscillatory flow rates. At large Wi, the flow asymmetry saturates as the entire fluid passes
through either of the gaps. Therefore, two different branches of the hysteresis loop coincide
with each other (Fig. 3b). However, we do not see the saturation of flow asymmetry at
the lower limit of Wi. The value of Wi linearly varies forth and back from Wi,;, < Wi, to
Winax > Wi, (Fig. 3a). However, the flow around the cylinder always remains asymmetric
(i.e., I > 0) after achieving the hysteresis loop (Fig. 3b) and we do not see the transition
from asymmetric to symmetric flow state as Wi becomes less than Wi,,. The size and shape
of the hysteresis loop significantly depend on the rate of change of Wi (Figs. 3c and 3d).
The area of the loop increases as the time-period increases and the hysteresis loop changes
from a triangular shape at 7' = 10 to an elliptical shape at T = 20 to a square-like shape at
T = 40.

Figure 4: (a-c) Flow field and (d-f) the trace of polymeric stress field at

Wi = 1.25(< Wi,,) for the different branches of the hysteresis loop shown in Fig. 3c. The
flow states shown in (a,d), (b,e), and (c,f) correspond to the locations indicated by
filled-circle (e), filled-diamond (#), and filled-star (#) in Fig. 3c, respectively. Other
parameters are 3 = 0.05, L? = 1000, T' = 20, Wi, = 0.62, and Wiy = 3.12.

To understand the origin of hysteresis and the flow state at the different branches of
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the hysteresis loop, we plot the flow field and stress field at a fixed Wi(< Wi,,) but for
the different branches of the hysteresis loop at 7" = 20 (Fig. 3c) in Fig. 4. Streaks of
large polymer stress induce flow separation and lead to the formation of distinct flow states
[36, 38]. The viscoelastic flow around a cylinder creates a long elastic wake [30, 62]. At
Wi > Wi, the elastic wake downstream of the cylinder becomes asymmetric, leading to an
asymmetric flow state [30]. The flow states shown in Fig. 4 correspond to different branches
of the hysteresis loop. Therefore, despite having the same Wi, they have different stress field
depending on the route (Figs. 4d, e, and f). The location shown by (e) in Fig. 3c belongs
to the branch corresponding to the first oscillation of Wi and Wi < Wi,,. Therefore, the
stress topology is symmetric (Fig. 4d), leading to a symmetric flow state at this location
(Fig. 4a). The location indicated by (#) in Fig. 3c is on the branch of the hysteresis loop
corresponding to the decreasing value of Wi after attaining Wi, and it has an asymmetric
flow state despite Wi < Wi, (Fig. 4b). The topology of stress field as well as the flow
state at Wipay is asymmetric as Wip.x > Wi, and the location denoted by (#) is in the
route decreasing from Wiy, to Wiy,. The topology of the stress field has a memory and
it requires a finite time to transform itself. Therefore, the polymeric stress topology at the
location denoted by (®) remains asymmetric despite Wi < Wi, (Fig. 4e) and induces an
asymmetric flow state (Fig. 4b). In fact, the topology of stress field is not able to completely
transform from an asymmetric profile at Wiy, to a perfectly symmetric profile at Wiy,.
Therefore it has I > 0 even at Wiy, in the hysteresis loop. However, the value of I at
Wi is smaller than that at Wiy, indicating that the flow state is less asymmetric at
Wiin than Wipay (Fig. 3c). The point indicated by (#) on the hysteresis loop (Fig. 3c) is
on the branch where Wi increases from Wi, to Wiy.,. Along this branch, first, the stress
topology continues to transform towards a symmetric topology (Fig. 4f), which leads to the
decrease in I as Wi increases. Therefore, at the location denoted by (#) on the hysteresis
loop, the flow state is less asymmetric (Fig. 4c) than the flow state at the location indicated
by () on the loop (Fig. 4b). After achieving a minimum value of I(> 0), the stress topology
again starts to transform towards a more asymmetric topology as Wi further increases, which
leads to the increase in I with Wi (Fig. 3c). Thus, the stress topology and flow state do
not become symmetric after attaining the hysteresis loop. For the quasi-static variation of
flow rate (or Wi) considered in the previous experiments [29, 63|, the polymeric stress had

sufficient time to relax after each step-wise increment/decrement of Wi (Appendix VID).
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Therefore, the hysteresis was not reported in the previous experiments performed using a

quasi-static variation of the flow rate [29, 63].
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Figure 5: The area of hysteresis loop (Ajsep) and the minimum value of flow asymmetry in
the hysteresis loop (/i) for different values of (a) oscillation time-period (T), (b)
minimum Wi (Wi, ), and (¢) maximum Wi (Wi, ). The values of other parameters are
Wipin = 0.62 and Wiy, = 3.12 for (a), 7' = 20 and Wiy, = 3.12 for (b), and

Wipin = 0.62 and T' = 20 for (c). The rheological parameters are 3 = 0.05 and L? = 1000.

Further, we investigate the effect of time-period, minimum Wi, and maximum Wi on the
hysteresis, and quantify the area of the hysteresis loop (Ajeep) and the minimum value of the
asymmetry parameter (1,,;,) in the hysteresis loop. A, physically represents the strength
of the hysteresis and [,,,;,, determines the deviation of the hysteresis loop from the symmetric
flow state. A, increases as the time-period (77) of the oscillation of Wi increases, whereas
Inin decreases with the increasing value of 7' (Fig. 5a). The flow rate (i.e., Wi) changes
slowly as the time-period of the oscillation increases, providing a longer time for the stress
field to transform from asymmetric to the symmetric topology. Therefore, the value of I,,,;,
decreases as T increases (Fig. 3d). The size of the hysteresis loop increases as the value
of I decreases. Hence, the area of the hysteresis loop increases with 7' (Fig. 5a). The
range of Wi increases as the lower limit of Wi decreases and the value of I does not saturate
at Winm (Fig. 3c). Therefore, I,,;, decreases as the lower limit of Wi decreases (Fig. 5b),
which also delays the saturation of I to a larger value of Wi. The combined effect of the
increase of Wi range, decrease of I,,;,, and delaying the saturation of flow asymmetry leads
to the increase of Ajpp as Wiy, decreases (Fig. 5b). The range of Wi also increases with

the increasing value of upper limit of Wi. However, the value of I,,;, increases (Fig. 5¢) and
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the flow asymmetry saturates at a smaller Wi as Wiy, increases. Therefore, despite the
increase of the range of Wi, the area of the hysteresis loop decreases as the value of Wiy

increases (Fig. 5c).
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Figure 6: The area of hysteresis loop (Ajsep) and the minimum value of flow asymmetry in
the hysteresis loop (I,:,,) for different values of (a) viscosity ratio (3) at L? = 1000 and (b)
polymeric chains’ extensibility (L?) at 8 = 0.05. Other parameters are T' = 20,

Winin = 0.62, and Wiy, = 3.12.

We also explore the effect of fluid rheological parameters on the hysteresis. The value
of Wi, required for the flow asymmetry decreases with the increasing strength of shear-
thinning [29, 30]. Therefore, the value of I in the hysteresis loop saturates at a lower Wi
and the range of Wi wherein I has two distinct values decreases as [ decreases. This leads
to the enhancement of I,,;, and the decline of A, as the value S decreases (Fig. 6a).
For a weakly shear-thinning fluid (i.e., 1/8 = 10), the flow around the cylinder remains
symmetric for the range of Wi considered in the present study, and hence the formation
of the hysteresis loop does not take place. The elastic property of fluid increases as the
extensibility of the polymeric chains (L?) increases and a stronger elastic fluid has a smaller
Wi, for the instability [30]. Therefore, the flow asymmetry saturates at a smaller Wi as L?
increases and leads to the increase of I,,,, and the decrease of A;,,, as the elasticity of fluid

increases (Fig. 6b).
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B. Two cylinders located inside a channel
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Figure 7: (a) Flow asymmetry (/) around the front cylinder in the geometry having two
streamwise located cylinders in a channel at 7" = 40. (b) The area occupied by eddies
(Aeddy) in the region between the cylinders at 7' = 40. A.44, has been normalized with [sd.
The portions of the hysteresis loop corresponding to the eddy free symmetric (type-1) and
asymmetric (type-3) flow states have been indicated by magenta and blue colors,
respectively. The green and red portions of the loop represent symmetric and asymmetric
flow states with eddies between the cylinders, respectively. The values of other parameters

are B = 0.05, L2 = 1000, Wipm = 0.62, and Wipa. = 3.12.

In the channel consisting of two streamwise located cylinders (Fig. 1b), viscoelastic
instability induces three distinct flow states in the region between the cylinders [36]. The
transitions between these distinct flow states are characterized by two critical Wi (Wig,; and
Wiez). The flow is symmetric and eddy free for Wi < Wig; (flow type-1). After the first
transition (Wie; < Wi < Wige), a pair of recirculating eddies appear in the region between
the cylinders (type-2). Whereas, the eddies disappear and the flow around cylinders becomes
asymmetric for Wi > Wi,y (type-3). To investigate the hysteresis in viscoelastic instability-
induced flow states between two cylinders, we consider the range of time-dependent Wi such
that Wipn < Wig < Wige < Wipax. Fig. 7a depicts the flow asymmetry (I) around the
front cylinder for the multiple oscillations of Wi at T = 40. The route of I during the

increase of Wi from Wi, to Wiy is different than the route observed when Wi decreases
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from Wipax to Wiy, (Fig. 7a). However, the value of I makes a closed-loop during the
complete oscillation of Wi, indicating the hysteresis in the flow states. The flow around
the cylinder remains symmetric (I = 0) even after the first transition (Wi < Wi < Wiga),
wherein the eddies appear in the region between the cylinders (type-2) [36]. Therefore,
we quantify the area occupied by the eddies (Acqqy) in the region between the cylinders
to differentiate the flow state consisting of eddies (type-2) from the eddy-free symmetric
(type-1) flow state (Fig. 7b). Aeaqy increases continuously due to a continuous change in
Wi. We set Aeqqy = 0.04 as a critical value of A.4q, to identify the eddy-free symmetric
(type-1) flow state, because A.qqy increases rapidly after A.qq, = 0.04 (Fig. 7b). The value
of Acqay also makes a closed-loop and exhibits hysteresis. The portions of the hysteresis loop
corresponding to the eddy free symmetric (type-1) and asymmetric (type-3) flow states have
been indicated by magenta and blue colors, respectively (Figs. 7a and 7b). The hysteresis
loops corresponding to the different oscillations of Wi collapse on each other except the
portion indicated with the red color. The red portion of the loop represents an asymmetric
flow state with eddies between the cylinders. This is an intermediate state between the flow
state with eddies (type-2) and the eddy-free asymmetric flow state (type-3) [36]. Both A.gay
and I fluctuate for this flow state. Therefore, the values of A.qq, or I corresponding to the
different oscillations of Wi do not perfectly collapse on each other (Figs. 7a and 7b). Here
onward, we refer to the symmetric and asymmetric flow states with eddies as type-2a (green

color in the hysteresis loop) and type-2b (red color) flow state, respectively.

The flow state representing each portion of the hysteresis loop has been shown in Fig. 8.
These flow states correspond to the location indicated by different symbols on the hysteresis
loop in Fig. 7a. At the location indicated by (e) and (#) in Fig. 7a, the stress topology is
symmetric (Figs. 8e and 8f), which induces symmetric flow states (I = 0) as shown in Figs.
8a and 8b. The elastic wake in between the cylinders bifurcates in two symmetric branches
after the first transition and encircles the region between the cylinders (Fig. 8f), leading to
the formation of eddies between the cylinders (Fig. 8b). The elastic wake has two branches
even at the location indicated by (#) in the hysteresis loop (Fig. 8g). However, the top
branch starts to deviate from the rear cylinder (see the region enclosed with a red ellipse
in Fig. 8g) and hence the stress topology loses the symmetry. This leads to asymmetric
flow around the cylinders (I > 0) and Ac4q, becomes smaller (Fig. 8c). Ultimately, the top
branch of elastic wake completely disappears (Fig. 8h) for the location indicated by (A) in
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Figure 8: (a-d) Flow field and (e-h) the trace of polymeric stress field corresponding to
the different portions of the hysteresis loop shown in Fig. 7a. The flow states shown in
(a,e), (b,f), (c,g), and (d,h) correspond to the locations indicated by filled-circle (e),
filled-diamond (#), filled-star (#), and filled triangle (A) in Fig. 7a and represent flow
states type-1, type-2a, type-2b, and type-3, respectively. The values of other parameters
are 8 = 0.05, L? = 1000, T = 40, Wip, = 0.62, and Wiy, = 3.12.

Fig. 7a. This topology of the stress field induces an eddy-free asymmetric flow state (Fig.
8d). The stress field transforms from asymmetric to symmetric topology as Wi decreases
from Wipax to Wip,. Therefore, the symmetric flow states (flow type-1 and type-2a) do
not appear and flow around the cylinders remains asymmetric (I > 0) in the route where

Wi decreases from Wiy, to Wiy, (Fig. 7a).

A smaller time-period (T) of the oscillation of Wi does not provide sufficient time for the
transformation of the topology of the stress field. Therefore, it exhibits a fewer number of
flow states during the complete oscillation of Wi. For a small time-period (T = 10), the
hysteresis loops of flow asymmetry (/) and eddies’ area (Acqqy) have been shown in Fig. 9a
and Fig. 9b, respectively. After achieving the hysteresis loop, eddies exist in the region
between the cylinders throughout the oscillation period (Fig. 9b). In the portion of the
hysteresis loop indicated by red color, the area occupied by eddies fluctuates (Fig. 9b), and
flow around the cylinder becomes slightly asymmetric (Fig. 9a). However, the eddy never
disappears, and flow around the cylinder never becomes completely asymmetric at T' = 10.
Thus, unlike 7" = 40, the hysteresis at 7' = 10 exhibits only the flow states which have eddies
(flow states type-2a and type-2b) and the transition happens between type-2a and type-2b
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Figure 9: (a) Flow asymmetry (/) around the front cylinder in the geometry consisting of
two streamwise located cylinders at 7' = 10. (b) The area occupied by eddies (Acq4qy) in the
region between the cylinders at 7' = 10. A.44, has been normalized with [,d. The values of

other parameters are 3 = 0.05, L? = 1000, Wiy, = 0.62, and Wiga, = 3.12.

flow states in the hysteresis loop (Fig. 9b).

To investigate the effect of the upper and lower limit of Wi on the hysteresis, we plot the
flow asymmetry around the front cylinder (Figs. 10a, 10b, and 10c) and the area occupied
by eddies (Figs. 10d, 10e, and 10f) at 7' = 20 for different values of Wiy, and Wip,,. Unlike
the hysteresis loop at T' = 10, there is sufficient time available at T" = 20 for the existence of
eddy free symmetric (type-1) flow state. However, the time is not enough for the formation
of eddy free asymmetric (type-3) flow state like the hysteresis loop at 7" = 40. Therefore,
the hysteresis loop at 7" = 20 exhibits only two flow states (Figs. 10a and 10d): eddy free
symmetric flow state (flow state type-1) and flow state with eddies (type-2a and 2b). For
(Wigin = 0.62, Wipax = 3.12), the asymmetric flow state containing eddies (type-2b) exists
for a much longer time compared to the symmetric flow state with eddies (type-2a) (Fig.
10d), and the fluctuation of A.q4qy leads to I # 0 (Fig. 10a). As the value of Wiy, decreases,
the type-2a flow state exists for a longer time and the fluctuation of A.44, for the type-2b
flow state reduces (Fig. 10e), leading to an almost symmetric flow around the cylinder
(I ~ 0) throughout the oscillation period (Fig. 10b). The reduction of the value of Wiyax
has an effect similar to the reduction of Wiy, (Figs. 10c and 10f). The flow state type-2a

exists for a longer time and the fluctuation of A.4q4, also decreases as the value of Wiy
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Figure 10: (a-c) Flow asymmetry (/) around the front cylinder and (d-f) the area occupied
by eddies (Aeqdy) in the region between the cylinders for (a,d) Wi, = 0.62, Wiy = 3.12,
(b,e) Wipin = 0.31, Wiy = 3.12, and (¢,f) Wi, = 0.62, Wiy = 2.62. The values of

other parameters are 3 = 0.05, L? = 1000, and 7' = 20. Acdqy has been normalized with [,d.

reduces (Fig. 10f).

Fluid rheology also influences the hysteresis loop of I (Figs. 1la and 11b) and A.a,
(Figs. 1lc and 11d). The stability of the symmetric flow state increases as either the
strength of shear-thinning decreases (i.e. [ increases) or the elasticity of fluid decreases
(i.e., L? decreases) [36]. Therefore, the symmetric flow state type-2a exists for a longer time
at 8= 0.2 (Fig. 11c) than 8 = 0.05 (Fig. 10d) and at L? = 400 (Fig. 11d) than L? = 1000
(Fig. 10d). There also occurs a transition from type-2b to type-2a flow state at 8 = 0.2
(Fig. 11c), unlike the other scenarios at T' = 20 where the transition happens directly from
type-2b to type-1 flow state in the hysteresis loop. Therefore, the type-2a flow state exists
in two different portions of the hysteresis loop at § = 0.2 (Fig. 11c). The fluctuation of
Aecaay reduces as (3 increases or L? decreases. Therefore, the value of I is smaller at 5 = 0.2

(Fig. 11a) and L? = 400 (Fig. 11b) than the value at 8 = 0.05 and L? = 1000 (Fig. 10a).
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Figure 11: (a,b) Flow asymmetry (/) around the front cylinder and (c,d) the area occupied
by eddies (Acqqy) in the region between the cylinders for (a,c) 8 = 0.2 and L* = 1000 and
(b,d) 8 =0.05 and L? = 400. The values of other parameters are Wi, = 0.62,

Winax = 3.12, and T" = 20. A.44, has been normalized with [,d.

IV. CONCLUSIONS

Viscoelastic instabilities induce distinct flow states in different geometries, where the
formation of the specific topology of the polymeric stress field regulates these flow states.
Viscoelastic instability-induced flow states exhibit hysteresis due to fluid memory. The
volumetric flow rate of viscoelastic fluids through confined geometries is often transient in

natural and industrial processes, like the cilia-induced flow of biological fluids and enhanced
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oil recovery. We investigate the hysteresis in the viscoelastic flow instability in the channels
consisting of (i) a single cylinder and (ii) two streamwise located cylinders. For constant flow
rates through the channel, the flow around the cylinder becomes asymmetric at Wi > Wi,
in the geometry consisting of a single cylinder. However, for a pulsatile flow, the viscoelastic
flow around the cylinder remains asymmetric even at Wi < Wi, and the flow asymmetry
parameter undergoes a closed hysteresis loop. The hysteresis loop area increases with the
time period of the pulsatile flow and decreases with the increasing value of the lower or
upper limit of the flow rate. The loop area also decreases as the strength of shear-thinning
or the extensibility of the polymeric chains increases. In the channel consisting of two
streamwise located cylinders, the viscoelastic instability induces three distinct flow states,
which are characterized by the flow asymmetry around the cylinders and the existence of
eddies between the cylinders. Both the flow asymmetry and the area occupied by eddies
form hysteresis loops for periodically varying flow rates. The number of distinct flow states
obtained during the hysteresis varies from one to three depending on the time period of the
oscillation. The symmetric flow states exist for a longer time during the periodic oscillation

as the shear-thinning strength or the elasticity of the fluid decreases.
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VI. APPENDIX

A. Effect of channel length on the instability

For a Newtonian flow through a channel, the hydrodynamic entrance length can be esti-

mated as [64]:
Lent'rance - O-O5R6DD7 (8)

where D and Rep = pU;, D/ are the hydraulic diameter of the channel and the Reynolds
number based on the hydraulic diameter, respectively. For a Newtonian fluid, the hydrody-

namic entrance length for the flow rate considered in the present study lies in the range of
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Lentrance = 1074d — 5 x 1074d, where d is the cylinder diameter. The length of the chan-
nel in the present study is 25d and the cylinder (the front cylinder for the channel having
two cylinders) is located 9.4d downstream from the inlet, which is much larger than the
hydrodynamic entrance length. For a viscoelastic channel flow, the hydrodynamic entrance
length can be larger than a Newtonian flow. Therefore, we have shown the velocity profile
at different locations along the length of the channel in Fig. 12a for a viscoelastic flow. The
velocity profile inside the channel becomes fully developed sufficiently upstream of the cylin-
der (Fig. 12a). The exit effect is also negligible as the velocity downstream of the cylinder
becomes fully developed much before the exit (Fig. 12a). Further, to check the effect of
the channel’s length on the instability, we have plotted flow asymmetry () at the locations
close to the cylinder at the maximum Wi considered in the present study (Wi = 3.12) for
the channels having lengths | = 25d and | = 50d (Fig. 12b). There is not any significant
effect of the enhancement of the channel length on the instability even at the maximum Wi
(Fig. 12b). In fact, the effect of the cylinder vanishes for x/d > 6 and the flow inside the
channel again becomes symmetric (I = 0)(Fig. 12b). Thus, the flow and polymeric stress
equilibrate much before the exit even at the maximum Wi. Taken together, these results

show that the entrance and exit effects are not present in the present study.

B. Mesh and time-step dependency

Cartoons depicting coarse numerical meshes (320 x 32) close to the cylinders in the
channels having single and double cylinders have been shown in Fig. 13a and Fig. 13b,
respectively. The pressure drop across the channel has been used as a simple metric to
perform the mesh and time-step dependence study [38]. The simulations become mesh
independence even at the maximum Wi explored in the present study for n, xn, > 2000 x 200
(Figs. 14a and 14b). Therefore, we have used n, xn, = 2560 %256 to perform the simulations
in the present study. The time-step in the simulation has been controlled using the maximum

Courant number (Copay). The Courant number has been been defined as:
At
Co= 5 3161 Q

where At and V are the simulation time-step and cell volume, respectively. ¢; is the cell-face

volumetric flux and } .., represents the summation over all the faces of a given cell. We
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Figure 12: (a) The velocity profile at different locations along the length of the channel

(I = 25d) at Wi = 0.62 for the channel having a single cylinder. (b) Flow asymmetry (/) at
different locations along the length of channel at Wi = 3.12 for the channels having length
[ = 25d and [ = 50d. The cylinder (the front cylinder in the channel having two cylinders)
is located at = 0. The entrance and the exit of the channel are at z = —9.4d and

x = 15.6d for | = 25d, and x = —21.9d and x = 28.1d for [ = 50d.

(b)

(a)

Figure 13: Cartoons showing coarse numerical meshes (320 x 32) close to the cylinders for

the channels having (a) a single cylinder and (b) two cylinders. The simulations have been

performed using a finer mesh (2560 x 256).

have fixed Copa = 0.025 in the present study as the simulation result becomes time-step

independent for Cop.x < 0.035 (Fig. 14a).
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Figure 14: Normalized pressure drop across the channel having a single cylinder at (a)

Wi = 0.62 and (b) Wi = 3.12.

C. Time-dependent flow asymmetry around cylinder for a fixed flow rate

The flow through the channel after the instability for the simulation at a constant flow
rate (or Wi) becomes almost steady even at the maximum Wi (Wi = 3.12). Fig. 15 depicts
the time-dependent flow asymmetry (I) around the confined cylinder at Wi = 3.12. Once
the asymmetric flow state becomes fully developed, the value of I fluctuates around a well-
defined mean with a very small standard deviation (< 1% of the mean value) (Fig. 15).

Hence, the flow can be considered almost steady.

D. Quasi-static variation of flow rate

The continuous variation of the flow rate (i.e., Wi) does not allow stress to relax and hence
leads to hysteresis in the present study. For a quasistatic variation of Wi [29, 63], we have
plotted the time-dependent flow asymmetry around the confined cylinder in Fig. 16. The
stress field, or the flow asymmetry, does not respond instantaneously to the change in Wi
and hence there is a time lag (Fig. 16). The lag time of the stress to respond the increment
and decrement of Wi are At,, = 7.7 and Atg, = 12.2, respectively (Fig. 16). Therefore,
if the time step (Atstep) of the quasistatic variation of Wi is Atgep > max(Atyp, Atay), the

stress has sufficient time to relax and the flow state does not exhibit hysteresis as shown in
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Figure 15: Time-dependent flow asymmetry around the confined cylinder at Wi = 3.12.

Other parameters are 3 = 0.05 and L? = 1000. The standard deviation of the fluctuation

of I once the asymmetric flow state becomes fully developed is &~ 0.6% of the mean value.

Fig. 16.
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