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Viscoelastic flow through porous media is relevant in many industrial and biolog-

ical applications including enhanced oil recovery and biofluids’ transport inside the

body, where the presence of large polymeric stresses in the porous media leads to

viscoelastic instability. In the present study, we numerically investigate viscoelas-

tic instability-induced flow states in the channels consisting of (i) a single cylinder

and (ii) two streamwise located cylinders. We unravel the presence of a hysteresis

for pulsatile viscoelastic flows. For both geometries, the quantitative value of flow

asymmetry around the cylinder resulting from the viscoelastic instability forms a

closed hysteresis loop. We investigate the effects of fluid rheological properties and

periodic inlet flow rates on the hysteresis loop.

I. INTRODUCTION

The flow of viscoelastic fluids through confined geometries is common in several biologi-

cal, geophysical, and industrial processes such as targeted drug delivery, biofilm transport,

and enhanced oil recovery [1–3]. The flow of mucus through ciliary epithelial surfaces and

the transport of interstitial fluid through tissues are some of the examples of the flow of

viscoelastic biological fluids through confined geometries [4]. The biopolymers secreted by

the bacteria impart viscoelastic properties to biofilms, which flow through confined pores of

rock and soil [5]. The transport of biofilm also occurs through the poroelastic tissues inside

the body in the case of bacterial infection [2]. During enhanced oil recovery and groundwa-

ter remediation, polymeric solutions are injected into the porous rocks to mobilize capillary

trapped non-aqueous liquids [3, 6]. The micro-structure of porous media contains curved

surfaces [7, 8]. The stretching of polymeric chains along the curvature as the viscoelastic

solution passes through porous media creates large elastic stresses [9], which induces vis-

coelastic instability when the Weissenberg number is greater than a critical value [10, 11].

The Weissenberg number (Wi) is a dimensionless parameter representing the ratio of elastic
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to viscous forces in viscoelastic flows [12]. Viscoelastic instabilities manifest into symmetry

breaking [13, 14], time-dependent flows [15], enhanced transport [16], elevated mixing [17],

and abnormal rise of pressure drop [18] in viscoelastic flows depending on the geometry,

elastic stress, and fluid rheology.

Simple isolated geometries such as cross-slot, isolated constriction, and confined cylinder

have been used to infer some information about viscoelastic instabilities in the different

portions of a porous geometry [1]. Elastic instability induces symmetry-breaking transition

at a small Wi and time-dependent flow at a large Wi for viscoelastic flow through a cross-slot

geometry [13, 14, 19]. The formation of unstable eddies takes place upstream of a sudden

constriction [20, 21] to mitigate the elastic stress induced due to the alignment of polymeric

chains [22–25]. For viscoelastic flows around a confined cylinder, viscoelastic instability leads

to the formation of eddies upstream of the cylinder at a large blockage ratio (> 0.5) [26–28],

whereas the flow becomes asymmetric around the cylinder for the geometries with a small

blockage (< 0.5). The manifestation of instability occurs downstream of the cylinder for

the geometry with a small blockage [29, 30]. The channels having an array of contractions

and cylinders have been widely used as a 1D model of porous geometry to investigate the

viscoelastic interaction between the successive pores and obstacles [31–34]. Viscoelastic

flows through channels consisting of multiple pores and cylinders lead to the formation of

distinct steady and transient flow states due to viscoelastic instabilities [34–38]. The pore-

scale viscoelastic instability ultimately regulates the sample-scale transport in 2D porous

geometries [16, 39, 40]. Viscoelastic instability in a 3D porous geometry induces a chaotic

flow due to complex connectivity and enhanced disorder, which leads to an abnormal rise of

flow resistance [18].

The topology of the polymeric stress field regulates the formation of distinct pore-scale

flow states in viscoelastic flows [36, 38, 41]. The magnitude of polymeric stress depends on

the stretching of the polymeric chains and the stretching or relaxation of these chains occurs

in finite time [9]. Therefore, viscoelastic instability-induced flow states exhibit hysteresis

when the flow rate (or Wi) is time-dependent. In the natural and industrial processes, the

mass flow rate of viscoelastic fluids through confined geometries is often transient due to

either time-dependent injection or viscoelastic instabilities. The time-dependent injection

rate of displacing fluid suppresses viscous fingering instability [42–44]. Hence, it is desirable

to inject displacing fluids into the reservoirs with a transient flow rate to enhance the oil
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recovery [45]. In natural processes such as ciliary motion-induced flow of mucus through cilia-

covered epithelial surfaces, the flow rate is transient due to periodic beating of cilia [46, 47].

Furthermore, even for a constant sample-scale flow rate of polymeric solution through porous

media, the velocity fluctuations induced by viscoelastic instability lead to a locally transient

flow rate of viscoelastic fluid in the micro-structures of the porous media [18, 40]. Therefore,

it is essential to understand viscoelastic instability for transient flow rates through confined

geometries. In the present work, we study pulsatile viscoelastic flows through channels

consisting of cylinders and investigate hysteresis in the viscoelastic instability-induced flow

states. Further, we investigate the effect of fluid’s rheological parameters and the different

parameters of transient flow on the hysteresis.

II. GEOMETRIES AND GOVERNING EQUATIONS

(a) (b)

Figure 1: Schematic of the geometries used for simulations: (a) a single cylinder located

inside a channel and (b) a pair of streamwise located cylinders inside a channel. Uin(t)

represents time-dependent inlet flow velocity. Channel length, channel width, and cylinder

diameter have been denoted by l, w, and d, respectively. The separation between cylinders

for the channel consisting of a pair of cylinders is ls = 2d. The values of different

geometrical parameters are l = 4mm, w = 0.4mm, and d = 160µm, respectively. The

channel length is much larger than the width (l = 10w) and cylinder diameter (l = 25d) to

avoid any entrance or exit effect (Appendix VIA). Black solid lines represent solid

boundaries, whereas green and red lines indicate inlet and outlet, respectively.

In the present work, we have numerically studied hysteresis in the viscoelastic instability-

induced flow states in a channel having one or two cylinders (Fig. 1). The flow of incom-
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pressible viscoelastic fluid is described by the conservation of mass and momentum:

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ , (2)

where ρ is the fluid density, while u and p are the velocity and pressure fields, respectively.

The variable τ represents the stress tensor, which has two components coming from the

solvent (τs) and the presence of polymeric chains (τp). For Newtonian solvents, τs can be

calculated as τs = ηs(∇u+∇uT ), where ηs is the viscosity of the solvent. There are many

mathematical models available to calculate the polymeric contribution of the stress tensor

(τp) [48, 49]. We choose the FENE-P constitutive model to calculate τp. The FENE-P

model includes fluid elasticity and shear-thinning effects which are primary characteristics

of most polymeric solutions and also considers the finite stretching of the polymeric chains

[49, 50]. The governing equation for τp considering the FENE-P constitutive model can be

written as:

τp +
λ

f

∇
τ p =

aηp
f

(∇u+∇uT )− D

Dt

(
1

f

)
[λτp + aηpI], (3)

where λ is the relaxation time of polymeric chains and I is the identity tensor. The material

derivative is shown as D
Dt

= ∂
∂t

+ u · ∇. The polymer viscosity is ηp = η0 − ηs, where η0 is

the total viscosity of the polymeric solution in the limit of zero-shear rate. The function f

has the following form:

f(τp) =
L2 + λ

aηp
tr(τp)

L2 − 3
, (4)

where L2 represents the maximum stretching of the polymeric chains and a = L2/(L2 − 3).

The value of L2 used in the literature lies in the range of L2 = 10 − 1000 [50–52] and it is

worth noting that the FENE-P model reduces into the Oldroyd-B constitutive model [53]

at a large value of L2 (i.e., L2 → ∞), which is an excellent model for constant viscosity

highly elastic fluids (i.e., Boger fluid [54]). The term
∇
τ p used in the FENE-P model (Eq. 3)

represents the upper convective time derivative of τp which is given by:

∇
τ p =

Dτp
Dt

− τp · ∇u−∇uT · τp. (5)

The numerical simulation using the form of the FENE-P model described in Eq. 3 is

challenging at high Weissenberg numbers due to the exponential profile of stress tensor in

the regions of high deformation rate [55]. The log-conformation approach is an alternative
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method to perform numerical simulation at a large Wi, where the equations are solved for

the logarithm of conformation tensor (Θ) rather than τp [56, 57]. This method by default

ensures the positive definiteness of the stress tensor, which is essential for numerical stability

at high Weissenberg numbers. The following relation has been then used to calculate the

polymeric stress tensor (τp) from the log-conformation tensor (Θ):

τp =
ηp
λ
(feΘ − aI). (6)

We perform 2D numerical simulations for viscoelastic flows through the geometries shown

in Figs. 1a and 1b. The numerical simulations have been performed using OpenFOAM,

which is an open-source CFD framework based on the finite volume method [58]. We in-

tegrate viscoelastic solver RheoTool [59] with OpenFOAM and use the log-conformation

approach to calculate the polymeric stress tensor [59, 60]. Gauss’s theorem has been used

to calculate the cell gradient (Gauss linear) and divergence [59]. The convective terms

in the governing equations have been discretized using the Gaussian deferred correction

component-wise schemes (GaussDefCmpw), where specifically the ”CUBISTA” scheme has

been used for the convective terms in the polymeric stress equation. The scheme based on

the Gauss theorem has been also used to discretize the Laplacian terms since the Laplacian

operator can be considered as a combination of the divergence and gradient operators. For

the temporal evolution of the solution, we have used the Crank–Nicolson scheme.

We have used nx×ny = 2560×256 static grid points to discretize the computation domain,

where the five layers in the vicinity of the cylinders have been further refined (Appendix

VIB). nx and ny are the grid points along the length and the width of the channel. The time-

step size in the simulation has been controlled by the maximum Courant number (Comax)

and Comax = 0.025 has been used throughout the study. The values of grid points and the

maximum Courant number used for simulations are sufficient for the mesh and time-step

independent results (Appendix VIB). The inlet velocity in the channel is described by a

uniform periodic triangular waveform (Fig. 3a). The boundary conditions used at the inlet

for polymeric stress tensor and pressure field are τp = 0 and n ·∇p = 0, respectively. n is the

unit vector normal to the surface. At the outlet, the boundary conditions used for velocity,

polymeric stress tensor, and pressure are n·∇ui = 0, n·∇τp,ij = 0, and p = 0, respectively. ui

and τp,ij are the components of the velocity vector and polymeric stress tensor, respectively.

No-slip and no-penetration boundary conditions have been used for the velocity field at
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the channel’s walls and the cylinder’s surface. Further, we use a linear-extrapolation for

polymeric stress tensor and zero-gradient for the pressure field as the boundary conditions

at the solid surfaces [59].

The Reynolds number (Re) is a relevant dimensionless number in any fluid flow, which

represents the ratio of inertial to viscous forces and can be defined as Re=ρUind/η0. The

effect of inertia is negligible as the Re is small (Re = 0.0004− 0.004) due to the small length

scale of the system. The Weissenberg number is defined as Wi=λUin/d and its value lies

in the range Wi = 0− 4 in the present study. We vary Uin to change the Wi keeping other

variables constant (Fig. 3a). Therefore the elasticity number (El=Wi/Re=λη0/ρd
2), which

represents the ratio of elastic to inertial forces, has a constant value (El = 781.25) as it only

depends on the fluid rheology and geometrical length scale. The elastic effects dominate the

inertial effects since El ≫ 1. We define viscosity-ratio β = ηs/η0 to investigate the effect

of shear-thinning behaviour for the FENE-P constitutive model. The viscosity-ratio and

the relaxation time of the polymeric solutions generally used in the experiments are in the

range of β = 0.05 − 0.25 [16, 30] and λ = 0.1 − 10 s [13, 16, 30, 40], respectively. The

values of fluid properties and dimensional parameters used in the present study have been

summarized in Table I. Throughout the study, we use λ to normalize time (t) and oscillation

time-period (T ), and Uin to normalize velocity. The Deborah number De which measures

the unsteadiness in viscoelastic flows [61] is directly related to the normalized oscillation

time-period as De = 1/T. The characteristic shear stress, η0Uin/d, has been used to the

normalize the stress and pressure fields.

Table I: The value of fluid and flow parameters used in the present study.

ρ λ Uin β L2

1000 kg/m3 1 s 0.05− 0.5 mm/s 0.02− 0.2 400-1000
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(a) (b)

Figure 2: (a) Velocity field for the viscoelastic flow around a confined cylinder at (i)

Wi = 1.25 and (ii) Wi = 2.5. (b) Flow asymmetry, I, for the viscoelastic flow around a

confined cylinder at different Wi. The symbol and the error-bars represent the mean value

and the standard-deviation, respectively. The standard deviation is very small as the flow

remains almost steady (Appendix VIC). The fluid rheological parameters are β = 0.05

and L2 = 1000.

III. RESULTS AND DISCUSSION

A. A single cylinder located inside a channel

Viscoelastic flows through channels consisting of a single cylinder have been widely ex-

plored in the literature assuming constant mass flow rate [28–30]. However, despite the

practical relevance, viscoelastic instability in the confined geometry having a transient mass

flow rate has not been explored. For steady mass flow rate, viscoelastic instability induces

flow asymmetry around the confined cylinder for the Wi greater than a critical value (Wicr)

[30]. To identify the critical Wi required for the flow asymmetry in the present study, we

first perform simulations considering constant flow rates (Fig. 2a). To quantify the flow

asymmetry around the cylinder, an asymmetry parameter (I) has been defined as:

I =
|Qupper −Qlower|
Qupper +Qlower

, (7)

where Qupper represents the mass flow rate through the gap between the cylinder and upper

wall, whereas Qlower represents the mass flow rate through the gap between the cylinder and
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lower wall. The value of I varies from I = 0 for symmetric flow to I = 1 when the entire

fluid passes through one of the gaps. Wicr has been defined as the onset of the increase of I

and its value for a fluid with β = 0.05 and L2 = 1000 lies between Wi = 1.48 and Wi = 1.56

(Fig. 2b). Therefore, we consider Wicr = 1.52± 0.04.

(a) (b)

(c) (d)

Figure 3: (a) The profile of time-dependent oscillatory Wi used in the simulation. Wimin,

Wimax, and T are the minimum value, maximum value and time-period of Wi. The value

of flow asymmetry at different Wi for (b) T = 10, (c) T = 20, and (d) T = 40. Black

dashed lines show the startup regime for the hysteresis, whereas solid lines represent

different hysteresis loops. The values of other parameters are β = 0.05, L2 = 1000,

Wimin = 0.62, and Wimax = 3.12.

To investigate the effect of transient flow rate on the viscoelastic instability-induced flow,
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we consider a time-dependent inlet velocity, corresponding to a transient Wi as shown in Fig.

3a. In this study, we change minimum Wi (Wimin), maximum Wi (Wimax), and time-period

(T) of the oscillatory Wi. Fig. 3b depicts the value of flow asymmetry (I) for the multiple

oscillations of Wi at a fixed oscillation’s time-period (T = 10). The value of I converges to a

closed-loop after a few initial oscillations of Wi. The closed-loop of the flow asymmetry leads

to two possible values of I at a given Wi, depending on the route that has been followed

to get the specific value of Wi (Fig. 3b). Thus, the flow asymmetry exhibits hysteresis for

oscillatory flow rates. At large Wi, the flow asymmetry saturates as the entire fluid passes

through either of the gaps. Therefore, two different branches of the hysteresis loop coincide

with each other (Fig. 3b). However, we do not see the saturation of flow asymmetry at

the lower limit of Wi. The value of Wi linearly varies forth and back from Wimin < Wicr to

Wimax > Wicr (Fig. 3a). However, the flow around the cylinder always remains asymmetric

(i.e., I > 0) after achieving the hysteresis loop (Fig. 3b) and we do not see the transition

from asymmetric to symmetric flow state as Wi becomes less than Wicr. The size and shape

of the hysteresis loop significantly depend on the rate of change of Wi (Figs. 3c and 3d).

The area of the loop increases as the time-period increases and the hysteresis loop changes

from a triangular shape at T = 10 to an elliptical shape at T = 20 to a square-like shape at

T = 40.

Figure 4: (a-c) Flow field and (d-f) the trace of polymeric stress field at

Wi = 1.25(< Wicr) for the different branches of the hysteresis loop shown in Fig. 3c. The

flow states shown in (a,d), (b,e), and (c,f) correspond to the locations indicated by

filled-circle ( ), filled-diamond ( ), and filled-star ( ) in Fig. 3c, respectively. Other

parameters are β = 0.05, L2 = 1000, T = 20, Wimin = 0.62, and Wimax = 3.12.

To understand the origin of hysteresis and the flow state at the different branches of
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the hysteresis loop, we plot the flow field and stress field at a fixed Wi(< Wicr) but for

the different branches of the hysteresis loop at T = 20 (Fig. 3c) in Fig. 4. Streaks of

large polymer stress induce flow separation and lead to the formation of distinct flow states

[36, 38]. The viscoelastic flow around a cylinder creates a long elastic wake [30, 62]. At

Wi > Wicr, the elastic wake downstream of the cylinder becomes asymmetric, leading to an

asymmetric flow state [30]. The flow states shown in Fig. 4 correspond to different branches

of the hysteresis loop. Therefore, despite having the same Wi, they have different stress field

depending on the route (Figs. 4d, e, and f). The location shown by ( ) in Fig. 3c belongs

to the branch corresponding to the first oscillation of Wi and Wi < Wicr. Therefore, the

stress topology is symmetric (Fig. 4d), leading to a symmetric flow state at this location

(Fig. 4a). The location indicated by ( ) in Fig. 3c is on the branch of the hysteresis loop

corresponding to the decreasing value of Wi after attaining Wimax and it has an asymmetric

flow state despite Wi < Wicr (Fig. 4b). The topology of stress field as well as the flow

state at Wimax is asymmetric as Wimax > Wicr and the location denoted by ( ) is in the

route decreasing from Wimax to Wimin. The topology of the stress field has a memory and

it requires a finite time to transform itself. Therefore, the polymeric stress topology at the

location denoted by ( ) remains asymmetric despite Wi < Wicr (Fig. 4e) and induces an

asymmetric flow state (Fig. 4b). In fact, the topology of stress field is not able to completely

transform from an asymmetric profile at Wimax to a perfectly symmetric profile at Wimin.

Therefore it has I > 0 even at Wimin in the hysteresis loop. However, the value of I at

Wimin is smaller than that at Wimax indicating that the flow state is less asymmetric at

Wimin than Wimax (Fig. 3c). The point indicated by ( ) on the hysteresis loop (Fig. 3c) is

on the branch where Wi increases from Wimin to Wimax. Along this branch, first, the stress

topology continues to transform towards a symmetric topology (Fig. 4f), which leads to the

decrease in I as Wi increases. Therefore, at the location denoted by ( ) on the hysteresis

loop, the flow state is less asymmetric (Fig. 4c) than the flow state at the location indicated

by ( ) on the loop (Fig. 4b). After achieving a minimum value of I(> 0), the stress topology

again starts to transform towards a more asymmetric topology as Wi further increases, which

leads to the increase in I with Wi (Fig. 3c). Thus, the stress topology and flow state do

not become symmetric after attaining the hysteresis loop. For the quasi-static variation of

flow rate (or Wi) considered in the previous experiments [29, 63], the polymeric stress had

sufficient time to relax after each step-wise increment/decrement of Wi (Appendix VID).
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Therefore, the hysteresis was not reported in the previous experiments performed using a

quasi-static variation of the flow rate [29, 63].

(a) (b) (c)

Figure 5: The area of hysteresis loop (Aloop) and the minimum value of flow asymmetry in

the hysteresis loop (Imin) for different values of (a) oscillation time-period (T), (b)

minimum Wi (Wimin), and (c) maximum Wi (Wimax). The values of other parameters are

Wimin = 0.62 and Wimax = 3.12 for (a), T = 20 and Wimax = 3.12 for (b), and

Wimin = 0.62 and T = 20 for (c). The rheological parameters are β = 0.05 and L2 = 1000.

Further, we investigate the effect of time-period, minimum Wi, and maximum Wi on the

hysteresis, and quantify the area of the hysteresis loop (Aloop) and the minimum value of the

asymmetry parameter (Imin) in the hysteresis loop. Aloop physically represents the strength

of the hysteresis and Imin determines the deviation of the hysteresis loop from the symmetric

flow state. Aloop increases as the time-period (T ) of the oscillation of Wi increases, whereas

Imin decreases with the increasing value of T (Fig. 5a). The flow rate (i.e., Wi) changes

slowly as the time-period of the oscillation increases, providing a longer time for the stress

field to transform from asymmetric to the symmetric topology. Therefore, the value of Imin

decreases as T increases (Fig. 3d). The size of the hysteresis loop increases as the value

of Imin decreases. Hence, the area of the hysteresis loop increases with T (Fig. 5a). The

range of Wi increases as the lower limit of Wi decreases and the value of I does not saturate

at Wimin (Fig. 3c). Therefore, Imin decreases as the lower limit of Wi decreases (Fig. 5b),

which also delays the saturation of I to a larger value of Wi. The combined effect of the

increase of Wi range, decrease of Imin, and delaying the saturation of flow asymmetry leads

to the increase of Aloop as Wimin decreases (Fig. 5b). The range of Wi also increases with

the increasing value of upper limit of Wi. However, the value of Imin increases (Fig. 5c) and
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the flow asymmetry saturates at a smaller Wi as Wimax increases. Therefore, despite the

increase of the range of Wi, the area of the hysteresis loop decreases as the value of Wimax

increases (Fig. 5c).

(a) (b)

Figure 6: The area of hysteresis loop (Aloop) and the minimum value of flow asymmetry in

the hysteresis loop (Imin) for different values of (a) viscosity ratio (β) at L2 = 1000 and (b)

polymeric chains’ extensibility (L2) at β = 0.05. Other parameters are T = 20,

Wimin = 0.62, and Wimax = 3.12.

We also explore the effect of fluid rheological parameters on the hysteresis. The value

of Wicr required for the flow asymmetry decreases with the increasing strength of shear-

thinning [29, 30]. Therefore, the value of I in the hysteresis loop saturates at a lower Wi

and the range of Wi wherein I has two distinct values decreases as β decreases. This leads

to the enhancement of Imin and the decline of Aloop as the value β decreases (Fig. 6a).

For a weakly shear-thinning fluid (i.e., 1/β = 10), the flow around the cylinder remains

symmetric for the range of Wi considered in the present study, and hence the formation

of the hysteresis loop does not take place. The elastic property of fluid increases as the

extensibility of the polymeric chains (L2) increases and a stronger elastic fluid has a smaller

Wicr for the instability [30]. Therefore, the flow asymmetry saturates at a smaller Wi as L2

increases and leads to the increase of Imin and the decrease of Aloop as the elasticity of fluid

increases (Fig. 6b).
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B. Two cylinders located inside a channel

(a) (b)

Figure 7: (a) Flow asymmetry (I) around the front cylinder in the geometry having two

streamwise located cylinders in a channel at T = 40. (b) The area occupied by eddies

(Aeddy) in the region between the cylinders at T = 40. Aeddy has been normalized with lsd.

The portions of the hysteresis loop corresponding to the eddy free symmetric (type-1) and

asymmetric (type-3) flow states have been indicated by magenta and blue colors,

respectively. The green and red portions of the loop represent symmetric and asymmetric

flow states with eddies between the cylinders, respectively. The values of other parameters

are β = 0.05, L2 = 1000, Wimin = 0.62, and Wimax = 3.12.

In the channel consisting of two streamwise located cylinders (Fig. 1b), viscoelastic

instability induces three distinct flow states in the region between the cylinders [36]. The

transitions between these distinct flow states are characterized by two critical Wi (Wicr1 and

Wicr2). The flow is symmetric and eddy free for Wi < Wicr1 (flow type-1). After the first

transition (Wicr1 < Wi < Wicr2), a pair of recirculating eddies appear in the region between

the cylinders (type-2). Whereas, the eddies disappear and the flow around cylinders becomes

asymmetric for Wi > Wicr1 (type-3). To investigate the hysteresis in viscoelastic instability-

induced flow states between two cylinders, we consider the range of time-dependent Wi such

that Wimin < Wicr1 < Wicr2 < Wimax. Fig. 7a depicts the flow asymmetry (I) around the

front cylinder for the multiple oscillations of Wi at T = 40. The route of I during the

increase of Wi from Wimin to Wimax is different than the route observed when Wi decreases
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from Wimax to Wimin (Fig. 7a). However, the value of I makes a closed-loop during the

complete oscillation of Wi, indicating the hysteresis in the flow states. The flow around

the cylinder remains symmetric (I = 0) even after the first transition (Wicr1 < Wi < Wicr2),

wherein the eddies appear in the region between the cylinders (type-2) [36]. Therefore,

we quantify the area occupied by the eddies (Aeddy) in the region between the cylinders

to differentiate the flow state consisting of eddies (type-2) from the eddy-free symmetric

(type-1) flow state (Fig. 7b). Aeddy increases continuously due to a continuous change in

Wi. We set Aeddy = 0.04 as a critical value of Aeddy to identify the eddy-free symmetric

(type-1) flow state, because Aeddy increases rapidly after Aeddy = 0.04 (Fig. 7b). The value

of Aeddy also makes a closed-loop and exhibits hysteresis. The portions of the hysteresis loop

corresponding to the eddy free symmetric (type-1) and asymmetric (type-3) flow states have

been indicated by magenta and blue colors, respectively (Figs. 7a and 7b). The hysteresis

loops corresponding to the different oscillations of Wi collapse on each other except the

portion indicated with the red color. The red portion of the loop represents an asymmetric

flow state with eddies between the cylinders. This is an intermediate state between the flow

state with eddies (type-2) and the eddy-free asymmetric flow state (type-3) [36]. Both Aeddy

and I fluctuate for this flow state. Therefore, the values of Aeddy or I corresponding to the

different oscillations of Wi do not perfectly collapse on each other (Figs. 7a and 7b). Here

onward, we refer to the symmetric and asymmetric flow states with eddies as type-2a (green

color in the hysteresis loop) and type-2b (red color) flow state, respectively.

The flow state representing each portion of the hysteresis loop has been shown in Fig. 8.

These flow states correspond to the location indicated by different symbols on the hysteresis

loop in Fig. 7a. At the location indicated by ( ) and ( ) in Fig. 7a, the stress topology is

symmetric (Figs. 8e and 8f), which induces symmetric flow states (I = 0) as shown in Figs.

8a and 8b. The elastic wake in between the cylinders bifurcates in two symmetric branches

after the first transition and encircles the region between the cylinders (Fig. 8f), leading to

the formation of eddies between the cylinders (Fig. 8b). The elastic wake has two branches

even at the location indicated by ( ) in the hysteresis loop (Fig. 8g). However, the top

branch starts to deviate from the rear cylinder (see the region enclosed with a red ellipse

in Fig. 8g) and hence the stress topology loses the symmetry. This leads to asymmetric

flow around the cylinders (I > 0) and Aeddy becomes smaller (Fig. 8c). Ultimately, the top

branch of elastic wake completely disappears (Fig. 8h) for the location indicated by ( ) in
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Figure 8: (a-d) Flow field and (e-h) the trace of polymeric stress field corresponding to

the different portions of the hysteresis loop shown in Fig. 7a. The flow states shown in

(a,e), (b,f), (c,g), and (d,h) correspond to the locations indicated by filled-circle ( ),

filled-diamond ( ), filled-star ( ), and filled triangle ( ) in Fig. 7a and represent flow

states type-1, type-2a, type-2b, and type-3, respectively. The values of other parameters

are β = 0.05, L2 = 1000, T = 40, Wimin = 0.62, and Wimax = 3.12.

Fig. 7a. This topology of the stress field induces an eddy-free asymmetric flow state (Fig.

8d). The stress field transforms from asymmetric to symmetric topology as Wi decreases

from Wimax to Wimin. Therefore, the symmetric flow states (flow type-1 and type-2a) do

not appear and flow around the cylinders remains asymmetric (I > 0) in the route where

Wi decreases from Wimax to Wimin (Fig. 7a).

A smaller time-period (T ) of the oscillation of Wi does not provide sufficient time for the

transformation of the topology of the stress field. Therefore, it exhibits a fewer number of

flow states during the complete oscillation of Wi. For a small time-period (T = 10), the

hysteresis loops of flow asymmetry (I) and eddies’ area (Aeddy) have been shown in Fig. 9a

and Fig. 9b, respectively. After achieving the hysteresis loop, eddies exist in the region

between the cylinders throughout the oscillation period (Fig. 9b). In the portion of the

hysteresis loop indicated by red color, the area occupied by eddies fluctuates (Fig. 9b), and

flow around the cylinder becomes slightly asymmetric (Fig. 9a). However, the eddy never

disappears, and flow around the cylinder never becomes completely asymmetric at T = 10.

Thus, unlike T = 40, the hysteresis at T = 10 exhibits only the flow states which have eddies

(flow states type-2a and type-2b) and the transition happens between type-2a and type-2b
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(a) (b)

Figure 9: (a) Flow asymmetry (I) around the front cylinder in the geometry consisting of

two streamwise located cylinders at T = 10. (b) The area occupied by eddies (Aeddy) in the

region between the cylinders at T = 10. Aeddy has been normalized with lsd. The values of

other parameters are β = 0.05, L2 = 1000, Wimin = 0.62, and Wimax = 3.12.

flow states in the hysteresis loop (Fig. 9b).

To investigate the effect of the upper and lower limit of Wi on the hysteresis, we plot the

flow asymmetry around the front cylinder (Figs. 10a, 10b, and 10c) and the area occupied

by eddies (Figs. 10d, 10e, and 10f) at T = 20 for different values of Wimin and Wimax. Unlike

the hysteresis loop at T = 10, there is sufficient time available at T = 20 for the existence of

eddy free symmetric (type-1) flow state. However, the time is not enough for the formation

of eddy free asymmetric (type-3) flow state like the hysteresis loop at T = 40. Therefore,

the hysteresis loop at T = 20 exhibits only two flow states (Figs. 10a and 10d): eddy free

symmetric flow state (flow state type-1) and flow state with eddies (type-2a and 2b). For

(Wimin = 0.62,Wimax = 3.12), the asymmetric flow state containing eddies (type-2b) exists

for a much longer time compared to the symmetric flow state with eddies (type-2a) (Fig.

10d), and the fluctuation of Aeddy leads to I ̸= 0 (Fig. 10a). As the value of Wimin decreases,

the type-2a flow state exists for a longer time and the fluctuation of Aeddy for the type-2b

flow state reduces (Fig. 10e), leading to an almost symmetric flow around the cylinder

(I ≈ 0) throughout the oscillation period (Fig. 10b). The reduction of the value of Wimax

has an effect similar to the reduction of Wimin (Figs. 10c and 10f). The flow state type-2a

exists for a longer time and the fluctuation of Aeddy also decreases as the value of Wimax
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(a) (b) (c)

(d) (e) (f)

Figure 10: (a-c) Flow asymmetry (I) around the front cylinder and (d-f) the area occupied

by eddies (Aeddy) in the region between the cylinders for (a,d) Wimin = 0.62,Wimax = 3.12,

(b,e) Wimin = 0.31,Wimax = 3.12, and (c,f) Wimin = 0.62,Wimax = 2.62. The values of

other parameters are β = 0.05, L2 = 1000, and T = 20. Aeddy has been normalized with lsd.

reduces (Fig. 10f).

Fluid rheology also influences the hysteresis loop of I (Figs. 11a and 11b) and Aeddy

(Figs. 11c and 11d). The stability of the symmetric flow state increases as either the

strength of shear-thinning decreases (i.e. β increases) or the elasticity of fluid decreases

(i.e., L2 decreases) [36]. Therefore, the symmetric flow state type-2a exists for a longer time

at β = 0.2 (Fig. 11c) than β = 0.05 (Fig. 10d) and at L2 = 400 (Fig. 11d) than L2 = 1000

(Fig. 10d). There also occurs a transition from type-2b to type-2a flow state at β = 0.2

(Fig. 11c), unlike the other scenarios at T = 20 where the transition happens directly from

type-2b to type-1 flow state in the hysteresis loop. Therefore, the type-2a flow state exists

in two different portions of the hysteresis loop at β = 0.2 (Fig. 11c). The fluctuation of

Aeddy reduces as β increases or L2 decreases. Therefore, the value of I is smaller at β = 0.2

(Fig. 11a) and L2 = 400 (Fig. 11b) than the value at β = 0.05 and L2 = 1000 (Fig. 10a).
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(a) (b)

(c) (d)

Figure 11: (a,b) Flow asymmetry (I) around the front cylinder and (c,d) the area occupied

by eddies (Aeddy) in the region between the cylinders for (a,c) β = 0.2 and L2 = 1000 and

(b,d) β = 0.05 and L2 = 400. The values of other parameters are Wimin = 0.62,

Wimax = 3.12, and T = 20. Aeddy has been normalized with lsd.

IV. CONCLUSIONS

Viscoelastic instabilities induce distinct flow states in different geometries, where the

formation of the specific topology of the polymeric stress field regulates these flow states.

Viscoelastic instability-induced flow states exhibit hysteresis due to fluid memory. The

volumetric flow rate of viscoelastic fluids through confined geometries is often transient in

natural and industrial processes, like the cilia-induced flow of biological fluids and enhanced
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oil recovery. We investigate the hysteresis in the viscoelastic flow instability in the channels

consisting of (i) a single cylinder and (ii) two streamwise located cylinders. For constant flow

rates through the channel, the flow around the cylinder becomes asymmetric at Wi > Wicr

in the geometry consisting of a single cylinder. However, for a pulsatile flow, the viscoelastic

flow around the cylinder remains asymmetric even at Wi < Wicr and the flow asymmetry

parameter undergoes a closed hysteresis loop. The hysteresis loop area increases with the

time period of the pulsatile flow and decreases with the increasing value of the lower or

upper limit of the flow rate. The loop area also decreases as the strength of shear-thinning

or the extensibility of the polymeric chains increases. In the channel consisting of two

streamwise located cylinders, the viscoelastic instability induces three distinct flow states,

which are characterized by the flow asymmetry around the cylinders and the existence of

eddies between the cylinders. Both the flow asymmetry and the area occupied by eddies

form hysteresis loops for periodically varying flow rates. The number of distinct flow states

obtained during the hysteresis varies from one to three depending on the time period of the

oscillation. The symmetric flow states exist for a longer time during the periodic oscillation

as the shear-thinning strength or the elasticity of the fluid decreases.
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VI. APPENDIX

A. Effect of channel length on the instability

For a Newtonian flow through a channel, the hydrodynamic entrance length can be esti-

mated as [64]:

Lentrance = 0.05ReDD, (8)

where D and ReD = ρUinD/µ are the hydraulic diameter of the channel and the Reynolds

number based on the hydraulic diameter, respectively. For a Newtonian fluid, the hydrody-

namic entrance length for the flow rate considered in the present study lies in the range of



20

Lentrance = 10−4d − 5 × 10−4d, where d is the cylinder diameter. The length of the chan-

nel in the present study is 25d and the cylinder (the front cylinder for the channel having

two cylinders) is located 9.4d downstream from the inlet, which is much larger than the

hydrodynamic entrance length. For a viscoelastic channel flow, the hydrodynamic entrance

length can be larger than a Newtonian flow. Therefore, we have shown the velocity profile

at different locations along the length of the channel in Fig. 12a for a viscoelastic flow. The

velocity profile inside the channel becomes fully developed sufficiently upstream of the cylin-

der (Fig. 12a). The exit effect is also negligible as the velocity downstream of the cylinder

becomes fully developed much before the exit (Fig. 12a). Further, to check the effect of

the channel’s length on the instability, we have plotted flow asymmetry (I) at the locations

close to the cylinder at the maximum Wi considered in the present study (Wi = 3.12) for

the channels having lengths l = 25d and l = 50d (Fig. 12b). There is not any significant

effect of the enhancement of the channel length on the instability even at the maximum Wi

(Fig. 12b). In fact, the effect of the cylinder vanishes for x/d > 6 and the flow inside the

channel again becomes symmetric (I = 0)(Fig. 12b). Thus, the flow and polymeric stress

equilibrate much before the exit even at the maximum Wi. Taken together, these results

show that the entrance and exit effects are not present in the present study.

B. Mesh and time-step dependency

Cartoons depicting coarse numerical meshes (320 × 32) close to the cylinders in the

channels having single and double cylinders have been shown in Fig. 13a and Fig. 13b,

respectively. The pressure drop across the channel has been used as a simple metric to

perform the mesh and time-step dependence study [38]. The simulations become mesh

independence even at the maximumWi explored in the present study for nx×ny > 2000×200

(Figs. 14a and 14b). Therefore, we have used nx×ny = 2560×256 to perform the simulations

in the present study. The time-step in the simulation has been controlled using the maximum

Courant number (Comax). The Courant number has been been defined as:

Co =
∆t

2V

∑
facesi

|ϕi|, (9)

where ∆t and V are the simulation time-step and cell volume, respectively. ϕi is the cell-face

volumetric flux and
∑

facesi
represents the summation over all the faces of a given cell. We
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(a) (b)

Figure 12: (a) The velocity profile at different locations along the length of the channel

(l = 25d) at Wi = 0.62 for the channel having a single cylinder. (b) Flow asymmetry (I) at

different locations along the length of channel at Wi = 3.12 for the channels having length

l = 25d and l = 50d. The cylinder (the front cylinder in the channel having two cylinders)

is located at x = 0. The entrance and the exit of the channel are at x = −9.4d and

x = 15.6d for l = 25d, and x = −21.9d and x = 28.1d for l = 50d.

Figure 13: Cartoons showing coarse numerical meshes (320× 32) close to the cylinders for

the channels having (a) a single cylinder and (b) two cylinders. The simulations have been

performed using a finer mesh (2560× 256).

have fixed Comax = 0.025 in the present study as the simulation result becomes time-step

independent for Comax < 0.035 (Fig. 14a).
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(a) (b)

Figure 14: Normalized pressure drop across the channel having a single cylinder at (a)

Wi = 0.62 and (b) Wi = 3.12.

C. Time-dependent flow asymmetry around cylinder for a fixed flow rate

The flow through the channel after the instability for the simulation at a constant flow

rate (or Wi) becomes almost steady even at the maximum Wi (Wi = 3.12). Fig. 15 depicts

the time-dependent flow asymmetry (I) around the confined cylinder at Wi = 3.12. Once

the asymmetric flow state becomes fully developed, the value of I fluctuates around a well-

defined mean with a very small standard deviation (< 1% of the mean value) (Fig. 15).

Hence, the flow can be considered almost steady.

D. Quasi-static variation of flow rate

The continuous variation of the flow rate (i.e., Wi) does not allow stress to relax and hence

leads to hysteresis in the present study. For a quasistatic variation of Wi [29, 63], we have

plotted the time-dependent flow asymmetry around the confined cylinder in Fig. 16. The

stress field, or the flow asymmetry, does not respond instantaneously to the change in Wi

and hence there is a time lag (Fig. 16). The lag time of the stress to respond the increment

and decrement of Wi are ∆tup = 7.7 and ∆tdn = 12.2, respectively (Fig. 16). Therefore,

if the time step (∆tstep) of the quasistatic variation of Wi is ∆tstep > max(∆tup,∆tdn), the

stress has sufficient time to relax and the flow state does not exhibit hysteresis as shown in
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Figure 15: Time-dependent flow asymmetry around the confined cylinder at Wi = 3.12.

Other parameters are β = 0.05 and L2 = 1000. The standard deviation of the fluctuation

of I once the asymmetric flow state becomes fully developed is ≈ 0.6% of the mean value.

Fig. 16.
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