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Viscoelastic flow through porous media is important in industrial applications such

as enhanced oil recovery (EOR), microbial mining, and groundwater remediation. It

is also relevant in biological processes such as drug delivery, infectious biofilm for-

mation, and transport during respiration and fertilization. The porous medium is

highly disordered and viscoelastic instability-induced flow states at the pore-scale

regulate the transport in porous media. In the present study, we systematically ex-

plore the effect of geometrical asymmetry on pore-scale viscoelastic instability. The

asymmetric geometry used in the present study consists of two cylinders confined

inside a channel, where the front cylinder is located on the centerline of the channel

and the rear cylinder is situated off-center of the channel. The geometrical asymme-

try facilitates asymmetric flow around both cylinders. An eddy also appears in the

region between the cylinders at intermediate Weissenberg numbers, where the Weis-

senberg number characterizes the relative importance of elastic and viscous forces

in viscoelastic flows. We further explore the effect of the strength of geometrical

asymmetry and fluid rheological properties on flow asymmetry and eddy formation.

I. INTRODUCTION

Interaction between curved-geometry and the polymeric solution often induces viscoelas-

tic instability due to the stretching of the polymeric chains along the curvature [1, 2]. Porous

media are made of randomly shaped grains and have inbuilt curved surfaces [3, 4]. The flow

of polymeric solutions through porous media is important in several industrial and natural

applications [5]. Polymeric solutions are injected through porous rocks to mobilize capillary

trapped immiscible fluids during industrial applications such as enhanced oil recovery [6]

and groundwater remediation [7]. The stretching of polymeric chains induces large elastic

stresses [8], leading to elastic instability at Weissenbergs number (Wi) greater than a crit-
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ical value [9–11]. The Weissenberg number represents the ratio of elastic to viscous forces

[12]. Elastic instability can lead to time-depend chaotic flow even at the negligible inertia,

which is also known as “elastic turbulence” due to its analogous feature to inertial turbu-

lence [13, 14]. The spatiotemporal flow fluctuations resulting from elastic turbulence [15–18]

facilitate unpinning and mobilization of trapped fluid ganglia [19, 20]. The flow of poly-

meric solutions through porous media is also relevant in many natural processes, including

the transport of biofilms and biological fluids [5, 21]. The flow of biological fluids through

poroelastic tissues plays a critical role in targeted drug delivery [22] and bacterial infection

[23].

The study of pore-scale viscoelastic instability is essential to understand the sample-scale

transport of fluids and particles in viscoelastic porous media flow [4]. Viscoelastic flow

around a cylinder confined in a channel is the simplest model used to investigate pore-scale

instability around the obstacle present in porous media [24–26]. The flow state induced

by the viscoelastic instability for a cylinder confined in a channel depends on the blockage

ratio. Viscoelastic flow induces a long elastic wake downstream of the cylinder [24, 27]. At

a small blockage ratio (< 0.5), the elastic wake loses the lateral symmetry for Wi > Wicr

in shear-thinning viscoelastic fluids, leading to an asymmetric flow around the cylinder

[25, 27, 28]. Whereas viscoelastic instability induces unstable eddy upstream of the cylinder

at a high blockage ratio [26, 29, 30]. The polymeric chains advect faster than they relax for

densely placed obstacles in the porous media. Therefore, the polymeric chains do not have

sufficient time to relax before reaching the next obstacle. The channels consisting of multiple

cylinders in streamwise direction have been used to investigate the hydrodynamic interaction

between successive obstacles [10, 31, 32]. Viscoelastic flow through a channel having a pair of

streamwise located cylinders undergoes two successive transitions due to elastic instability,

leading to the formation of three different flow states in the region between the cylinders

[10]. Corrugated channels also have been used to explore the viscoelastic interaction between

successive pores of a porous media, where multiple stochastically switching flow states have

been reported inside the pores of the channel [9, 33].

The investigations of pore-scale viscoelastic instabilities have been mainly focused on

symmetric geometries [9, 10, 25, 34–39]. However, the natural and engineered porous media

are highly complex and disordered [3, 4, 40, 41]. Therefore, the criteria and the dynamics of

elastic instabilities obtained in the simple symmetric geometries fail to explain the sample-
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scale elastic instability in 2D and 3D porous geometries [11, 15, 16]. We investigate pore-

scale viscoelastic instability in an asymmetric geometry in the present study. We show

that introducing even the slightest asymmetry in the geometry leads to a major impact on

the criterion of viscoelastic instability and the flow state resulting from the instability. We

investigate the impact of the emergence of distinct flow states on transport in an asymmetric

geometry. We also quantify the polymeric stress field and find that the topology of the

polymeric stress field regulates the existence of distinct flow states and hence controls fluid

transport.

II. GEOMETRY AND GOVERNING EQUATIONS

(a) (b)

FIG. 1: (a) The schematic of simulation geometry. The front cylinder is located on the

centerline of the channel, whereas the rear cylinder is off the centerline and ∆y represents

its deviation from the centerline. The diameter of the cylinders is d = 160 µm and ls = 2d

is the separation between the cylinders. The channel length (l = 4 mm) is much larger

than the width (w = 0.4 mm) and cylinder diameter (d = 160 µm). The inlet and the exit

of the channel are located at x/d = −9.4 and x/d = 15.6, respectively. The front cylinder

is located at x = 0, which ensures that the entrance and exit effects are negligible (see

Appendix VIA). Black solid lines represent solid boundaries, whereas green and red lines

indicate the inlet and exit of the channel, respectively. (b) A cartoon showing a coarse

numerical mesh (320× 32) close to the cylinders. The simulations have been performed

using a finer mesh (2560× 256).

To investigate the effect of geometrical asymmetry on pore-scale viscoelastic instability,

we consider a geometry that has two cylinders located inside a channel (Fig. 1a). The
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front cylinder is on the centerline of the channel, whereas the rear cylinder is located off

the centerline. The deviation of the rear cylinder from the centerline (∆y) quantifies the

strength of asymmetry, where the geometry becomes symmetric in the limit of ∆y → 0.

We change ∆y in the present study and explore how the strength of geometrical asymmetry

affects viscoelastic instability.

The governing equations based on the conservation of mass and momentum for an in-

compressible polymeric fluid of density ρ can be given as:

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (τs + τp), (2)

where u and p are the velocity and pressure fields, respectively. The contribution of New-

tonian solvent to the stress is calculated as τs = ηs(∇u + ∇uT ), where ηs is the solvent

viscosity. The contribution of polymeric chains to the stress tensor is represented by τp.

The FENE-P constitutive model has been used to obtain the polymeric stress tensor (τp)

[42–44]. This model considers the finite stretching of the polymeric chains and also cap-

tures both elastic and shear-thinning behaviors of the polymeric solution. The FENE-P

constitutive equation for a polymeric solution of relaxation time λ can be described as:

τp +
λ

f

∇
τ p =

aηp
f

(∇u+∇uT )− D

Dt

(
1

f

)
[λτp + aηpI], (3)

where ηp denotes the polymeric contribution to the zero-shear rate viscosity of the solution.

The material derivative is calculated as D
Dt

= ∂
∂t
+ u · ∇ and

∇
τ p =

Dτp
Dt

− τp · ∇u−∇uT · τp
represents the upper convective time derivative of τp. The identity tensor is denoted by

I and a = L2/(L2 − 3), where L2 characterizes the maximum stretching of the polymeric

chains [42, 45, 46]. The nonlinear function f(τp) for the FENE-P model can be written as:

f(τp) =
L2 + λ

aηp
tr(τp)

L2 − 3
, (4)

where tr(τp) represents the trace of polymeric stress tensor. The trace of polymeric stress

tensor is the sum of the elements on the main diagonal and represents the stress due to the

stretching of the polymeric chains in viscoelastic flows.

The numerical simulations have been performed using OpenFOAM, which is an open-

source numerical tool based on finite volume method [47]. Further, we integrate a viscoelastic
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solver named RheoTool [48] with OpenFOAM to compute the polymeric stress tensor. The

log-conformation approach has been used to calculate the polymeric stress tensor [48, 49].

This method linearizes the exponential profile of polymeric stress tensor in the regions

of high deformation rate and ensures the positive definiteness of the stress tensor, which

enables to perform the numerical simulations at high Weissenberg numbers [50–52]. In the

log-conformation method, the governing equations of polymeric stress tensor are solved for

the logarithm of conformation tensor (Θ), and the following relation is used to obtain the

polymeric stress tensor (τp) from the log-conformation tensor (Θ):

τp =
ηp
λ
(feΘ − aI). (5)

The governing equations have been discretized based on the finite volume method.

Gauss’s theorem has been used to calculate the divergence. The Gaussian deferred correc-

tion component-wise schemes (GaussDefCmpw) have been used to discretize the convective

terms in the governing equations, where the ”CUBISTA” scheme has been used for the

convective terms in the viscoelastic equation. The Gauss gradient scheme with linear inter-

polation (Gauss linear) has been used to calculate cell gradient. The Laplacian operator can

be represented using the combination of the divergence and gradient operators. Therefore,

the scheme based on the Gauss theorem has been also used to discretize the Laplacian terms.

For temporal evolution, the Crank–Nicolson method has been used. The validation of the

numerical tool and the details of numerical methodology have been discussed in the liter-

ature [48, 49]. Furthermore, the applicability of the present tool to investigate viscoelastic

flows is evident from our recent publications [9, 10]. The computational domain has been

discretized using 2560× 256 static grid points and the five layers close to the cylinders have

been further refined (Fig. 1b). The time-step in the simulation has been controlled by the

Courant number (Co). In the present study, we use Comax = 0.025. The details of mesh

and time-step dependence studies have been given in Appendix VIB. The simulations have

been performed for dimensionless time t = 20, where λ has been used to normalize the

time. The simulation achieves a steady-state or the instability becomes fully developed for

dimensionless time t > 5 (Appendix VIB). The simulation time (t = 20) is sufficient for

the convergence of the statistics.

The Weissenberg number is the most important dimensionless number in the present

study and it has been defined as Wi= λUin/d, where Uin is the inlet flow velocity. The
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TABLE I: The range of different parameters used in the study.

ρ λ Uin β L2

1000 kg/m3 1 s 0.1− 0.6 mm/s 0.05− 0.2 100-1000

value of Wi in the present study ranges in Wi = 0 − 4. The effect of inertia is negligible

as the Reynolds number (Re= ρUind/η0), which represents the ratio of inertial to viscous

forces, is very small (Re < 0.005). The zero-shear rate viscosity of the polymeric solution

is shown as η0 = ηs + ηp. We define β = ηs/η0 as the viscosity ratio, which represents the

strength of shear-thinning in the FENE-P model. The density of the polymeric solution

commonly used in the experiment is close to the water, whereas the value of the viscosity

ratio lies in the range of β = 0.05 − 0.25 [11, 27]. The relaxation time of the polymeric

solution has been reported in the range of λ = 0.1− 10 s [11, 27, 34, 53]. For the FENE-P

model, a typical value of L2 found in the literature for polymeric solution is in the range of

L2 = 10− 1000 [42, 46, 54, 55]. The values of inlet velocity and fluid rheological parameters

used in the present study have been summarized in Table I. The response of the FENE-P

model in the homogeneous shear and extensional flows for the different combinations of the

parameters have been shown in Fig. 2a and Fig. 2b, respectively [56]. The viscosity ratio

(β) has the dominant effect on the shear viscosity. Whereas, L2 has the dominant effect

on the extensional viscosity. Throughout the study, inlet velocity (Uin) and characteristic

shear stress (η0Uin/d) have been used to normalize the velocity field and the stress field,

respectively. We also use η0Uin/d to normalize the pressure.

III. RESULTS AND DISCUSSION

In our recent publication, we have investigated viscoelastic instability in the symmetric

geometry, where both the cylinders in the channel are located on the centerline (i.e., ∆y = 0)

[10]. Viscoelastic instability induces three distinct flow states in the region between the cylin-

der in the symmetric geometry. These flow states are characterized by the flow symmetry

around the cylinders and the existence of eddy between the cylinders [10]. The symmetric

flow state is eddy-free for Wi < Wicr1 (flow state type-1), whereas the eddies appear in the

region between the cylinders for Wicr1 < Wi < Wicr2 (type-2). The flow around the cylinders
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(a) (b)

FIG. 2: (a) Shear viscosity (η) and (b) extensional viscosity (ηe) prediction of FENE-P

model for different combinations of the parameters.

FIG. 3: The area occupied by eddies in the region between the cylinders (Aeddy) for a

symmetric geometry (∆y = 0) and an asymmetric geometry (∆y = d/16). Aeddy has been

normalized by lsd. The symbols and the error-bars represent the mean value and the

standard-deviation, respectively. Other parameters are β = 0.05 and L2 = 1000.

becomes asymmetric with the loss of eddy for Wi > Wicr2 (type-3). Fig. 3 depicts the area
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FIG. 4: (a,b) Velocity field and (c,d) the trace of polymeric stress tensor at Wi = 1.56 for

(a,c) a symmetric geometry (∆y = 0) and (b,d) an asymmetric geometry (∆y = d/16).

Other parameters are β = 0.05, L2 = 1000, and t = 17.5.

occupied by eddies (Aeddy) in symmetric (∆y = 0) and asymmetric geometries (∆y = d/16).

Even in the asymmetric geometry, the formation of eddy occurs between the cylinders for

Wicr1 < Wi < Wicr2, and the geometry become eddy free for Wi < Wicr1 and Wi > Wicr2.

The minimum Wi (Wicr1) required for the formation of the eddy is similar for both geome-

tries. However, the critical Wi required for the second transition (Wicr2) is larger in the

symmetric geometry. Therefore, the eddy between the cylinders exists up to a higher Wi

in the symmetric geometry compared to the asymmetric geometry (Fig. 3). Furthermore,

the area occupied by the eddy in the symmetric geometry (∆y = 0) is much larger than the

asymmetric geometry (∆y = d/16). Fig. 4 depicts the flow field and the trace of polymeric

stress tensor for the symmetric and asymmetric geometries at a Weissenberg number where

both of the geometries have eddies. In the symmetric geometry, the flow around the cylin-

ders remain symmetric and a pair of recirculating eddies appear in the region between the

cylinders (Fig. 4a), whereas the flow is asymmetric and only one eddy appears in between

the cylinders for the asymmetric geometry (Fig. 4b). Therefore, Aeddy in the asymmetric

geometry is smaller than the symmetric geometry. The topology of the polymeric stress

field controls the flow state in viscoelastic flows [9, 10]. The streak characterized by large
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polymeric stresses forms in a viscoelastic flow, which leads to flow separation and forma-

tion of distinct flow states. The elastic wake in between the cylinders bifurcates and forms

symmetric topology in the symmetric geometry (Fig. 4c), which induces the formation of

two eddies in the region encircled by the streaks of high polymeric stress (Fig. 4a). Even

in the asymmetric geometry, the elastic wake has two branches between the cylinders (Fig.

4d). However, it does not form the symmetric topology as the value of stress in the lower

branch is much larger than the top branch. Therefore, it leads to the formation of an asym-

metric flow state and induces only one eddy in between the cylinders (Fig. 4b). It has

been shown that the location of the maximum value of Pakdel–McKinley (M) parameter

[2, 38] denotes the most sensitive region for elastic instability and hence it can be used to

predict the flow state after the instability [10]. Similar to the symmetric geometry (∆y = 0),

even in the asymmetric geometry (∆y = d/16), the location of Mmax shifts from the side

of the rear cylinder to the region in between the cylinders as Wi → Wicr1 (Appendix VID).

Therefore, the formation of a new flow state in the asymmetric geometry (∆y = d/16) at

Wicr1 < Wi < Wicr2 occurs due to the instability in the region between the cylinders.

(a) (b)

FIG. 5: (a) Flow asymmetry around the front cylinder (I1) and (b) the difference between

the flow asymmetries around the front and rear cylinders (I1 − I2) at different Wi for both

the symmetric (∆y = 0) and asymmetric (∆y = d/16) geometries. The symbols and the

error-bars represent the mean value and the standard-deviation, respectively. Other

parameters are β = 0.05 and L2 = 1000.

To quantify the flow asymmetry around the cylinders, we define an asymmetry parameter
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FIG. 6: (a,b) Velocity field and (c,d) the trace of polymeric stress tensor in the

asymmetric geometry (∆y = d/16) at (a,c) Wi = 0.62 and (b,d) Wi = 1.25. Streamline

changes lane in between the cylinders at Wi = 0.62. Other parameters are β = 0.05,

L2 = 1000, and t = 17.5 (steady state).

I as:

I =
Qupper −Qlower

Qupper +Qlower

, (6)

where Qupper and Qlower represent the volumetric flow rate through the upper and lower

gap of the channel at the location of the cylinder. I1 and I2 represent the flow asymmetry

around the front cylinder and the rear cylinder of the channel, respectively. The value

of flow asymmetry (I) fluctuates around a well-defined mean once the instability becomes

fully developed (Appendix VIC). However, the standard deviation of the fluctuation is

very small (< 1% of the mean value) indicating an almost steady flow even at Wi > Wicr2.

In the symmetric geometry, the flow around the cylinders remains symmetric (I1 = 0)

until the second transition occurs (Wi < Wicr2) and after that (i.e., Wi > Wicr2) I1 rapidly

increases with Wi (Fig. 5a). Whereas, the flow around the cylinders is always asymmetric

(I1 > 0) in the asymmetric geometry and it gradually increases with Wi before it saturates,

unlike the sharp change of I1 in the symmetric geometry (Fig. 5a). We recall that the

front cylinder is located on the centerline of the channel even in the asymmetric geometry.

However, the flow around it is asymmetric even at small Wi due to the hydrodynamic
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interaction between the front and the rear cylinders. The values of flow asymmetry around

the front (I1) and the rear (I2) cylinders are not identical for asymmetric flow states [10].

Therefore, there is a net spanwise transport of fluid in the region between cylinders. We

calculate the difference between the flow asymmetry around the front and rear cylinders

(I1 − I2) to quantify the spanwise transport of fluid between the cylinders (Fig. 5b). In

the symmetric geometry, I1 − I2 ≈ 0 for Wi < Wicr2 and it increases rapidly once the flow

state becomes asymmetric. Whereas, the value of I1 − I2 exhibits a non-monotonic trend

with Wi in the asymmetric geometry (Fig. 5b). Initially, the value of I1 − I2 decreases

with Wi, obtains a minimum value, and then increases as Wi further increases. To explain

this non-monotonic trend of I1 − I2 in the asymmetric geometry, we plot streamlines and

stress field at a small Wi (Wi = 0.62) and an intermediate Wi (Wi = 1.25) in Fig. 6. Due

to geometrical asymmetry, there is a spanwise transport of fluid between the cylinders even

at a small Wi, where the viscoelastic effect is negligible (Fig. 6a). As Wi increases, streaks

of high polymeric stress form, connecting the cylinders (Fig. 6d) and resisting the spanwise

transport of fluid at intermediate Wi (Fig. 6b). Ultimately, the flow around the cylinders

becomes completely asymmetric (I1 ≈ 1) at large Wi (Fig. 5a), leading to the enhancement

of spanwise transport of fluid between the cylinders (Fig. 5b). The influence of the rear

cylinder on the front cylinder weakens as the separation between the cylinders (ls) increases.

Therefore, the formation of the eddy between the cylinders does not occur and the value of

I1 is smaller in the geometry having a larger separation (i.e., ls = 3d) between the cylinders

(Fig. 7a). However, a larger separation between the cylinders (ls = 3d) facilitates spanwise

transport in the asymmetric geometry. Therefore, the value of I1 − I2 is higher for the

geometry with a larger separation between the cylinders (Fig. 7b).

To explore the instability downstream of the rear cylinder, we plot flow asymmetry (I)

inside the channel in symmetric and asymmetric geometries as a function of downstream

position at different Wi (Figs. 8a and 8b). The flow asymmetry decays downstream of

the rear cylinder and ultimately (x/d > 8) the flow inside the channel becomes symmetric

(I = 0). In the symmetric geometry (∆y = 0), the second transition (Wicr2) occurs at a

larger Wi compared to the asymmetric geometry (∆y = d/16) (Fig. 3). Therefore, the

value of flow asymmetry around the cylinder does not saturate in the symmetric geometry

at Wi = 2.5 (Fig. 5a), which leads to a smaller value of I in the symmetric geometry

compared to the value in the asymmetric geometry at the location of the rear cylinder
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(a) (b)

FIG. 7: (a) I1 and (b) I1 − I2 at different Wi in the asymmetric (∆y = d/16) geometries

having different separation between the cylinders (ls). Other parameters are β = 0.05 and

L2 = 1000.

(a) (b)

FIG. 8: Flow asymmetry (I) downstream of the rear cylinder for symmetric (∆y = 0) and

asymmetric (∆y = d/16) geometries at (a) Wi = 2.5 and (b) Wi = 3.75. x/d = 0 is the

location of the center of the front cylinder. Other parameters are β = 0.05 and L2 = 1000.

(Fig. 8a). However, the locations downstream of the rear cylinder, I have similar values

for different geometries (Fig. 8a). At large Wi (Wi = 3.75), the value of flow asymmetry

around the cylinder saturates and both the geometries have similar values. Therefore, there

is no significant difference between the values of I of symmetric and asymmetric geometries
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at the locations downstream of the rear cylinder (Fig. 8b). As Wi increases, the cylinder

wake influences larger distances downstream of the cylinder. Therefore, the decay rate of I

slightly decreases as Wi increases (Figs. 8a and 8b).

FIG. 9: (a-d) Velocity field, (e-h) the trace of polymeric stress tensor, and (i-l) flow-type

parameter (Λ) at Wi = 1.88 in the geometries having (a,e,i) ∆y = 0, (b,f,j) ∆y = d/16,

(c,g,k) ∆y = d/8, and (d,h,l) ∆y = d/4. Other parameters are β = 0.05, L2 = 1000, and

t = 17.5.

The flow states for the different strengths of geometrical asymmetry (∆y) have been

shown in Fig. 9(a-d). The number of eddies in the region between the cylinders decreases

from two in the symmetric geometry (Fig. 9(a)) to one in the asymmetric geometry (Fig.

9(b)). Further, in the asymmetric geometries, the size of the eddy also decreases as the

strength of geometrical asymmetry (∆y) increases, and ultimately the eddy completely

disappears in highly asymmetric geometries (∆y > d/8). As the strength of geometrical

asymmetry increases, either branch of the elastic wake (top branch in Fig. 9 (e-h)) weakens

and ultimately disappears, which induces the loss of eddy and the formation of the eddy-free

flow state. The flow-type parameter (Λ) is a metric to characterize the local fluid deforma-

tion in mixed flows. It can be defined as: Λ = (|D| − |Ω|)/(|D|+ |Ω|), where |D| and |Ω|

are the magnitudes of strain rate tensor and vorticity tensor, respectively [5]. The value

of Λ varies from Λ = −1 for purely rotational flow to Λ = 0 for purely shear flow to Λ = 1



14

for purely extensional flow. The streaks of large polymeric stress act as barriers and resist

the flow crossing the region of high stress. Therefore, the regions where the streaks of high

polymeric stress form are shear-dominated (Fig. 9 (i-l)).

FIG. 10: The area occupied by eddy (Aeddy) at Wi = 1.88 for the geometries of different

strength of asymmetry (∆y) and different rheological properties.

We quantify the area occupied by eddy (Aeddy) for the different values of geometrical

asymmetry (∆y) and fluid rheological parameters (β and L) in Fig. 10. The value of Aeddy

decreases monotonically as ∆y increases due to the loss of eddy for the transition from

symmetric (∆y = 0) to asymmetric (∆y = d/16) geometry and then due to the shrinkage

of eddy size as ∆y further increases ( Fig. 10). A weakly shear-thinning fluid stabilizes the

eddy between the cylinders [10] and the strength of shear-thinning decreases as the solvent’s

contribution to the total viscosity of the polymeric solution (β) increases. Therefore, Aeddy

increases as the viscosity ratio of the solution (β) increases (Fig. 10). This facilitates the

existence of eddy between the cylinders up to a larger value of ∆y as the viscosity ratio

(β) increases. The elastic property of the solution decreases as the maximum extensibility
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of the polymeric chains (L2) decreases. Hence, Aeddy for the symmetric geometry decreases

as L2 decreases (Fig. 10). The elasticity of the fluid also has a destabilizing effect on the

eddy between the cylinders [10]. Therefore, Aeddy for the asymmetric geometries increases

as the value of L2 decreases (Fig. 10). Due to the destabilizing effect of shear-thinning and

elasticity of the fluid, the flow becomes eddy-free at a much smaller ∆y for the strongly

shear-thinning and strong elastic fluid (Fig. 10).

(a) (b)

(c) (d)

FIG. 11: (a,c) Flow asymmetry around the front cylinder (I1) and (b,d) the difference

between the flow asymmetry around the front and rear cylinders (I1 − I2) at (a,b)

Wi = 1.88 and (c,d) Wi = 2.5 for different values of ∆y and rheological parameters.

Further, we quantify the flow asymmetry around the cylinders in the geometries which

have different degrees of geometrical asymmetry (Fig. 11a). Flow asymmetry around the



16

front cylinder (I1) increases from I1 = 0 for symmetric geometry (∆y = 0) to I1 → 1

as the strength of geometrical asymmetry (∆y) increases. The symmetric flow state at

Wi = 1.88 < Wicr2 in the symmetric geometry leads to I1 = 0 at ∆y = 0. Whereas, the

viscoelastic interaction between the front and the off-center located rear cylinder leads to

I1 > 0 in asymmetric geometries. Strong shear-thinning destabilizes the symmetric flow

states in viscoelastic flows [10, 27]. Therefore, the value of I1 at β = 0.05 is larger than the

value at β = 0.2. For the range of ∆y reported in this study, I1 increases almost linearly

with ∆y at β = 0.2. Whereas due to a stronger shear-thinning effect at β = 0.05, I1

increases rapidly with ∆y and saturates at a smaller value of ∆y (Fig. 11a). The elasticity

of the fluid decreases as the value of L2 decreases, which stabilizes the symmetric flow states

[10, 27]. Therefore, the value of I1 at L2 = 100 is smaller than L2 = 1000 (Fig. 11a).

We also calculate I1 − I2 to quantify the spanwise transport of fluid between the cylinders

(Fig. 11b). There is not any spanwise transport of fluid at ∆y = 0, because the flow state

is symmetric. In the asymmetric geometries at β = 0.05, the spanwise transport of fluid

between the cylinders initially increases with ∆y and after achieving a maximum value it

decreases. However, I1 − I2 does not show any clear trend at β = 0.2. Despite the different

trends, the values of I1 − I2 are small (I1 − I2 < 0.04). At Wi = 2.5 > Wicr2, the flow

becomes asymmetric even in the symmetric geometry for rheological properties β = 0.05

and L2 = 1000 (Fig. 5a). Therefore, I1 and I1 − I2 have nonzero values in the symmetric

geometry (∆y = 0) at Wi = 2.5 (Figs. 11c and 11d). The value of Wicr2 increases as the

shear-thinning strength or the elasticity of the fluid decreases [10]. Therefore, the behaviors

of I1 and I1− I2 for the fluids with other values of rheological parameters at Wi = 2.5 (Figs.

11c and 11d) are similar to the behaviors at Wi = 1.88 (Figs. 11a and 11b).

IV. CONCLUSIONS

Porous medium is intrinsically disordered and consists of asymmetric pores. Here, we

study pore-scale viscoelastic instability in an asymmetric geometry made of two cylinders

located inside a channel and explore the effect of geometrical asymmetry and fluid rheologi-

cal properties on viscoelastic instability-induced flow states. The front cylinder is located on

the centerline of the channel, whereas the rear cylinder is off-center, leading to an asymmet-

ric geometry. In asymmetric geometries, the flow around the cylinders is always asymmetric
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due to the hydrodynamic interaction between the cylinders, and the strength of flow asym-

metry increases with Wi until it saturates. Along with the asymmetric flow around the

cylinders at intermediate Wi (Wicr1 < Wi < Wicr2), a single recirculating eddy appears in

the region between the cylinders, whose size decreases as the strength of geometrical asym-

metry increases. At large Wi (Wi > Wicr2), the eddy between the cylinders disappears, and

flow around cylinders becomes completely asymmetric. The size and the stability of the

eddy increase as the shear-thinning strength of fluid decreases.
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VI. APPENDIX

A. Entrance and exit effect

FIG. 12: The velocity profile at different locations along the length of the channel at

Wi = 0.62. The entrance and the exit of the channel are at x = −9.4d and x = 15.6d,

respectively. The front cylinder is located at x = 0.

The hydrodynamic entrance length for channel flow can be estimated as [57]:

Lentrance = 0.05ReDD, (7)
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where D is the hydraulic diameter of the channel and ReD = ρUinD/µ is the Reynolds

number based on the hydraulic diameter. In the present study, the value of hydrodynamic

entrance length varies from Lentrance = 10−4d at Wi = 0.62 to Lentrance = 6 × 10−4d at

Wi = 3.75, where d is the cylinder diameter. The locations of the entrance, exit and front

cylinder are x/d = −9.4, x/d = 15.6, and x/d = 0, respectively. Thus, the length of the

channel in the present study is 25d and the front cylinder is located 9.4d downstream from

the inlet, which is much larger than the hydrodynamic entrance length. We have also plotted

the velocity profile at different locations along the length of the channel, which clearly shows

that the velocity profile sufficiently upstream of the front cylinder becomes fully developed

(Fig. 12). The flow also becomes fully developed downstream of the rear cylinder much

before the exit (Fig. 12).

B. Mesh and time-step dependence study

(a) (b)

FIG. 13: Normalized pressure drop across the channel at (a) Wi = 0.62 and (b) Wi = 3.75.

Other parameters are β = 0.05 and L2 = 1000.

We use pressure drop (∆p) across the channel as a metric for mesh and time-independent

studies [10]. The pressure drop across the channel for different numerical meshes and the

different values of the Courant numbers have been shown in Fig. 13a for a small Wi

(Wi = 0.62). At a small Wi, the simulation achieves a steady-state for t > 5 and ∆p becomes

constant. The simulation becomes mesh independent for nx × ny > 2000 × 200, where nx
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and ny are the numbers of grid points along the length and the width of the channel (Fig.

13a). The simulations in the present study have been performed using nx×ny = 2560×256.

The Courant number (Co) controls the time-step size in the present study and it has been

defined as:

Co = τ∆t, (8)

where ∆t is the simulation time-step. τ is a characteristic time scale based on the local cell

flow scales and defined as:

τ =
1

2V

∑
facesi

|ϕi|, (9)

where V and ϕ are cell volume and the cell-face volumetric flux.
∑

facesi
shows the sum-

mation over all cell faces. The simulation becomes time-step independent for Comax < 0.035

(Fig. 13a). We use Comax = 0.025 in the present study. We also check the convergence

at the maximum Wi (Wi = 3.75) used in the present study and ensure that the results are

mesh independent even at the maximum Wi (Fig. 13b). The instability becomes fully de-

veloped for t > 5 and ∆p fluctuates around a well-defined mean (Fig. 13b). However, the

standard deviation of the fluctuation is very small (< 1% of the mean value). Therefore,

the fluctuation is very weak and the flow remains almost steady even at the maximum Wi

in the present study.

C. Time dependent flow asymmetry around cylinder

The value of flow asymmetry fluctuates around a well-defined mean once the instability

becomes fully developed (Fig. 14). The standard deviation of the fluctuation is 0.24% of

the mean value at Wi = 3.75.

D. The Pakdel–McKinley (M) parameter

The Pakdel–McKinley (M) is widely used to characterize the criteria for elastic instability

in curved geometry [1, 2]. The Pakdel–McKinley parameter is defined as:

M =

[
τ11
η0γ̇

λUκ

]1/2
, (10)

where τ11, γ̇, and κ are the local tensile stress along the streamline direction, the magnitude of

the shear rate, and streamline curvature, respectively. The details to calculate these variables
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FIG. 14: Flow asymmetry around the front cylinder in the asymmetric geometry

(∆y = d/16) at Wi = 3.75 for β = 0.05 and L2 = 1000. The standard deviation of the

fluctuation of I1 in the fully-developed regime is 0.24% of the mean value.

can be found in the literature [10, 38]. The elastic instability occurs when M ≥ Mcrit. The

spatial profiles of the M parameter in the asymmetric geometry at different Wi (< Wicr1)

have been shown in Fig. 15. The location where the value of M is maximum is the most

sensitive region to the instability [10]. Similar to the symmetric geometry [10], the location

of Mmax shifts from the side of the rear cylinder to the region in between the cylinders as

Wi → Wicr1 (Fig. 15) and hence the formation of new flow state at Wicr1 < Wi < Wicr2

occurs due to instability in the region between the cylinders.
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