Viscoelastic instability in an asymmetric geometry
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Viscoelastic flow through porous media is important in industrial applications such
as enhanced oil recovery (EOR), microbial mining, and groundwater remediation. It
is also relevant in biological processes such as drug delivery, infectious biofilm for-
mation, and transport during respiration and fertilization. The porous medium is
highly disordered and viscoelastic instability-induced flow states at the pore-scale
regulate the transport in porous media. In the present study, we systematically ex-
plore the effect of geometrical asymmetry on pore-scale viscoelastic instability. The
asymmetric geometry used in the present study consists of two cylinders confined
inside a channel, where the front cylinder is located on the centerline of the channel
and the rear cylinder is situated off-center of the channel. The geometrical asymme-
try facilitates asymmetric flow around both cylinders. An eddy also appears in the
region between the cylinders at intermediate Weissenberg numbers, where the Weis-
senberg number characterizes the relative importance of elastic and viscous forces
in viscoelastic flows. We further explore the effect of the strength of geometrical

asymmetry and fluid rheological properties on flow asymmetry and eddy formation.

I. INTRODUCTION

Interaction between curved-geometry and the polymeric solution often induces viscoelas-
tic instability due to the stretching of the polymeric chains along the curvature [1, 2]. Porous
media are made of randomly shaped grains and have inbuilt curved surfaces [3, 4]. The flow
of polymeric solutions through porous media is important in several industrial and natural
applications [5]. Polymeric solutions are injected through porous rocks to mobilize capillary
trapped immiscible fluids during industrial applications such as enhanced oil recovery [6]
and groundwater remediation [7]. The stretching of polymeric chains induces large elastic

stresses [8], leading to elastic instability at Weissenbergs number (Wi) greater than a crit-



ical value [9-11]. The Weissenberg number represents the ratio of elastic to viscous forces
[12]. Elastic instability can lead to time-depend chaotic flow even at the negligible inertia,
which is also known as “elastic turbulence” due to its analogous feature to inertial turbu-
lence [13, 14]. The spatiotemporal flow fluctuations resulting from elastic turbulence [15-18]
facilitate unpinning and mobilization of trapped fluid ganglia [19, 20]. The flow of poly-
meric solutions through porous media is also relevant in many natural processes, including
the transport of biofilms and biological fluids [5, 21]. The flow of biological fluids through
poroelastic tissues plays a critical role in targeted drug delivery [22] and bacterial infection
[23].

The study of pore-scale viscoelastic instability is essential to understand the sample-scale
transport of fluids and particles in viscoelastic porous media flow [4]. Viscoelastic flow
around a cylinder confined in a channel is the simplest model used to investigate pore-scale
instability around the obstacle present in porous media [24-26]. The flow state induced
by the viscoelastic instability for a cylinder confined in a channel depends on the blockage
ratio. Viscoelastic flow induces a long elastic wake downstream of the cylinder [24, 27]. At
a small blockage ratio (< 0.5), the elastic wake loses the lateral symmetry for Wi > Wi,
in shear-thinning viscoelastic fluids, leading to an asymmetric flow around the cylinder
(25, 27, 28]. Whereas viscoelastic instability induces unstable eddy upstream of the cylinder
at a high blockage ratio [26, 29, 30]. The polymeric chains advect faster than they relax for
densely placed obstacles in the porous media. Therefore, the polymeric chains do not have
sufficient time to relax before reaching the next obstacle. The channels consisting of multiple
cylinders in streamwise direction have been used to investigate the hydrodynamic interaction
between successive obstacles [10, 31, 32]. Viscoelastic flow through a channel having a pair of
streamwise located cylinders undergoes two successive transitions due to elastic instability,
leading to the formation of three different flow states in the region between the cylinders
[10]. Corrugated channels also have been used to explore the viscoelastic interaction between
successive pores of a porous media, where multiple stochastically switching flow states have
been reported inside the pores of the channel [9, 33].

The investigations of pore-scale viscoelastic instabilities have been mainly focused on
symmetric geometries [9, 10, 25, 34-39]. However, the natural and engineered porous media
are highly complex and disordered [3, 4, 40, 41]. Therefore, the criteria and the dynamics of

elastic instabilities obtained in the simple symmetric geometries fail to explain the sample-



scale elastic instability in 2D and 3D porous geometries [11, 15, 16]. We investigate pore-
scale viscoelastic instability in an asymmetric geometry in the present study. We show
that introducing even the slightest asymmetry in the geometry leads to a major impact on
the criterion of viscoelastic instability and the flow state resulting from the instability. We
investigate the impact of the emergence of distinct flow states on transport in an asymmetric
geometry. We also quantify the polymeric stress field and find that the topology of the

polymeric stress field regulates the existence of distinct flow states and hence controls fluid

II. GEOMETRY AND GOVERNING EQUATIONS
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FIG. 1: (a) The schematic of simulation geometry. The front cylinder is located on the
centerline of the channel, whereas the rear cylinder is off the centerline and Ay represents
its deviation from the centerline. The diameter of the cylinders is d = 160 ym and [, = 2d
is the separation between the cylinders. The channel length (I =4 mm) is much larger
than the width (w = 0.4 mm) and cylinder diameter (d = 160 pum). The inlet and the exit
of the channel are located at z/d = —9.4 and z/d = 15.6, respectively. The front cylinder
is located at x = 0, which ensures that the entrance and exit effects are negligible (see
Appendix VI A). Black solid lines represent solid boundaries, whereas green and red lines
indicate the inlet and exit of the channel, respectively. (b) A cartoon showing a coarse
numerical mesh (320 x 32) close to the cylinders. The simulations have been performed

using a finer mesh (2560 x 256).

To investigate the effect of geometrical asymmetry on pore-scale viscoelastic instability,

we consider a geometry that has two cylinders located inside a channel (Fig. la). The



front cylinder is on the centerline of the channel, whereas the rear cylinder is located off
the centerline. The deviation of the rear cylinder from the centerline (Ay) quantifies the
strength of asymmetry, where the geometry becomes symmetric in the limit of Ay — 0.
We change Ay in the present study and explore how the strength of geometrical asymmetry
affects viscoelastic instability.

The governing equations based on the conservation of mass and momentum for an in-

compressible polymeric fluid of density p can be given as:
V-u=0, (1)

ou

p(aﬂtu-Vu):—Vp%—V-(Ts%—Tp), (2)
where u and p are the velocity and pressure fields, respectively. The contribution of New-
tonian solvent to the stress is calculated as 7, = 7,(Vu + Vu®), where 7, is the solvent
viscosity. The contribution of polymeric chains to the stress tensor is represented by 7.
The FENE-P constitutive model has been used to obtain the polymeric stress tensor (7,)
[42-44]. This model considers the finite stretching of the polymeric chains and also cap-

tures both elastic and shear-thinning behaviors of the polymeric solution. The FENE-P

constitutive equation for a polymeric solution of relaxation time A can be described as:

Av o oan, T D (1
T+ =Tp,=—(Vu+Vu') — — | = | M, + an]], (3)
p f p f Dt f p P
where 7, denotes the polymeric contribution to the zero-shear rate viscosity of the solution.
The material derivative is calculated as £ = 2 +u-V and 7, = 52 —7,- Vu—Vu’ - 7,

represents the upper convective time derivative of 7,. The identity tensor is denoted by
I and a = L?/(L? — 3), where L? characterizes the maximum stretching of the polymeric
chains [42, 45, 46]. The nonlinear function f(73,) for the FENE-P model can be written as:

L? + ﬁtr(‘rp)

flry) = —— @

where tr(7p,) represents the trace of polymeric stress tensor. The trace of polymeric stress
tensor is the sum of the elements on the main diagonal and represents the stress due to the
stretching of the polymeric chains in viscoelastic flows.

The numerical simulations have been performed using OpenFOAM, which is an open-

source numerical tool based on finite volume method [47]. Further, we integrate a viscoelastic



solver named RheoTool [48] with OpenFOAM to compute the polymeric stress tensor. The
log-conformation approach has been used to calculate the polymeric stress tensor [48, 49].
This method linearizes the exponential profile of polymeric stress tensor in the regions
of high deformation rate and ensures the positive definiteness of the stress tensor, which
enables to perform the numerical simulations at high Weissenberg numbers [50-52]. In the
log-conformation method, the governing equations of polymeric stress tensor are solved for
the logarithm of conformation tensor (@), and the following relation is used to obtain the

polymeric stress tensor (73,) from the log-conformation tensor (@):
= (fe® — a1 5
7y = (e —al). )

The governing equations have been discretized based on the finite volume method.
Gauss’s theorem has been used to calculate the divergence. The Gaussian deferred correc-
tion component-wise schemes (GaussDefCmpw) have been used to discretize the convective
terms in the governing equations, where the "CUBISTA” scheme has been used for the
convective terms in the viscoelastic equation. The Gauss gradient scheme with linear inter-
polation (Gauss linear) has been used to calculate cell gradient. The Laplacian operator can
be represented using the combination of the divergence and gradient operators. Therefore,
the scheme based on the Gauss theorem has been also used to discretize the Laplacian terms.
For temporal evolution, the Crank—Nicolson method has been used. The validation of the
numerical tool and the details of numerical methodology have been discussed in the liter-
ature [48, 49]. Furthermore, the applicability of the present tool to investigate viscoelastic
flows is evident from our recent publications [9, 10]. The computational domain has been
discretized using 2560 x 256 static grid points and the five layers close to the cylinders have
been further refined (Fig. 1b). The time-step in the simulation has been controlled by the
Courant number (Co). In the present study, we use Copax = 0.025. The details of mesh
and time-step dependence studies have been given in Appendix VIB. The simulations have
been performed for dimensionless time ¢ = 20, where A has been used to normalize the
time. The simulation achieves a steady-state or the instability becomes fully developed for
dimensionless time ¢t > 5 (Appendix VIB). The simulation time (¢ = 20) is sufficient for
the convergence of the statistics.

The Weissenberg number is the most important dimensionless number in the present

study and it has been defined as Wi= AU, /d, where U;, is the inlet flow velocity. The



TABLE I: The range of different parameters used in the study.

P A Ui B L?

1000 kg/m?|1 s]0.1 — 0.6 mm/s|0.05 — 0.2|100-1000

value of Wi in the present study ranges in Wi =0 — 4. The effect of inertia is negligible
as the Reynolds number (Re= pU,,d/ny), which represents the ratio of inertial to viscous
forces, is very small (Re < 0.005). The zero-shear rate viscosity of the polymeric solution
is shown as 1y = 15 + 1,. We define 8 = n/ny as the viscosity ratio, which represents the
strength of shear-thinning in the FENE-P model. The density of the polymeric solution
commonly used in the experiment is close to the water, whereas the value of the viscosity
ratio lies in the range of § = 0.05 — 0.25 [11, 27]. The relaxation time of the polymeric
solution has been reported in the range of A = 0.1 — 10 s [11, 27, 34, 53]. For the FENE-P
model, a typical value of L? found in the literature for polymeric solution is in the range of
L? = 10— 1000 [42, 46, 54, 55]. The values of inlet velocity and fluid rheological parameters
used in the present study have been summarized in Table I. The response of the FENE-P
model in the homogeneous shear and extensional flows for the different combinations of the
parameters have been shown in Fig. 2a and Fig. 2b, respectively [56]. The viscosity ratio
(B) has the dominant effect on the shear viscosity. Whereas, L? has the dominant effect
on the extensional viscosity. Throughout the study, inlet velocity (U;,) and characteristic
shear stress (noU;,/d) have been used to normalize the velocity field and the stress field,

respectively. We also use 19U, /d to normalize the pressure.

III. RESULTS AND DISCUSSION

In our recent publication, we have investigated viscoelastic instability in the symmetric
geometry, where both the cylinders in the channel are located on the centerline (i.e., Ay = 0)
[10]. Viscoelastic instability induces three distinct flow states in the region between the cylin-
der in the symmetric geometry. These flow states are characterized by the flow symmetry
around the cylinders and the existence of eddy between the cylinders [10]. The symmetric
flow state is eddy-free for Wi < Wi,y (flow state type-1), whereas the eddies appear in the
region between the cylinders for Wie,; < Wi < Wi (type-2). The flow around the cylinders
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FIG. 2: (a) Shear viscosity (1) and (b) extensional viscosity (7.) prediction of FENE-P

model for different combinations of the parameters.
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FIG. 3: The area occupied by eddies in the region between the cylinders (Acqq,) for a

symmetric geometry (Ay = 0) and an asymmetric geometry (Ay = d/16). Ac4a, has been

normalized by lsd. The symbols and the error-bars represent the mean value and the

standard-deviation, respectively. Other parameters are 8 = 0.05 and L? = 1000.

becomes asymmetric with the loss of eddy for Wi > Wio (type-3). Fig. 3 depicts the area
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FIG. 4: (a,b) Velocity field and (c,d) the trace of polymeric stress tensor at Wi = 1.56 for
(a,c) a symmetric geometry (Ay = 0) and (b,d) an asymmetric geometry (Ay = d/16).
Other parameters are 3 = 0.05, L? = 1000, and t = 17.5.

occupied by eddies (Agqqy) in symmetric (Ay = 0) and asymmetric geometries (Ay = d/16).
Even in the asymmetric geometry, the formation of eddy occurs between the cylinders for
Wi < Wi < Wige, and the geometry become eddy free for Wi < Wiy and Wi > Wigs.
The minimum Wi (Wi ) required for the formation of the eddy is similar for both geome-
tries. However, the critical Wi required for the second transition (Wiez2) is larger in the
symmetric geometry. Therefore, the eddy between the cylinders exists up to a higher Wi
in the symmetric geometry compared to the asymmetric geometry (Fig. 3). Furthermore,
the area occupied by the eddy in the symmetric geometry (Ay = 0) is much larger than the
asymmetric geometry (Ay = d/16). Fig. 4 depicts the flow field and the trace of polymeric
stress tensor for the symmetric and asymmetric geometries at a Weissenberg number where
both of the geometries have eddies. In the symmetric geometry, the flow around the cylin-
ders remain symmetric and a pair of recirculating eddies appear in the region between the
cylinders (Fig. 4a), whereas the flow is asymmetric and only one eddy appears in between
the cylinders for the asymmetric geometry (Fig. 4b). Therefore, A.qq4, in the asymmetric
geometry is smaller than the symmetric geometry. The topology of the polymeric stress

field controls the flow state in viscoelastic flows [9, 10]. The streak characterized by large



polymeric stresses forms in a viscoelastic flow, which leads to flow separation and forma-
tion of distinct flow states. The elastic wake in between the cylinders bifurcates and forms
symmetric topology in the symmetric geometry (Fig. 4c), which induces the formation of
two eddies in the region encircled by the streaks of high polymeric stress (Fig. 4a). Even
in the asymmetric geometry, the elastic wake has two branches between the cylinders (Fig.
4d). However, it does not form the symmetric topology as the value of stress in the lower
branch is much larger than the top branch. Therefore, it leads to the formation of an asym-
metric flow state and induces only one eddy in between the cylinders (Fig. 4b). It has
been shown that the location of the maximum value of Pakdel-McKinley (M) parameter
2, 38] denotes the most sensitive region for elastic instability and hence it can be used to
predict the flow state after the instability [10]. Similar to the symmetric geometry (Ay = 0),
even in the asymmetric geometry (Ay = d/16), the location of M.y shifts from the side
of the rear cylinder to the region in between the cylinders as Wi — Wi,y (Appendix VID).
Therefore, the formation of a new flow state in the asymmetric geometry (Ay = d/16) at

Wi < Wi < Wigg occurs due to the instability in the region between the cylinders.
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FIG. 5: (a) Flow asymmetry around the front cylinder (/;) and (b) the difference between
the flow asymmetries around the front and rear cylinders (I; — I5) at different Wi for both
the symmetric (Ay = 0) and asymmetric (Ay = d/16) geometries. The symbols and the

error-bars represent the mean value and the standard-deviation, respectively. Other

parameters are 5 = 0.05 and L? = 1000.

To quantify the flow asymmetry around the cylinders, we define an asymmetry parameter
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FIG. 6: (a,b) Velocity field and (c,d) the trace of polymeric stress tensor in the
asymmetric geometry (Ay = d/16) at (a,c) Wi = 0.62 and (b,d) Wi = 1.25. Streamline
changes lane in between the cylinders at Wi = 0.62. Other parameters are 5 = 0.05,
L? =1000, and ¢ = 17.5 (steady state).

I as:

I = Qupper - Qlower’ (6)
Qupper + Qlower

where Qupper and Qower represent the volumetric flow rate through the upper and lower

gap of the channel at the location of the cylinder. I; and I5 represent the flow asymmetry
around the front cylinder and the rear cylinder of the channel, respectively. The value
of flow asymmetry (I) fluctuates around a well-defined mean once the instability becomes
fully developed (Appendix VIC). However, the standard deviation of the fluctuation is
very small (< 1% of the mean value) indicating an almost steady flow even at Wi > Wig,s.
In the symmetric geometry, the flow around the cylinders remains symmetric (I; = 0)
until the second transition occurs (Wi < Wi) and after that (i.e., Wi > Wigs) I; rapidly
increases with Wi (Fig. 5a). Whereas, the flow around the cylinders is always asymmetric
(I; > 0) in the asymmetric geometry and it gradually increases with Wi before it saturates,
unlike the sharp change of I; in the symmetric geometry (Fig. 5a). We recall that the
front cylinder is located on the centerline of the channel even in the asymmetric geometry.

However, the flow around it is asymmetric even at small Wi due to the hydrodynamic
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interaction between the front and the rear cylinders. The values of flow asymmetry around
the front (1) and the rear (1) cylinders are not identical for asymmetric flow states [10].
Therefore, there is a net spanwise transport of fluid in the region between cylinders. We
calculate the difference between the flow asymmetry around the front and rear cylinders
(I; — I3) to quantify the spanwise transport of fluid between the cylinders (Fig. 5b). In
the symmetric geometry, Iy — Ir = 0 for Wi < Wig» and it increases rapidly once the flow
state becomes asymmetric. Whereas, the value of I; — I exhibits a non-monotonic trend
with Wi in the asymmetric geometry (Fig. 5b). Initially, the value of I — I, decreases
with Wi, obtains a minimum value, and then increases as Wi further increases. To explain
this non-monotonic trend of I; — I, in the asymmetric geometry, we plot streamlines and
stress field at a small Wi (Wi = 0.62) and an intermediate Wi (Wi = 1.25) in Fig. 6. Due
to geometrical asymmetry, there is a spanwise transport of fluid between the cylinders even
at a small Wi, where the viscoelastic effect is negligible (Fig. 6a). As Wi increases, streaks
of high polymeric stress form, connecting the cylinders (Fig. 6d) and resisting the spanwise
transport of fluid at intermediate Wi (Fig. 6b). Ultimately, the flow around the cylinders
becomes completely asymmetric (I; ~ 1) at large Wi (Fig. 5a), leading to the enhancement
of spanwise transport of fluid between the cylinders (Fig. 5b). The influence of the rear
cylinder on the front cylinder weakens as the separation between the cylinders (I,) increases.
Therefore, the formation of the eddy between the cylinders does not occur and the value of
I, is smaller in the geometry having a larger separation (i.e., [y = 3d) between the cylinders
(Fig. 7a). However, a larger separation between the cylinders (I, = 3d) facilitates spanwise
transport in the asymmetric geometry. Therefore, the value of I; — I, is higher for the

geometry with a larger separation between the cylinders (Fig. 7b).

To explore the instability downstream of the rear cylinder, we plot flow asymmetry (I)
inside the channel in symmetric and asymmetric geometries as a function of downstream
position at different Wi (Figs. 8a and 8b). The flow asymmetry decays downstream of
the rear cylinder and ultimately (z/d > 8) the flow inside the channel becomes symmetric
(I = 0). In the symmetric geometry (Ay = 0), the second transition (Wie2) occurs at a
larger Wi compared to the asymmetric geometry (Ay = d/16) (Fig. 3). Therefore, the
value of flow asymmetry around the cylinder does not saturate in the symmetric geometry
at Wi=2.5 (Fig. 5a), which leads to a smaller value of I in the symmetric geometry

compared to the value in the asymmetric geometry at the location of the rear cylinder
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location of the center of the front cylinder. Other parameters are 3 = 0.05 and L? = 1000.

(Fig. 8a). However, the locations downstream of the rear cylinder, / have similar values

for different geometries (Fig. 8a). At large Wi (Wi = 3.75), the value of flow asymmetry

around the cylinder saturates and both the geometries have similar values. Therefore, there

is no significant difference between the values of I of symmetric and asymmetric geometries
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at the locations downstream of the rear cylinder (Fig. 8b). As Wi increases, the cylinder
wake influences larger distances downstream of the cylinder. Therefore, the decay rate of [

slightly decreases as Wi increases (Figs. 8a and 8b).

(a) Ay=0 (b) Ay = d/16

(d) Ay =d/4

(c) Ay =4d/8

FIG. 9: (a-d) Velocity field, (e-h) the trace of polymeric stress tensor, and (i-1) flow-type
parameter (A) at Wi = 1.88 in the geometries having (a,e,i) Ay = 0, (b,f,j) Ay = d/16,
(c,g,k) Ay = d/8, and (d,h,]) Ay = d/4. Other parameters are = 0.05, L* = 1000, and
t=17.5.

The flow states for the different strengths of geometrical asymmetry (Ay) have been
shown in Fig. 9(a-d). The number of eddies in the region between the cylinders decreases
from two in the symmetric geometry (Fig. 9(a)) to one in the asymmetric geometry (Fig.
9(b)). Further, in the asymmetric geometries, the size of the eddy also decreases as the
strength of geometrical asymmetry (Ay) increases, and ultimately the eddy completely
disappears in highly asymmetric geometries (Ay > d/8). As the strength of geometrical
asymmetry increases, either branch of the elastic wake (top branch in Fig. 9 (e-h)) weakens
and ultimately disappears, which induces the loss of eddy and the formation of the eddy-free
flow state. The flow-type parameter (A) is a metric to characterize the local fluid deforma-
tion in mixed flows. It can be defined as: A = (|D| — |€2])/(|D| + |€2]), where |D| and ||
are the magnitudes of strain rate tensor and vorticity tensor, respectively [5]. The value

of A varies from A = —1 for purely rotational flow to A = 0 for purely shear flow to A =1
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for purely extensional flow. The streaks of large polymeric stress act as barriers and resist
the flow crossing the region of high stress. Therefore, the regions where the streaks of high

polymeric stress form are shear-dominated (Fig. 9 (i-1)).
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FIG. 10: The area occupied by eddy (Acqay) at Wi = 1.88 for the geometries of different
strength of asymmetry (Ay) and different rheological properties.

We quantify the area occupied by eddy (Acqq,) for the different values of geometrical
asymmetry (Ay) and fluid rheological parameters (5 and L) in Fig. 10. The value of A.4qy
decreases monotonically as Ay increases due to the loss of eddy for the transition from
symmetric (Ay = 0) to asymmetric (Ay = d/16) geometry and then due to the shrinkage
of eddy size as Ay further increases ( Fig. 10). A weakly shear-thinning fluid stabilizes the
eddy between the cylinders [10] and the strength of shear-thinning decreases as the solvent’s
contribution to the total viscosity of the polymeric solution (/) increases. Therefore, A.qqy
increases as the viscosity ratio of the solution () increases (Fig. 10). This facilitates the
existence of eddy between the cylinders up to a larger value of Ay as the viscosity ratio

(B) increases. The elastic property of the solution decreases as the maximum extensibility
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of the polymeric chains (L?) decreases. Hence, A.4q, for the symmetric geometry decreases

as L? decreases (Fig. 10). The elasticity of the fluid also has a destabilizing effect on the

eddy between the cylinders [10]. Therefore, A.qq4, for the asymmetric geometries increases

as the value of L? decreases (Fig. 10). Due to the destabilizing effect of shear-thinning and

elasticity of the fluid, the flow becomes eddy-free at a much smaller Ay for the strongly

shear-thinning and strong elastic fluid (Fig. 10).
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FIG. 11: (a,c) Flow asymmetry around the front cylinder (/;) and (b,d) the difference

between the flow asymmetry around the front and rear cylinders (I; — I3) at (a,b)

Wi = 1.88 and (c,d) Wi = 2.5 for different values of Ay and rheological parameters.

Further, we quantify the flow asymmetry around the cylinders in the geometries which

have different degrees of geometrical asymmetry (Fig. 11a). Flow asymmetry around the
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front cylinder (I;) increases from I; = 0 for symmetric geometry (Ay = 0) to I; — 1
as the strength of geometrical asymmetry (Ay) increases. The symmetric flow state at
Wi = 1.88 < Wigs in the symmetric geometry leads to Iy = 0 at Ay = 0. Whereas, the
viscoelastic interaction between the front and the off-center located rear cylinder leads to
I; > 0 in asymmetric geometries. Strong shear-thinning destabilizes the symmetric flow
states in viscoelastic flows [10, 27]. Therefore, the value of I; at 5 = 0.05 is larger than the
value at § = 0.2. For the range of Ay reported in this study, I; increases almost linearly
with Ay at f§ = 0.2. Whereas due to a stronger shear-thinning effect at g = 0.05, I
increases rapidly with Ay and saturates at a smaller value of Ay (Fig. 11a). The elasticity
of the fluid decreases as the value of L? decreases, which stabilizes the symmetric flow states
(10, 27]. Therefore, the value of I; at L? = 100 is smaller than L? = 1000 (Fig. 1la).
We also calculate I; — I to quantify the spanwise transport of fluid between the cylinders
(Fig. 11b). There is not any spanwise transport of fluid at Ay = 0, because the flow state
is symmetric. In the asymmetric geometries at 8 = 0.05, the spanwise transport of fluid
between the cylinders initially increases with Ay and after achieving a maximum value it
decreases. However, I; — I does not show any clear trend at S = 0.2. Despite the different
trends, the values of Iy — I are small (I; — [o < 0.04). At Wi=2.5> Wi, the flow
becomes asymmetric even in the symmetric geometry for rheological properties f = 0.05
and L? = 1000 (Fig. 5a). Therefore, I; and I; — I have nonzero values in the symmetric
geometry (Ay = 0) at Wi = 2.5 (Figs. 1lc and 11d). The value of Wi increases as the
shear-thinning strength or the elasticity of the fluid decreases [10]. Therefore, the behaviors
of I and I — I, for the fluids with other values of rheological parameters at Wi = 2.5 (Figs.
11c and 11d) are similar to the behaviors at Wi = 1.88 (Figs. 11a and 11b).

IV. CONCLUSIONS

Porous medium is intrinsically disordered and consists of asymmetric pores. Here, we
study pore-scale viscoelastic instability in an asymmetric geometry made of two cylinders
located inside a channel and explore the effect of geometrical asymmetry and fluid rheologi-
cal properties on viscoelastic instability-induced flow states. The front cylinder is located on
the centerline of the channel, whereas the rear cylinder is off-center, leading to an asymmet-

ric geometry. In asymmetric geometries, the flow around the cylinders is always asymmetric
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due to the hydrodynamic interaction between the cylinders, and the strength of flow asym-
metry increases with Wi until it saturates. Along with the asymmetric flow around the
cylinders at intermediate Wi (Wie; < Wi < Wigs), a single recirculating eddy appears in
the region between the cylinders, whose size decreases as the strength of geometrical asym-
metry increases. At large Wi (Wi > Wig,2), the eddy between the cylinders disappears, and
flow around cylinders becomes completely asymmetric. The size and the stability of the

eddy increase as the shear-thinning strength of fluid decreases.
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VI. APPENDIX

A. Entrance and exit effect
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FIG. 12: The velocity profile at different locations along the length of the channel at
Wi = 0.62. The entrance and the exit of the channel are at x = —9.4d and x = 15.6d,

respectively. The front cylinder is located at z = 0.

The hydrodynamic entrance length for channel flow can be estimated as [57]:

Lentrance - O'O5R6DD> (7)
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where D is the hydraulic diameter of the channel and Rep = pU;, D/u is the Reynolds
number based on the hydraulic diameter. In the present study, the value of hydrodynamic
entrance length varies from Lenirance = 107%d at Wi = 0.62 t0 Lentrance = 6 x 107%d at
Wi = 3.75, where d is the cylinder diameter. The locations of the entrance, exit and front
cylinder are x/d = —9.4, x/d = 15.6, and x/d = 0, respectively. Thus, the length of the
channel in the present study is 25d and the front cylinder is located 9.4d downstream from
the inlet, which is much larger than the hydrodynamic entrance length. We have also plotted
the velocity profile at different locations along the length of the channel, which clearly shows
that the velocity profile sufficiently upstream of the front cylinder becomes fully developed
(Fig. 12). The flow also becomes fully developed downstream of the rear cylinder much

before the exit (Fig. 12).

B. Mesh and time-step dependence study

0.10 0.20
— 1, xny, =2560 x256, Co,,,, =0.025 — 10, xn, =2560 x256
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’ 0.15} Startup ’
== I XN, =2560 ><256, Comax =0.035 transient
‘ regime Fully developed instability
<Ql' 0.05 , g TooTTTTTTETTTEEEEEEeT
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0.00,
0 5 10 15 20 10 15 20
t t
(a) (b)

FIG. 13: Normalized pressure drop across the channel at (a) Wi = 0.62 and (b) Wi = 3.75.
Other parameters are 3 = 0.05 and L? = 1000.

We use pressure drop (Ap) across the channel as a metric for mesh and time-independent
studies [10]. The pressure drop across the channel for different numerical meshes and the
different values of the Courant numbers have been shown in Fig. 13a for a small Wi
(Wi = 0.62). At a small Wi, the simulation achieves a steady-state for t > 5 and Ap becomes

constant. The simulation becomes mesh independent for n, x n, > 2000 x 200, where n,
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and n, are the numbers of grid points along the length and the width of the channel (Fig.
13a). The simulations in the present study have been performed using n, x n, = 2560 x 256.
The Courant number (Co) controls the time-step size in the present study and it has been
defined as:

Co = TAt, (8)

where At is the simulation time-step. 7 is a characteristic time scale based on the local cell

flow scales and defined as:

r=s 1o (9)

faces;

where V' and ¢ are cell volume and the cell-face volumetric flux. Faces; ShOWs the sum-
mation over all cell faces. The simulation becomes time-step independent for Coax < 0.035
(Fig. 13a). We use Copyax = 0.025 in the present study. We also check the convergence
at the maximum Wi (Wi = 3.75) used in the present study and ensure that the results are
mesh independent even at the maximum Wi (Fig. 13b). The instability becomes fully de-
veloped for ¢ > 5 and Ap fluctuates around a well-defined mean (Fig. 13b). However, the
standard deviation of the fluctuation is very small (< 1% of the mean value). Therefore,
the fluctuation is very weak and the flow remains almost steady even at the maximum Wi

in the present study.

C. Time dependent flow asymmetry around cylinder

The value of flow asymmetry fluctuates around a well-defined mean once the instability
becomes fully developed (Fig. 14). The standard deviation of the fluctuation is 0.24% of
the mean value at Wi = 3.75.

D. The Pakdel-McKinley (M) parameter

The Pakdel-McKinley (M) is widely used to characterize the criteria for elastic instability
in curved geometry [1, 2|. The Pakdel-McKinley parameter is defined as:

- 1/2
M = {A,AUR} ,

o™y

where 711, ¥, and k are the local tensile stress along the streamline direction, the magnitude of

(10)

the shear rate, and streamline curvature, respectively. The details to calculate these variables
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FIG. 14: Flow asymmetry around the front cylinder in the asymmetric geometry
(Ay = d/16) at Wi = 3.75 for = 0.05 and L? = 1000. The standard deviation of the

fluctuation of I; in the fully-developed regime is 0.24% of the mean value.

can be found in the literature [10, 38]. The elastic instability occurs when M > M. The
spatial profiles of the M parameter in the asymmetric geometry at different Wi (< Wigq)
have been shown in Fig. 15. The location where the value of M is maximum is the most
sensitive region to the instability [10]. Similar to the symmetric geometry [10], the location
of M,ax shifts from the side of the rear cylinder to the region in between the cylinders as
Wi — Wi,y (Fig. 15) and hence the formation of new flow state at Wiy < Wi < Wigo

occurs due to instability in the region between the cylinders.

[1] G.H. McKinley, P. Pakdel, and A. Oztekin, Rheological and geometric scaling of purely elastic
flow instabilities, Journal of Non-Newtonian Fluid Mechanics 67, 19 (1996).

[2] P. Pakdel and G. H. McKinley, Elastic instability and curved streamlines, Physical Review
Letters 77, 2459 (1996).

[3] S. Aramideh, P. P. Vlachos, and A. M. Ardekani, Pore-scale statistics of flow and transport
through porous media, Physical Review E 98, 1 (2018).

[4] C. A. Browne, A. Shih, and S. S. Datta, Pore-scale flow characterization of polymer solutions

in microfluidic porous media, Small , 1903944 (2019).



21

My = 6.23 + 3.49

M.y = 7.04 + 3.07

0

FIG. 15: The Pakdel-McKinley (M) parameter in the asymmetric geometry (Ay = d/16)
at (a) Wi = 0.62 and (b) Wi = 1.25. Other parameters are 8 = 0.05, L? = 1000, and

t = 17.5 (steady state). White circles indicate the regions of My,.,. The values of M,,ax
represent the mean and the standard deviation obtained over 3 x 3 pixel area centered at

the point of maximum value of M.

[5] M. Kumar, J. S. Guasto, and A. M. Ardekani, Transport of complex and active fluids in porous
media, Journal of Rheology 66, 375 (2022).

[6] K. S. Sorbie, Polymer-improved oil recovery (Springer Science & Business Media, 2013).

[7] D. Roote, Technology status report: in situ flushing, Ground Water Remediation Technology
Analysis Center (available at http://www. gwrtac. org) (1998).

[8] D. Kawale, G. Bouwman, S. Sachdev, P. L. Zitha, M. T. Kreutzer, W. R. Rossen, and P. E.
Boukany, Polymer conformation during flow in porous media, Soft matter 13, 8745 (2017).

[9] M. Kumar, S. Aramideh, C. A. Browne, S. S. Datta, and A. M. Ardekani, Numerical inves-
tigation of multistability in the unstable flow of a polymer solution through porous media,
Physical Review Fluids 6, 033304 (2021).

[10] M. Kumar and A. M. Ardekani, Elastic instabilities between two cylinders confined in a

channel, Physics of Fluids 33, 074107 (2021).



[11]

[19]

[20]

[21]

[22]

22

D. M. Walkama, N. Waisbord, and J. S. Guasto, Disorder suppresses chaos in viscoelastic
flows, Physical Review Letters 124, 164501 (2020).

K. Weissenberg, A continuum theory of rhelogical phenomena (1947).

A. Groisman and V. Steinberg, Elastic turbulence in a polymer solution flow, Nature 405, 53
(2000).

A. Groisman and V. Steinberg, Efficient mixing at low reynolds numbers using polymer addi-
tives, Nature 410, 905 (2001).

C. A. Browne and S. S. Datta, Elastic turbulence generates anomalous flow resistance in
porous media, Science Advances 7, 10.1126/sciadv.abj2619 (2021).

S. J. Haward, C. C. Hopkins, and A. Q. Shen, Stagnation points control chaotic fluctuations
in viscoelastic porous media flow, Proceedings of the National Academy of Sciences 118,
€2111651118 (2021).

S. De, J. van der Schaaf, N. G. Deen, J. A. M. Kuipers, E. A. J. F. Peters, and J. T. Padding,
Lane change in flows through pillared microchannels, Physics of Fluids 29, 113102 (2017).

S. De, S. P. Koesen, R. V. Maitri, M. Golombok, J. T. Padding, and J. F. M. van Santvoort,
Flow of viscoelastic surfactants through porous media, AIChE Journal 64, 773 (2018).

A. Clarke, A. M. Howe, J. Mitchell, J. Staniland, L. A. Hawkes, et al., How viscoelastic-
polymer flooding enhances displacement efficiency, SPE Journal 21, 675 (2016).

S. De, P. Krishnan, J. van der Schaaf, J. Kuipers, E. Peters, and J. Padding, Viscoelastic
effects on residual oil distribution in flows through pillared microchannels, Journal of colloid
and interface science 510, 262 (2018).

P. Stoodley, I. Dodds, D. De Beer, H. L. Scott, and J. D. Boyle, Flowing biofilms as a transport
mechanism for biomass through porous media under laminar and turbulent conditions in a
laboratory reactor system, Biofouling 21, 161 (2005).

R. Tang, C. S. Kim, D. J. Solfiell, S. Rana, R. Mout, E. M. Veldzquez-Delgado, A. Chom-
poosor, Y. Jeong, B. Yan, Z. J. Zhu, C. Kim, J. A. Hardy, and V. M. Rotello, Direct delivery
of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules,
ACS Nano 7, 6667 (2013).

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural

environment to infectious diseases, Nature Reviews Microbiology 2, 95 (2004).



[24]

[30]

[31]

[34]

[35]

23

G. H. McKinley, R. C. Armstrong, and R. A. Brown, The wake instability in viscoelastic flow
past confined circular cylinders, Philosophical Transactions of the Royal Society of London.
Series A: Physical and Engineering Sciences 344, 265 (1993).

S. J. Haward, C. C. Hopkins, and A. Q. Shen, Asymmetric flow of polymer solutions around
microfluidic cylinders: Interaction between shear-thinning and viscoelasticity, Journal of Non-
Newtonian Fluid Mechanics 278, 104250 (2020).

B. Qin, P. F. Salipante, S. D. Hudson, and P. E. Arratia, Upstream vortex and elastic wave
in the viscoelastic flow around a confined cylinder, Journal of Fluid Mechanics 864 (2019).
S. Varchanis, C. C. Hopkins, A. Q. Shen, J. Tsamopoulos, and S. J. Haward, Asymmetric flows
of complex fluids past confined cylinders: A comprehensive numerical study with experimental
validation, Physics of Fluids 32, 053103 (2020).

S. J. Haward, N. Kitajima, K. Toda-Peters, T. Takahashi, and A. Q. Shen, Flow of wormlike
micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio,
Soft Matter 15, 1927 (2019).

S. Kenney, K. Poper, G. Chapagain, and G. F. Christopher, Large deborah number flows
around confined microfluidic cylinders, Rheologica Acta 52, 485 (2013).

Y. Zhao, A. Q. Shen, and S. J. Haward, Flow of wormlike micellar solutions around confined
microfluidic cylinders, Soft Matter 12, 8666 (2016).

A. Varshney and V. Steinberg, Elastic wake instabilities in a creeping flow between two ob-
stacles, Physical Review Fluids 2, 051301 (2017).

X. Shi and G. F. Christopher, Growth of viscoelastic instabilities around linear cylinder arrays,
Physics of Fluids 28, 124102 (2016).

C. A. Browne, A. Shih, and S. S. Datta, Bistability in the unstable flow of polymer solu-
tions through pore constriction arrays, Journal of Fluid Mechanics 890, 10.1017/jfm.2020.122
(2020).

P. E. Arratia, C. C. Thomas, J. Diorio, and J. P. Gollub, Elastic instabilities of polymer
solutions in cross-channel flow, Physical Review Letters 96, 12 (2006).

R. J. Poole, M. A. Alves, and P. J. Oliveira, Purely elastic flow asymmetries, Physical Review
Letters 99, 1 (2007).

L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White, and G. H. McKinley, The inertio-

elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries, Journal



[38]

[39]

[43]

[44]

24

of Non-Newtonian Fluid Mechanics 129, 1 (2005).

A. Lanzaro and X.-F. Yuan, Effects of contraction ratio on non-linear dynamics of semi-
dilute, highly polydisperse paam solutions in microfluidics, Journal of Non-Newtonian Fluid
Mechanics 166, 1064 (2011).

S. J. Haward, G. H. Mckinley, and A. Q. Shen, Elastic instabilities in planar elongational flow
of monodisperse polymer solutions, Scientific Reports 6, 1 (2016).

M. B. Khan and C. Sasmal, Elastic instabilities and bifurcations in flows of wormlike micellar
solutions past single and two vertically aligned microcylinders: Effect of blockage and gap
ratios, Physics of Fluids 33, 033109 (2021).

M. A. Nilsson, R. Kulkarni, L. Gerberich, R. Hammond, R. Singh, E. Baumhoff, and J. P.
Rothstein, Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device,
Journal of Non-Newtonian Fluid Mechanics 202, 112 (2013).

S. S. Datta, T. Ramakrishnan, and D. A. Weitz, Mobilization of a trapped non-wetting fluid
from a three-dimensional porous medium, Physics of Fluids 26, 022002 (2014).

R. B. Bird, P. J. Dotson, and N. L. Johnson, Polymer solution rheology based on a finitely
extensible bead-spring chain model, Journal of Non-Newtonian Fluid Mechanics 7, 213 (1980).
R. Bird, R. Armstrong, and O. Hassager, Dynamics of polymeric liquids. Vol. 1, 2nd Ed. :
Fluid mechanics (John Wiley and Sons Inc.,New York, NY, United States, 1987).

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids,
Volume 2: Kinetic Theory, 2nd Edition, 2nd ed. (Wiley, 1987).

M. D. Chilcott and J. M. Rallison, Creeping flow of dilute polymer solutions past cylinders
and spheres, Journal of Non-Newtonian Fluid Mechanics 29, 381 (1988).

P. J. Oliveira, An exact solution for tube and slit flow of a FENE-P fluid, Acta Mechanica
158, 157 (2002).

H. Jasak, A. Jemcov, and Z. Tukovic, Openfoam: A c++ library for complex physics simula-
tions, International Workshop on Coupled Methods in Numerical Dynamics , 1 (2007), cited
By :275.

F. Pimenta and M. A. Alves, Stabilization of an open-source finite-volume solver for viscoelas-
tic fluid flows, Journal of Non-Newtonian Fluid Mechanics 239, 85 (2017).

F. Habla, M. W. Tan, J. HaB}lberger, and O. Hinrichsen, Numerical simulation of the viscoelas-

tic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in



25

OpenFOAM@®), Journal of Non-Newtonian Fluid Mechanics 212, 47 (2014).

K. Walters and M. F. Webster, The distinctive CFD challenges of computational rheology,
International Journal for Numerical Methods in Fluids 43, 577 (2003).

R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation
tensor, Journal of Non-Newtonian Fluid Mechanics 123, 281 (2004).

R. Fattal and R. Kupferman, Time-dependent simulation of viscoelastic flows at high Weis-
senberg number using the log-conformation representation, Journal of Non-Newtonian Fluid
Mechanics 126, 23 (2005).

B. Qin and P. E. Arratia, Characterizing elastic turbulence in channel flows at low reynolds
number, Physical Review Fluids 2, 083302 (2017).

S. Aramideh, P. P. Vlachos, and A. M. Ardekani, Nanoparticle dispersion in porous media in
viscoelastic polymer solutions, Journal of Non-Newtonian Fluid Mechanics 268, 75 (2019).
S. De, J. Kuipers, E. Peters, and J. Padding, Viscoelastic flow simulations in model porous
media, Physical Review Fluids 2, 053303 (2017).

B. Purnode and M. J. Crochet, Polymer solution characterization with the FENE-P model,
Journal of Non-Newtonian Fluid Mechanics 77, 1 (1998).

T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and
mass transfer (John Wiley & Sons, 2011).



