

Annual Review of Ecology, Evolution, and Systematics

Revisiting the Fates of Dead Leaves That Fall into Streams

Jane C. Marks

Department of Biological Sciences and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011, USA; email: jane.marks@nau.edu

Annu. Rev. Ecol. Evol. Syst. 2019. 50:547-68

First published as a Review in Advance on September 13, 2019

The Annual Review of Ecology, Evolution, and Systematics is online at ecolsys.annualreviews.org

https://doi.org/10.1146/annurev-ecolsys-110218-024755

Copyright © 2019 by Annual Reviews. All rights reserved

ANNUAL CONNECT

www.annualreviews.org

- Download figures
- Navigate cited references
- Keyword search
- · Explore related articles
- Share via email or social media

Keywords

decomposition, streams, food webs, ecosystem fluxes

Abstract

As terrestrial leaf litter decomposes in rivers, its constituent elements follow multiple pathways. Carbon leached as dissolved organic matter can be quickly taken up by microbes, then respired before it can be transferred to the macroscopic food web. Alternatively, this detrital carbon can be ingested and assimilated by aquatic invertebrates, so it is retained longer in the stream and transferred to higher trophic levels. Microbial growth on litter can affect invertebrates through three pathways, which are not mutually exclusive. First, microbes can facilitate invertebrate feeding, improving food quality by conditioning leaves and making them more palatable for invertebrates. Second, microbes can be prey for invertebrates. Third, microbes can compete with invertebrates for resources bound within litter and may produce compounds that retard carbon and nitrogen fluxes to invertebrates. As litter is broken down into smaller particles, there are many opportunities for its elements to reenter the stream food web. Here, I describe a conceptual framework for evaluating how traits of leaf litter will affect its fate in food webs and ecosystems that is useful for predicting how global change will alter carbon fluxes into and out of streams.

1. INTRODUCTION

Fluxes: transfers between pools; also known as flows

Leaves and branches that fall from riparian trees dominate the carbon budgets of most streams (Marcarelli et al. 2011) (Figure 1). Although algae also pump carbon into these systems through photosynthesis, annual respiration exceeds photosynthesis in most freshwaters, and microbial decomposition of terrestrial detritus in streams drives a net global efflux into the atmosphere of 2.1 Pg C/year (Battin et al. 2009, Raymond et al. 2013). Most detrital carbon entering streams is respired by stream microorganisms (Marcarelli et al. 2011), but a small yet vital flux fuels a macroscopic food web (Wallace et al. 2015), from detritivores and predatory invertebrates to fish and amphibians within the stream, and to amphibians, reptiles, birds, and mammals in the surrounding riparian landscape (see the sidebar titled Detritivores and Decomposers). Detrital inputs profoundly influence both the food webs and the carbon and nutrient economy of streams and rivers. How this influence unfolds depends on the "Fate of Dead Leaves That Fall into Streams," the title of a perspective published nearly half a century ago (Kaushik & Hynes 1971), revisited here to emphasize that alternative pathways to different fates are shaped by traits and interactions of leaves, microbes, and macroinvertebrates, all sensitive to a changing environment.

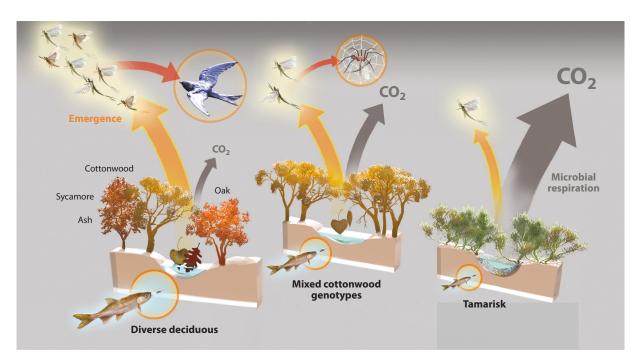


Figure 1

Terrestrial and aquatic ecosystems are linked by inputs of terrestrial litter and exports of aquatic insect emergence to watersheds. The traits of dead leaves that fall into rivers affect the rates and pathways of element loss from decomposing litter. These rates and pathways in turn determine the fate of leaf elements: whether they are sequestered in stream sediments, respired off as carbon dioxide (CO2) by rapid microbial respiration, or transferred up food webs to nourish macroscopic stream biota. Diverse plant assemblages have both labile and refractory litter and can provide a more continuous resource supply for macroinvertebrates throughout their life cycles. Enhancing carbon fluxes to freshwater food webs not only supports aquatic predators but also fuels increasing insect emergence, an important energy flux to predators in riparian zones. In some cases (e.g., hybrid zones of riparian cottonwood forests), intraspecific genetic diversity affecting the lability of leaves is high enough to prolong carbon fluxes to macroinvertebrates (Compson et al. 2018). As riparian plant diversity decreases (e.g., when diverse native vegetation is replaced by rapidly decomposing invasive plants, like tamarisk in the southwestern United States), fluxes of carbon to stream invertebrates decrease, with concurrent increases in microbial respiration and loss of litter carbon as CO2 to the atmosphere. Illustration by Victor Leshyk and Abigail Downard.

DETRITIVORES AND DECOMPOSERS

Detritivores are primarily insects, crustaceans, and protists that feed on detritus using mouth parts to macerate and transform material into smaller particles. Detritivores are also classified into functional feeding groups based in part on the size of the particles that they ingest (see **Figure 2**).

Decomposers are organisms that use dead organic matter (detritus) as an energy source and for minerals and nutrients, in the process breaking the detritus down into smaller particles or minerals. In streams, the primary decomposers are microbes (fungi and bacteria) that secrete extracellular enzymes to biochemically transform the organic matter into forms assimilable by the cell, where they are further transformed during metabolism. Both detritivores and decomposers are important in the process of decomposition, the breakdown of dead organic matter.

Despite the complexity of controls and outcomes of the interactions between dead leaves and the micro- and macroorganisms that shape the ecology and biogeochemistry of streams (Figure 2), most research on the fates of leaves in streams has focused just on rates of litter decomposition. This rate has been well studied because it can be easily measured and its controls can be consistently detected (Boyero et al. 2016, Tiegs et al. 2019). Yet, this integrated rate masks the variety of the fates of the elements in litter as they follow different pathways through food webs and ecosystems. Both rates and pathways determine the fates of detritus in streams and its contribution to higher trophic levels, food webs, and ecosystem processes (Gessner et al. 1999). Rates of element loss from litter and the pathways these elements follow vary among leaf types (Compson et al. 2018, Siders et al. 2018) (Figure 1). Vascular plants living near or along the water's edge can differ markedly in biochemical, physical, and ecological traits in ways that strongly influence elemental fluxes through stream ecosystems (Ferreira et al. 2016, Siders et al. 2018) (Figure 1). Differences in the chemical and mechanical properties of different leaves

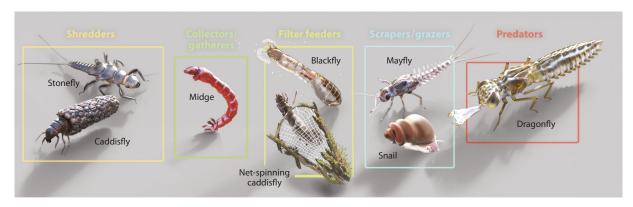


Figure 2

Stream macroinvertebrates are classified into functional feeding groups on the basis of the size and type of food they consume. Many macroinvertebrates have mouth parts or feeding structures that help them consume specific foods. For example, net-spinning caddisflies collect particles in their nets, and predatory dragonflies capture prey with prehensile mouthparts. Particulate organic matter is classified by particle diameter as coarse (CPOM, >1 mm), fine (FPOM, 0.5 µm—1 mm), or dissolved (DOM, <0.5 µm). Shredders consume CPOM (primarily leaves), collectors/gatherers consume FPOM deposited on the stream bed, and filter feeders consume FPOM and DOM from the water column. Scrapers/grazers eat attached biofilms such as algae, and predators eat other animals. Taxa shown are representative members of each group. Although diet and stable isotope studies indicate that many invertebrates are omnivores that feed opportunistically on detritus, other invertebrates, and algae, functional feeding groups remain useful for investigating their ecology. Illustration by Victor Leshyk and Abigail Downard.

affect how they are processed by different microorganisms, which in turn affects losses to the atmosphere and transfers to higher trophic levels (Wallace et al. 2015) along with residence times of carbon in the stream (Rosemond et al. 2015).

Here, I review our current knowledge about the rates and pathways of element losses from leaf litter in streams. First, I consider the ecological and ecosystem consequences of variation in detrital inputs to streams and rivers. I revisit some old concepts and terms that warrant rethinking. Second, I review more recent results derived from new tools that combine stable isotope tracers with genomics and molecular biology to elucidate the rates and pathways of element flow through microbes in natural environments. Third, I discuss how rates and pathways of element flow from litter inputs to streams may shift under global change, with marked consequences for food webs and the carbon and nutrient economy of running waters. Finally, I present future issues that will advance our understanding of stream ecosystems.

2. RETHINKING LITTER QUALITY

Leaf litter is broken down by microbes, macroinvertebrates (Figure 2), and sometimes vertebrates, and differences in litter characteristics can determine whether elements bound in litter fuel higher trophic levels or are lost from the ecosystem via export, burial, or respiration. Traditionally, in both terrestrial and aquatic biogeochemistry literature, more rapidly decomposing leaves have been considered to be of higher quality (Melillo et al. 1982, Hobbie 2000). By associating quality with decomposition rate, however, the apparent value of litter increases with its rate of disappearance, regardless of its fate: transfer to higher trophic levels, to sediment organic matter reservoirs. to microbial biomass, to dissolved organic matter (DOM), or to the atmosphere as carbon dioxide (CO₂). The word "quality" is value-laden and does not address that quality may differ for bacteria, fungi, and invertebrates; that elements bound in litter (e.g., carbon, nitrogen, phosphorus) typically cycle somewhat independently (Halvorson et al. 2017a); and that different organisms may be limited by different elemental resources. For these reasons, the term litter quality should be abandoned. It oversimplifies and fails to distinguish the multiple pathways and fates of elements in leaf litter and their effects on organisms. Moving beyond litter quality, research can focus on how traits of litter influence the subsequent flow paths of its elements through aquatic food webs. In contrast to the commonly held view that slowly decomposing leaves are of poor quality, recent research has demonstrated that leaf traits that slow decomposition can promote more transfer of carbon to macroscopic consumers, whereas rapidly decomposing high-quality litter supports microbial rather than macroscopic productivity (Fuller et al. 2015, Siders et al. 2018).

2.1. Beyond the Peanut Butter on the Cracker Analogy

A common analogy among stream ecologists is that the microbial biofilm that develops on decomposing leaves is the nutritious peanut butter on the less nutritious cracker, so conditioning (growing this biofilm) increases element flow from litter to insects (Cummins 1974). Element ratios (C:N, C:P) of microbes are much lower than those of the litter itself and better meet macroinvertebrate stoichiometric demands (Cross et al. 2003). Invertebrates often prefer and grow faster on litter after it has been colonized by microbes. But the analogy fails for several reasons. First, peanut butter does not eat the cracker in the way that microbes eat the leaves. Microbes compete with invertebrates for carbon and other elements and can produce defensive compounds that deter macroinvertebrate feeding (Bärlocher 1982, Suberkropp 1992, Danger et al. 2016). Rapid microbial decomposition can also cause rapid element loss from litter to the atmosphere or water column, short-circuiting its transfer to higher trophic levels. If leaves are crackers, the microbial spreads in reality might range from high-fat peanut butter to sugar-laden jams, vitamin-rich

vegemite, or inedible or toxic axle grease, with a broad range of nutritional values. Understanding interactions between microbes and invertebrates feeding on leaves requires that we recognize their diverse roles, as facilitators, as prey, or as competitors.

2.2. Microbial Sinks or Links

In all ecosystems, microbes can function as sinks or links (Sherr et al. 1987). Microbial sinks divert carbon and nitrogen in detritus to sediments or to the atmosphere and away from macroscopic food webs. Microbial links, in contrast, facilitate the transfer of these elements to macroscopic consumers at higher trophic positions (Sherr et al. 1987). Identifying the microbial and macroorganismal taxa, traits, and interactions, as well as the environmental contexts that make microbes sinks or links for litter-based stream food webs, is another important research direction. If microbes deplete the energy and nutrient content of decomposing litter and are also inaccessible as prey to higher trophic levels (i.e., trophic cul-de-sacs), they will function as sinks in food webs. If, however, decomposing microbes are packaged into units that larger invertebrates can eat, they could be links fueling higher trophic levels. In lakes and oceans, pelagic bacteria act as links. They flocculate dissolved organic compounds, primarily from algal exudates, making them available to small eukaryotic filter feeders (Pomeroy 1974), which shunt energy and nutrients back into the macroscopic food web. Benthic microbial assemblages processing organic material along heterogeneous stream beds likely live in a more complex world. Steep redox, flow velocity, and light gradients cause these benthic microbes to play more diverse roles as they shunt organic matter into or out of the macroscopic food web (Meyer 1994).

3. RATES AND PATHWAYS OF ELEMENT LOSS FROM LITTER

3.1. The Rate of Decomposition

Decomposition rates vary predictably with the physical and chemical traits of the litter itself, and this variation occurs both between and within plant species (e.g., Webster & Benfield 1986, LeRoy et al. 2007, García-Palacios et al. 2016). Refractory carbohydrates (lignin, tannin, and phenol) slow decomposition, whereas decomposition speeds up with increased labile carbohydrates (sugars) as well as macronutrients (nitrogen and phosphorus), micronutrients (calcium and magnesium), and specific leaf area, an inverse measure of leaf toughness (Cornwell et al. 2008). Litter toughness reduces decomposition and is postulated to be one factor explaining the paucity of shredders in tropical rivers (Graça & Cressa 2010). Litter traits are also influenced by the plant's environment. Like herbivores, the growth of decomposers is often limited by nitrogen or phosphorus rather than by carbon (Sterner & Elser 2002). Higher litter C:N caused by increases in atmospheric CO₂ concentration can reduce decomposition in streams, whereas nutrient enrichment of soils generates litter with higher nitrogen concentration and lower C:N, stimulating aquatic decomposition (Tuchman et al. 2002, LeRoy et al. 2012). Phylogenetically determined leaf traits can, however, override environmental factors in determining how leaf traits affect decomposition rates (LeRoy et al. 2012).

Hundreds of studies have documented differences in decomposition rates in streams caused by variation in leaf type. The consequences of these differences for the fate of litter-derived elements in ecosystems, however, are not as well studied, despite calls to go beyond mass loss and quantify the pathways that decomposition products follow after their release from litter (Gessner et al. 1999, Hieber & Gessner 2002). Partitioning element fluxes into different products is challenging, because complex primary and secondary pathways sequentially transform one product into another (Figure 3). What rules govern the fate of elements released from leaf litter?

Litter toughness:

the physical strength (resistance to fracture) of a senesced leaf; increased by factors like cuticle size or the amount of lignin

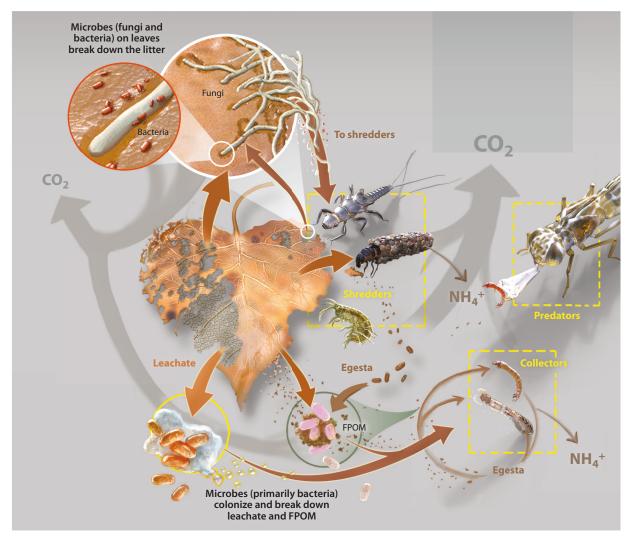


Figure 3

Carbon and nitrogen bound in litter follow multiple pathways, ultimately ending in mineralization [conversion of organic molecules to inorganic carbon dioxide (CO₂) and ammonium NH₄⁺]. Prior to mineralization, elements pass through one or many decomposition products that include leachate, fungi, bacteria, protists, macroinvertebrates, and fine particulate organic matter (FPOM). Organically bound atoms can be recycled multiple times through alternative pathways before being mineralized. Most carbon bound in litter is quickly respired by microbes that break down leaves, leachate, and FPOM, but the small fraction that is taken up by protists or invertebrates supports a diverse and productive food web. Shredders feed directly on leaves and associated microbes, but their assimilation is low, and most detritus that passes through their guts is egested, entering the pool of FPOM. Microbes feeding on FPOM or leachate function either as sinks by mineralizing elements or as links by recapturing elements and transferring them to collectors/gatherers or filter feeders. Leaf litter traits and environmental conditions influence the relative strengths of these pathways. Illustration by Victor Leshyk and Abigail Downard.

3.2. Where Does It Go? Pathways of Element Flow

Litter breaks down or decomposes via processes that occur sequentially or simultaneously, including leaching, mineralization by microbes, macroinvertebrate consumption, and fragmentation (**Figure 3**). The three primary breakdown products—leachate, fine particulate organic

matter (FPOM, 0.5 μm–1 mm diameter), and inorganic matter (e.g., CO₂, NH₄)—and the three agents—bacteria, fungi, invertebrates—are ubiquitous across leaf types, but the relative amount of each differs with litter type and stream environment (Gessner et al. 1999). In addition, meiofauna, particularly protists, are now recognized as important components of decomposer guilds (Dopheide et al. 2011, Risse-Buhl et al. 2012). Ultimately all elements are mineralized and recycled, but the rate of mineralization depends on the route that elements take through living organisms and abiotic pools. Understanding how rate affects fate is germane to predicting which litter and decomposer traits will promote different pathways.

Transfers and transformations from one pool to another can be rapid. Leachate can turn into bacterial biomass or be respired as CO₂ within hours. Microbes are consumed by meiofauna or macroinvertebrates, which incorporate elements into their tissues but also excrete, egest, or respire them. Macroinvertebrates are eaten by predators or emerge as winged adults and can enter terrestrial food webs. Because decomposition is relatively rapid in streams, much of the carbon and nitrogen bound in leaves is mineralized within a year of leaf fall. Once mineralized, nutrients spiral as they are advected downstream as solutes, captured and assimilated from the water column into benthic biomass, temporarily retained, then mineralized back into solutes to travel farther downstream in the water (Newbold et al. 1981). Below, I summarize major breakdown products of dead leaves (sensu Gessner et al. 1999), with an emphasis on pathways that create microbial sinks or links and discuss how litter type affects these pathways.

3.2.1. Leachate. Leachate (DOM) is rapidly generated, quickly decomposed, and believed to be primarily a trophic sink because dissolved compounds are unavailable to shredders (Figure 2). Most labile leachate is quickly respired by microbes. Labile organic molecules are lost as DOM within the first 48 hours after litter immersion, accounting for almost one-third of low-molecularweight DOM in streams in the fall and winter (Meyer et al. 1998). The fluxes connecting dissolved organic carbon (DOC) from leaves to higher trophic levels may be underestimated, however (Meyer 1994). When bacteria that consume DOM are preyed upon by meiofauna, some of this energy may be shunted back into the food web (Meyer 1994). Low-molecular-weight compounds are a small fraction of the total DOC pool but may account for most of bacterial productivity transferred up aquatic food chains by heterotrophic flagellates and ciliates (Berggren et al. 2010). Leachate with more recalcitrant molecules can be exported downstream (Kaplan & Bott 1983, Wymore et al. 2015). Across litter types, leaching accounts for 5-45% of the dry mass lost to decomposition (Strauss & Lamberti 2002). DOC molecules can form aggregates large enough to reenter the macroscopic food web through filter feeders; these aggregates are also more susceptible to sinking into sediments where they can be stored or picked up by deposit feeders. The chemical composition of leachate differs across leaf types, affecting its lability (Strauss & Lamberti 2002, Wymore et al. 2015). Bacterial species discriminate among leachate types, determining in part whether carbon is respired, transferred to higher trophic levels, or transported downstream (Wymore et al. 2018).

3.2.2. Microbes. Microbes (bacteria, fungi, and protists) are integral to litter breakdown at every stage (**Figure 3**). Fungi account for 60–99% of total microbial biomass on large litter particles, with most estimates at more than 90% (Baldy et al. 1995, Findlay 2010). Microbes enter the water with the leaf or colonize quickly after leaf fall, having first access to the energy and elements contained in the litter before invertebrates colonize (Suberkropp & Klug 1980). Quantitative stable isotope probing (qSIP), which differentiates microbes that are actively replicating from dormant cells (Hungate et al. 2015, Hayer et al. 2016), revealed in one study that 80% of growing fungi were species that entered the stream with the leaf (J.C. Marks, unpublished data), giving these

Mineralization:

the biological process converting organic matter to mineral forms; mineralization generates carbon dioxide (CO₂), ammonium (NH₄+), phosphate (PO₄³⁻), sulfate (SO₄²⁻), and other molecules

Leachate: the suite of organic compounds that dissolve when a leaf is immersed in water (e.g., leachate is produced when making tea)

Pools: reservoirs of materials (elements, compounds, energy) in an ecosystem

Deposit feeders: animals that feed on material associated with benthic sediments

Quantitative Stable Isotope Probing (qSIP): a technique for measuring the isotopic composition of specific nucleic acid sequences that can be used to estimate microbial species growth rates

Mycelia: fungal filaments that grow on the surface and interior of dead leaves

Conidia: spores produced by fungi through mitosis (asexual reproduction); traditionally, aquatic fungal species were identified by the shape of their conidia species a head start before other aquatic consumers arrive. Fungi produce many extracellular enzymes that break down complex compounds (Suberkropp 1992) and contain essential nutrients for invertebrates not found in the dead plant tissue (Torres-Ruiz et al. 2007, Wallis et al. 2012, Funck et al. 2015, Danger et al. 2016). Bacteria, in contrast, mostly colonize from the sediments or water column after fungal breakdown commences (J.C. Marks, unpublished data). Fungi facilitate colonization by bacteria by breaking down recalcitrant molecules into more labile compounds and by causing leaves to disintegrate into smaller particles with higher surface areas (Suberkropp 1992, Gessner & Chauvet 1994). As they penetrate leaves, fungal mycelia can also deliver bacteria to otherwise inaccessible leaf tissue (Kohlmeier et al. 2005). As leaf particle size decreases, bacteria become more dominant in the decomposer guild (Findlay 2010). Extracellular polysaccharides (also known as exopolysaccharides) produced by bacteria, fungi, and algae are ubiquitous in freshwaters. They form the amorphous slime that binds cells together in biofilms. Exopolysaccharides are typically overlooked in stream food webs but can account for ten times more biomass than actual cells, dominating the carbon pool of microbial mats and forming a significant flux of organic matter to invertebrates (Couch et al. 1996, Hall & Meyer 1998).

Microbial biomass and productivity are generally higher on faster decomposing litter (Gessner & Chauvet 1994, Pastor et al. 2014). Different litter types promote the growth of different microorganisms (Nikolcheva & Bärlocher 2005, Marks et al. 2009), with some evidence that bacteria: fungi ratios are higher on rapidly decomposing litter types (Wymore et al. 2013, Pastor et al. 2014). These differences likely affect pathways of element flow to higher trophic levels and as such are central to predicting the roles of microbes as sinks or links in stream food webs. Molecular tools are revealing far more diversity in fungal taxa than was described by identifying fungi by the conidia/spores they produce (Nikolcheva & Bärlocher 2005, Duarte et al. 2015, Seena et al. 2019). Results from qSIP, however, indicate that, of the 150 fungal species living on submersed leaves and identified with next-generation sequencing, only 34% were actively dividing, demonstrating that many fungal cells on leaves are dormant (J.C. Marks, unpublished data). Molecular databases for aquatic fungi are rapidly growing (Seena et al. 2019) and will be instrumental in discerning the influence of different taxa on the pathways of element flow during decomposition.

Protists (unicellular eukaryotes including ciliates, flagellates, and amoebae) graze biofilms or capture particles in the water (Weitere et al. 2018). Protist grazing reduces microbial biomass, particularly bacteria, but can also indirectly increase microbially mediated decomposition by rapidly recycling nutrients (Ribblett et al. 2005, Wang et al. 2009). Protists alter the morphology of microbial mats, stimulating bacterial turnover by burrowing, digging, and increasing rugosity, porosity, and surface area, thereby promoting nutrient and gas exchange (Böhme et al. 2009, Dopheide et al. 2011, Risse-Buhl et al. 2012). Protists become a conduit transferring elements from leaves to higher trophic levels if macroinvertebrate collectors (**Figure 2**) feed on them (Ptatscheck et al. 2017).

Many microbes, however, are defended against grazing. Filamentous growth forms and large colonies allow bacteria to escape in size from small protozoan grazers. Exopolysaccharide capsules protect bacterial cells from consumption and digestion in the gut (Matz & Kjelleberg 2005), and the same mechanism is likely effective in open environments as well. Some bacteria produce defensive compounds internal to cells or released into the environment (Matz & Kjelleberg 2005). Through quorum sensing, bacteria cells communicate by secreting and sensing chemical signals, enabling populations to produce and excrete defensive compounds collectively to deter grazing (Matz & Kjelleberg 2005). Small protists and large macroinvertebrate shredders can detect and avoid defensive compounds in bacteria and fungi, preferentially eating more palatable taxa (Suberkropp 1992).

3.2.3. Invertebrates. Macroinvertebrates consume and recycle organic matter and are the primary link to higher trophic levels, particularly fish (reviewed in Graça 2001). Shredders, macroinvertebrates that consume the particles larger than 1 mm (e.g., leaves) (Figure 2), initiate the breakdown process. When macroinvertebrates are abundant, they ingest 50-65% of available leaf litter (Hieber & Gessner 2002), comminuting it into smaller particles that accelerate breakdown and consumption by microbes. Assimilation rates are much lower (approximately 1%) because invertebrates are inefficient feeders (Siders et al. 2018). Once ingested, elements derived from the litter can be incorporated into animal tissue, respired, excreted, or egested. Symbiotic gut microbes further break down organic matter in the gut, promoting assimilation and altering compounds prior to egestion. Excretion promotes nutrient cycling through mineralization, whereas egestion forms fecal pellets that enter FPOM to be broken down by microbes, reingested by invertebrates, or deposited and stored in stream sediments (Halvorson et al. 2017b). To the extent that macroinvertebrates directly assimilate litter-derived elements into their own biomass, they serve as major potential links of leaves to aquatic food webs. Most of the flux mediated by macroinvertebrates, however, is the conversion of litter to FPOM (Evans-White & Halvorson 2017, Halvorson et al. 2017b). This transformation can produce either links or sinks for elements in aquatic ecosystems. depending on whether FPOM is consumed by higher trophic levels (link) or lost to sedimentation, export, or gas production (sink).

Microorganisms influence how litter-derived elements flow through macroinvertebrates. As mentioned previously, macroinvertebrates prefer and grow faster on litter that has been colonized by microbes and partially converted to microbial biomass, or conditioned (Suberkropp 1992). Yet, it is not well known which particular assemblages of microorganisms, and which traits of litter, are more or less effective at facilitating element assimilation from leaves by macroinvertebrates. Past work assessing growth on—or preference for—different litter types provides some insight into the traits of litter that influence macroinvertebrate growth, but these studies have yielded mixed results (Graça 2001). In some cases, rapidly decomposing litter types disproportionately support invertebrates (Golladay et al. 1983, Motomori et al. 2001), but the opposite can also occur (Fuller et al. 2015, Halvorson et al. 2017b), and in other cases, no clear patterns are apparent (Graça 2001, Fogelman et al. 2018). Growth studies, typically conducted in the laboratory, usually do not address the role of microbes as competitors, because litter is provided in unlimited supply. Preference studies may not last long enough to detect preference shifting, biasing results toward apparent preference for rapidly decomposing litter (Compson et al. 2018).

Hundreds of studies have compared invertebrates on different leaf types, yet it remains difficult to predict how leaf type affects stream invertebrates, despite a persistent view that rapidly decomposing litter is of higher quality. Recent studies using leaves grown with isotopic labels to follow carbon and nitrogen through multiple pathways challenge this view, demonstrating that in some cases, slowly decomposing litter transfers a higher proportion of leaf carbon to macrobiota at higher trophic levels, whereas rapidly decomposing litter supports more microbial productivity that is lost to macrobiota (Compson et al. 2018, Siders et al. 2018) (**Figure 4**). The rate of litter decomposition may influence whether micro- or macroorganisms benefit from dead leaves that fall into streams.

3.2.4. Fine particulate organic matter. FPOM is generated from leaf litter by several processes (**Figure 3**). Some is generated physically (e.g., abrasion), but most is produced biologically. Fungal enzymes break down large particles, releasing FPOM (Suberkropp 1992). Shredders create FPOM, some as a byproduct of sloppy feeding, most through egesta or feces (Petersen & Cummins 1974, Graça 2001). FPOM, the primary food resource for collectors, is not as well studied as CPOM (Bundschuh & McKie 2016). The species composition of both consumers and

Symbiotic gut
microbes: microbes
that contribute to
decomposition of
detritus in the guts of
detritivores, producing
small-molecularweight compounds
that the detritivore
utilizes in metabolism

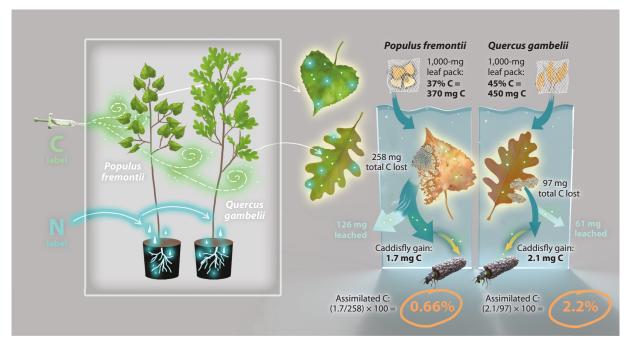


Figure 4

Labeling trees with stable isotopes of carbon (C) and nitrogen (N) allows direct measurements of C and N flow to different pathways. Enriched molecules are depicted as fluorescent dots. Leaf packs are constructed with labeled leaves and incubated in streams. In the example shown here (Siders et al. 2018), more C was assimilated by a shredding caddisfly from slowly decomposing oak litter than from rapidly decomposing Fremont cottonwood litter. In contrast, more C was lost to leachate and to microbial biomass from the Fremont cottonwood leaf packs than from the oak litter. These and similar results from other invertebrate taxa (Fuller et al. 2015) challenge the view that faster decomposing leaves provide more nourishment for macroinvertebrates in streams. Illustration by Victor Leshyk and Abigail Downard.

leaves affects the amount of FPOM produced, the size of particles generated, and their stoichiometry (Bundschuh & McKie 2016). FPOM production can vary 20-fold across macroinvertebrate species and is directly related to their rates of litter consumption (Santonja et al. 2018).

When detritus passes through the guts of invertebrates, particles are stripped of nutrients and labile carbon, creating packets of organic matter with higher C:N ratios and lignin concentrations than the original leaf litter (Yoshimura et al. 2008, Santonja et al. 2018). Decomposition rates of FPOM by microbes correlate with rates of decomposition of the original CPOM, preserving the signal of the leaf litter, but FPOM breaks down more slowly (Webster et al. 1999, Wurzbacher et al. 2016), probably because higher C:P or C:N ratios more than counteract higher surface:volume ratios.

Egesta or fecal pellets constitute as much as two-thirds of FPOM and have their own natural history (Malmqvist et al. 2001). Although FPOM is transferred farther downstream than larger particles (Webster et al. 1999), it also accumulates in depositional areas and slowly decomposes over months to years (Joyce et al. 2007, Yoshimura et al. 2008). Egesta leave the gut after acquiring high bacteria loads (Joyce et al. 2007, Callisto & Graça 2013). Egesta can be strong sinks for carbon and inorganic nutrients when they are deposited in sediments or broken down by microbes (Halvorson et al. 2017b), but they can also catalyze microbial loops if they reenter macroscopic food chains via filter feeders or collectors/gatherers. Extracellular polysaccharides maintain the shape and size of pellets, contributing to their sinking and storage (Joyce et al. 2007). For example,

feces of amphipods, common shredders, remain stored in sediments in the winter but begin to decompose in the spring as water warms, providing a food resource when most CPOM has disappeared (Joyce et al. 2007). Many invertebrates eat their own and each other's fecal pellets (Wotton & Malmqvist 2001). Chironomid (midge) larvae, ubiquitous in streams, empty their guts up to 20 times per day, recycling organic matter from their own feces which some also use to build tubes in which they live (Hirabayashi & Wotton 1998). Filter-feeding blackfly larvae aggregate small particles from the water column with their labral fans, turning small particles into larger fecal pellets that are deposited and stored in sediments (Malmqvist et al. 2001). Densities of blackflies can be so high (up to 600,000 individuals per m²) that they form visible black mats on rocks, profoundly affecting organic matter cycling (Wotton & Malmqvist 2001). Little information is available about how litter type affects the relative strength of these FPOM pathways, but the enormous quantity of egesta in streams suggests that small shifts toward microbes that are fed upon by filter feeders or collectors could significantly alter the amount of energy and nutrients that link to higher trophic levels.

Labral fans: feeding structures resembling foldable fans that surround the mouth of blackfly larvae (Simuliidae), capturing particles from the water column

4. RETHINKING BIASES: IS FASTER BETTER? NEW EVIDENCE FROM STABLE ISOTOPES

Elements originally bound in litter follow fast and slow pathways into and out of the macroscopic food web. Rapidly decomposing litter yields up its elements more quickly, but this does not necessarily mean that, over the longer term, it contributes more carbon or nutrients to the macroscopic food web. Sampling schedules in laboratory and field experiments tend to bias findings: Shortterm sampling documents more breakdown products of litter from rapidly decomposing leaves, when slowly decomposing litter is still in early phases of decomposition, with most elements still bound in more refractory litter. Sampling regimes of short duration overestimate the contribution from rapidly decomposing litter to litter breakdown products and underestimate those from litter that breaks down more slowly. Experimental and natural litter packs host so many invertebrates that it is difficult to discern which insects are using the litter as a food source and which are using it as habitat. Stable isotope labeling offers a sensitive, quantitative way to follow carbon and nitrogen from leaf litter into microorganisms and macroinvertebrates, determining which organisms rely on leaf matter for food by quantifying both rates and pathways of element flow (Figure 4). This approach also demonstrates how carbon and nitrogen from litter of different plant species follow distinct pathways, differences that standard community analyses have failed to detect (Compson et al. 2015). Three strong patterns emerge from stable isotope tracer studies of these rates and pathways: First, slowly decomposing litter often transfers more litter carbon and nitrogen to higher trophic levels than rapidly decomposing litter (Compson et al. 2015, Siders et al. 2018) (Figure 4). Second, rapidly decomposing litter supports more microbial biomass and higher bacterial productivity, whereas slowly decomposing litter tends to promote fungal growth (Wymore et al. 2013, Pastor et al. 2014), which may be a better food resource than bacteria for some invertebrates (Arsuffi & Suberkropp 1989, Findlay 2010). Third, more carbon and nitrogen are lost as leachate from rapidly decomposing litter compared with more slowly decomposing litter (Wymore et al. 2015, Siders et al. 2018). In preference experiments, shredders initially preferred rapidly decomposing litter, but after a few weeks of decomposition, their preference shifted toward more slowly decomposing litter (Compson et al. 2018). Although plant structural compounds may retard nutrient cycling, the slower release rates of energy and nutrients bound in complex chemicals may increase the efficiency and the long-term rate of elemental transfers to invertebrates.

Compson et al. (2018) found carbon and nitrogen assimilation by a shredding caddisfly feeding on different cottonwood genotypes to be decoupled from decomposition rate. Tannin and lignin

Riparian zones:

the vegetated areas surrounding streams that function as the link between terrestrial and aquatic habitats both slowed the rate of decomposition, but higher lignin concentrations correlated with higher rates of element assimilation—particularly nitrogen—by macroinvertebrates. In contrast, tannin appeared to suppress element assimilation by macroinvertebrates. This contrast illustrates how the rate of element loss from decomposing litter is decoupled from the pathways through which elements flow: Both defensive and structural compounds slow the rate of decay. But defensive compounds like tannin retard element assimilation by macroinvertebrates and appear to retain anti-insect properties even after the death of the leaf. In contrast, structural compounds in leaves retard the rate of decay but can promote element transfer throughout food webs, possibly because of better congruence between leaf litter decay and the life cycle of macroinvertebrates.

5. GLOBAL CHANGE AND STREAM FOOD WEBS

Riparian zones and streams are hotspots of biodiversity but have been degraded through river channelization, dewatering, dam building, deforestation, and invasions of non-native species. Degradation or loss of riparian vegetation reduces wildlife habitat and corridors, increases temperature, reduces water quality, and depletes river food webs of leaves (Sweeney et al. 2004). Globally, the species composition of riparian plants is changing, with increases in drought-tolerant plants, agricultural species, and non-native species (Ashton et al. 2005, Kominoski et al. 2013). Stream restoration projects allow practitioners to shape the species composition of vascular plants in riparian zones. Understanding how leaves function in rivers is integral to predicting responses to global change and designing restoration and conservation programs to conserve biodiversity and sustain ecosystem services. The rates and pathways of litter loss are both sensitive to primary drivers of global change, including loss of biodiversity, warming, nutrient deposition, and pollution with synthetic chemicals.

5.1. Diversity of Leaves and Macroinvertebrates

Global loss of biodiversity has motivated studies testing for relationships between biodiversity and ecosystem function (Hooper et al. 2012). Perhaps the most important effect of functional diversity in litter type in streams was recognized decades ago. Leaves that decompose at different rates provide a continuum of resources for shredders throughout their life cycles (Sedell et al. 1975, Grubbs & Cummins 1994) (Figure 1). Recent studies support this finding, showing that rapidly decomposing litter provides a pulse of carbon and nitrogen to invertebrates shortly after leaf fall, whereas slowly decomposing litter makes carbon and nitrogen available later in the season (Ferreira et al. 2016, Siders et al. 2018) (Figure 5). In experimental studies, effects of plant species richness on decomposition, measured using mixed litter leaf packs, are variable, but higher litter richness tends to accelerate decomposition (Handa et al. 2014). Furthermore, effects of invertebrate diversity, accelerating decomposition through facilitation and niche partitioning (Jonsson et al. 2001, Jabiol et al. 2013, Handa et al. 2014), are larger and more consistent in diverse leaf packs. Diversity of functional feeding groups increases both the rate and the size of the flux toward higher trophic levels, because consumers capitalize on different size classes of organic matter (Tonin et al. 2018). As invertebrate species decline, more organic matter will be processed by microbes, increasing carbon export out of streams as CO_2 .

5.2. Impacts of Warming and Nutrients

In lakes and oceans, small increases in nutrients or temperature increase food web productivity, but larger increases in nutrients and warming tip ecosystems to alternative states, reducing

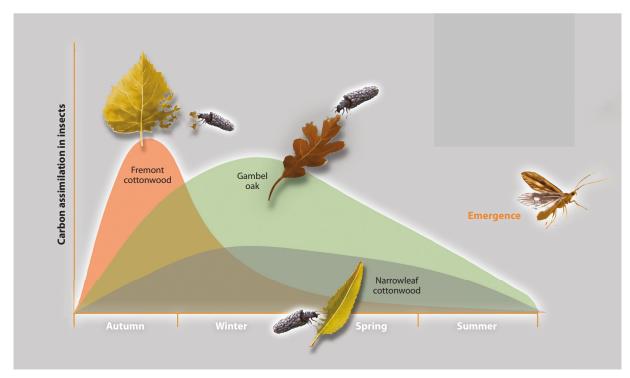


Figure 5

Phenology of carbon assimilation by invertebrates from leaves in a southwestern United States ecosystem over a hypothetical year. Total carbon assimilated is the area under each curve. Stable isotope studies indicate that rapidly decomposing litter types, such as Fremont cottonwood, provide a rapid but brief pulse of carbon and nutrients to invertebrates within weeks after litter fall. In contrast, litter that decomposes more slowly provides a more sustained flux, with some leaf types (e.g., oak) transferring more carbon than others (e.g., narrowleaf cottonwood), depending on the leaf concentrations of structural versus defensive compounds (e.g., Siders et al. 2018). Illustration by Victor Leshyk and Abigail Downard.

trophic complexity and food chain length (Folke et al. 2004). These trends may also prove true in detrital-based stream food webs. A recent meta-analysis of rivers and streams found that warming by 1.4°C accelerated decomposition (mediated by both microbes and macroinvertebrates) by 5-21% (Follstad Shah et al. 2017). More warming might shift the balance between the two pathways, favoring microbial processing, if streams follow trends documented in lakes and oceans. Climate warming is predicted to increase microbially mediated litter decomposition but decrease macroinvertebrate-mediated decomposition, because shredder densities decrease with temperature (Boyero et al. 2011a, 2016). Increases in temperature could create tipping points, particularly at low latitudes where the species diversity of shredders is low, shredder taxa are close to their thermal maxima, and small declines in diversity may be irreversible and could eliminate most of the shredder guild (Boyero et al. 2011b, 2016) (Figure 6). Strong coupling of predators and prey in detrital streams (Wallace et al. 2015) indicates that depletion of the shredder guild compromises invertebrate and vertebrate predators, resulting in trophic downgrading, in which top-down controls are diminished (Estes et al. 2011). Because tropical streams and rivers produce a large fraction of the global CO₂ flux from freshwater ecosystems into the atmosphere, shifts toward microbial respiration would decrease the capacity of these waters to store carbon, measurably affecting the global carbon cycle (Battin et al. 2009, Raymond et al. 2013).

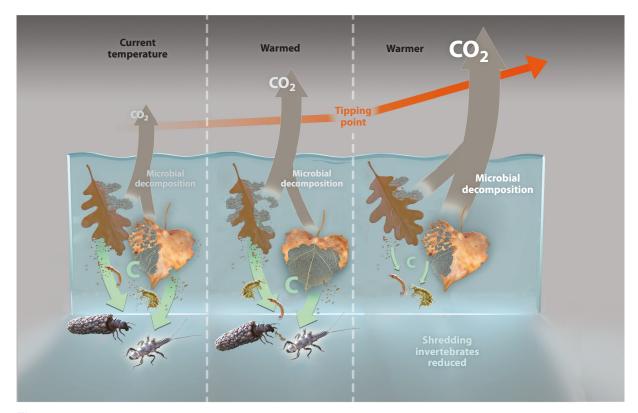


Figure 6

Shifts in carbon flows through detrital-based stream food webs caused by increased temperature. Small increases in temperature will accelerate both microbial and macroinvertebrate activity, increasing decomposition and the rate of element loss, but with minor effects on pathways or fluxes of carbon. In contrast, larger increases driving temperatures toward thresholds that exceed temperature tolerance of shredders would shift energy away from shredding invertebrates and toward microbial respiration, increasing carbon dioxide (CO₂) fluxes from streams to the atmosphere. If shredders are lost from the ecosystem, decomposition rates may not change because increases in microbial decomposition are offset by decreases in macroinvertebrate decomposition, but there would be a large shift of carbon fluxes away from stream food webs and toward microbial respiration and CO₂ production (Boyero et al. 2011a). Illustration by Victor Leshyk and Abigail Downard.

Nutrient enrichment, primarily nitrogen and phosphorus, also stimulates decomposition (Ferreira et al. 2015) by increasing microbial activity, because microbes acquire nutrients from the water column (Cheever et al. 2013, Pastor et al. 2014). Microbes have lower C:N and C:P ratios than leaf litter (Cross et al. 2003), and nutrient uptake helps resolve the mismatch. Nutrient uptake by bacteria and fungi also aligns the stoichiometry of the detrital matrix with requirements of invertebrates (Cross et al. 2003), which consume more litter, further accelerating decomposition (Manning et al. 2015, Halvorson et al. 2018). Nutrient loading in extreme cases (hypereutrophic streams) depletes oxygen, which slows decomposition and excludes invertebrates and other aerobic organisms (Woodward et al. 2012, Ferreira et al. 2015).

Low levels of nutrient enrichment increase food web productivity by reducing elemental imbalances between basal resources and consumers (Cross et al. 2006, Demi et al. 2018). Macroinvertebrate abundance and shredding increase after whole-stream nutrient enrichment (Cross et al. 2006, Manning et al. 2015, Demi et al. 2018), but microbial respiration and carbon loss through

export of particulate materials also increase (Rosemond et al. 2015, Kominoski et al. 2018). The increased flux to invertebrates could be reversed as carbon storage decreases and invertebrates become limited by the quantity of detrital resources rather than their nutrient content (Halvorson et al. 2017a). Although carbon storage may buffer streams for a couple of years, ultimately sustained increases in respiration and export would limit the quantity of litter (Wallace et al. 2015, Halvorson et al. 2017a). Nutrient enrichment reduces differences in decomposition rates across plant species by disproportionately accelerating decomposition of slowly decomposing species (Gulis & Suberkropp 2003, Manning et al. 2015), which limits food availability for invertebrates later in the season. Ecosystems where invertebrates are limited more by phosphorus than by nitrogen may be more susceptible to large changes in food web structure, because human activities are shifting ecosystems away from nitrogen limitation and toward phosphorus limitation (Peñuelas et al. 2013). Stochiometric ratios across fungal species are more variable than in invertebrates, and changes in fungal species could preserve microbial respiration rates as N:P ratios increase (Danger et al. 2016). Carbon compounds bound in litter may bypass macroscopic food webs if decomposition shifts more toward microbial, rather than macroinvertebrate, pathways in ecosystems with increased nitrogen but not phosphorus (Demi et al. 2018).

5.3. Xenochemicals

Many pollutants impact microbes or macroinvertebrates, reducing decomposition. Fungicides, commonly used in agriculture, reduce fungal biomass and the palatability and assimilation of litter by invertebrates, slowing down decomposition (Zubrod et al. 2011, Fernández et al. 2015). Pesticides that target invertebrates reduce macroinvertebrate densities and activity, shunting energy away from the macroscopic food web (Schäfer et al. 2012). Pharmaceuticals and personal care products are an emerging problem, with biologically active compounds found in rivers worldwide, which tend to suppress microbial activity, slowing decomposition (Rosi-Marshall et al. 2013).

5.4. Changes in Riparian Vegetation

Changes in plant species composition of riparian zones have variable effects on stream food webs. Responses are dramatic if plants produce lethal compounds novel to the invaded ecosystems (Custer et al. 2017). More prevalent but subtle consequences occur through changes in the nutritional content of leaves, because invasive species often have higher concentrations of nitrogen than natives (Ashton et al. 2005). Increased nutrient content could lead to more productive food webs. but not if energy is disproportionately channeled through microbial decomposition. Tamarisk, a widespread invasive species, presents a compelling example. Litter from tamarisk has high nutrient content and decomposes faster than many native riparian plants (Going & Dudley 2008). In shortterm laboratory experiments, insects fed tamarisk litter grew more quickly than insects fed native cottonwood or willow litter (Going & Dudley 2008, Moline & Poff 2008). Yet, field experiments show tamarisk reduces aquatic invertebrate diversity and abundance (Bailey et al. 2001, Kennedy & Hobbie 2004). Its rapidly decomposing litter is associated with decreases in invertebrates and fish (Kennedy et al. 2005) (Figure 1). Tamarisk leaves are hard to find in the river just a few weeks after leaf fall (Moline & Poff 2008). Overall, the ephemeral nature of tamarisk litter appears to have negative effects on stream invertebrate production, because most of its energy is going to microbial respiration. In addition, dense tamarisk thickets shade the stream, limiting algal growth (Going & Dudley 2008, Hultine et al. 2013). Removal of tamarisk allows macroinvertebrates and fish to rebound (Kennedy et al. 2005).

Operational taxonomic units (OTUs): describes bacterial groups in lieu of the term "species," because species concepts for bacteria are complex and poorly defined

Eucalypt plantations outside of the native range of eucalypts present a counter example. The decomposition rate in leaves of eucalypts is slowed by structural and defensive compounds. The thick cuticles of eucalypts limit fungal colonization of leaf surfaces to stomatal openings. Fungal breakdown occurs beneath the waxy cuticle in areas where invertebrates cannot access, greatly depressing energy flow to invertebrates (Graça et al. 2002). Therefore, introduction of slowly decomposing non-native eucalypt litter inhibits macroinvertebrates in streams (Graça et al. 2002). The contrast between tamarisk and eucalypts demonstrates that non-native plants can decompose more rapidly or more slowly than native flora, and in both cases can alter pathways of element flow, depending on specific traits of the leaves and their impacts on microbial and macroinvertebrate decomposers.

6. SUMMARY

Energy and nutrients bound in litter can follow multiple pathways during decomposition in streams, but a few branch points determine the fates of dead leaves that fall into streams. First, to what extent are the elements contained in litter directly assimilated by macroconsumers or by microbes? Second, of the portion taken up by microbes, to what extent are these assimilated by macroconsumers that transfer them throughout food webs? What portion of microbial biomass is respired as CO₂, stored in stream sediments or exported downstream? Models to predict these fates and pathways must take into account: (a) traits of leaves (nutrient content, structural and defensive compounds, timing of litter fall, etc.), which vary with species and even genotype in ways that constrain consumption and decomposition; (b) life history and feeding style of the macro- and microheterotrophs consuming litter; and (c) environmental conditions in streams that accelerate (nutrients, temperature) or decelerate (pollutants) decomposition.

7. FUTURE ISSUES

Quantitative models are needed to predict both the pathways of elemental fluxes triggered by litter inputs to specific stream ecosystems and the regional or global trends in stream carbon budgets. The fate of DOM and FPOM in river food webs is poorly understood, although they dominate carbon pools in rivers. Small shifts of carbon fluxes toward or away from macroorganismal food webs could profoundly affect stream food web productivity. More research focusing on how litter type affects the fate of DOM and FPOM is needed to reveal and classify leaf traits that affect these fluxes. Research that integrates microbial and ecosystem ecology by exploring the biogeochemical significance of individual microbial taxa will bring the power of the molecular revolution to biogeochemistry. New techniques such as qSIP can bridge these fields to define the roles of genetically determined species [or operational taxonomic units (OTUs)] in ecosystem processes. Microbes, like macroorganisms, can then be classified into: (a) dominants, taxa that are high in abundance with a large influence on element fluxes through the system; (b) keystones, taxa whose influence on element fluxes are disproportionately large compared with their abundance (sensu Power et al. 1996); and (c) weak interactors, taxa that are present and may be growing and assimilating elements but whose abundances and growth rates have little influence on ecosystem processes.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Bruce Hungate and Mary Power provided insightful reviews of this manuscript. Zacchaeus Compson, Adam Wymore, and Adam Siders helped advance alternative perspectives of the role of leaf litter in streams.

LITERATURE CITED

- Arsuffi TL, Suberkropp K. 1989. Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. *Oecologia* 79(1):30–37
- Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. *Ecol. Appl.* 15(4):1263–72
- Bailey JK, Schweitzer JA, Whitham TG. 2001. Salt cedar negatively affects biodiversity of aquatic macroinvertebrates. Wetlands 21(3):442–47
- Baldy V, Gessner MO, Chauvet E. 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74(1):93–102
- Bärlocher F. 1982. On the ecology of Ingoldian fungi. BioScience 32(7):581-86
- Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat. Geosci. 2(9):598
- Berggren M, Ström L, Laudon H, Karlsson J, Jonsson A, et al. 2010. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. *Ecol. Lett.* 13(7):870–80
- Böhme A, Risse-Buhl U, Küsel K. 2009. Protists with different feeding modes change biofilm morphology. FEMS Microbiol. Ecol. 69(2):158–69
- Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, et al. 2011b. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. *Ecology* 92(9):1839–48
- Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, et al. 2011a. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14(3):289–94
- Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, et al. 2016. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. *Proc. R. Soc. B* 283(1829):20152664
- Bundschuh M, McKie BG. 2016. An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshw. Biol. 61(12):2063–74
- Callisto M, Graça MA. 2013. The quality and availability of fine particulate organic matter for collector species in headwater streams. Int. Rev. Hydrobiol. 98(3):132–40
- Cheever BM, Webster JR, Bilger EE, Thomas SA. 2013. The relative importance of exogenous and substratederived nitrogen for microbial growth during leaf decomposition. *Ecology* 94(7):1614–25
- Compson ZG, Hungate BA, Koch GW, Hart SC, Maestas JM, et al. 2015. Closely related tree species differentially influence the transfer of carbon and nitrogen from leaf litter up the aquatic food web. *Ecosystems* 18(2):186–201
- Compson ZG, Hungate BA, Whitham TG, Koch GW, Dijkstra P, et al. 2018. Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation. *Ecology* 99(8):1759– 70
- Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11(10):1065–71
- Couch CA, Meyer JL, Hall RO Jr. 1996. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae). J. North Am. Benthol. Soc. 15(3):289–99
- Cross WF, Benstead JP, Rosemond AD, Wallace JB. 2003. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6(8):721–32
- Cross WF, Wallace JB, Rosemond AD, Eggert SL. 2006. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. *Ecology* 87(6):1556–65
- Cummins KW. 1974. Structure and function of stream ecosystems. BioScience 24(11):631-41

- Custer KW, Borth EB, Mahoney SD, McEwan RW. 2017. Lethal and sublethal effects of novel terrestrial subsidies from an invasive shrub (*Lonicera maackii*) on stream macroinvertebrates. *Freshw. Sci.* 36(4):750–50
- Danger M, Gessner MO, Bärlocher F. 2016. Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecol. 19:100–11
- Demi LM, Benstead JP, Rosemond AD, Maerz JC. 2018. Litter P content drives consumer production in detritus-based streams spanning an experimental N:P gradient. *Ecology* 99(2):347–59
- Dopheide A, Lear G, Stott R, Lewis G. 2011. Preferential feeding by the ciliates *Chilodonella* and *Tetrahymena* spp. and effects of these protozoa on bacterial biofilm structure and composition. *Appl. Environ. Microbiol.* 77(13):4564–72
- Duarte S, Bärlocher F, Trabulo J, Cássio F, Pascoal C. 2015. Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. *Fungal Divers*. 70(1):127–48
- Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, et al. 2011. Trophic downgrading of planet Earth. Science 333(6040):301–6
- Evans-White MA, Halvorson HM. 2017. Comparing the ecological stoichiometry in green and brown food webs—a review and meta-analysis of freshwater food webs. Front. Microbiol. 8:1184
- Fernández D, Voss K, Bundschuh M, Zubrod JP, Schäfer RB. 2015. Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci. Total Environ. 533:40–48
- Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MA. 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. *Biol. Rev.* 90(3):669–88
- Ferreira V, Castela J, Rosa P, Tonin AM, Boyero L, Graça MA. 2016. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. *Aquat. Ecol.* 50(4):711–25
- Findlay S. 2010. Stream microbial ecology. 7. North Am. Benthol. Soc. 29(1):170-81
- Fogelman KJ, Bilger MD, Holt JR, Matlaga DP. 2018. Decomposition and benthic macroinvertebrate communities of exotic Japanese knotweed (*Fallopia japonica*) and American sycamore (*Platanus occidentalus*) detritus within the Susquehanna River. *J. Freshw. Ecol.* 33(1):299–310
- Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. *Annu. Rev. Ecol. Evol. Syst.* 35:557–81
- Follstad Shah JJ, Kominoski JS, Ardón M, Dodds WK, Gessner MO, et al. 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob. Change Biol. 23(8):3064– 75
- Fuller CL, Evans-White MA, Entrekin SA. 2015. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry. *Oecologia* 177(3):837–48
- Funck JA, Bec A, Perrière F, Felten V, Danger M. 2015. Aquatic hyphomycetes: a potential source of polyunsaturated fatty acids in detritus-based stream food webs. *Fungal Ecol.* 13:205–10
- García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S. 2016. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct. Ecol. 30(5):819–29
- Gessner MO, Chauvet E. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. *Ecology* 75(6):1807–17
- Gessner MO, Chauvet E, Dobson M. 1999. A perspective on leaf litter breakdown in streams. Oikos 85:377–84Going BM, Dudley TL. 2008. Invasive riparian plant litter alters aquatic insect growth. Biol. Invasions 10(7):1041–51
- Golladay SW, Webster JR, Benfield EF. 1983. Factors affecting food utilization by a leaf shredding aquatic insect: leaf species and conditioning time. *Ecography* 6(2):157–62
- Graça MA. 2001. The role of invertebrates on leaf litter decomposition in streams—a review. Int. Rev. Hydrobiol. 86(4-5):383–93
- Graça MA, Cressa C. 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int. Rev. Hydrobiol. 95(1):27–41
- Graça MA, Pozo J, Canhoto C, Elosegi A. 2002. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. Sci. World 7. 2:1173–85

- Grubbs SA, Cummins KW. 1994. Processing and macroinvertebrate colonization of black cherry (Prunus serotina) leaves in two streams differing in summer biota, thermal regime and riparian vegetation. Am. Midland Nat. 132:284–93
- Gulis V, Suberkropp K. 2003. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb. Ecol. 45(1):11–19
- Hall RO Jr., Meyer JL. 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79(6):1995–2012
- Halvorson HM, Fuller CL, Entrekin SA, Scott JT, Evans-White MA. 2018. Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos 127(10):1471–81
- Halvorson HM, Hall DJ, Evans-White MA. 2017b. Long-term stoichiometry and fates highlight animal egestion as nutrient repackaging, not recycling, in aquatic ecosystems. Funct. Ecol. 31(9):1802–12
- Halvorson HM, Sperfeld E, Evans-White MA. 2017a. Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory. Ecology 98(12):2995–3002
- Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, et al. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509(7499):218
- Hayer M, Schwartz E, Marks JC, Koch BJ, Morrissey EM, et al. 2016. Identification of growing bacteria during litter decomposition in freshwater through quantitative stable isotope probing. Environ. Microbiol. Rep. 8(6):975–82
- Hieber M, Gessner MO. 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83(4):1026–38
- Hirabayashi K, Wotton RS. 1998. Organic matter processing by chironomid larvae (Diptera: Chironomidae). Hydrobiologia 382(1-3):151-59
- Hobbie SE. 2000. Interactions between litter lignin and nitrogen and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. *Ecosystems* 3(5):484–94
- Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. *Nature* 486(7401):105
- Hultine K, Dudley TL, Sher A, Quigley M. 2013. Tamarix from organism to landscape. In Tamarix: A Case Study of Ecological Change in the American West, pp. 149–67. New York: Oxford Univ. Press
- Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, et al. 2015. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81:7570–81
- Jabiol J, McKie BG, Bruder A, Bernadet C, Gessner MO, Chauvet E. 2013. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J. Anim. Ecol. 82(5):1042–51
- Jonsson M, Malmqvist B, Hoffsten PO. 2001. Leaf litter breakdown rates in boreal streams: Does shredder species richness matter? Freshw. Biol. 46(2):161–71
- Joyce P, Warren LL, Wotton RS. 2007. Faecal pellets in streams: their binding, breakdown and utilization. Freshw. Biol. 52(10):1868–80
- Kaplan L, Bott TTL. 1983. Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream. Freshw. Biol. 13(4):363–77
- Kaushik NK, Hynes HBN. 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68:465-515
- Kennedy TA, Finlay JC, Hobbie SE. 2005. Eradication of invasive Tamarix ramosissima along a desert stream increases native fish density. Ecol. Appl. 15(6):2072–83
- Kennedy TA, Hobbie SE. 2004. Saltcedar (*Tamarix ramosissima*) invasion alters organic matter dynamics in a desert stream. *Freshw. Biol.* 49(1):65–76
- Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY. 2005. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39(12):4640–46
- Kominoski JS, Rosemond AD, Benstead JP, Gulis V, Manning DW. 2018. Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. *Limnol. Oceanogr.* 63(1):22–36
- Kominoski JS, Follstad Shah JJ, Canhoto C, Fischer DG, Giling DP, et al. 2013. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11(8):423–32
- LeRoy CJ, Whitham TG, Wooley SC, Marks JC. 2007. Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. 7. North Am. Benthol. Soc. 26(3):426–38

- LeRoy CJ, Wooley SC, Lindroth RL. 2012. Genotype and soil nutrient environment influence aspen litter chemistry and in-stream decomposition. Freshw. Sci. 31(4):1244–53
- Malmqvist B, Wotton RS, Zhang Y. 2001. Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 92(1):35–43
- Manning DW, Rosemond AD, Kominoski JS, Gulis V, Benstead JP, Maerz JC. 2015. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates. *Ecology* 96(8):2214–24
- Marcarelli AM, Baxter CV, Mineau MM, Hall RO. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. *Ecology* 92(6):1215–25
- Marks JC, Haden GA, Harrop BL, Reese EG, Keams JL, et al. 2009. Genetic and environmental controls of microbial communities on leaf litter in streams. Freshw. Biol. 54(12):2616–27
- Matz C, Kjelleberg S. 2005. Off the hook—how bacteria survive protozoan grazing. *Trends Microbiol*. 13(7):302-7
- Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3):621–26
- Meyer JL. 1994. The microbial loop in flowing waters. Microb. Ecol. 28(2):195-99
- Meyer JL, Wallace JB, Eggert SL. 1998. Leaf litter as a source of dissolved organic carbon in streams. *Ecosystems* 1(3):240–49
- Moline AB, Poff NL. 2008. Growth of an invertebrate shredder on native (*Populus*) and non-native (*Tamarix*, *Elaeagnus*) leaf litter. *Freshw. Biol.* 53(5):1012–20
- Motomori K, Mitsuhashi H, Nakano S. 2001. Influence of leaf litter quality on the colonization and consumption of stream invertebrate shredders. *Ecol. Res.* 16(2):173–82
- Newbold JD, Elwood JW, O'Neill RV, Winkle WV. 1981. Measuring nutrient spiraling in streams. Can. J. Fish. Aquat. Sci. 38(7):860–63
- Nikolcheva LG, Bärlocher F. 2005. Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. *Environ. Microbiol.* 7(2):270–80
- Pastor A, Compson ZG, Dijkstra P, Riera JL, Martí E, et al. 2014. Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. *Oecologia* 176(4):1111– 21
- Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, et al. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. *Nat. Commun.* 4:2934
- Petersen RC, Cummins KW. 1974. Leaf processing in a woodland stream. Freshw. Biol. 4(4):343-68
- Pomeroy LR. 1974. The ocean's food web, a changing paradigm. Bioscience 24(9):499-504
- Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, et al. 1996. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. *BioScience* 46(8):609–20
- Ptatscheck C, Putzki H, Traunspurger W. 2017. Impact of deposit-feeding chironomid larvae (*Chironomus riparius*) on meiofauna and protozoans. *Freshw. Sci.* 36(4):796–804
- Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, et al. 2013. Global carbon dioxide emissions from inland waters. Nature 503(7476):355
- Ribblett SG, Palmer MA, Wayne Coats D. 2005. The importance of bacterivorous protists in the decomposition of stream leaf litter. *Freshw. Biol.* 50(3):516–26
- Risse-Buhl U, Karsubke M, Schlief J, Baschien C, Weitere M, Mutz M. 2012. Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. *Aquat. Microb. Ecol.* 66(2):133–47
- Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, et al. 2015. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. *Science* 347(6226):1142–45
- Rosi-Marshall EJ, Kincaid DW, Bechtold HA, Royer TV, Rojas M, Kelly JJ. 2013. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. *Ecol. Appl.* 23(3):583–93
- Santonja M, Pellan L, Piscart C. 2018. Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecol. Evol. 8(5):2542–53

- Schäfer RB, von der Ohe PC, Rasmussen J, Kefford BJ, Beketov MA, et al. 2012. Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. *Environ. Sci. Technol.* 46(9):5134–42
- Sedell JR, Triska FJ, Triska NS. 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: I. Weight loss and associated invertebrates. Int. Ver. Theor. Angew. Limnol. Verb. 19(3):1617–27
- Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, et al. 2019. Biodiversity of leaf litter fungi in streams along a latitudinal gradient. *Sci. Total Environ.* 661:306–15
- Sherr EB, Sherr BF, Albright LJ. 1987. Bacteria: link or sink? Science 235(4784):88a
- Siders AC, Compson ZG, Hungate BA, Dijkstra P, Koch GW, et al. 2018. Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere 9(7):e02340
- Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton Univ. Press
- Strauss EA, Lamberti GA. 2002. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshw. Biol. 47(1):65–74
- Suberkropp K. 1992. Interactions with invertebrates. In The Ecology of Aquatic Hyphomycetes, ed. F Bärlocher, pp. 118–34. Berlin: Springer
- Suberkropp K, Klug MJ. 1980. The maceration of deciduous leaf litter by aquatic hyphomycetes. Can. J. Bot. 58(9):1025–31
- Sweeney BW, Bott TL, Jackson JK, Kaplan LA, Newbold JD, et al. 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. PNAS 101(39):14132–37
- Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, et al. 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5(1):eaav0486
- Tonin AM, Pozo J, Monroy S, Basaguren A, Pérez J, et al. 2018. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87(5):1465–74
- Torres-Ruiz M, Wehr JD, Perrone AA. 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. 7. North Am. Benthol. Soc. 26(3):509–22
- Tuchman NC, Wetzel RG, Rier ST, Wahtera KA, Teeri JA. 2002. Elevated atmospheric CO₂ lowers leaf litter nutritional quality for stream ecosystem food webs. Glob. Change Biol. 8(2):163–70
- Wallace JB, Eggert SL, Meyer JL, Webster JR. 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. *Ecology* 96(5):1213–28
- Wallis IR, Claridge AW, Trappe JM. 2012. Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biol. 116(5):590–602
- Wang H, Jiang L, Weitz JS. 2009. Bacterivorous grazers facilitate organic matter decomposition: a stoichiometric modeling approach. FEMS Microbiol. Ecol. 69(2):170–79
- Webster JR, Benfield EF. 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17:567–94
- Webster JR, Benfield EF, Ehrman TP, Schaeffer MA, Tank JL, et al. 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. *Freshw. Biol.* 41(4):687–705
- Weitere M, Erken M, Majdi N, Arndt H, Norf H, et al. 2018. The food web perspective on aquatic biofilms. *Ecol. Monogr.* 88(4):543–59
- Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, et al. 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. *Science* 336(6087):1438–40
- Wotton RS, Malmqvist B. 2001. Feces in aquatic ecosystems: Feeding animals transform organic matter into fecal pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. *BioScience* 51(7):537–44
- Wurzbacher C, Wannicke N, Grimmett IJ, Bärlocher F. 2016. Effects of FPOM size and quality on aquatic heterotrophic bacteria. *Limnologica* 59:109–15
- Wymore AS, Compson ZG, Liu CM, Price LB, Whitham TG, et al. 2013. Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. *Freshw. Sci.* 32(2):663–72
- Wymore AS, Compson ZG, McDowell WH, Potter JD, Hungate BA, et al. 2015. Leaf-litter leachate is distinct in optical properties and bioavailability to stream heterotrophs. *Freshw. Sci.* 34(3):857–66

- Wymore AS, Salpas E, Casaburi G, Liu CM, Price LB, et al. 2018. Effects of plant species on stream bacterial communities via leachate from leaf litter. *Hydrobiologia* 807(1):131–44
- Yoshimura C, Gessner MO, Tockner K, Furumai H. 2008. Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. J. North Am. Benthol. Soc. 27(3):664–73
- Zubrod JP, Bundschuh M, Feckler A, Englert D, Schulz R. 2011. Ecotoxicological impact of the fungicide tebuconazole on an aquatic decomposer-detritivore system. Environ. Toxicol. Chem. 30(12):2718–24

Annual Review of Ecology, Evolution, and Systematics

Volume 50, 2019

Contents

AREES at 50: A Semicentennial Celebration Douglas J. Futuyma	1
Cultural Evolution in Animals Andrew Whiten	27
Somatic Mutation and Evolution in Plants Daniel J. Schoen and Stewart T. Schultz	49
Beyond Reproductive Isolation: Demographic Controls on the Speciation Process Michael G. Harvey, Sonal Singhal, and Daniel L. Rabosky	75
An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity Alison M. Bell and Jennifer K. Hellmann	97
Origins and Assembly of Malesian Rainforests Robert M. Kooyman, Robert J. Morley, Darren M. Crayn, Elizabeth M. Joyce, Maurizio Rossetto, J.W. Ferry Slik, Joeri S. Strijk, Tao Su, Jia-Yee S. Yap, and Peter Wilf	119
More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health Muhammad Saleem, Jie Hu, and Alexandre Jousset	145
Consequences of Multispecies Introductions on Island Ecosystems **James C. Russell and Christopher N. Kaiser-Bunbury	169
Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution Juan Isaac Moreira-Hernández and Nathan Muchhala	191
Haploid Selection in "Diploid" Organisms Simone Immler	219
Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics Serita D. Frey	237

What Have Long-Term Field Studies Taught Us About Population Dynamics? Beth A. Reinke, David A.W. Miller, and Fredric J. Janzen	261
History and Geography of Neotropical Tree Diversity Christopher W. Dick and R. Toby Pennington	279
Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes *Kimberly S. Sheldon* 3	303
Experimental Studies of Evolution and Eco-Evo Dynamics in Guppies (Poecilia reticulata) David N. Reznick and Joseph Travis	335
The Invasion Hierarchy: Ecological and Evolutionary Consequences of Invasions in the Fossil Record Alycia L. Stigall	355
Interactive Effects of Global Change on Forest Pest and Pathogen Dynamics Allison B. Simler-Williamson, David M. Rizzo, and Richard C. Cobb	381
Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes Dean C. Adams and Michael L. Collyer	405
Spatial Population Genetics: It's About Time Gideon S. Bradburd and Peter L. Ralph	427
Evolutionary and Ecological Consequences of Gut Microbial Communities Nancy A. Moran, Howard Ochman, and Tobin J. Hammer	451
A Bird's-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change Anton Pauw	477
Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia **Jay F. Storz and Graham R. Scott** 5. **Story and Graham R. Scott** **Story and Graham R.	503
Evolution in the Anthropocene: Informing Governance and Policy Peter Søgaard Jørgensen, Carl Folke, and Scott P. Carroll	527
Revisiting the Fate of Dead Leaves That Fall into Streams **Jane C. Marks** **Stream Stream	547
The Paradox Behind the Pattern of Rapid Adaptive Radiation: How Can the Speciation Process Sustain Itself Through an Early Burst? Christopher H. Martin and Emilie J. Richards	569

Related Articles

From the *Annual Review of Animal Biosciences*, Volume 7 (2019)

Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap

Elisabetta Giuffra, Christopher K. Tuggle, and The FAANG Consortium

Mammalian Sex Chromosome Structure, Gene Content, and Function in Male Fertility

Wan-Sheng Liu

Multiple Facets of Marine Invertebrate Conservation Genomics

Jose V. Lopez, Bishoy Kamel, Mónica Medina, Timothy Collins, and Iliana B. Baums

The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs

Aimee J. Silla and Phillip G. Byrne

Tigers of the World: Genomics and Conservation Shu-Jin Luo, Yue-Chen Liu, and Xiao Xu

From the Annual Review of Earth and Planetary Sciences, Volume 47 (2019)

Seawater Chemistry Through Phanerozoic Time Alexandra V. Turchyn and Donald J. DePaolo

Flood Basalts and Mass Extinctions

Matthew E. Clapham and Paul R. Renne

Soil Functions: Connecting Earth's Critical Zone

Steven A. Banwart, Nikolaos P. Nikolaidis, Yong-Guan Zhu, Caroline L. Peacock, and Donald L. Sparks

Marsh Processes and Their Response to Climate Change and Sea-Level Rise Duncan M. FitzGerald and Zoe Hughes

The Mesozoic Biogeographic History of Gondwanan Terrestrial Vertebrates: Insights from Madagascar's Fossil Record

David W. Krause, Joseph J.W. Sertich, Patrick M. O'Connor, Kristina Curry Rogers, and Raymond R. Rogers

Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis Paulo M. Brando, Lucas Paolucci, Caroline C. Ummenhofer, Elsa M. Ordway, Henrik Hartmann, Megan E. Cattau, Ludmila Rattis, Vincent Medjibe, Michael T. Coe, and Jennifer Balch

From the *Annual Review of Environment and Resources*, Volume 44 (2019)

The State and Future of Antarctic Environments in a Global Context Steven L. Chown and Cassandra M. Brooks

Island Biodiversity in the Anthropocene 7ames C. Russell and Christoph Kueffer

Mammal Conservation: Old Problems, New Perspectives, Transdisciplinarity, and the Coming of Age of Conservation Geopolitics

David W. Macdonald

The State of the World's Mangrove Forests: Past, Present, and Future Daniel A. Friess, Kerrylee Rogers, Catherine E. Lovelock, Ken W. Krauss, Stuart E. Hamilton, Shing Yip Lee, Richard Lucas, Jurgenne Primavera, Anusha Rajkaran, and Suhua Shi

Status, Institutions, and Prospects for Global Capture Fisheries Christopher Costello and Daniel Ovando

Illegal Wildlife Trade: Scale, Processes, and Governance Michael 't Sas-Rolfes, Daniel W.S. Challender, Amy Hinsley, Diogo Veríssimo, and E.7. Milner-Gulland

Ecotourism for Conservation?

Amanda L. Stronza, Carter A. Hunt, and Lee A. Fitzgerald

Co-Producing Sustainability: Reordering the Governance of Science, Policy, and Practice

Carina Wyborn, Amber Datta, Jasper Montana, Melanie Ryan, Peat Leith, Brian Chaffin, Clark Miller, and Lorrae van Kerkhoff

Social Synergies, Tradeoffs, and Equity in Marine Conservation Impacts

David A. Gill, Samantha H. Cheng, Louise Glew, Ernest Aigner, Nathan J. Bennett,

and Michael B. Mascia

From the Annual Review of Entomology, Volume 64 (2019)

The Ecology of Collective Behavior in Ants Deborah M. Gordon

Invasion Success and Management Strategies for Social Vespula Wasps Philip J. Lester and Jacqueline R. Beggs

Invasive Cereal Aphids of North America: Ecology and Pest Management Michael 7. Brewer, Frank B. Peairs, and Norman C. Elliott

Movement and Demography of At-Risk Butterflies: Building Blocks for Conservation

Cheryl B. Schultz, Nick M. Haddad, Erica H. Henry, and Elizabeth E. Crone

Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity

Karl M. Glastad, Brendan G. Hunt, and Michael A.D. Goodisman

Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families Hugh M. Robertson

Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress Xue-xin Chen and Cornelis van Achterberg

Water Beetles as Models in Ecology and Evolution

David T. Bilton, Ignacio Ribera, and Andrew Edward Z. Short

Phylogeography of Ticks (Acari: Ixodida)

Lorenza Beati and Hans Klompen

From the *Annual Review of Genetics*, Volume 53 (2019)

Crossover Interference: Shedding Light on the Evolution of Recombination Sarah P. Otto and Bret A. Payseur

Evolutionary Ecology of Wolbachia Releases for Disease Control Perran A. Ross, Michael Turelli, and Ary A. Hoffmann

Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution Brandon S. Gaut, Allison J. Miller, and Danelle K. Seymour

Standard Deviations: The Biological Bases of Transmission Ratio Distortion Lila Fishman and Mariah McIntosh

The Microbiome and Aging Bianca Bana and Filipe Cabreiro

Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form

Larissa B. Patterson and David M. Parichy

From the Annual Review of Genomics and Human Genetics, Volume 20 (2019)

The Genetics of Human Skin and Hair Pigmentation William J. Pavan and Richard A. Sturm

Measuring Clonal Evolution in Cancer with Genomics Marc J. Williams, Andrea Sottoriva, and Trevor A. Graham

The Causes and Consequences of Genetic Interactions (Epistasis) *Júlia Domingo, Pablo Baeza-Centurion, and Ben Lehner*

Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies

Guy Sella and Nicholas H. Barton

From the *Annual Review of Marine Science*, Volume 11 (2019)

Planktonic Marine Archaea

Alyson E. Santoro, R. Alexander Richter, and Christopher L. Dupont

Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes Ted Maksym

Biologically Generated Mixing in the Ocean Eric Kunze

Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience?

John F. Bruno, Isabelle M. Côté, and Lauren T. Toth

Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data
Piero Calosi, Hollie M. Putnam, Richard J. Twitchett, and Fanny Vermandele

From the *Annual Review of Microbiology*, Volume 73 (2019)

Ecology and Evolution of Plant Microbiomes Viviane Cordovez, Francisco Dini-Andreote, Víctor J. Carrión, and Jos M. Raaijmakers

Algal Sex Determination and the Evolution of Anisogamy James Umen and Susana Coelho

The Ultimate Guide to Bacterial Swarming: An Experimental Model to Study the Evolution of Cooperative Behavior *Jinyuan Yan, Hilary Monaco, and Joao B. Xavier*

Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis *Jessica L. Mark Welch, Floyd E. Dewhirst, and Gary G. Borisy*

Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations Rachel A. Foster and Jonathan P. Zehr

Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens

Kirsten I. Bos, Denise Kühnert, Alexander Herbig, Luis Roger Esquivel-Gomez,
Aida Andrades Valtueña, Rodrigo Barquera, Karen Giffin,
Aditya Kumar Lankapalli, Elizabeth A. Nelson, Susanna Sabin, Maria A. Spyrou,
and Johannes Krause

From the Annual Review of Plant Biology, Volume 70 (2019)

Molecular Interactions Between Plants and Insect Herbivores

Matthias Erb and Philippe Reymond

- A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks
 - Acer VanWallendael, Ali Soltani, Nathan C. Emery, Murilo M. Peixoto, Jason Olsen, and David B. Lowry
- Comparative and Functional Algal Genomics Crysten E. Blaby-Haas and Sabeeha S. Merchant
- CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture Kunling Chen, Yanpeng Wang, Rui Zhang, Huawei Zhang, and Caixia Gao
- Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges
 - Joachim Schiemann, Antje Dietz-Pfeilstetter, Frank Hartung, Christian Kohl, Jörg Romeis, and Thorben Sprink

From the *Annual Review of Phytopathology*, Volume 57 (2019)

- Revisiting the Concept of Host Range of Plant Pathogens Cindy E. Morris and Benoît Moury
- Durability of Quantitative Resistance in Crops: Greater Than We Know? Christina Cowger and James K.M. Brown
- Molecular Dialog Between Parasitic Plants and Their Hosts Christopher R. Clarke, Michael P. Timko, John I. Yoder, Michael J. Axtell, and James H. Westwood
- Ecology and Evolution of the Sudden Oak Death Pathogen *Phytophthora ramorum* Niklaus J. Grünwald, Jared M. LeBoldus, and Richard C. Hamelin
- Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics
 - Fanny E. Hartmann, Ricardo C. Rodríguez de la Vega, Fantin Carpentier, Pierre Gladieux, Amandine Cornille, Michael E. Hood, and Tatiana Giraud
- Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases Samuel W. Wilkinson, Melissa H. Magerøy, Ana López Sánchez, Lisa M. Smith, Leonardo Furci, T.E. Anne Cotton, Paal Krokene, and Jurriaan Ton