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Abstract—This work addresses the electronics and behav-
iors of a Hibernation-Enabled Maximum-Power-Point-Tracking
power converter and power management system. This enables
a Recurrent-Mission profile that can be performed by VTOL
Micro Aerial Vehicles for persistent presence in real-world
unstructured environments. The typical mission cycle consists
of solar energy harvesting while the vehicle is landed and in
an energy-conserving state, followed by a vertical take-off and
entry into forward flight when the battery is fully charged.
The flight mission is concluded with a vertical landing and
entry into hibernation for the process to repeat indefinitely,
for multiple instances each day and through the night to the
next day. The presented MPPT implementation demonstrates
a functional prototype and the successful demonstration of a
multi-day mission cycle using our open-access Tricopter/Fixed-
Wing Vertical Take-Off and Landing MAV.

I. INTRODUCTION

Over the past several years, aerial robots have evolved
to fill niches in various markets and environments. These
devices can be found being used in personal, industrial[1—
6], military and search-and-rescue roles [7-10]. Aerial robots
are also used in exploration tasks in both earth-bound [11-
17] and extra-planetary ventures, such as the Mars Ingenuity
Helicopter [18] and various planned missions [19, 20].

Following the example demonstrated by the Mars Inge-
nuity Helicopter, there exists a nascent niche in earth-based
flying robots, for both terrestrial and oceanic cases, wherein
in-situ solar energy harvesting capability can be leveraged
to extend presence and mission duration indefinitely. The
critical distinction is that the mission cycle consists of long
periods of solar-charging hibernation, punctuated by flights
that use the stored energy to accomplish mission goals such
as surveying an area or repositioning of the vehicle. At the
conclusion of each flight, the vehicle lands and hibernates
while harvesting solar energy to repeat the cycle. We term
this process in small UAVs as migratory behavior [21], as it
imitates the same paradigm that migratory bird species use
the world over for traversing their respective environments.
This can also be rendered as “recurrent-mission” behavior;
we will use both terms interchangeably in this paper. Such
a system becomes capable of unsupervised long-term au-
tonomous operation, in the sense of recurrently executing
flight missions without having a human or any specialized
infrastructure tend to its energy needs.
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Fig. 1. The MiniHawk-VTOL, a Tri-TiltRotor hybrid aircraft equipped with
onboard solar energy harvesting for migratory (recurrent-mission) behavior
demonstration.

The utility of the recurrent mission profile is evident
when considering that many operation environments preclude
ground support infrastructure or human assistance to the
flying robot. An aerial robot crossing over oceans or through
access-denied regions cannot utilize pre-placed charging sta-
tions or landing sites, as is common with “Drone-in-a-Box”.
While a solar-powered High-Altitude, Long-Endurance (or
“HALE”) aircraft can solve this problem, such a vehicle must
remain airborne indefinitely, both day and night, continu-
ously powering the propulsion system as any off-field landing
away from an established ground-support site is typically
fatal to the aircraft. This forces the HALE concept to fly
above the weather, and typically with narrow margins for
payload and operation domain. With the migratory mission
profile, a less complex and more cost-effective vehicle can
traverse the same environment as the HALE concept, but
with less sensitivity to the reduction of solar energy due to
season or weather, and with no obligation to continuously
expend energy for propulsion.

The critical enabling mechanisms to demonstrate the mi-
gratory mission cycle are as follows: First, a small UAV must
be capable of self-mobility and locomotion for launching into
flight and landing without reliance upon any ground-based
infrastructure; only a VTOL-capable design can satisfy this
requirement. Second, such a vehicle must have a solar array
that can accumulate solar energy; the input rate is of minor
concern, so long as there is a definite positive accumulation
of energy for the typical illumination of the mission daytime
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environment. Third and finally, the energy that is captured
should be able to be stored efficiently with minimal perisha-
bility. This is accomplished with two devices: A Maximum-
Power-Point-Tracking DC-DC Converter, and a Hibernation-
Capable Battery Management and Power Switching System.

Considering the above critical elements for enabling the
migratory mission cycle, some hurdles are presented. While
VTOL platforms are somewhat common, as are solar-
powered fixed-wing vehicles, what is rare if at all existent
is a small UAV design that incorporates solar cells into
the wings of a fixed-wing VTOL vehicle. Responding to
this deficiency, we have previously designed and released,
for open-access, our own Solar-enabled VTOL platform,
the MiniHawk-VTOL. While this platform solves the first
(VTOL) and second (Solar-Powered) elements necessary for
the migratory mission cycle, a Hibernation-Capable com-
bined MPPT, Battery Management, Power Switching System
is novel at this moment in the aerial robotics field. The design
and implementation of such a device is the subject of this
work.

This paper is partitioned as follows: Section II addresses
background and research related to migratory behaviors
in small UAVs. Section III demonstrates the theory and
implementation details for designing a hibernation-capable
energy harvesting system. Experimental results are shown in
Section IV, and our conclusions are drawn in Section V.

II. RELATED WORK

There exist various examples of unattended robots using
solar energy harvesting. As previously identified, the Mars
Ingenuity Helicopter [18] uses a solar array and hibernating
power system, and this provides the only fully realized
reference of a hibernating flying robot. Other projects have
postulated or attempted the same, notably, experiments by
The University of Minnesota [22,23], a tiltrotor by MIT
[24], The University of Michigan Flying-Fish [25], and the
Sherbrooke University SUWAVE [26,27]. All of these offer
modern examples of solar migratory behavior, but each fall
short of describing the hibernation-enabling device design.

Relaxing scope to include examples of non-hibernating
solar-powered flying robots yields the Airbus Zephyr and
the ETH AtlantikSolar Project [28], the later being partic-
ularly useful in informing the design of our own device.
As a general reference for the design of switching power
converter electronics, we used [29], which provides details
on designing most types of DC-DC switching regulators.

IIT. SYSTEM DESIGN

This section will describe the design and implementation
of the Hibernation-Capable MPPT for recurrent mission
behaviors. The three main innovations of the Hibernation-
Capable MPPT system are as follows:

1) A Solid-State Relay is incorporated into the device, for
switching the aircraft battery in and out of the entire
aircraft power system.

2) A Low-power design that allows for the least amount
of energy consumption during periods of hibernation
with no solar energy input.

3) An interface to the aircraft autopilot or other host
computer system for setting wake-up timers or wake
conditions, and measures to ensure that hibernation is
not commanded erroneously.

These elements are described below, along with various
other supporting elements and design considerations.

Fig. 2. MiniHawk-VTOL Assembly with the MPPT electronics (magenta)
beneath the Lipoly Battery (blue).

A. Target Aircraft Design and Characteristics

Many of the constraints driving the design of this
Hibernation-Capable MPPT are determined by the charac-
teristics of the host aircraft. In this case, we are target-
ing the MiniHawk-VTOL, which is our in-house rapidly-
prototyped VTOL UAV of the operationally versatile [30,
31] Tri-Tiltrotor class [32-36]. The aircraft is designed
specifically for demonstrating the basic migratory behavior
set with minimal complexity and cost, and as such, it is not
optimized for carrying a larger solar array, or for efficient
fixed-wing flight. Thus, while it does implement a wing-
embedded solar array using the highly efficient Maxeon™
C60 flexible cell form-factor, it only employs a necessary
minimum of four 153cm? cells (providing 14W in the best
case). This may change in a future revision of the design,
allowing for a greater number of solar cells. The aircraft in
its current iteration has a wingspan of 800mm, and weighs
about 1kg. The aircraft design has been documented in [37,
38].

An important factor that necessitates the hibernation be-
havior is that the avionics used by the MiniHawk-VTOL are
common commercial off-the-shelf devices, all of which are
not designed for entering a low-power state. For example, the
Electronic Speed Controllers that pull from the aircraft power
bus do not support commands for entering a shutdown state,
and so each device will contribute some parasitic intrinsic
load while present on the supply bus. The same goes for the
autopilot, which, while open-source, still presents a complex
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electronic system with many design elements that cannot be
shutdown to conserve power. Thus, it is necessary to switch
the entire aircraft power bus from upstream near the battery.

The MPPT device is designed to fit within the existing ve-
hicle. Figure 2 shows the MiniHawk-VTOL sectioned along
the avionics bay, with the MPPT placed under the battery.
The volume reservations for the device are length=100mm,
width=50mm and thickness=10mm.

Proceeding from the reference points above, and with the
aircraft components known, and with future optimizations
to the host aircraft in mind, the MPPT must observe the
following constraints:

1) The MPPT must be able to charge up to a 4s (16.8V)

Lipoly Battery, with preference for up to 6s (25.2V).

2) The MPPT must be able to draw from a Maxeon™
C60 array, consisting of a string of 4 series-connected
cells, with preference for extending this to an array of
24 series-connected cells. This yields a range starting
at 2.4V for the 4-cell case, up to 15V for the 24-
cell case. The electrical current developed on the string
may exceed 6A.

3) Given the high angular dynamics of the aircraft, the
solar array can experience fast changes in the incident
solar radiation vector. Therefore, the tracking loop
should adjust the converter duty cycle fast enough to
prevent severely over-shooting or under-shooting the
Maximum Power Point, but also, if a software-defined
ideal diode is implemented, quick changes to incident
radiation must not be allowed to back-drive the solar
array.

4) The mass of the Hibernation-Capable MPPT must be
as low as possible, preferably less than 50 grams.

5) To fit within the avionics bay, the dimensions of the
MPPT must not exceed 50mm width, height must not
exceed 10mm, and length should not exceed 100mm.

6) The MPPT must be able to disconnect the entire
aircraft power bus from the battery, given the high
quiescent current that the autopilot and propulsion
avionics draw when powered.

7) The MPPT itself must draw the least amount of quies-
cent power possible when hibernation has been entered
and solar energy is deficient for charging.

The following section will detail the actual MPPT hard-
ware design, as informed by the above constraints. The
behavior of the MPPT software and communication are
shown in Section III-C.

B. Electronics Design

As shown in Figure 3, the MPPT interfaces with the
solar array, battery, the aircraft power bus, and the autopilot
via a serial connection. Each power connection is measured
for current and voltage. The MPPT microcontroller and its
associated power regulator are not shown in the diagram and
are implicit.

1) MPPT Topology: The DC-DC converter topology used
in the MPPT is a combined Buck-Boost converter, using
four switching MOSFETS in a H-bridge configuration, with
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“High-side” and “Low-side” devices on each side of an
inductor. The reason for selecting this configuration is due
to the aircraft-contributed constraints above, where the input
voltage may be higher than the output voltage, and vice
versa. With this configuration, for either the Buck (Step-
Down) Mode, or the Boost (Step-Up) Mode, one side of the
bridge is non-switched and remains static, while the other
side is switched.

The Buck-Boost topology allows for Synchronous switch-
ing, wherein, for each conduction cycle, the forward-
conducting (or “Synchronous”) MOSFET can be turned on
to emulate an ideal diode during the complementary phase.
This greatly increases the efficiency of the converter when
compared to a traditional diode-based design. This mode
can be degraded to a Non-synchronous switching mode to
prevent back-driving the solar input, such as in the case
where the converter nears operation in a discontinuous state.

The Buck-Boost switching MOSFETs are chosen to be
N-channel devices, as these have the highest performance
compared to P-channel devices. The voltage rating of the
MOSFETs is fixed by the expected input and output voltage
with adequate safety margin, which for the requirements
drawn above, yields a value of 40V.

The use of N-channel Power MOSFETs requires that
each High-Side device is driven by a bootstrap driver to
exceed the Viggin) voltage needed to turn the device on.
To accommodate this need, and to prevent shoot-through of
the H-bridge switches, each side of the H-bridge is driven
by a Synchronous Half-Bridge Gate Driver IC. The Gate
Driver IC output characteristics are interactive with some of
the parameters of the MOSFETS, such as maximum Gate
Charge ), and Gate Threshold Voltage Vis(n), so Gate
Driver selection requires observing MOSFET compatibility.
This interaction also determines the switching frequency and
corresponding switching losses of the converter.

The maximum efficient switching frequency above also
interacts with the inductor selection: Ideally, we would prefer
as large an inductor as possible so that switching frequency
can be as low as possible to minimise the switching losses,
but only to a point; the device must not exceed the require-
ments for volume and mass. Selecting a smaller inductor
requires that the switching frequency is increased.
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A table of some of the final component selections are
reflected in Table 1. The Power Path is shown in the upper-left
partition of Figure 4, and the MOSFET Drivers are shown
in the lower-left partition.

TABLE I
MPPT BILL OF MATERIALS

[ Part [ Value [ Qty |
Power MOSFETSs TI CSD18511Q5A 4
MOSFET Drivers DI DGD05463FN-7 2
Current Sense Amplifiers | TI INA190A3 2
TVS Diodes SMC S2336TR 2
Inductor Bourns SRP1245A-6R8M | 1
Microcontroller SparkFun ESP32 Thing 1
Opto-Isolator IXYS CPC5001 1
Solid-State Relay Emcotec EMCA72006-F 1

2) Analog Sensing: The analog voltage sensing on the
MPPT is provided by resistive voltage dividers. These are
anti-aliasing filtered and buffered prior to being read by
the microcontroller ADC inputs. Analog current sensing
is accomplished with rail-to-rail current-sense amplifiers,
sensing the differential voltage across precision current-shunt
resistors. These devices can measure positive and negative
current flow. The right partition of Figure 4 shows the Analog
Sensing domain. Note that while resistive dividers and shunts
dissipate power when compared to Hall effect sensing, the
overhead is minimal for sufficiently large resistive divider
values and sufficiently small shunt values.

3) Microcontroller and Power Regulator: The MPPT pro-
totype uses the Espressif ESP32™. a popular IoT device with
several useful peripherals. The device can host microSD and
MMC Flash devices for logging data, and has a full IP and
RF stack for wireless connectivity. However, the essential
peripherals used are the PWM outputs, ADC inputs, and
UART serial ports. The MOSFET Drivers are driven from the
PWM outputs, and all analog sensing channels are ingested
by the ESP32. This device is powered with a 5V switching
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regulator with low quiescent load. The ESP32 is able to deep-
sleep and reduce input power below 10uA. An important
note: The serial connection between the aircraft avionics and

ESP32 is opto-isolated to protect the MPPT microcontroller
from backdriving the aircraft avionics during hibernation.
Figure 5 shows the CAD model and finished system when
attached to the microcontroller and 5V regulator.

Fig. 5. Left: 3D Model of the DC-DC Powerpath and Sensory Board. Right:
The feature-complete MPPT coupled with an ESP32 microcontroller.

4) Solid-State Relay: For the MPPT prototype, we use
a commercially-available Solid-State Relay designed for
R/C aircraft. An interface was adapted between this device
and the MPPT microcontroller such that the relay is only
switched off when two GPIOs from the ESP32 are asserted
HIGH and LOW respectively. Pull-up and pull-down behav-
ior prevents this selection in cases where one or both of the
GPIOs from the host microcontroller float. When the relay is
switched off, the quiescent current drops below measurable
levels.

5) Battery Balancer: For the MPPT prototype, we use
a commercially-available Lithium Polymer battery balancer
circuit board, which is attached directly to the battery balance
leads. This device does not contribute meaningful quiescent
current when idle, and can sustain over 1A of balancing load
to cells that become unbalanced.
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C. System Behavior

The ESP32 runs a version of FreeRTOS, providing a
real-time operating environment. This allows for running
two real-time tasks concurrently; the MPPT Task, and the
Command Task. Each task can forward information to the
other using Message Queues. The following sections describe
activities of each task, and the interactions between tasks.

1) MPPT Task Behavior: The MPPT Task is responsible
for taking measurements from the ESP32 ADC peripheral,
performing statistics on the measurements, and using the
filtered measurements for its own Maximum-Power-Point-
Tracking algorithm, and forwarding these measurements
periodically to the Command task. After power-up and
initialization, the MPPT Task starts in the Idle state. The
Idle state inactivates the DC-DC converter by driving PWM
outputs to Low, and commanding the MOSFET Drivers to
sleep.

A message from the Command Task can trigger the
transition from the Idle State to the Ramp Initialize state,
usually when the Command Task determined that the Lipoly
battery was present on the system, and that the solar input
power was sufficient to merit charging. The Ramp Initialize
State and subsequent Ramp State sample the entire I-V
curve of the solar array, from short-circuit to open-circuit.
A histogram data structure is populated with this curve, and
the global power maximum is found with the corresponding
duty-cycle setpoint that produced it. This setpoint value is
fed to the MPPT Initialize State as a seed value for the
perturb-and-observe algorithm. As the perturb-and-observe
algorithm only finds the local maxima, sampling the entire
I-V space every 100 seconds helps to avoid operation outside
of the global maximum power point. The MPPT duty-cycle
setpoint is quickly reduced if the battery voltage reaches the
ceiling (16.8V) or if safe output current is exceeded. The
converter remains active until the Command Tasks triggers
the Idle State by setting the Power State variable to false.
Figure 6 shows the state machine diagram.

2) Command Task Behavior: The Command Task trans-
acts serial communication and configures system state. As
described above, this task receives the measurement data
from the MPPT Task and replies via the Message Queue with
commands to start or stop charging, based on the presence
of the battery and solar state. This task also initiates waking
from hibernation when the system timer reaches a previously
set alarm value, or if the battery voltage exceeds a given
threshold.

The Command Task has the ability to initiate Hibernation,
but the process is thoroughly safeguarded, as an accidental
entry into hibernation could be disastrous during flight. Thus,
a two-step verification process is used. First, a request is
generated by the autopilot or host computer using a Hi-
bernation Request message. This message payload contains
the requested number of minutes to sleep; if zero, then
the MPPT will only wake the aircraft when the battery is
fully charged. The MPPT response to the hibernation request
message repeats the requested sleep timer, and additionally
provides an arbitrary pesudo-random value as a “challenge”

powerState=true if battery is present
. and solar input is above threshold

~

IDLE ;::::_,,-- powergtate:false

\A g —

|
|
powerState==true
v
RAMP_INIT ‘

/ r\ N
/
I|
RAMP i

Every 100 Seconds

MPPT_INIT ‘ ;

Fig. 6.  MPPT DC-DC Converter State Machine.

or verification code. The autopilot or host computer has a
window of 200ms to respond, this time replying using a
Hibernation Response message, which again consists of the
desired sleep time and the verification code that was sent
by the MPPT. If the MPPT receives the response message,
and all fields match between the initial and final request,
hibernation will be initiated. This scheme guards against
the request being corrupted by transmission errors, as each
device has the opportunity to review and confirm the action.
Figure 7 shows the sequence diagram.

Host MPPT

Host Initiates Hibernation

HibernationRequest [SleepMinutes, 0]

MPPT Echos Request, Issues Verification

HibernationRequest [SleepMinutes, VerifyCode]

alt [Response within 200ms]

Host Confirms Request

HibemationResponse [SleepMinutes, VerifyCode]

MPPT Starts Hibernation
[No response within 200ms]

No Effect

Host MPPT

Fig. 7. Hibernation Initiation Sequence.
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IV. EXPERIMENTAL STUDY

To demonstrate the proposed recurrent mission behaviors,
we devised a multi-cycle mission profile. For each day of
testing, the aircraft was flown for each occurrence of the
battery reaching full-charge. The experiment preparations
involved installing the MPPT prototype inside of the avionics
bay of a solar-winged MiniHawk-VTOL vehicle, inserting
the device between the battery and the power input con-
nection of the vehicle propulsion and avionics systems. The
wing-mounted solar cells were connected to the MPPT, and
the isolated serial connection to the vehicle autopilot was
attached.

For conducting each test, the mission process is sequenced
by a script running on the vehicle autopilot, with each
step gated by a permissive safety switch on the vehicle’s
R/C controller. (This permissive gating is only necessary in
initial testing, and is expected to be removed as experiments
continue.) Upon vehicle power-up and initialization, the
sequence script arms the vehicle and enters the autonomous
flight mode, which begins a pre-programmed waypoint mis-
sion. This mission is followed until either the mission has
been fully completed, or a low battery failsafe is encountered.
In either case, the vehicle starts a Return-to-Land sequence.
Upon successfully landing and disarming, the sequence script
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Fig. 9. Second cycle - Indicative solar-powered self-recharging at afternoon
hours (12 noon to 3 pm)

commands the MPPT to hibernate, either for an arbitrary
duration or until the vehicle battery is fully charged. In
hibernation, the vehicle autopilot and propulsion avionics are
fully disconnected from the battery.

We successfully performed recurrent mission behavior
in various environmental conditions; in instances of both
overcast and clear conditions. For these experiments, the
waypoint mission was configured to only have the vehicle
hover in-place indefinitely, as a practical measure to ease
logistics in attending the vehicle while at rest, and to keep the
vehicle within safe boundaries. For this indefinite position-
hold hover, the vehicle reverts to the Return-to-Land behavior
upon Low Battery, as described above. The effect is the
same in terms of energy consumed, regardless of the type
of mission performed.

The experiment shown in Figure 8 and Figure 9 demon-
strates a day with three flights performed; the first flight
occurred at 08:00, immediately preceding the beginning of
Figure 8. At 12:00, a second flight occurred, immediately
after the end of the first plot and preceding the start of data
of Figure 9. A third and final flight for the day was accom-
plished after the end of Figure 9. The plots show artifacts
from the MPPT 100-second-recurrent I-V curve estimation
sweep, appearing as transient dips; other artifacts include a
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tree branch shading the aircraft for the period near 13:20,
and the full-battery behavior can be seen following charge
completion at 10:30 and approximately 14:45, respectively.
The experiment shown in Figure 10 demonstrates another
example of the recurrent mission. As with Figure 8 and
Figure 9, this series represents the solar charge behavior,
but also includes the battery behavior of the hovering flights
preceding and following the energy harvesting session. For
the entire ensemble of experiments presented, the concept of
multi-day recurrent mission behavior is shown as viable.

V. CONCLUSIONS

This paper proposed and demonstrated the utility, design
and build process of a Hibernation-Capable MPPT power
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system, for achieving a recurrent multi-day mission profile.
The relationships between the host aircraft and the new
design were shown, with constraints for size, weight, and
quiescent sleep power illustrated. The high-level principles
for the parts and design patterns were discussed. It was
shown that the system autonomously decides when to enter
hibernation and power harvesting modes, as well as au-
tonomous wake up when its battery supply is recharged to
resume its mission. The Schematic, Bill of Materials and
other artwork are shown, with the intent to contribute the
design to as an open-access and open-source project.
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