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Abstract— This paper addresses the need for autonomous
Micro Aerial Vehicle (MAV) landing in unstructured environ-
ments. For aerial robotics to become truly ubiquitous, the
requirement for operation over generic environments where a
priori knowledge of landing site locations is unavailable has
to be met. We propose the utilization of a Deep Learning-
based classification framework deployed on aerial view image
captured by the aerial robot, to perform the functionalities
of object detection and classification below the aircraft, in
order to autonomously characterize potential sites that are
safe for landing. The proposed solution employs a small-sized
companion computer equipped with a Neural Processing Unit,
capable of handling both the high-level autonomy tasks, as well
as executing the Neural Network pipeline onboard a MAV-
class aircraft. We demonstrate the system’s effectiveness by
deploying it onboard the MiniHawk-VTOL, a custom-developed
hybrid flight envelope aerial robot with solar energy harvest-
ing capabilities, designed to accommodate the aforementioned
needs with the ultimate goal of enabling autonomous migratory
missions (via anytime/anyplace land-to-recharge over unknown,
unstructured environments).

I. INTRODUCTION

Autonomy in aerial robotics remains a rising trend and an
increasingly pursued area of research over the past decade.
With vast real world utility, unmanned aerial systems are
being deployed in retail & e-commerce, search and rescue
[1-4], industrial inspection [5—10], and exploration of both
terrestrial challenging environments [11-17] and of other
planets as well [18,19]. In becoming increasingly ubiqui-
tous, a core requirement is to perform autonomous missions
beyond visual line of sight and unattended.

“Migratory” Unmanned Aerial Vehicles (UAVs) [20] can
be defined as a class of such systems capable of performing
long—distance missions without any human assistance, via
landing-to-recharge their battery leveraging in situ energy
harvesting capabilities. This can be facilitated by GPS-based
solutions for self-localization and landing at predetermined
georeferenced locations, which allow for safe landing and
recharging. However, for a truly autonomous UAV charac-
terizing and georeferencing every possible landmark along
any arbitrary path would be impossible. Additionally, any
possible GPS malfunction or degradation, or even adversarial
attacks, should not compromise its capacity to at least avoid
no-fly zones above critical structures. To this purpose, an in-
telligent solution for identifying significant terrain landmarks
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Fig. 1. The MiniHawk-VTOL Tiltrotor aircraft equipped with onboard
perception and computing to conduct Deep-Learned aerial view-based
detection and classification of landing sites. An indicative field-experiment
video sequence is provided as supplementary material.

(for landing or avoidance) relying exclusively on onboard
real-time aerial imagery is considered within this work.

More specifically, we focus on the critical capacity to
perform safe autonomous landing in order to terminate an
aerial system mission in the event they are flying above an
unmapped location, with possible GPS outage. This work
proposes the leveraging of aerial view-based detection and
classification of ground landmarks that can act as safe
landing sites, towards the purpose of performing landing on-
demand without prior knowledge of the underlying terrain
structure.

We propose an autonomous landing site discovery pipeline
leveraging a Deep Learning-based framework to characterize
and identify parts of ground terrain for safe landing spots in
an overhead aerial image captured by a Micro Aerial Vehicle
(MAV). After detection of potential landing zone candidates,
the most promising one for safe landing is selected to termi-
nate the mission. We demonstrate the pipeline by deploying
it on an in-house designed Tiltrotor MAYV, capable of both
Fixed-wing and Vertical Take-Off and Landing (VTOL) in
real world settings. Finally, we provide statistical evaluation
for the effect of scale and the detection performance at
different flying altitudes for the integrated system. Figure 1
depicts the aforementioned platform, the MiniHawk VTOL,
carrying the Khadas VIM3 high-level computer that is used
in this framework.
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The remainder of the paper is organized as follows:
Section II presents related work while Section III details the
problem setup. Section IV describes system principles and
theory, followed by Section V which presents system design
and implementation aspects. Section VI demonstrates and
discusses field test results. Conclusions are drawn in Section
VII.

II. RELATED WORK

Autonomous MAV landing in unknown outdoor as well
as indoor environments [21-26] has been widely studied
by the robotics community. These works employ advanced
control accompanied by estimation and guidance strategy
to track and perform precise landing on moving target,
by relying on vision based detection of fiducial markers.
Authors of [27] propose control algorithm for landing of
UAV by utilizing low-cost sensors for precise detection of
moving target. The work presented in [28,29] performs
autonomous landing for quadrotor system by relying on
onboard sensing and computation. Vlantis et al. [30] tackles
the problem of landing a quadrotor on inclined moving
platforms by relying on forward—facing camera to detect
and track the platform. Furthermore, semi-direct monocu-
lar visual odometry (SVO) and simultaneous localization
and mapping (SLAM) based approaches such as [31,32],
propose resource—efficient system for real-time mapping of
the ground terrain and subsequently detecting landing spot
for MAVs by leveraging a 2D height grid map created
from the reconstructed terrain. Although, these algorithms
are computationally efficient, their deployment on small
sized, arm—based resource—constraint companion computer
onboard the MAV becomes intractable. Despite the progress,
the aforementioned efforts have their own limitations: a)
Most existing methods rely on marked based detection of
the target landing spots while a few other works utilize
additional sensors attached to landing area for detection; b)
landing is accomplished within a bounded environment. In
this work, we focus on finding suitable landing sites for a
Tiltrotor MAV pursuing long distance mission spanning over
vast ground terrains following arbitrary path at high altitudes
that render vision based mapping techniques ineffective. Our
proposed approach relies on the prior knowledge of existence
of ground terrain areas such as various sports fields and other
level top surfaces that are ubiquitous and present suitable
conditions for safe landing. We first detect such suitable
candidate landing spots in aerial imagery by leveraging a
Deep Learning classification network. Then, the pipeline
carries out autonomous navigation to the best landing site
and switches to appropriate mode to employ controller to
position itself at the geometric center of the landing site. This
is followed by initiating a landing command allowing the
MAV to descend and finally land at the determined landing
spot.

I1I. PROBLEM SETUP

The problem of landing site discovery in the event of an
emergency within the context of this work is considered

along the lines of a flying Tiltrotor MAV pursuing an
autonomous migratory mission. More specifically, we aim to
identify appropriate terrain regions that are safe for landing
without creating a comprehensive map of the observable
ground terrain and instead leverage a Deep Learning based
image classifier to characterize suitable areas in the over-
heard visual imagery. Considering an autonomous migratory
mission that spans over vast arbitrary unmapped and unstruc-
tured ground terrain, we distinguish two broad categories of
landscape a) uneven elevation regions containing structures
that constitute significant collision volume, and b) rigid flat
regions with mostly leveled profile such as baseball field,
soccer field and structures with flat top surfaces. Within the
proposed approach, we aim to characterize and identify the
latter class of regions due to their ubiquitous nature and
mostly flat surfaces that facilitate safe landing and allow for
appropriate takeoff once the batteries are fully charged.
The problems to be addressed are given as follows:

Problem 1 (Vision based landing site detection) It is defined
as the problem of bounding-box regression and multi—class
terrain landmark classification in overhead aerial images cap-
tured via a downward facing camera to find candidate landing
sites. The following sub—problem then aims to identify a
suitable landing site out of the candidate landing sites.

Problem 2 (Autonomous Tiltrotor Landing) Given a potential
landing site and its corresponding georeferenced location
¢ref | the goal is to navigate to the location £7¢f in Fixed-
wing configuration and subsequently switch to VTOL con-
figuration to initiate the landing and descent sequences.

A. Our Contribution

The main contribution of our work is summarized as
follows:

o« We present an integrated pipeline and experimentally
verify the applicability of a Deep Learning framework
for UAS-based terrain imagery classification.

e We demonstrate how terrain landmarks that lend them-
selves for safe (emergency) landing are successfully
classified in this integrated system design, which can
also perform landing on best candidate based on this
unlocked level of capacity.

o We provide statistical evaluation for the effect of scale
on the accuracy of the detections in MAV UAS imagery
acquired across different flying altitudes measured in
meters Above Ground Level (AGL).

IV. PROPOSED APPROACH

This section details our contributions towards autonomous
landing site discovery for an in-house designed Tiltrotor
MAV.

A. Overarching Architecture

For an autonomously navigating aerial vehicle platform
with limited power resources, alighting on appropriate ter-
restrial site is necessary for recharging via solar energy
harvesting allowing the vehicle to resume its mission. This is
the takeoff point for our pipeline: we consider that the aerial
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vehicle is operating in Fixed-wing mode, and we initiate
our pipeline as its depleting power resources approach a
certain threshold essentially emulating an unexpected event
that would require immediate landing. Figure 2 presents a
flowchart of this paper’s algorithmic components which are
subsequently elaborated, illustrating the overarching logic of
how these fundamental capabilities contributed through our
work can be applied to autonomously detect suitable sites
and subsequently land on them.

[ Initiate Tiltrotor MAV ]

Vertical Ascent & Transition to
Forward Flight

[ Fixed-Wing Mission ]

Initiate Landing Site Detection
pipeline

Suitable Landing
Site Found

[ VTOL Descent and Land ]

Fig. 2. Flowchart of overarching architecture

B. Vision Based Landing Site Detection

This section presents our implemented pipeline that lever-
ages Deep Learning based object classification network for
visual characterization of suitable landing locations in over-
head aerial imagery.

We begin by rectifying the fisheye image I, by undis-
toring it with a—priori known intrinsic matrix and distortion
parameters to get Ij;. It is mentioned here that the camera
is well calibrated [33-35] in an offline manner to determine
the pinhole camera intrinsic parameters ([ f., fv, Pu, Pv]) and
coefficients of equidistant distortion model ([k1, ko, 71,72])
that facilitates the undistortion process. We proceed to crop
the undistored image Iy into image sections of dimen-
sion 1024 x 1024, each resulting in four cropped images
(Inety , --5 Inet, ) with overlapping regions such that the image
dimensions matches the input dimensions of the employed
network. An alternate approach to make the image size
compatible with the network’s input dimension is to resize
the image accordingly which however causes a loss in
spatial resolution and distorts the visual appearance of the
objects in image resulting in failure of detection of even the
most obvious object classes. Cropping the original image in
smaller overlapping images, on the other hand, ensures that
the spatial resolution remains unaffected and high probability
of detections due to redundant overlapping pixels. We follow
by forward inference of a trained model of object detection
network on the cropped images (Iyct,, .., net,) to obtain a
bounding box and detected object class label. It is noted
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here that the Deep Learning framework leveraged in this
work is capable of classifying a) parts of ground terrain such
as baseball-diamond, soccer field, tennis court, basketball
court, etc and b) other ground objects such as plane, vehicle,
swimming pool, etc. In our approach, we cater to the former
category of objects since they are relevant to our use case.

The above mentioned process continuously executes on
incoming image frames resulting in detection of candidate
landing sites. At the same time, georeferenced location &; ef
corresponding to each candidate landing site is identified as
well. To qualify as a suitable landing site, we leverage the
confidence score associated with each detections provided by
the network. During the detection phase we keep a track of
all candidate detection and other attributes such as georefer-
enced location and confidence score. An i*" detection with
¢/ location with the superior detection score is selected
as the final landing site. As soon as the final landing site is
identified from the candidate detections, its corresponding
georeferenced location £7¢/ is forwarded to autonomous
landing pipeline which is described in the following section.

Figure 3 depicts an indicative example of the aerial view
captured onboard our MAV platform for a sample mission
executed in the N. Nevada region. It is highlighted here that
our pipeline is able to successfully detect difficult to discern
structures such as the storage tank with the sunlight over-
exposing it, essentially hiding its distinguishing edges and
features, and the detection remains consistent while the MAV
performs aggressive loiter maneuver which demonstrates the
effectiveness of our pipeline.

Aerial View Classification for

Lang

Classification Consistency of Difficult Structures - Storage Tank

g ¥ 180 m

Fig. 3. Top row: Georefernced trajectory of a sample flight path executed
in N. Nevada region for aerial view classification of landing site discovery.
Bottom rows each representing different flight altitudes, namely 100m,
150m and 180m while the columns depict the instances of storage tank
detection from different views at each altitudes while performing aggressive
loiter circle.
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C. Autonomous Tiltrotor landing

For the purposes of this paper we assume that a MAV
tasked with an autonomous mission is navigating in Fixed-
wing mode through a set of georefenced waypoints. As
soon as the power drops below a threshold 7, the MAV
initiates the pipeline described in the previous subsection
IV-B to survey the area using a downward facing camera in
order to determine mostly planar and safe landing regions.
Along the sinuous exploratory path (represented by yellow
path in top row of Figure 3 and top row of Figure 5) the
algorithmic components described previously characterize
several potential landing sites and finally identifies a relevant
landing spot with mostly level terrain such as a soccer field.
Subsequently, the vehicle navigates to the corresponding
georeferenced location &,y of the identified landing region
and transitions from the Fixed-wing mode to VTOL mode.

Given a body frame of reference (Fg) rigidly attached
to the center of mass of the aircraft in forward-right-down
(FRD) configuration, i.e. the x axis aligned along the fuselage
pointing towards the nose, the y axis aligned with right wing
and the z axis aligned orthogonal to both x and y axis
pointing downwards, a PID velocity controller is initiated
that operates in plane defined by x and y axis. The controller
aims to aligns the geometric center of the detected bounding
box {zw, ye»} with the image center {Zimg,Yimg}, both
transformed into body frame of reference (Fr), essentially
positioning the vehicle at the center of the landing site at
an offset in z axis by its altitude. Immediately after the
image center and the bounding box centers are aligned, an
autonomous landing sequence is initiated that allows the
MAV to descend gradually until it safely lands on the ground.

V. SYSTEM DESIGN

This section details the design of Tiltrotor MAV used
in our experiments and the implementation aspect of the
proposed approach.

A. Tiltrotor Micro Aerial Vehicle

In this work we use the MiniHawk-VTOL [36,37] plat-
form, which is a rapidly—prototyped aerial vehicle platform
of the operationally versatile [38, 39] Tri-Tiltrotor class [40—
44], capable of vertical landing and take off, and Fixed—wing
flight for efficient long distance navigation. The platform
weighs 1kg having 800mm wingspan that accommodates
solar panels with the ability to cruise at typical speed of
20m/s. A pair of tiltable BLDC motors actuated by two
separate servo motors in the front combined with a fixed
rear BLDC provides the utility for VTOL. It is mentioned
that the platform we deploy in this work and the proposed
algorithmic approach focuses on autonomous vision based
landing site discovery rather than the solar harvesting aspect
which are discussed in our prior work [37].

In addition to the actuating components, the main body
of the vehicle houses several electronic and power related
components that are rigidly mounted inside the hollow body
including a mRo PixracerPro flight controller and Khadas
VIM3 companion computer. The Khadas VIM3 is a powerful
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Fig. 4. Bottom view of the MiniHawk VTOL platform. Top right image
shows the wide angle 180° field of view camera mounted at the tail end of
the fuselage for capturing aerial view imagery. Bottom left image illustrates
the top view of the fuselage with the electronic and power components
housed in the body of vehicle including Khadas VIM3 companion computer.

small-sized companion computer capable of handling high—
level autonomy tasks as well as the ability to run neural
network onboard. Packed with a CPU consisting of 4 Cortex-
A73 cores paired with 2 Cortex-A53 cores combined with in-
built neural processing unit capable of running Deep Neural
Networks makes it perfect for our application. Furthermore,
it includes a downward facing fisheye lens camera with USB
interface and a passive IR-CUT filter that filters out invisible
infrared to provide color corrected image in outdoor settings.
Figure 4 illustrates the system design; it depicts the image
of the bottom view of the vehicle with the downward facing
fisheye camera rigidly mounted on the tail that allows us
to capture aerial view of terrain during the forward-flight
operation.

B. Implementation details

This section describes the implementation specific details
of the pipeline that were followed during the experiments.

The MiniHawk VTOL is considered as if operating within
the context of an emergency situation, where it has to
autonomously decide a safe landing site based in a short
time window. Thus, the visual landing site detection pipeline
initiates as soon as the vehicle ascends into the air and
transitions into forward flight operation, and some surveying
is performed prior to detecting a landing site and terminating
the mission. We leverage the ArduPilot stack running on
the flight controller to both a) perform the initial aerial
surveying part of the mission as a waypoint flight trajectory
executed in auto-mode, as well as b) use the inbuilt velocity
controller API to control the horizontal positioning of the
vehicle as described in Section IV-C. This feature is available
when the vehicle is switched to guided—mode and allows the
companion computer to guide the MAV to land through the
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velocity command interface.

The mission begins with vehicle in auto-mode initiating
a VTOL ascent up to a certain altitude, followed by transi-
tioning to forward flight and subsequently navigating as per
the waypoint mission. Followingly, the landing site detection
pipeline described in Section IV-B is engaged that provides
the georeferenced location £7¢f of the landing spot which is
set as final navigation waypoint. Immediately after reaching
£7ef the vehicle transitions to VTOL mode and switches to
guided—mode allowing the companion computer to position
it to the horizontal geometric center of the landing site. At
this point, the guided—mode is disabled while the auto—mode
is enabled again allowing the companion computer to trigger
the landing command.

For the purposes of terrain landmark detection we lever-
age the YOLOV3 [45] Deep Learning framework, which is
capable of discerning multiple instances of object classes
in aerial images with densely packed, distributed with large
scale variation and arbitrarily oriented objects. In this work,
we rely on YOLOvV3 network trained on a DOTA dataset [46]
containing classes that are relevant to the envisioned problem
statement. In order to deploy the trained network model
on the NPU on-board Khadas VIM3, it is required to be
quantized. Quantization refers to the techniques that perform
computations and stores the floating point weights to lower
bandwidths such as integers. This allows for a more compact
representation of the model and the use of high perfor-
mance vectorized operations on supported hardware without
compromising inference time accuracy while significantly
reducing computational cost. Mathematically, quantization
maps a floating point value x € [a, 8] to a b-bit integer
xp € [ap, Bp] as indicated in the equation 1. To perform
model quantization, we leverage npu convert tool [47] which
is an SDK that supports models from various frameworks and
libraries such as PyTorch, TensorFlow, ONNX, Darknet, etc.

1
x4 = round (x + z) (1
s

B —«
Bq — aq
2z = round M
b —«
VI. EXPERIMENTAL STUDY

To experimentally demonstrate the effectiveness of our
proposed approach we employed an in—house designed
and developed Tiltrotor aerial robot, the MiniHawk-VTOL,
armed with the previously presented onboard perception and
Deep-Learned classification pipeline that allows it to detect
ground landmarks of significance.

The presented test were conducted in the region of N.
Nevada at three different cruising altitudes of 100m, 150m
and 180m to demonstrate the efficacy of our approach.
Figure 5 depicts the corresponding georeferenced flight
trajectory within the context of such a landing-on-request
mission. Key instances of candidate landing regions are
annotated on the figure, as detected by the Deep Learning

where, s=

framework, and associated to the corresponding sections of
the vehicle’s flight path. The mission is designed to emulate
a search for candidate landing sites due to an unexpected
event. Therefore, the flight sequence comprises of three
phases, namely i) VTOL altitude ascent to 60m above ground
level, ii) Fixed-wing climb to cruising altitude and surveying
for landing site detection, initiated due to the detection of
an envisioned emergency event which requires to early-
terminate the mission, and finally iii) a VTOL descent and
landing at an identified suitable site discovered along this
search.

The specific environment terrain for the mission comprises
of various sport fields and other cluttered and densely packed
objects. The mission process follows the outline presented
in Section IV-A; the vehicle ascends up to an altitude of
60m, indicated by the orange path in Figure 5 followed
by transitioning into forward flight configuration to climb
to the cruising altitude and surveying in Fixed—wing mode.
At the same time the Deep Leaning detection pipeline is
engaged which begins to characterize and detect various
candidate landing sites. The bottom row of Figure 5 depicts
instances of baseball diamonds and soccer fields detected
along the flight path. These are illustrated with association
to the corresponding sections of the aerial robot’s trajectory.

Following this, a suitable landing spot out of the ones
detected earlier is identified along with the georeferenced
location. In this particular mission the soccer field indicated
in the Figure 5-c) is selected as an appropriate landing site,
based on its class and superior detection score. Subsequently,
the MAV navigates toward the corresponding location and
transitions into VTOL operation mode allowing it to land at
the selected landing spot.

It is noted that an indicative video sequence of the 180m
AGL flight is provided as supplementary material with this

paper.
A. Statistical Evaluation

In this sub-section we discuss the performance of the
Deep Learning network and the effect of scale for the
classification of various landmarks in continuous sequence
of aerial imagery. Table I provides precision, recall and
detection performance metrics for the experimental tests
conducted at two different sites in the N. Nevada region
across different flying altitudes measured above ground level
(as indicated in Figures 3 and 5). It is mentioned here that the
statistical results for Silver Knolls Park (SKP) flight sequence
(in I) are provided with respect to a single class (storage tank)
of a difficult to detect structure during aggressive loitering
of MAV while the Golden Eagle Park (GEP) flight sequence
contains results for multi—class classification.

The overall detection accuracy follows an inverse relation
with the scale of the landmarks (proportional relation with
the AGL flying altitude) while precision and recall follow
the same trend for GEP flight sequences. However, for SKP
flight sequence images containing relatively small structure
such as storage tank, the detection accuracy, precision and
recall, all decrease with the decrease in scale. This is
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TABLE 1
PERFORMANCE OF THE DEEP LEARNING CLASSIFICATION NETWORK COMPARED FOR THREE IMAGE SCALES CAPTURED ACROSS DIFFERENT AGL
FLYING ALTITUDES AT TWO SITES IN THE N. NEVADA REGION.

Flight sequence True Positive (TP)  False Positive (FP)  False Negative (FN)  Detection Performance  Precision  Recall
Golden Eagle Park - 100m alt 613 159 852 37.74% 0.794 0.418
Golden Eagle Park - 150m alt 783 67 1282 36.72% 0.921 0.379
Golden Eagle Park - 180m alt 857 71 1098 42.17% 0.917 0.438
Silver Knolls Park - 100m alt 37 4 34 49.33% 0.902 0.521
Silver Knolls Park - 150m alt 32 3 69 30.76% 0.914 0.316
Silver Knolls Park - 180m alt 51 8 103 31.48% 0.864 0.331

VTOL Mission Start/End

Fixed-Wing Surveying

Descent to Land at Best Candidate

150m

119° 40° 13

Alt (ASL)

119° 40° 8.8”

1400 m
1197 40 0.45”

Lon (W)
39° 35" 47 39° 35’ 53" 39° 35’ 607 39° 36° 6.17 39° 36’ 13" 39° 36° 19”7
Lat (N)
Multiple Football Fields Multiple Baseball Diamonds Football Field Baseball - Diamond

Fig. 5. Top row: Mission phases illustrated as georeferenced flight paths at three distinct AGL altitudes, namely 100m, 150m and 180m, overlaid on a
perspective view of a N. Nevada region. Orange-colored: Mission start with VTOL ascent, mission end with VTOL landing. Yellow-colored: Fixed-wing
flight with simultaneous aerial classification of landing sites. Green-colored: Fixed-wing final approach of best candidate for landing. The three bottom rows
correspond to the Fixed—wing AGL flight altitude in ascending order of 100m, 150m and 180m, while the columns represents key detection instances;
a) an instance of multiple football fields, b) an instance of multiple baseball diamonds, c¢) soccer field selected as best candidate for landing site, d) single
baseball diamond detection during sharp loiter turns. An indicative video sequence of the experiment is provided as supplementary material with this paper.

an expected behaviour for such small structures since the and essentially lower classification confidence score for the
decrease in scale results in the loss of spatial resolution storage tank class. Indicatively, altitude of 180m, despite
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having slightly low accuracy as compared to 150m altitude
flight, is excellently tailored for a UAS terrain landmark
classification purposes providing a balanced tradeoff between
precision and recall for all the classes of landing sites.

VII. CONCLUSIONS

In this work, a vision-based pipeline to discover landing
sites based on a deep-learned classification policy, and by
relying only on aerial imagery captured onboard an au-
tonomous aerial system was proposed and demonstrated.
The proposed policy contributes an effective pipeline for
characterizing potential landing regions and essentially iden-
tifying the best candidate for a landing of the vehicle while
autonomously landing at the corresponding georeferenced
location in a VTOL manner. The proposed approach was
evaluated and tested in real-world settings within the context
of multiple field tests conducted in the Northern Nevada
region demonstrating its consistency and effectiveness.
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