


The remainder of the paper is organized as follows:

Section II presents related work while Section III details the

problem setup. Section IV describes system principles and

theory, followed by Section V which presents system design

and implementation aspects. Section VI demonstrates and

discusses field test results. Conclusions are drawn in Section

VII.

II. RELATED WORK

Autonomous MAV landing in unknown outdoor as well

as indoor environments [21–26] has been widely studied

by the robotics community. These works employ advanced

control accompanied by estimation and guidance strategy

to track and perform precise landing on moving target,

by relying on vision based detection of fiducial markers.

Authors of [27] propose control algorithm for landing of

UAV by utilizing low-cost sensors for precise detection of

moving target. The work presented in [28, 29] performs

autonomous landing for quadrotor system by relying on

onboard sensing and computation. Vlantis et al. [30] tackles

the problem of landing a quadrotor on inclined moving

platforms by relying on forward–facing camera to detect

and track the platform. Furthermore, semi-direct monocu-

lar visual odometry (SVO) and simultaneous localization

and mapping (SLAM) based approaches such as [31, 32],

propose resource–efficient system for real-time mapping of

the ground terrain and subsequently detecting landing spot

for MAVs by leveraging a 2D height grid map created

from the reconstructed terrain. Although, these algorithms

are computationally efficient, their deployment on small

sized, arm–based resource–constraint companion computer

onboard the MAV becomes intractable. Despite the progress,

the aforementioned efforts have their own limitations: a)

Most existing methods rely on marked based detection of

the target landing spots while a few other works utilize

additional sensors attached to landing area for detection; b)

landing is accomplished within a bounded environment. In

this work, we focus on finding suitable landing sites for a

Tiltrotor MAV pursuing long distance mission spanning over

vast ground terrains following arbitrary path at high altitudes

that render vision based mapping techniques ineffective. Our

proposed approach relies on the prior knowledge of existence

of ground terrain areas such as various sports fields and other

level top surfaces that are ubiquitous and present suitable

conditions for safe landing. We first detect such suitable

candidate landing spots in aerial imagery by leveraging a

Deep Learning classification network. Then, the pipeline

carries out autonomous navigation to the best landing site

and switches to appropriate mode to employ controller to

position itself at the geometric center of the landing site. This

is followed by initiating a landing command allowing the

MAV to descend and finally land at the determined landing

spot.

III. PROBLEM SETUP

The problem of landing site discovery in the event of an

emergency within the context of this work is considered

along the lines of a flying Tiltrotor MAV pursuing an

autonomous migratory mission. More specifically, we aim to

identify appropriate terrain regions that are safe for landing

without creating a comprehensive map of the observable

ground terrain and instead leverage a Deep Learning based

image classifier to characterize suitable areas in the over-

heard visual imagery. Considering an autonomous migratory

mission that spans over vast arbitrary unmapped and unstruc-

tured ground terrain, we distinguish two broad categories of

landscape a) uneven elevation regions containing structures

that constitute significant collision volume, and b) rigid flat

regions with mostly leveled profile such as baseball field,

soccer field and structures with flat top surfaces. Within the

proposed approach, we aim to characterize and identify the

latter class of regions due to their ubiquitous nature and

mostly flat surfaces that facilitate safe landing and allow for

appropriate takeoff once the batteries are fully charged.

The problems to be addressed are given as follows:

Problem 1 (Vision based landing site detection) It is defined

as the problem of bounding-box regression and multi–class

terrain landmark classification in overhead aerial images cap-

tured via a downward facing camera to find candidate landing

sites. The following sub–problem then aims to identify a

suitable landing site out of the candidate landing sites.

Problem 2 (Autonomous Tiltrotor Landing) Given a potential

landing site and its corresponding georeferenced location

ξref , the goal is to navigate to the location ξref in Fixed-

wing configuration and subsequently switch to VTOL con-

figuration to initiate the landing and descent sequences.

A. Our Contribution

The main contribution of our work is summarized as

follows:

• We present an integrated pipeline and experimentally

verify the applicability of a Deep Learning framework

for UAS-based terrain imagery classification.

• We demonstrate how terrain landmarks that lend them-

selves for safe (emergency) landing are successfully

classified in this integrated system design, which can

also perform landing on best candidate based on this

unlocked level of capacity.

• We provide statistical evaluation for the effect of scale

on the accuracy of the detections in MAV UAS imagery

acquired across different flying altitudes measured in

meters Above Ground Level (AGL).

IV. PROPOSED APPROACH

This section details our contributions towards autonomous

landing site discovery for an in–house designed Tiltrotor

MAV.

A. Overarching Architecture

For an autonomously navigating aerial vehicle platform

with limited power resources, alighting on appropriate ter-

restrial site is necessary for recharging via solar energy

harvesting allowing the vehicle to resume its mission. This is

the takeoff point for our pipeline: we consider that the aerial
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velocity command interface.

The mission begins with vehicle in auto–mode initiating

a VTOL ascent up to a certain altitude, followed by transi-

tioning to forward flight and subsequently navigating as per

the waypoint mission. Followingly, the landing site detection

pipeline described in Section IV-B is engaged that provides

the georeferenced location ξref of the landing spot which is

set as final navigation waypoint. Immediately after reaching

ξref the vehicle transitions to VTOL mode and switches to

guided–mode allowing the companion computer to position

it to the horizontal geometric center of the landing site. At

this point, the guided–mode is disabled while the auto–mode

is enabled again allowing the companion computer to trigger

the landing command.

For the purposes of terrain landmark detection we lever-

age the YOLOv3 [45] Deep Learning framework, which is

capable of discerning multiple instances of object classes

in aerial images with densely packed, distributed with large

scale variation and arbitrarily oriented objects. In this work,

we rely on YOLOv3 network trained on a DOTA dataset [46]

containing classes that are relevant to the envisioned problem

statement. In order to deploy the trained network model

on the NPU on-board Khadas VIM3, it is required to be

quantized. Quantization refers to the techniques that perform

computations and stores the floating point weights to lower

bandwidths such as integers. This allows for a more compact

representation of the model and the use of high perfor-

mance vectorized operations on supported hardware without

compromising inference time accuracy while significantly

reducing computational cost. Mathematically, quantization

maps a floating point value x ∈ [α, β] to a b–bit integer

xb ∈ [αb, βb] as indicated in the equation 1. To perform

model quantization, we leverage npu convert tool [47] which

is an SDK that supports models from various frameworks and

libraries such as PyTorch, TensorFlow, ONNX, Darknet, etc.

xq = round

(

1

s
x+ z

)

(1)

where, s =
β − α

βq − αq

z = round

(

βαq − αβq

β − α

)

VI. EXPERIMENTAL STUDY

To experimentally demonstrate the effectiveness of our

proposed approach we employed an in–house designed

and developed Tiltrotor aerial robot, the MiniHawk-VTOL,

armed with the previously presented onboard perception and

Deep-Learned classification pipeline that allows it to detect

ground landmarks of significance.

The presented test were conducted in the region of N.

Nevada at three different cruising altitudes of 100m, 150m
and 180m to demonstrate the efficacy of our approach.

Figure 5 depicts the corresponding georeferenced flight

trajectory within the context of such a landing-on-request

mission. Key instances of candidate landing regions are

annotated on the figure, as detected by the Deep Learning

framework, and associated to the corresponding sections of

the vehicle’s flight path. The mission is designed to emulate

a search for candidate landing sites due to an unexpected

event. Therefore, the flight sequence comprises of three

phases, namely i) VTOL altitude ascent to 60m above ground

level, ii) Fixed-wing climb to cruising altitude and surveying

for landing site detection, initiated due to the detection of

an envisioned emergency event which requires to early-

terminate the mission, and finally iii) a VTOL descent and

landing at an identified suitable site discovered along this

search.

The specific environment terrain for the mission comprises

of various sport fields and other cluttered and densely packed

objects. The mission process follows the outline presented

in Section IV-A; the vehicle ascends up to an altitude of

60m, indicated by the orange path in Figure 5 followed

by transitioning into forward flight configuration to climb

to the cruising altitude and surveying in Fixed–wing mode.

At the same time the Deep Leaning detection pipeline is

engaged which begins to characterize and detect various

candidate landing sites. The bottom row of Figure 5 depicts

instances of baseball diamonds and soccer fields detected

along the flight path. These are illustrated with association

to the corresponding sections of the aerial robot’s trajectory.

Following this, a suitable landing spot out of the ones

detected earlier is identified along with the georeferenced

location. In this particular mission the soccer field indicated

in the Figure 5-c) is selected as an appropriate landing site,

based on its class and superior detection score. Subsequently,

the MAV navigates toward the corresponding location and

transitions into VTOL operation mode allowing it to land at

the selected landing spot.

It is noted that an indicative video sequence of the 180m
AGL flight is provided as supplementary material with this

paper.

A. Statistical Evaluation

In this sub–section we discuss the performance of the

Deep Learning network and the effect of scale for the

classification of various landmarks in continuous sequence

of aerial imagery. Table I provides precision, recall and

detection performance metrics for the experimental tests

conducted at two different sites in the N. Nevada region

across different flying altitudes measured above ground level

(as indicated in Figures 3 and 5). It is mentioned here that the

statistical results for Silver Knolls Park (SKP) flight sequence

(in I) are provided with respect to a single class (storage tank)

of a difficult to detect structure during aggressive loitering

of MAV while the Golden Eagle Park (GEP) flight sequence

contains results for multi–class classification.

The overall detection accuracy follows an inverse relation

with the scale of the landmarks (proportional relation with

the AGL flying altitude) while precision and recall follow

the same trend for GEP flight sequences. However, for SKP

flight sequence images containing relatively small structure

such as storage tank, the detection accuracy, precision and

recall, all decrease with the decrease in scale. This is
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having slightly low accuracy as compared to 150m altitude

flight, is excellently tailored for a UAS terrain landmark

classification purposes providing a balanced tradeoff between

precision and recall for all the classes of landing sites.

VII. CONCLUSIONS

In this work, a vision-based pipeline to discover landing

sites based on a deep-learned classification policy, and by

relying only on aerial imagery captured onboard an au-

tonomous aerial system was proposed and demonstrated.

The proposed policy contributes an effective pipeline for

characterizing potential landing regions and essentially iden-

tifying the best candidate for a landing of the vehicle while

autonomously landing at the corresponding georeferenced

location in a VTOL manner. The proposed approach was

evaluated and tested in real-world settings within the context

of multiple field tests conducted in the Northern Nevada

region demonstrating its consistency and effectiveness.
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