
Yinan Wang
Mem. ASME

Department of Industrial
and Systems Engineering,

Rensselaer Polytechnic Institute,
Troy, NY 12180

e-mail: wangy88@rpi.edu

Wenbo Sun
Transportation Research Institute,

University of Michigan,
Ann Arbor, MI 48109

e-mail: sunwbgt@umich.edu

Jionghua (Judy) Jin
Fellow ASME

Department of Industrial
and Operations Engineering,

University of Michigan,
Ann Arbor, MI 48109

e-mail: jhjin@umich.edu

Zhenyu (James) Kong
Fellow ASME

Grado Department of Industrial
and Systems Engineering,

Virginia Tech,
Blacksburg, VA 24060
e-mail: zkong@vt.edu

Xiaowei Yue1

Mem. ASME
Grado Department of Industrial

and Systems Engineering,
Virginia Tech,

Blacksburg, VA 24060
e-mail: xwy@vt.edu

MVGCN: Multi-View Graph
Convolutional Neural Network
for Surface Defect Identification
Using Three-Dimensional
Point Cloud
Surface defect identification is a crucial task in many manufacturing systems, including
automotive, aircraft, steel rolling, and precast concrete. Although image-based surface
defect identification methods have been proposed, these methods usually have two limita-
tions: images may lose partial information, such as depths of surface defects, and their pre-
cision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc.
Given that a three-dimensional (3D) point cloud can precisely represent the multidimen-
sional structure of surface defects, we aim to detect and classify surface defects using a
3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed
over the surface, which makes their features prone to be hidden by the normal surface and
(ii) different permutations and transformations of 3D point cloud may represent the same
surface, so the proposed model needs to be permutation and transformation invariant. In
this paper, a two-step surface defect identification approach is developed to investigate
the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsu-
pervised method for defect detection and a multi-view deep learning model for defect clas-
sification, which can keep track of the features from both defective and non-defective
regions. We prove that the proposed approach is invariant to different permutations and
transformations. Two case studies are conducted for defect identification on the surfaces
of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The
results show that our approach receives the best defect detection and classification accu-
racy compared with other benchmark methods. [DOI: 10.1115/1.4056005]

Keywords: 3D point cloud analytics, graph convolutional neural network, defect
identification, sensing, monitoring and diagnostics

1 Introduction
The surface defects (e.g., scratch, dent, and protrusion) caused

during manufacturing processes, such as machining or additive
manufacturing, may further cause structural failures due to the
reduced material strength and the excessive local stress around
the defective region [1,2]. Surface defect identification is an impor-
tant task in the fields of advanced manufacturing and maintenance.
Human-based visual inspection is traditionally used in surface
quality monitoring. However, such inspection is often time-
consuming and has some subtle defects being ignored. With the
rapid development of sensing and data analytics methods, automatic
sensing-based inspection techniques have been increasingly used
because of their high accuracy and efficiency.
Various types of sensors have been equipped in advanced manu-

facturing systems to facilitate automatic quality inspection and
process control. Image-based quality inspection is one of the
popular ways of defect detection and identification [3]. For
example, techniques in digital image processing, such as various
filters [4–6], wavelet transformation [7,8], and morphological algo-
rithms [9], have been adapted into defects detection; in addition,
image decomposition methods are developed to inspect defective
regions [10,11]; advanced machine learning methods have also

shown their strength in detecting and classifying diverse surface
defects from inspection images [12–15]. However, the noise level
of the images, which may arise from inevitable disturbances such
as the light, angle, color, sensor stability, etc., has a significant influ-
ence on the accuracy of image-based inspection methods. For
example, light and color usually vary among different environments
and objects, resulting in a reduction in the accuracy and generaliza-
tion ability of image-based methods. Moreover, two-dimensional
(2D) image inspections lead to a loss of three-dimensional (3D)
information. Alternatively, the advances in 3D laser scanning tech-
nologies can measure the 3D point cloud of objects, and the exam-
ples of the 3D point cloud are shown in Fig. 8. Compared with
images, the 3D point cloud has three advantages: (1) it can
quickly and accurately measure the 3D coordinates of object
surface; (2) the measurement performance is robust to the object’s
surface colors and light variations/disturbances; and (3) the resolu-
tion of 3D scanner (density of points) can be adjusted according to
the dimension of the potential defects. Therefore, increasing
research interests have arisen in using 3D point cloud measurements
for product surface defect inspection [16–18].
Although 3D point cloud has many advantages to benefit surface

defect identification, there are still three critical challenges in data
analysis of 3D point cloud: (1) The 3D point cloud is unstructured,
which means that applying the data transformations, such as permu-
tations, rotations, or translations, to a point set might change the
coordinates and the order of points but will not affect the shape
of the corresponding object. We also demonstrate the

1Corresponding author.
Manuscript received September 6, 2021; final manuscript received October 11,

2022; published online December 2, 2022. Assoc. Editor: Ran Jin.

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-1
Copyright © 2022 by ASME

mailto:wangy88@rpi.edu
mailto:sunwbgt@umich.edu
mailto:jhjin@umich.edu
mailto:zkong@vt.edu
mailto:xwy@vt.edu

transformation invariance in Fig. 1 to better illustrate this property,
in which three columns from left to right demonstrate the rotation,
translation, and permutation invariances, respectively. Therefore,
the proposed method should be invariant to different transforma-
tions of the same set of points; (2) the defective regions are sparsely
distributed over the non-defective surface. Thus, the defect’s char-
acteristics are prone to be diluted by the non-defective points around
the defective area; (3) each sample of the 3D point cloud contains at
least thousands of points, which makes pointwise manual data
labeling infeasible or inapplicable in practice. To the best of our
knowledge, there is little work successfully addressing all these
challenges simultaneously. The existing methods either sacrifice
the 3D information or incorporate human efforts in feature extrac-
tion, such as projecting the 3D point cloud into different 2D
planes to transform the 3D information into a set of images [19]
or building the classification model based on manually extracted
features or labeled points [20].
To address the aforementioned challenges, we propose a unified

machine learning framework to conduct surface defect identifica-
tion using the 3D point cloud. The contributions of the proposed
methodology include:

(1) A two-step method consisting of defect detection and classi-
fication is proposed to tackle the sparsity of defects, in which
the first detection step is used to detect potential defective
regions for separating the local area of defective regions
from the global area of non-defective regions, and the
second classification step is used to further identify the
type of defects detected in the first step.

(2) A multi-view graph convolutional neural network (MVGCN)
is proposed as the classification method to extract and exploit
features from the detected local view (defective regions) and
global view (non-defective regions) separately. A novel unsu-
pervised learning method is proposed for defect detection,
which does not require manual labeling. The influence of
the detection results on the classification performance is also
discussed.

(3) Both defect detection and classification are conducted by
graph-based methodologies to handle the 3D point cloud
directly. The selection of the number of neighbors in building
graphs is discussed. We also proved theoretically that the

proposed method is invariant to different permutations and
transformations of the 3D point cloud.

It is worth noting that although they share a similar name, our
proposed MVGCN is different from multi-view learning (MVL)
[21]. Intuitively speaking, the methods proposed in the MVL
focused on fusing different features for the same object. For
example, when predicting citywide crowd flow, multi-view features
include weather, time of the day, multi-scale temporal correlation
(daily, weekly, monthly, and quarterly), etc. [22]; when predicting
the possible links among nodes in a graph, the researchers proposed
to both consider the current linkage relationship among nodes and
the features of each node [23]; when conducting clustering, the
raw information of each node is considered as one view and the
transformations of the raw information (e.g., fast Fourier transform
(FFT)) are considered as other views [24]. Differently, the multi-
view in our work refers to different regions of the 3D point
cloud, for example, the defective and non-defective regions in the
3D point cloud. The motivation to extract features from different
regions is to preserve the informative features in the sparsely distrib-
uted defective regions and prevent them from being diluted by the
features from the non-defective regions.
The remainder of this paper is organized as follows. Section 2

reviews existing research works for surface defect identification
and related applications using the 3D point cloud. Section 3 proposes
the two-step framework for surface defect identification and illus-
trates its properties in dealing with the 3D point cloud. In Sec. 4,
we demonstrate the performance of the proposed framework on the
3D point cloud dataset of synthetic fuselage surface, which is
further compared with the state-of-the-art baseline methods. In
Sec. 5, we validate the strength of our proposed method on the
real 3D point cloud dataset collected by scanning the surface
of the precast concrete specimen. Finally, we conclude this paper
in Sec. 6.

2 Literature Review
Surface defect identification has been studied based on various

formats of measurement data. In this section, we mainly focus on
surveying the state-of-the-art surface defect identification works

Fig. 1 Demonstration of transformation invariance property. Matrix D stores the set of points in the 3D point cloud, and its
entries will change after rotation, translation, and permutation (either the value or order), but the represented object keeps
the same.

031004-2 / Vol. 145, MARCH 2023 Transactions of the ASME

using 3D point clouds (Sec. 2.1) and introduce some related appli-
cations of 3D point clouds in other related domains (Sec. 2.2). The
limitation of these methods is also discussed at the end of each
sub-sections.

2.1 Three-Dimensional Point Cloud-Based Surface Defect
Identification. There are increasing research interests in conduct-
ing surface defect inspections using 3D point cloud measurements.
For example, an automatic vision-based inspection system was pro-
posed for detecting and characterizing defects on the airplane exte-
rior surface, in which the undesired defects were detected by the
curvature and normal direction information calculated over a
given 3D point cloud [16]. The iterative closest point (ICP) algo-
rithm was applied to analyze 3D point cloud data for assessment
of the dimensional accuracy of manufactured parts [18]. In addition,
a new approach based on the spectral graph theory was proposed to
quantify the dimensional deviations and to localize the spatial
defects in additive manufacturing [17]. Different types of dimen-
sional deviations were further classified using the selected
machine learning approaches [20]. Furthermore, the local surface
curvature extracted by the principal component analysis (PCA)
was applied to detect the damages on cooling tower shells [25].
The aforementioned works are mainly based on manually

extracted or selected features to conduct defect detection and clas-
sification, which is not efficient for real-time surface defect identi-
fication or makes it hard to accurately capture 3D information on
defects’ shapes and dimensional size. The following sub-sections
will survey the related 3D point cloud data analysis methods that
have been recently developed in the machine learning field.

2.2 Survey of Three-Dimensional Point Cloud Analysis in
Machine Learning. A general analysis framework for surface
defect identification consists of two steps—defect detection and
classification. Most existing works introduced in Sec. 2.1 focused
on detecting defects or anomaly regions without further classifying
them into different classes. Recently, machine learning models for
3D point cloud classification have been rapidly developed, which
mainly follow three technical routes: image-based, voxel-based,
and point-cloud-based. Image-based models at first transform 3D
point cloud datasets into a set of 2D images by projection or render-
ing and then apply image classification methods, such as using
CNN to analyze 2D images [26]. Differently, the voxel-based
method is to represent a 3D point cloud with a 3D voxel grid,
which is classified using 3D CNN [27]. It is worth noting that
both image-based and voxel-based methods try to represent the
unstructured 3D point cloud in a structured data format, such as
matrices or tensors. Such a representation enables the application
of existing models to the 3D point cloud, but it also leads to extra
computational costs in preprocessing the 3D point cloud and an
information loss during the transformation. In contrast, the recently
developed PointNet was one attempt to directly classify the unstruc-
tured 3D point cloud using the multi-layer perceptron as the build-
ing block [28]. Furthermore, graph-based neural work, such as the
dynamic graph convolutional neural network (DGCNN) [29], was
also proposed to work directly on 3D point cloud. These models
preserve the complete 3D information and extract features directly
from the unstructured 3D point cloud for classification. Thus, they
also can be invariant to different permutations and transformations
of 3D point clouds.
In the literature, these 3D point cloud classification models are

mainly designed to identify the shapes of various objects (such as
chairs, tables, planes, cars, etc.), which is generally an easier task
than distinguishing different types of random surface defects.
There are unique challenges in identifying various types of
surface defects. First, the defects are usually sparsely distributed
over the non-defective surface. Thus, compared with classifying
various types of objects, the informative features used to identify
different defects are rather sparse. Furthermore, surface defects’ fea-
tures are easy to be diluted by the features representing the overall

shape when using the existing single-step classification model.
Thus, the existing methods are not directly applicable to the
surface defect classification. In the next section, we propose a
new two-step surface defect identification framework, which aims
to detect and classify the subtle differences among 3D point
clouds that contain various types of surface defects.

3 Proposed Methods for Surface Defect Identification
Using Three-Dimensional Point Cloud
Surface defects are often sparsely distributed over free-form sur-

faces, which makes the features of surface defects prone to be
hidden by non-defective regions. To overcome this obstacle, we
propose a two-step surface defect identification framework as
shown in Fig. 2, which includes two steps analyses: (1) an unsuper-
vised defect detection method by proposing an adaptive threshold
method based on local surface variation (Sec. 3.1) and (2) a super-
vised defect classification by proposing MVGCN (Sec. 3.2). The
term “multi-view” consists of a “global view” component that
models the global variations from non-defective regions and a
“local view” component that focuses on variations from defective
regions. In this way, surface variations of defective and non-
defective regions can be quantified separately.

3.1 Adaptive Threshold for Defect Detection Based on
Local Surface Variation. In the first step of the proposed
method, unsupervised surface defect detection is used to identify
the potential defect points, which is a prerequisite for the following
surface defect classification. As discussed in Sec. 1, the proposed
defect detection method should be invariant to different transforma-
tions of the unstructured 3D point cloud (e.g., permutation) and
insensitive to inevitable measurement noise. Moreover, it should
not require labeled data for training. To meet these requirements,
we propose an adaptive thresholding method by incorporating
K-nearest neighbor (KNN) graph model [30], which will be dis-
cussed in detail in the following sub-sections.

3.1.1 Distance Measures in Building K-Nearest Neighbor
Graphs. The raw 3D point cloud measured/collected by a laser
scanner is usually a set of unstructured points stored in a matrix
format. Suppose that D ∈ RN×3 represents the raw 3D point
cloud, in which N is the number of points, and three columns in
matrix D correspond to the 3D Cartesian coordinates of x= (x, y,
z). To guarantee that the set of 3D point cloud is invariant to permu-
tations of the points, a KNN graph is built for each point based on its
distances to the closest k′ neighboring points. There are different
measures of pairwise distance in the 3D point cloud. In this

Fig. 2 Framework of surface defect identification

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-3

paper, Euclidean and geodesic distances [31] are selected to measure
the pairwise distance among points when building the KNN
graphs. The influence of these two distance measures on the perfor-
mance of unsupervised defect detection is discussed in Sec. 4.3.
The idea of geodesic distance is to use the length of the shortest

curve between two points on the 3D surface as their distance. It can
quantify the distance more accurately by fully exploiting the geo-
metric structure on the target surface, while the Euclidean distance
sacrifices partial geometric information when evaluating the dis-
tance. However, calculating the geodesic distance is more time-
consuming because it requires first reconstructing the surface
from the 3D point cloud and then finding the length of the shortest
curve. In this paper, the heat method is used to approximate the pair-
wise geodesic distance from the reconstructed 3D surface [32].

3.1.2 Local Surface Variation Based on K-Nearest Neighbor
Graph. The reorganized 3D point cloud connects each point to
the top k′ closest points and forms a star graph. The reorganized
3D point cloud is denoted as D ∈ RN×(k+1)×3. The process of build-
ing KNN graphs on the 3D point cloud is demonstrated in Fig. 3.
KNN graphs store the local neighbors of each point in the 3D

point cloud. Compared with non-defective surfaces, which are
mostly smooth, a surface with defects has more considerable varia-
tions. Intuitively, variations indicate the roughness of the surface.
The next step is to estimate the local surface variation at each
point, which is determined by the center point and its neighbors.
Suppose that the point set X containing one center point x and its

k′ nearest local neighbors are defined as X ∈ R(k
′
+1)×3. The covari-

ance matrix of X is defined as Cov(X)=
1

k′ +1
(X−X)⊤(X−X), where

the X represents the centroid of the point set. The local surface var-
iation [33] at point x in a neighborhood of size k′ is defined as

σk′ (x) =
λ0

λ0 + λ1 + λ2
(1)

where λ0≤ λ1≤ λ2 are the three eigenvalues of the matrix Cov(X).
Among these three eigenvalues, λ1 and λ2 correspond to the eigen-
vectors spanning the tangent plane at point x, and λ0 corresponds to
the eigenvector approximating the surface normal at point x. Thus,
σk′ (x) indicates the variation along the normal direction at point x,
and a larger value indicates a more significant variation. When
σk′ (x) = 0, all the points in X are on the same plane. When
σk′ (x) = 1/3, all the points in X are completely isotropically distrib-
uted. In Proposition 1, we show that the defined local surface vari-
ation is a feature invariant to rotations and translations on X. The
proof of Proposition 1 is given in Appendix A.
PROPOSITION 1. Let X be the point set covering all the k′ nearest

neighbors of x. The local surface variation σk′ (x) is invariant with
respect to any rotation and translation of X.
Note that point set X is formulated by the KNN graph, which is

invariant to different permutations of the 3D point cloud.

Consequently, the local surface variation is also invariant to the per-
mutation of the point set X.

3.1.3 Adaptive Thresholding Defect Detection. Based on
Eq. (1), the local surface variation is calculated over all the KNN
graphs in D and makes it a pointwise feature to the original 3D
point cloud. We use Σk′ (D) = σk′ (x), x ∈ D{ }

to denote the set of
pointwise local surface variations of the 3D point cloud. From the
definition of local surface variation, we know that λ0 quantitatively
represents the variation along the normal direction of the tangent
plane. We have σk′ (x) ∈ [0, 1/3], and the spatial variation of the
points increases with the increase of σk′ (x). The assumptions of
the proposed method can be summarized in three aspects: (1) the
proposed framework is designed for surface defects identification
for the large-scale product, and most of its surface is smooth or
only with slightly complex geometry designs; (2) the measurement
noise, geometry designs, and subtle structures on the large-scale
product have a similar influence on the local surface variations
for both non-defective and defective surfaces; and (3) the local
surface variations of points around defects are usually higher than
those on a non-defective surface.
The unsupervised method is preferable for surface defect detec-

tion because it does not require a time-consuming labeling
process. The threshold-based method is selected to detect defects
by clustering all the points into two groups, which is defined in
Eq. (2).

f (x) =
1, σk′ (x) ≥ δ
0, σk′ (x) < δ

{
(2)

In Eq. (2), the value of f (x) represents either a point x belongs
to the defective regions (f (x) = 1) or the non-defective surface
(f (x) = 0), and δ represents the threshold.
The overall process to distinguish defective regions from non-

defective ones is summarized in Fig. 4, in which the most critical
issue is to determine an appropriate threshold by considering the
natural measurement noise (i.e., equipment and environment
noise) and other local subtle structural variations (i.e., joint rivets)
in the surface. We propose to use the statistics (e.g., the upper
bound of 80% confidence interval) of local surface variations on
the non-defective surface as the threshold. The rationales of this
adaptive thresholding method are justified by the following four
folds: (1) The 3D point cloud of defective and non-defective sur-
faces is collected using the same equipment under the same environ-
ment. So the increase of local surface variation caused by the
measurement noise has little influence and can be ignored; (2)
when the environment or equipment changes, we can repeat the
data collection of non-defective surface to adaptively calibrate
the threshold using updated statistics; (3) the selected statistics of
the local surface variations are determined by the major features
of the non-defective surface, such as the smooth surface and com-
monly appeared subtle structures (i.e., rivet joints), so as to

Fig. 3 The process to build KNN graph

031004-4 / Vol. 145, MARCH 2023 Transactions of the ASME

eliminate the influence from outliers; and (4) the threshold calibra-
tion can be efficiently conducted either on the experimental non-
defective samples or on the non-defective area in the target
product identified by the domain expert.

3.2 Multi-view Graph Convolutional Neural Network for
Defect Classification. Based on the results from the first step of
unsupervised defects detection (Sec. 3.1), a new MVGCN classifier
is proposed in the second step for defect classification. The pro-
posed MVGCN overcomes the following two challenges in defect
classification using 3D point clouds: (1) the classification model
should be invariant to different permutations and transformations
of 3D point clouds and (2) the defects are randomly scattered

over the inspected surface, which causes the difficulty to capture
the subtle features of sparse defects. To better illustrate the proposed
MVGCN, the entire process of feature extraction and defect classi-
fication is visualized in Fig. 5, which consists of graph convolu-
tional layer (GCL), multi-view graph convolutional layer
(MVGCL), and fully-connected (FC) layer. In this section, we
first introduce the formulation of GCL and then demonstrate the
specific design of MVGCL for defect classification.

3.2.1 Graph Convolutional Neural Network. As introduced in
Sec. 3.1.1, to keep the representation of 3D point cloud to be invari-
ant to different permutations of points, the KNN graph model is
used to reformulate 3D point cloud as D ∈ RN×(k+1)×3, which can
be regarded as a big graph that consists of the N number of KNN

Fig. 4 Visualization of adaptive threshold defect detection

Fig. 5 Visualization of multi-view graph convolutional neural network. The detected defective region (local view) and non-
defective region (global view) are fed into the proposed MVGCL, which are kept disjoint during the feature extraction over mul-
tiple MVGCLs. The extracted global feature and local feature are then concatenated and further fed into the FC layer for feature
fusion and prediction.

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-5

graphs for all the N points. Because the topology of the KNN graph
contains the geometric features around the corresponding center
point, it is essential to consider the graph topology when designing
the model. Therefore, the graph convolutional neural network
(GCN) [29] is adapted to extract the geometric features over the pre-
built KNN graph for classification. It is worth noting that we also
consider Euclidean distance or geodesic distance when building
the KNN graphs. The influence of these two distance measures
on the performance of supervised defect classification is discussed
in Sec. 4.4.
The information flow within a single graph convolutional layer is

visualized in Fig. 6, in which we set k= 4 and select three center
points (white nodes on the left) as examples to demonstrate how
the information from adjacent nodes (gray nodes) influences the
center points. If we stack multiple GCLs together, the output
from the previous layer will be fed into the next layer, which
enables the information from distant nodes to propagate over mul-
tiple hops to influence a node with no direct connection. The math-
ematical expression of the lth GCL is shown in Eq. (3).

xli =
∑
(i,j)∈D

h Θl
1(x

l−1
j − xl−1i) + Θl

2x
l−1
i

()

Xl = xl1, . . . , x
l
N

[]⊤ (3)

where xli ∈ Rdl represents the feature vector of the node i generated
by the lth layer, and we have the input of node i in the first layer as
x0i = (xi, yi, zi) and X0 = X ∈ RN×3 as the entire point set in the first
layer; Xl ∈ RN×dl represents the output features from the lth layer,
and dl is the dimension of output features at the lth layer; D repre-
sents the entire graph, (i, j) represents the edge with one end con-
necting to node i and the other end connecting to its neighbors j,
and xl−1j represents the features of its neighbors at layer (l− 1);

Θl
1, Θ

l
2 represent the trainable parameters in the lth layer, and h(.)

represents the activation function, such as ReLU. The aggregation
of Θl

1(x
l−1
j − xl−1i) and Θl

2x
l−1
i ensures that the graph convolutional

operation captures both the local differences by comparing the
center point with its direct neighbors and the global geometries
by propagating the features from distant nodes.

3.2.2 Multi-View Graph Convolutional Neural Network. From
the perspective of defect classification, the model should pay suffi-
cient attention to the features of defects. However, due to the spar-
sity of defective regions, it is likely that the center point of a KNN
graph belongs to the defective region while its neighbors belong to
the non-defective surface. In this case, the resultant KNN graph is
mixed with a defective center point and non-defective neighbor
points. Based on Eq. (3), the features of the defective regions will
be diluted by the features of the non-defective neighbor points. Fur-
thermore, with the increment of layers in multi-layer GCN, the

information from distant nodes will be propagated and aggregated
through the edges. Consequently, every pair of points are reachable
from each other no matter whether they are directly connected or
not. Therefore, the information between every pair of points, no
matter whether they are defective or non-defective, can influence
each other. To tackle this problem, we propose to cut the entire
graph into two sub-graphs based on the clustering results from
the first step using the unsupervised defect detection method
(Sec. 3.1). We refer to the sub-graph containing most of the
points from the detected defective regions as the local view graph
and the sub-graph containing points from the non-defective
surface as the global view graph. These two sub-graphs are used
to construct separate GCN models, in which the information in
two sub-graphs is not connected to avoid unnecessary information
exchange. These two sub-graphs are formally defined in Eq. (4).

xi ∈ Dlocal, f (xi) = 1
xi ∈ Dglobal, f (xi) = 0

{
(4)

where Dlocal ∈ RN1×(k1+1)×3, Dglobal ∈ RN2×(k2+1)×3, N1+N2=N;
and f (.) is the adaptive threshold defect detection method introduced
in Sec. 3.1.
The expression of the proposed MVGCL is given in Eq. (5).

xli = f (xi)
∑

(i,j)∈Dlocal

h Θl
1,local(x

l−1
j − xl−1i) + Θl

2,localx
l−1
i

()

+ (1 − f (xi))
∑

(i,j)∈Dglobal

h Θl
1,global(x

l−1
j − xl−1i) + Θl

2,globalx
l−1
i

()

Xl = xl1, . . . , x
l
N

[]⊤
(5)

where Θ1,local and Θ2,local are the set of trainable parameters used to
extract features from the local view graph; Θ1,global and Θ2,global are
used to extract features from the global view graph. The advantages
of separately modeling the local and global view graphs include two
aspects: (1) The center node and its neighbors all belong to either
the defective regions (local view graph) or the non-defective
surface (global view graph), which prevents the defect features
from being blurred or diluted by features from non-defective
areas and (2) the local and global view graphs are disjoint. There-
fore, when increasing the number of layers in the MVGCN
model, the features will only propagate and aggregate within each
graph. In this way, the sparse defect features will not be influenced
by features from distant non-defective areas in a deeper model.
The entire process of MVGCN is summarized in Fig. 5. The

detected defective and non-defective regions from the first step
are fed into the model and processed by the MVGCL. One
example of MVGCL is demonstrated in the dashed box in Fig. 5.
The extracted global features and local features are then

Fig. 6 Visualization of graph convolution operation on three center nodes (nodes in white).
The features from neighbors (nodes in gray) propagated through edges and aggregated
with the center nodes (nodes in white).

031004-6 / Vol. 145, MARCH 2023 Transactions of the ASME

concatenated and fused by the FC layers. The predicted defect type
is finally generated using the fused features.

4 Case Study 1
In this section, we generate a synthetic 3D point cloud dataset

that mimics the surface defects on the aircraft fuselage and validate
the effectiveness of the proposed method. In the following context,
we first introduce the procedure of generating and preprocessing the
3D point cloud dataset (Sec. 4.1). Then we test the performance of
the proposed method on the synthetic dataset (Secs. 4.2, 4.3, and
4.4). The code and dataset will be released upon publication.

4.1 Surrogated Defects Generation

4.1.1 Build Computer-Aided Design Model to Generate
Three-Dimensioanl Point Cloud With Surface Defects. The aircraft
fuselage with a cylinder shape is used as an example in this study.
We create a computer-aided design (CAD) model to mimic the
defects on the cylinder surface of an aircraft fuselage. According
to the visual inspection guidelines for aircraft [2], we select three
typical types of symbolic surface defects, which are scratch, dent,
and protrusion. This sub-section will discuss the process of building
a CAD model to generate 3D point cloud data for each type of
defect, which is summarized in Fig. 7.
Autodesk Inventor is used to generating CAD drawings of the

fuselage and defects. Specifically, we create a cylinder having
200 inches in diameter and 100 inches in height. Then, different
types of defects are manually created on the surface of the fuselage.
The dimension range of each type of defect is summarized in
Table 1, and the specific dimensions of individual defects vary ran-
domly by following a uniform distribution within its corresponding
range. Existing research works built up simulationmodels and found
out that defects, especially dents, with such dimensions typically
influence the mechanic properties of the metal fuselage, such as its
compressive and shear failure loads [34,35]. Thus, accurately identi-
fying these defects can prevent severe structural failures, reduce
maintenance costs, and improve the reliability of the fuselage. We
also mimic the possible real-world scenarios when generating
these different types of defects. In particular, for the dent, we first
create a solid object with an arbitrary shape within the given dimen-
sion range. Then we partially insert the solid object into the fuselage
surface to mimic the process that one solid object hits the fuselage
surface. Finally, we remove the intersection volume between
the solid object and the fuselage to create one surrogated dent on
the fuselage surface. Similarly, for the scratch, we generate every
single scratch using an arbitrary solid object to scrape over the
surface of the fuselage along a random trajectory. For the protrusion,

we squeeze the cylinder surface and insert a solid object with an arbi-
trary shape to mimic the deformed protrusion above the fuselage
surface.

4.1.2 Data Generation. After generating the CAD drawings of
surface defects, the 3D point cloud is further sampled and seg-
mented from these CAD drawings via CLOUDCOMPARE software.
The examples of segmented 3D point cloud samples in each
defect class are shown in Fig. 8.
In this case study, the surrogated 3D point cloud with surface

defects contains a total of 200 samples, in which each of four
classes (i.e., dent, scratch, protrusion, and non-defective) contains
50 samples. When initially segmenting these 200 samples, the
number of points in each sample may vary and is controlled to
contain slightly more than 2000 points. Then, random sampling is
conducted on each sample to ensure the same sample size of
2000 points among all samples. As the initial number of points in
each sample is controlled to be slightly more than 2000 during seg-
mentation, randomly sampling 2000 points will not significantly
influence the overall shape of the sample. The generated entire
dataset is denoted as {(D0, y0), …, (D199, y199)}, in which Di ∈
R2000×3 represents one sample of the 3D point cloud and yi is the
corresponding class label. Considering the shape of each 3D point
cloud sample is only influenced by the relative positions of its
points, we then center each data sample via Di − Di, in which Di

represents the mean coordinates along each axis of the sample.
After segmenting 3D point cloud samples from the CAD draw-

ings, the noise is added to these samples to consider the inevitable
measurement errors in a practical scanning process. The measure-
ment uncertainty is mainly influenced by two factors, the dimension
of the target object and the accuracy of the 3D scanner. The mea-
surement accuracy of the commercial 3D scanner is around (14+
14/m) μm, which means that the base measurement error equals
14 μm plus the proportional error of 14 μm for every meter of the
measured object’s largest dimension. Recall that the dimension of
the aircraft fuselage is set as 200 inches in diameter and
100 inches in height. According to the largest dimension of
200 inches, the scanning error of the fuselage is around 84 μm.
Also, considering the range of 3D point cloud coordinates and the
dimension of the fuselage, we have that one measurement unit
length in the coordinate system is approximately 2.5 cm. The mea-
surement error is thus around 0.003 units in the 3D point cloud
coordinate system. Based on the analysis, we add the normally dis-
tributed noise ϵ with standard deviation σ ranging from 0 to 0.006
units to mimic the measurement errors under normal scanning
conditions. The surrogated 3D point cloud is generated based on
Eq. (6).

D̂i = (Di − Di) + ε

ε ∈ N (0, σI)

σ = {0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006}

(6)

4.2 Baseline Methods and Experimental Settings

4.2.1 Baseline Methods. To demonstrate the strength of the
proposed method for defect detection and classification, several

Fig. 7 The process of generating 3D point cloud data

Table 1 Dimension ranges of synthetic defects (inches)

Defect Scratch Dent Protrusion

Width [1, 3] [1, 3] [1, 3]
Depth [0.5, 1.5] [0.5, 2] [0.5, 2]

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-7

state-of-the-art methods are selected as the baseline models for per-
formance comparison. For comparing different unsupervised defect
detection methods, two clustering-based methods are selected, i.e.,
K-means clustering (KMC) [36] and hierarchical clustering [37]
methods. The basic idea of these clustering methods is to group
data points so that the formed clusters can minimize the dissimilar-
ities among data points within the same cluster and, meanwhile,
maximize the dissimilarities between different clusters. The dissim-
ilarities among points can be measured by pre-defined metrics. In
our case study, two types of metrics, i.e., pairwise Euclidean dis-
tance and pairwise normal direction vector similarity, are selected.
The performances of baseline clustering methods are separately
demonstrated by using these two metrics. The raw 3D point cloud
contains the coordinate information, which can be directly used to
calculate the Euclidean distance, and the normal vector of each
point can be calculated by the PCAmethod [38]. For comparing dif-
ferent defect classification methods, PointNet [28] and DGCNN
[29] are selected as two baseline methods. These two methods are
cutting-edge methods in point cloud classification and have been
widely validated in different datasets. The goal of selecting these
two benchmark methods is to demonstrate the effectiveness of the
proposed MVGCN in capturing the features of various types of
sparsely distributed surface defects.

4.2.2 Experimental Settings. In the comparison studies, 160
samples are randomly selected from the total 200 samples as the
training dataset to learn the parameters in the proposed MVGCN,
and the rest 40 samples are used as the testing dataset to assess
the model performance in defect classification. Different levels of
noise are added to both training and testing datasets, as introduced
in Sec. 4.1.2. The comparison analyses are repeatedly conducted on
all datasets with different levels of noise.
The hyperparameters are carefully selected and optimized in the

experiments. In unsupervised defect detection, the threshold δ is
determined by the upper bound of 80% confidence interval of
the pointwise local surface variation σk′ (x) that is calculated
using non-defective training samples. The proper number of
neighbors, namely, k′, in the KNN graph is determined by quali-
tatively evaluating the detection results on the training samples.
The selection of k′ is discussed in Sec. 4.3.2. In the supervised
defect classification, the hyperparameters are selected by the grid-
search within a certain range. For example, the number of hidden
layers in all methods is searched within 10, because a neural
network with too many layers tends to overfit the training data.
The number of neighbors k, k1, k2 in DGCNN and the proposed
MVGCN are searched within 30, which is detailedly introduced
in Sec. 4.4.3. To make a fair comparison among those models,
these two sets of parameters are kept the same: (1) the number
of layers in baseline methods PointNet and DGCNN, and the pro-
posed MVGCN are set with the same value of L= 5; (2) the

number of neighbors in the DGCNN and the proposed MVGCN
are equal, i.e., k= k1= k2= 15.
We also investigated how different distance measures in building

the KNN graphs influence the performance of unsupervised defect
detection and supervised defect classification. Euclidean distance
and geodesic distance are separately used in building KNN
graphs, and the corresponding performance of the proposed
MVGCN and the benchmark DGCNN are discussed and compared.
Finally, the sensitivity analysis is conducted to investigate how the
performance in unsupervised defect detection will influence the
supervised defect classification. All the experiments are imple-
mented by PyTorch [39] and run on NVIDIA GeForce GTX
1080Ti GPUs.

4.3 Defect Detection Results

4.3.1 Comparison of Defect Detection Results. We compare
the defect detection performance among our proposed adaptive
threshold clustering method and the two baseline methods intro-
duced in Sec. 4.2.1. The comparison results are demonstrated in
Fig. 9, in which the ground truth detection results are shown in
the first row (dots for defective regions and crosses for non-
defective regions). The proposed adaptive thresholding method
is implemented by using Euclidean distance and geodesic distance
to build KNN graphs, respectively. The detection results are
shown in the second and third rows, from which we can see
that the proposed adaptive thresholding method can successfully
identify the defective regions and receive comparable performance
when using different distance measures. For comparison, the
K-means clustering method fails to identify all the defective
regions when using the Euclidean distance (KMC-v1) among
points. It can partially identify the defective regions when using
the cosine similarities of normal vectors (KMC-v2). Furthermore,
the incorrectly clustered points when using KMC-v2 are mainly
from the bottom part of the defective regions. The normal
vectors at the bottom of the defective regions have a similar direc-
tion to the normal vectors in the non-defective surface. Consider-
ing this phenomenon, the third baseline method is to use a
two-step clustering method by successively applying the
KMC-v2 and hierarchical clustering. The hierarchical clustering
tries to further identify the bottom of the defective region from
the “non-defective” region given by the KMC-v2. The results in
the last row demonstrate that this two-step clustering method
has some improvements in identifying dents but fails to detect
other types of defects. In summary, our proposed unsupervised
adaptive thresholding method outperforms all the baseline
methods in defect detection, which provides accurate detection
results for proceeding with the next defect classification using
the MVGCN method.

Fig. 8 Visualization of synthetic 3D point cloud

031004-8 / Vol. 145, MARCH 2023 Transactions of the ASME

4.3.2 Influence of the Number of Neighbors in K-Nearest
Neighbor Graphs on the Defect Detection. The proposed adaptive
thresholding method for defect detection is directly influenced by
the KNN graphs formulated from the 3D point cloud. The KNN
graph is built for each point by finding its closest k′ neighbors in
the 3D point cloud. We further discuss how the number of neigh-
bors k′ in the KNN graph will influence the defect detection perfor-
mance. The detection results under different values of k′ are
qualitatively demonstrated in Fig. 10, where we use the KNN
graphs built upon the Euclidean distance as an example. From
Fig. 10, we can conclude that when the number of neighbors in
the KNN graph is small, such as k′ = 5, the local surface variation
calculated on it tends to underestimate the surface roughness at
each point. Thus, some points in the defective region might be
ignored. Such misidentification will be mitigated with the increase

in the number of neighbors, which can be observed by comparing
the detected results highlighted in rectangle dashed boxes. On the
contrary, increasing the number of neighbors in building KNN
graphs might overestimate the local surface variation in the non-
defective region. Thus, some points might be misidentified as
defects, which can be observed by comparing the detected results
highlighted in round dashed boxes. In our case, we set k′ = 50 to
ensure that more points in defective regions are correctly identified
while allowing misidentifying fewer points in the non-defective
regions.

4.4 Defect Classification Results

4.4.1 Comparison of Defect Classification Results. The defect
detection results are further fed into the proposed MVGCN for

Fig. 9 Visualization of defect detection results

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-9

defect classification, and its performance is compared with two
baseline methods PointNet [28] and DGCNN [29]. Here, we also
consider two distance measures, Euclidean distance and geodesic
distance, when building the KNN graphs and demonstrate their
influence on the performance of the proposed MVGCN and the
baseline method DGCNN (PointNet does not require reorganizing
the 3D point cloud as KNN graphs).
Classification Results Using Euclidean Distance.When using the

Euclidean distance to build KNN graphs, it partially sacrifices the
geometric information when evaluating the distance between two
points in the target surface. Thus, in addition to using three coordi-
nates of the raw 3D point cloud for defect classification, we propose
to add the normal direction vector at each point to compensate for
the geometric features. The rationale for adding the normal direction
vector is that it contains the information on local surface curvature,
which can compensate for the geometric features. The experiments
are conducted using the raw 3D point cloud (without normal) and
augmented 3D point cloud (with normal) as inputs, respectively.
The comparison results are demonstrated in Table 2, from which

the superior performances of the proposed method over the baseline
methods are summarized as: (1) the proposed MVGCN method
consistently outperforms the baseline methods no matter whether
the pointwise normal vector is included in the input or not; (2)
when using the raw 3D point cloud as the input (without normal
direction vectors), the proposed method is more robust to different
levels of noise, compared with the baseline methods; and (3) using
the normal direction vectors can improve the accuracy and robust-
ness of all the methods. However, even without including the
normal direction vectors in the input, the proposed MVGCN
shows comparable performance to the baseline methods using the
normal direction vectors. The significant improvement indicates
that the proposed MVGCN can capture some information embed-
ded in the normal direction vectors by only using raw 3D point
clouds.
Classification Results Using the Geodesic Distance. When using

the geodesic distance to build KNN graphs, each KNN graph fully
captures the geometric features in the target surface. The perfor-
mance of PointNet will not be influenced, and the comparison

Fig. 10 Influence of the number of neighbors on the defect detection

Table 2 Defect classification results (KNN graphs are built by on Euclidean distance)

Noise level σ= 0 σ= 0.001 σ= 0.002 σ= 0.003 σ= 0.004 σ= 0.005 σ= 0.006

Without normal PointNet 60.0 60.0 62.5 67.5 55.0 62.5 60.0
DGCNN 85.0 75.0 77.5 87.5 82.5 85.0 77.5
MVGCN 90.0 90.0 90.0 90.0 90.0 92.5 87.5

With normal PointNet 85.0 82.5 82.5 85.0 85.0 85.0 80.0
DGCNN 90.0 90.0 92.5 90.0 92.5 95.0 90.0
MVGCN 95.0 95.0 92.5 92.5 95.0 92.5 92.5

031004-10 / Vol. 145, MARCH 2023 Transactions of the ASME

results between the DGCNN and the proposed MVGCN are given
in Table 3, from which we can conclude that the proposed MVGCN
receives a comparable performance with the baseline method
DGCNN. If we compare the results in Tables 2 and 3, we can see
an apparent improvement in performance in both methods when
using the geodesic distance to build KNN graphs. Such improve-
ment demonstrates that the KNN graphs built on the geodesic dis-
tance can better capture the geometric features on the target
surface compared with those graphs built upon the Euclidean dis-
tance. However, from Table 3, we can further observe an obvious
decay in the performance when the noise is introduced to the 3D
point cloud. Recall that the geodesic distance calculates the
length of the shortest trajectory between two points on the recon-
structed surface. The noise in the point cloud degrades the accuracy
of surface reconstruction and thus degrades the accuracy of geode-
sic distance.

4.4.2 Selection of Distance Measures in Building K-Nearest
Neighbor Graphs. When comparing the distance measures in
building KNN graphs, we can conclude that (1) although using
the Euclidean distance sacrifices partial geometric features on
the target surface when building KNN graphs, calculating the
Euclidean distance is time-efficient, which takes around 0.07 s to
generate the pairwise distance among 2000 points. Such a time
cost is also insensitive to the number of points in the 3D point
cloud. (2) The KNN graphs built on geodesic distance can accu-
rately capture the geometric features on the target surface.
However, it is prone to be influenced by the noise in the 3D
point cloud. Calculating the geodesic distance is also more time-
consuming, which takes around 7 s to generate the pairwise dis-
tance among 2000 points. The time cost is linearly proportional
to the number of points. (3) When using the Euclidean distance
to build the KNN graphs, including the normal direction vectors
can compensate for the geometric features and improve the perfor-
mance of defect classification. Thus, when selecting the distance
measures in practice, we would recommend using the geodesic
distance for those products with a small scale and a complex

shape such that the geodesic distance can accurately capture the
geometric features with an acceptable computational cost. Also,
denoising the 3D point cloud is highly recommended before calcu-
lating the pairwise geodesic distance. For those large-scale prod-
ucts requiring inline defect identification, we would recommend
using the Euclidean distance considering the trade-off between
accuracy and time efficiency. The normal direction vectors can
be further included to compensate for the loss of geometric
features.

4.4.3 Influence of the Hyperparameter on the Defect
Classification. Both our proposed MVGCN and the baseline
method DGCNN require reorganizing the 3D point cloud into
KNN graphs. Thus, the number of neighbors in building KNN
graphs is an important hyperparameter that will influence the clas-
sification results. We have k which represents the number of neigh-
bors used in the DGCNN, and k1 and k2 are the numbers of
neighbors in the proposed MVGCN. To give an insight on how
to properly select the values of k, k1, k2, we conduct a grid-search
of these values within 30 and with a step size of 5. In our proposed
MVGCN, we suppose k1= k2 to reduce the searching space, and the
Euclidean distance is used to build KNN graphs in searching the
hyperparameters. The results are demonstrated in Fig. 11, in
which the triangle line and the star line denote the change in classi-
fication accuracy using the proposed MVGCN and the baseline
DGCNN, respectively. To ensure a fair comparison and best perfor-
mance, we have k= k1= k2= 15, which receives the highest accu-
racy using both methods. The number of neighbors mainly
influences the defective features because the geometric shapes of
the non-defective surfaces are almost consistent. Thus, a large
value of k might decay the performance of DGCNN because it
will include some points from non-defective regions as neighbors.
Our proposed MVGCN is designed to separate the defective and
non-defective regions in building KNN graphs, which prevents
the features from defective regions from being diluted by non-
defective regions. Thus, its performance is more stable with differ-
ent numbers of neighbors.

Table 3 Defect classification results (KNN graphs are built on geodesic distance)

Noise level σ= 0 σ= 0.001 σ= 0.002 σ= 0.003 σ= 0.004 σ= 0.005 σ= 0.006

DGCNN 100.0 90.0 95.0 92.5 92.5 92.5 92.5
MVGCN 100.0 90.0 95.0 90.0 95.0 90.0 95.0

Fig. 11 Influence of the number of neighbors on the classification results (using
Euclidean distance)

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-11

4.4.4 Influence of the Defect Detection Results on the Defect
Classification. The proposed framework is a two-step method
that feeds the defect detection results (step 1) into the defect classi-
fication (step 2). Therefore, in this sub-section, we will give an
insight into how the defect detection performance will influence
the classification results. Following the discussion in Sec. 4.3.2,
we use the 3D point cloud without noise as the example and set
the number of neighbors, k′, as 5, 50, 100, 200, respectively, to
build the KNN graphs for defect detection. Euclidean distance is
used as the distance measure. The defect detection results are qual-
itatively demonstrated in Fig. 12, from which we can see that when
the value of k′ is small (i.e., k′ = 5), the defective region cannot be
fully identified, and when the value of k′ is large (i.e., k′ = 200), the
partial non-defective region might be misidentified as the defective
region.
We further explore the performance of the proposed MVGCN

using these four detection results. The KNN graphs used in the clas-
sification are also built upon Euclidean distance, and the normal
direction vectors are included as the compensation for geometric
information. The results are given in Table 4, in which the overes-
timated defective region (e.g., k′ = 100, 200) in the first step will
decay the classification performance in the second step. Such an
observation reveals the intuition in designing the two-step
method. If we consider the extreme case when most of the points
are identified as the defective region (i.e., k′ ≫ 200), the operation
designed for the local view will converge to the baseline
DGCNN, while the operation designed for the global view cannot
provide additional information in defect classification (refer to
Fig. 5). We also notice that underestimating the defective region

does not have an apparent influence on the classification perfor-
mance (i.e., k′ = 5). It shows that given the partially identified defec-
tive region, the operations designed for the local view in our
proposed MVGCN can still extract informative features in defect
classification.

4.4.5 Potential Bottleneck of Computational Cost for Inline
Inspection. When the proposed method is applied to inline
process a high-resolution 3D point cloud for the large-scale
product, the concerns of computational cost might arise because
generating KNN graphs requires the pairwise distance among all
the points. This issue can be mitigated or even solved from four
aspects: (1) when using the Euclidean distance to build KNN
graphs, its computational cost is not sensitive to the number of
points in the 3D point cloud as long as the computation device
has enough memory to tackle the matrix operation; (2) when
inspecting the surface of the large-scale product, such as aircraft
fuselage, the collected 3D point cloud for the entire product can
be segmented into different samples to reduce the number of
points in each sample and make it compatible with computational
resources; (3) when calculating the pairwise distance for each
sample, parallel computing and matrix operation can be adopted
to further improve the computation efficiency; and (4) some approx-
imation algorithms to calculate the geodesic distance can be
explored to reduce the computation cost.

5 Case Study 2
In this section, we further validate the performance of our pro-

posed method using the real 3D point cloud dataset containing
the surface defects on the precast concrete specimen. In the follow-
ing context, we first introduce the collection of the raw 3D point
cloud and the generation of the surface defects dataset (Sec. 5.1).
Then we test the performance of the proposed method on the gen-
erated surface defects dataset (Secs. 5.2 and 5.3).

5.1 Surface Defects Data Collection. The structured-light 3D
scanner is used to collect the raw 3D point cloud from the surface of
the precast concrete specimen, and the inline quality inspection
system is further built using the raw 3D point cloud, which
mainly focuses on ensuring the overall dimension of the product
and checking the locations of key elements [40]. The raw 3D
point cloud (front and back surfaces) of the specimen is visualized
in Fig. 13. There are two types of defects, dent and uneven, existing
on the surface of the product. The surface defects dataset is further
built by sampling and segmenting the raw 3D point cloud via CLOUD-

COMPARE Software. The examples of segmented 3D point cloud
samples are visualized in Fig. 14.
In this case study, the surface defects dataset contains a total of

120 samples, in which each of the three classes (i.e., dent,
uneven, and normal) contains 40 samples. Similar to the processing
process in Sec. 4.1, when initially segmenting these samples, each
sample is controlled to contain slightly more than 2000 points, and
random sampling is then conducted to ensure each sample contains
exactly 2000 points. In the experiments, 72 samples are randomly

Fig. 12 Examples of defect detection under different values of k′

Table 4 Influence of the defect detection results on the
classification performance

The number of neighbors (k′) 5 50 100 200

Without normal 90.0 90.0 82.5 80.0
With normal 95.0 95.0 90.0 87.5

Fig. 13 Visualization of the scanned 3D point cloud. Upper: the
front surface of the precast concrete specimen; bottom: the back
surface of the precast concrete specimen.

031004-12 / Vol. 145, MARCH 2023 Transactions of the ASME

selected from the total 120 samples as the training data, and the rest
48 samples are used as the testing data to validate and compare the
performances. The baseline methods and experiment settings are
kept the same as the cast study 1, which can be referred to in
Secs. 4.2.1 and 4.2.2, respectively.

5.2 Defect Detection Results. The defect detection results are
compared among our proposed adaptive thresholding method and
the baseline methods introduced in sec. 4.2.1, which are qualita-
tively demonstrated in Fig. 15. The ground truth detection results
are shown in the first row (dots for defective regions and crosses

Fig. 14 Visualization of the generated 3D point cloud samples

Fig. 15 Visualization of defect detection results

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-13

for non-defective regions), and the detection results using different
methods are shown in the following rows. By comparison, we can
conclude that when using the proposed adaptive thresholding
method with either Euclidean distance or the geodesic distance,
the defective regions can be successfully identified. On the contrary,
the baseline methods tend to misidentify the defective regions in the
dent and uneven samples and overestimate the defective regions in
uneven samples. The examples of these failure scenarios are high-
lighted in rectangle dashed boxes in Fig. 15. In summary, our pro-
posed unsupervised adaptive thresholding method outperforms the
baseline methods in identifying surface defects from the real 3D
point cloud samples.

5.3 Defect Classification Results. The proposed MVGCN
takes the detected defective and non-defective regions as the input
for the defect classification. When building the KNN graphs in the
baseline DGCNN and the proposed MVGCN, the Euclidean distance
and geodesic distance are separately used. The normal direction
vector at each point is optionally included in the input to compensate
for geometric features. The defect classification results are summa-
rized in Table 5, from which we can conclude that our proposed
MVGCN significantly outperforms the benchmark methods and
receives a consistently outstanding performance with different dis-
tance measures (Euclidean distance or geodesic distance) and differ-
ent inputs (with or without normal direction vector).
If we compare the results in Table 5 vertically, we can find out

that the normal direction vector improves the performance of base-
line methods, and such improvement is more significant for the
PointNet (a similar phenomenon can also be observed in
Table 2). In comparison, the normal direction vector does not influ-
ence the performance of the proposed MVGCN significantly. The
reasons are (1) compared with the synthetic 3D point cloud
dataset used in Sec. 4, the real 3D point cloud is collected by scan-
ning the flat surface of the specimen and contains fewer types of
defects, which has less complex geometric features and (2) the
graph convolution operation is designed to extract geometric fea-
tures directly from the coordinates of neighbor points. Thus, com-
pared with the methods built upon the graph convolution
operation (DGCNN and MVGCN), including the normal direction
vector can provide more beneficial information to the PointNet. (3)
Furthermore, the design of the proposed MVGCN pays extra atten-
tion to the geometric features in the defective region when conduct-
ing classification, which could extract adequate features from the
coordinates to classify these three types 3D point cloud.
If we compare the results in Table 5 horizontally, we can find out

that using the geodesic distance improves the performance of
DGCNN while using Euclidean distance and geodesic distance do
not have a significant difference in the proposed MVGCN. Before
discussing the reasons, we first analyze the mechanisms of the geo-
desic distance in benefiting the defect classification as follows: (1)
the KNN graphs built on the geodesic distance consist of neighbor
points with the shortest curves on the surface, which tend to have
most of the points in one graph from the same type of surface
(defective or non-defective) and (2) for the 3D point cloud collected
from the surface with a complex geometric structure, the KNN
graphs built on the geodesic distance can better represent the struc-
ture of the local surface. Given these two mechanisms, the reasons
for observations in Table 5 are summarized in three folds: (1) for the

DGCNN, the KNN graphs built upon the geodesic distance can
better preserve the geometric features in the defective regions; (2)
the design of the MVGCN ensures that the features in the defective
regions are preserved and extracted, which is not influenced by the
selection of distance measures; (3) compared with the synthetic
3D point cloud segmented from the surface of a cylinder, the real
3D point cloud is segmented from a flat surface, on which the neigh-
bor points found by the Euclidean distance contain adequate geo-
metric features of the surface.
To this point, we can summarize that the results on the real 3D

point cloud further demonstrate and validate the strength and effec-
tiveness of the proposed two-step surface defect inspection frame-
work, especially the effectiveness of the proposed MVGCN.

6 Conclusion
This paper proposed a unified two-step method for surface defect

inspection using 3D point cloud. Specifically, an unsupervised
adaptive threshold clustering method is proposed to first detect
and separate the potential defective regions from the non-defective
surface based on the pointwise local surface variations. The detec-
tion results are further fed into the multi-view deep learning model
to keep track of features from both defective and non-defective
regions for defect classification. The strength of the proposed
framework is validated using both a synthetic 3D point cloud
dataset consisting of three defects types and one normal surface
(sampled from the created CAD model of aircraft fuselage
surface) and a real 3D point cloud dataset consisting of two
defects types and one normal surface (scanned and sampled from
the precast concrete specimen). The comparison results show that
the proposed approach outperforms the state-of-the-art methods in
both defect detection and classification. The advantages of the pro-
posed method can be summarized in three aspects: (1) the proposed
method extracts features directly from the 3D point cloud instead of
relying on manually selected features, which preserves the inherent
informative features in the 3D point cloud and improve the defect
identification efficiency; (2) the proposed method has been
proved to be invariant to different permutations and transformations
of the 3D point cloud; and (3) the proposed method uses the
two-step and multi-view deep learning structures, which preserve
the features from sparsely distributed defective regions.
From the practitioners’ perspective, the proposed surface defect

identification method can create values for both quality control
and maintenance in the manufacturing system. For example, the
proposed method for detecting and classifying defects can be
used in the inline 3D laser inspection equipment to improve the effi-
ciency and detection power of surface defects for quality control.
Moreover, the classification of defect shapes can also be used for
the evaluation of the surface quality for the large-scale product,
i.e., aircraft fuselage, which will provide the guidance to setup
a proactive maintenance plan to improve the aircraft operational
safety.
The future work can be summarized in two directions. First, the

proposed method is designed for large-scale products, and one
assumption is that most of their surfaces are smooth or with slightly
complex geometry design, which limits its wide applications to
other products with complex surfaces. The idea of the two-step
method is transferable, and for products with a more complex
outer surface, novel unsupervised learning methods need to be
explored to accurately identify points of defective regions.
Second, in the proposed two-step method, the adaptive thresholding
clustering method requires calibration when the environment,
equipment, or target product change, which introduces extra time
costs before the inspection. Also, the calculation of geodesic dis-
tance is time-consuming, which makes it inapplicable to inline
inspection. We will further explore the time-efficient and accurate
single-step method to conduct inline defect inspection for
large-scale products. Besides, we will investigate how to use the

Table 5 Defect classification results (KNN graphs are built on
Euclidean distance)

PointNet

DGCNN MVGCN

Euclidean Geodesic Euclidean Geodesic

Without normal 75.0 70.8 81.3 97.9 93.8
With normal 83.3 75.0 85.4 95.8 93.8

031004-14 / Vol. 145, MARCH 2023 Transactions of the ASME

active machine learning method to improve the efficiency of infor-
mation acquisition for quick surface defect inspection [41].

Acknowledgment
This work was partially financially supported by the Department

of Defense (DoD) MEEP program under award N00014-19-1-2728.
Dr. Yue’s research was partially supported by the National Science
Foundation under award 2035038 and the Grainger Frontiers of
Engineering Grant Award from the National Academy of
Engineering.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

Appendix A: Proof of Proposition 3.1
Without loss of generality, suppose the point set X rotate along

the axis z by θ deg, the rotation matrix is defined as

R =
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎡
⎣

⎤
⎦ (A1)

With the rotation matrix R, we have the rotated point set as XR, and
the covariance of XR is

Cov(XR) =
1

k′ + 1
(X − �X)R
[]⊤

(X − �X)R
[]

=
1

k′ + 1
R⊤(X − �X)⊤(X − �X)R

= R⊤Cov(X)R

(A2)

Suppose we have the eigenvalue and eigenvector of Cov(X) as λ, p,
respectively, they satisfy Cov(X)p= λp. Also, we have R⊤p ≠ 0,
R⊤R = I. We can derive the eigenvalues and eigenvectors of
Cov(XR) as follows:

R⊤Cov(X)R − λI
()

R⊤p
()

= R⊤Cov(X)RR⊤p − λR⊤p

= R⊤Cov(X)p − λR⊤p

= R⊤ Cov(X)p − λp
()

= 0

(A3)

From Eq. (A3), we have the Cov(XR) has the eigenvalues λ,
which is the same as Cov(X). So the rotation will not change
the local surface variation of point set X. The translation of the
point set X along with the vector v= (a, b, c) is basically adding
constants a, b, c along each axis of all the points. The
translation will not change the covariance matrix of X. So it will
not change the eigenvalues and local surface variation. The proof
completes.

References

[1] Chiu, Y. P., and Liu, J. Y., 1970, “An Analytical Study of the Stress
Concentration Around a Furrow Shaped Surface Defect in Rolling Contact,”
ASME J. Lubr. Technol., 92(2), pp. 258–263.

[2] United States, F. A. A., 1997, “Visual Inspection for Aircraft,” U.S. Dept of
Transportation, Federal Aviation Administration, Advisory Circular, pp. 43–204.

[3] Liu, C., Law, A. C. C., Roberson, D., and Kong, Z. J., 2019, “Image
Analysis-Based Closed Loop Quality Control for Additive Manufacturing With
Fused Filament Fabrication,” J. Manuf. Syst., 51, pp. 75–86.

[4] Tsai, D. M., and Wu, S. K., 2000, “Automated Surface Inspection Using Gabor
Filters,” Int. J. Adv. Manuf. Technol., 16(7), pp. 474–482.

[5] Kumar, A., and Pang, G., 2002, “Defect Detection in Textured Materials Using
Gabor Filters,” IEEE Trans. Ind. Appl., 38(2), pp. 425–440.

[6] Park, Y., and Kweon, I. S., 2016, “Ambiguous Surface Defect Image
Classification of Amoled Displays in Smartphones,” IEEE Trans. Ind. Inform.,
12(2), pp. 597–607.

[7] Zhang, Y., Lefebvre, D., and Li, Q., 2017, “Automatic Detection of Defects in
Tire Radiographic Images,” IEEE Trans. Autom. Sci. Eng., 14(3), pp. 1378–1386.

[8] Ngan, H.Y., Pang, G. K., Yung, S., andNg,M.K., 2005, “Wavelet BasedMethods
on Patterned Fabric Defect Detection,” Pattern Recognit., 38(4), pp. 559–576.

[9] Karimi, M. H., and Asemani, D., 2014, “Surface Defect Detection in Tiling
Industries Using Digital Image Processing Methods: Analysis and Evaluation,”
ISA Trans., 53(3), pp. 834–844.

[10] Ng, M. K., Ngan, H. Y. T., Yuan, X., and Zhang, W., 2014, “Patterned Fabric
Inspection and Visualization by the Method of Image Decomposition,” IEEE
Trans. Autom. Sci. Eng., 11(3), pp. 943–947.

[11] Yan, H., Paynabar, K., and Shi, J., 2017, “Anomaly Detection in Images With
Smooth Background Via Smooth-Sparse Decomposition,” Technometrics,
59(1), pp. 102–114.

[12] Yan, H., Yeh, H.-M., and Sergin, N., 2019, “Image-Based Process Monitoring
Via Adversarial Autoencoder With Applications to Rolling Defect Detection,”
2019 IEEE 15th International Conference on Automation Science and
Engineering (CASE), Vancouver, Canada, Aug. 22, pp. 311–316.

[13] Li, Y., Zhao, W., and Pan, J., 2017, “Deformable Patterned Fabric Defect
Detection With Fisher Criterion-Based Deep Learning,” IEEE Trans. Autom.
Sci. Eng., 14(2), pp. 1256–1264.

[14] Cheon, S., Lee, H., Kim, C. O., and Lee, S. H., 2019, “Convolutional Neural
Network for Wafer Surface Defect Classification and the Detection of
Unknown Defect Class,” IEEE Trans. Semicond. Manuf., 32(2), pp. 163–170.

[15] Wang, Y., Guo, W. G., and Yue, X., 2022, “Tensor Decomposition to Compress
Convolutional Layers in Deep Learning,” IISE Trans., 54(5), pp. 481–495.

[16] Jovancevic, I., Pham, H.-H., Orteu, J., Gilblas, R., Harvent, J., Maurice, X.,
and Brethes, L., 2017, “3D Point Cloud Analysis for Detection and
Characterization of Defects on Airplane Exterior Surface,” J. Nondestruct.
Eval., 36(4), pp. 1–17.

[17] Rao, P. K., Kong, Z., Duty, C. E., Smith, R. J., Kunc, V., and Love, L. J., 2015,
“Assessment of Dimensional Integrity and Spatial Defect Localization in Additive
Manufacturing Using Spectral Graph Theory,” ASME J. Manuf. Sci. Eng.,
138(5), p. 051007.

[18] Decker, N., Wang, Y., and Huang, Q., 2020, “Efficiently Registering Scan Point
Clouds of 3D Printed Parts for Shape Accuracy Assessment and Modeling,”
J. Manuf. Syst., 56, pp. 587–597.

[19] Xie, Q., Lu, D., Huang, A., Yang, J., Li, D., Zhang, Y., and Wang, J., 2021,
“Rrcnet: Rivet Region Classification Network for Rivet Flush Measurement
Based on 3-D Point Cloud,” IEEE Trans. Instrum. Meas., 70, pp. 1–12.

[20] Samie Tootooni, M., Dsouza, A., Donovan, R., Rao, P. K., Kong, Z. J., and
Borgesen, P., 2017, “Classifying the Dimensional Variation in Additive
Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data
Using Machine Learning Approaches,” ASME J. Manuf. Sci. Eng., 139(9),
p. 091005.

[21] Xu, C., Tao, D., and Xu, C., 2013, “A Survey on Multi-View Learning,” preprint
arXiv:1304.5634.

[22] Sun, J., Zhang, J., Li, Q., Yi, X., Liang, Y., and Zheng, Y., 2022, “Predicting
Citywide Crowd Flows in Irregular Regions Using Multi-view Graph
Convolutional Networks,” IEEE Trans. Knowl. Data Eng., 34(5), pp. 2348–2359.

[23] Li, Z., Liu, Z., Huang, J., Tang, G., Duan, Y., Zhang, Z., and Yang, Y., 2019,
“MV-GCN: Multi-view Graph Convolutional Networks for Link Prediction,”
IEEE Access, 7, pp. 176 317–176 328.

[24] Xia, W., Wang, Q., Gao, Q., Zhang, X., and Gao, X., 2022, “Self-Supervised
Graph Convolutional Network for Multi-view Clustering,” IEEE Trans.
Multimedia, 24, pp. 3182–3192.

[25] Makuch, M., and Gawronek, P., 2020, “3D Point Cloud Analysis for Damage
Detection on Hyperboloid Cooling Tower Shells,” Remote Sens., 12(10), p. 1542.

[26] Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E., 2015, “Multi-view
Convolutional Neural Networks for 3D Shape Recognition,” 2015 IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 7,
pp. 945–953.

[27] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J., 2015, “3D
Shapenets: A Deep Representation for Volumetric Shapes,” 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, June 8, pp. 1912–1920.

[28] Charles, R. Q., Su, H., Kaichun, M., and Guibas, L. J., 2017, “Pointnet: Deep
Learning on Point Sets for 3D Classification and Segmentation,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, July 21, pp. 77–85.

[29] Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.,
2019, “Dynamic Graph CNN for Learning on Point Clouds,”ACM Trans. Graph.,
38(5), pp. 1–2.

[30] Eppstein, D., Paterson, M. S., and Yao, F. F., 1997, “On Nearest-Neighbor
Graphs,” Discrete Comput. Geom., 17(3), pp. 263–282.

[31] Hauberg, S. R., Freifeld, O., and Black, M., 2012, “A Geometric Take on Metric
Learning,” Advances in Neural Information Processing Systems (NeurIPS), Lake
Tahoe, NV, Dec. 3, pp. 2024–2032.

Journal of Manufacturing Science and Engineering MARCH 2023, Vol. 145 / 031004-15

http://dx.doi.org/10.1115/1.3451380
http://dx.doi.org/10.1016/j.jmsy.2019.04.002
http://dx.doi.org/10.1109/28.993164
http://dx.doi.org/10.1109/TII.2016.2522191
http://dx.doi.org/10.1109/TASE.2015.2469594
http://dx.doi.org/10.1016/j.patcog.2004.07.009
http://dx.doi.org/10.1016/j.isatra.2013.11.015
http://dx.doi.org/10.1109/TASE.2014.2314240
http://dx.doi.org/10.1109/TASE.2014.2314240
http://dx.doi.org/10.1080/00401706.2015.1102764
http://dx.doi.org/10.1109/TASE.2016.2520955
http://dx.doi.org/10.1109/TASE.2016.2520955
http://dx.doi.org/10.1109/TSM.2019.2902657
http://dx.doi.org/10.1115/1.4031574
http://dx.doi.org/10.1016/j.jmsy.2020.04.001
http://dx.doi.org/10.1115/1.4036641
http://dx.doi.org/10.1109/ACCESS.2019.2957306
http://dx.doi.org/10.3390/rs12101542
http://dx.doi.org/10.1007/PL00009293

[32] Crane, K., Weischedel, C., and Wardetzky, M., 2017, “The Heat Method for
Distance Computation,” Commun. ACM, 60(11), pp. 90–99.

[33] Pauly, M., Gross, M., and Kobbelt, L. P., 2002, “Efficient Simplification of
Point-Sampled Surfaces,” Proceedings of the Conference on Visualization ’02,
VIS ’02, Boston, MA, Oct. 27, pp. 163–170.

[34] Guijt, C. B., and Donne, C. D., 2005, “The Effect of Dents in Fuselage Structures
on Fatigue and Static Stability,” Proceedings of the Symposium of the
International Committee on Aeronautical Fatigue (ICAF), Hamburg, Germany,
June 6, Vol. 2, pp. 417–428.

[35] Lang, N., and Kwon, Y., 2007, “Investigation of the Effect of Metallic
Fuselage Dents on Compressive Failure Loads,” J. Aircr., 44(6), pp. 2026–
2033.

[36] Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A.,
2002, “An Efficient K-Means Clustering Algorithm: Analysis and
Implementation,” IEEE Trans. Pattern Anal. Mach. Intell., 24(7), pp. 881–892.

[37] Zepeda-Mendoza, M. L., and Resendis-Antonio, O., 2013, Hierarchical
Agglomerative Clustering, Springer, New York, pp. 886–887.

[38] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., 1992,
“Surface Reconstruction From Unorganized Points,” Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’92, Chicago, IL, July 1, pp. 71–78.

[39] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., and Killeen,
T., 2019, “Pytorch: An Imperative Style, High-Performance Deep Learning
Library,” Advances in Neural Information Processing Systems (NeurIPS),
Vancouver, Canada, Dec. 8, pp. 8026–8037.

[40] Wang, R., Wang, Y., Devadiga, S., Perkins, I., Kong, Z. J., and Yue, X., 2021,
“Structured-Light Three-Dimensional Scanning for Process Monitoring and
Quality Control in Precast Concrete Production,” PCI J., 66(6), pp. 17–32.

[41] Lee, C., Wang, X., Wu, J., and Yue, X., 2022, “Failure-Averse Active Learning
for Physics-Constrained Systems,” IEEE Trans. Autom. Sci. Eng.

031004-16 / Vol. 145, MARCH 2023 Transactions of the ASME

http://dx.doi.org/10.1145/3131280
http://dx.doi.org/10.2514/1.31207
http://dx.doi.org/10.1109/TPAMI.2002.1017616
https://dx.doi.org/10.1555
https://dx.doi.org/10.1109/TASE.2022.3213827

	1 Introduction
	2 Literature Review
	2.1 Three-Dimensional Point Cloud-Based Surface Defect Identification
	2.2 Survey of Three-Dimensional Point Cloud Analysis in Machine Learning

	3 Proposed Methods for Surface Defect Identification Using Three-Dimensional Point Cloud
	3.1 Adaptive Threshold for Defect Detection Based on Local Surface Variation
	3.1.1 Distance Measures in Building K-Nearest Neighbor Graphs
	3.1.2 Local Surface Variation Based on K-Nearest Neighbor Graph
	3.1.3 Adaptive Thresholding Defect Detection

	3.2 Multi-view Graph Convolutional Neural Network for Defect Classification
	3.2.1 Graph Convolutional Neural Network
	3.2.2 Multi-View Graph Convolutional Neural Network

	4 Case Study 1
	4.1 Surrogated Defects Generation
	4.1.1 Build Computer-Aided Design Model to Generate Three-Dimensioanl Point Cloud With Surface Defects
	4.1.2 Data Generation

	4.2 Baseline Methods and Experimental Settings
	4.2.1 Baseline Methods
	4.2.2 Experimental Settings

	4.3 Defect Detection Results
	4.3.1 Comparison of Defect Detection Results
	4.3.2 Influence of the Number of Neighbors in K-Nearest Neighbor Graphs on the Defect Detection

	4.4 Defect Classification Results
	4.4.1 Comparison of Defect Classification Results
	4.4.2 Selection of Distance Measures in Building K-Nearest Neighbor Graphs
	4.4.3 Influence of the Hyperparameter on the Defect Classification
	4.4.4 Influence of the Defect Detection Results on the Defect Classification
	4.4.5 Potential Bottleneck of Computational Cost for Inline Inspection

	5 Case Study 2
	5.1 Surface Defects Data Collection
	5.2 Defect Detection Results
	5.3 Defect Classification Results

	6 Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Appendix A: Proof of Proposition 3.1
	 References

