
Model Checking Hyperproperties for

Markov Decision Processes

Oyendrila Dobea, Erika Ábrahámb, Ezio Bartoccic, Borzoo Bonakdarpoura

a
Michigan State University, USA,

b
RWTH Aachen University, Germany,

c
Technische Universität Wien, Austria.

Abstract

We study the problem of formalizing and checking probabilistic hyperprop-
erties for Markov decision processes (MDPs). We introduce the temporal logic
HyperPCTL that allows explicit and simultaneous quantification over schedulers
as well as probabilistic computation trees. We show that the logic can express
important quantitative requirements in security and privacy such as probabilis-
tic noninterference, di↵erential privacy, timing side-channel countermeasures,
and probabilistic conformance testing. We show that HyperPCTL model check-
ing over MDPs is in general undecidable, but restricting the domain of sched-
uler quantification to memoryless non-probabilistic schedulers turns the model
checking problem decidable. Subsequently, we propose an SMT-based encoding
for model checking this language. Finally, we demonstrate the applicability of
our method by providing experimental results for verification, and we show how
it can be used to solve even certain synthesis problems.

Keywords: Markov Models, Hyperproperties, Model Checking, Policy
Synthesis, Information Leakage.

1. Introduction

Hyperproperties [1] extend the conventional notion of trace properties [2]
from a set of traces to a set of sets of traces. In other words, a hyperproperty
stipulates a system property and not the property of just individual traces. It
has been shown that many interesting requirements in computing systems are5

hyperproperties and cannot be expressed by trace properties. Examples include
(1) a wide range of information-flow security policies such as noninterference [3]
and observational determinism [4], (2) sensitivity and robustness requirements in
cyber-physical systems [5], and (3) consistency conditions such as linearizability
in concurrent data structures [6].10

Hyperproperties can describe the requirements of probabilistic systems as
well. They generally express probabilistic relations between multiple executions
of a system. For example, in information-flow security, the addition of probabil-
ities is motivated by establishing a connection between information theory and

Preprint submitted to Journal of LATEX Templates December 8, 2022

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}
{a}

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

(a) Example DTMC.

s0{h>0} s1 {h0}

s2{l=1} s3 {l=2}

↵

3
4

1
4

�
1
2

1
2

↵
2
3

1
3

�
1
2

1
2

⌧ 1⌧ 1

(b) MDP with non-probabilistic actions.

Figure 1: Example Markov models.

information flow across multiple traces. A prominent example is probabilistic15

schedulers that open up the opportunity for an attacker to set up a probabilis-
tic covert channel. Or, probabilistic causation that compares the probability of
occurrence of an e↵ect between scenarios where the cause is or is not present.
Also, the goal of quantitative information flow is to measure the amount of
information leaked about a secret by observing di↵erent runs of a program.20

In [7], we made the first step and proposed the temporal logic HyperPCTL
for discrete-time Markov chains (DTMCs), which extends PCTL by allowing
explicit and simultaneous quantification over probabilistic computation trees.
For example, the DTMC in Fig. 1a satisfies the following HyperPCTL formula:

8ŝ. 8ŝ0.
⇣
init ŝ ^ init ŝ0

⌘
!

⇣
P(aŝ) = P(aŝ0)

⌘
(1)

which means that the probability of reaching proposition a from any pair of
states ŝ and ŝ0 labeled by init should be equal. Other works on probabilistic hy-
perproperties for DTMCs include parameter synthesis [8] and statistical model
checking [9, 5].

An important gap in the spectrum is the verification of probabilistic hy-25

perproperties with regard to models that allow nondeterminism, in particular,
Markov decision processes (MDPs). Nondeterminism plays a crucial role in
many probabilistic systems. For instance, nondeterministic queries can be ex-
ploited in order to make targeted attacks to databases with private informa-
tion [10]. To motivate the idea, consider the MDP in Fig. 1b, where h is a high30

secret input and l is a low publicly observable output. To protect the secret,
there should be no probabilistic dependencies between observations of the low
variable l and the value of h. However, an attacker choosing a scheduler that
always takes action ↵ from states s0 and s1, can learn whether or not h  0
by observing the probability of obtaining l = 1 (or l = 2). On the other hand,35

a scheduler that always chooses action �, does not leak any information about
the value of h. Thus, a natural question to ask is whether a certain property
holds for all or some schedulers.

With the above motivation, in this paper, we focus on probabilistic hy-
perproperties in the context of MDPs. Such hyperproperties inherently need to40

consider di↵erent nondeterministic choices in di↵erent executions, and naturally

2

call for quantification over schedulers. There are several challenges to achieve
this. In general, there are MDPs whose reachability probabilities cannot be
achieved by any memoryless non-probabilistic scheduler, and, hence finding a
scheduler is not reducible to checking non-probabilistic memoryless schedulers,45

as it is done in PCTL model checking for MDPs.

s0

s1

↵ 1

� 1

↵ 1

Figure 2: MDP where

we cannot reach s1
with 0.5 probability.

Consider for example the MDP in Fig. 2, for which
we want to know whether there is a scheduler such that
the probability to reach s1 from s0 equals 0.5. There are
two non-probabilistic memoryless schedulers, one choos-50

ing action ↵ and the other, action � in s0. The first
one is the maximal scheduler for which s1 is reached
with probability 1, and the second one is the minimal
scheduler leading to probability 0. However, the prob-
ability 0.5 cannot be achieved by any non-probabilistic55

scheduler. Memoryless probabilistic schedulers cannot
achieve probability 0.5 either : if a memoryless sched-
uler would take action ↵ with any positive probability,
then the probability to reach s1 is always 1. The only
way to achieve the reachability probability 0.5 (or any60

value strictly between 0 and 1) is by a probabilistic scheduler with memory, e.g.,
taking ↵ and � in s0 with probabilities 0.5 each when this is the first step on a
path, and � with probability 1 otherwise.

Our contributions in this paper are as follows. We first extend the temporal
logic HyperPCTL from [7] to the context of MDPs. To this end, we augment the65

syntax and semantics of HyperPCTL to quantify over schedulers and relate prob-
abilistic computation trees for di↵erent schedulers. For example, the following
formula generalizes (1) by requiring that the respective property should hold
for all computation trees starting in any states ŝ and ŝ0 of the DTMC induced
by any scheduler �̂:70

8�̂(M̂). 8ŝ(M̂�̂). 8ŝ0(M̂�̂).
⇣
init ŝ ^ init ŝ0

⌘
!

⇣
P(aŝ) = P(aŝ0)

⌘
(2)

On the negative side, we show that the problem to check HyperPCTL prop-
erties for MDPs is in general undecidable. On the positive side, we show that
the problem becomes decidable when we restrict the scheduler quantification
domain to memoryless non-probabilistic schedulers. We also show that this re-
stricted problem is already NP-complete (respectively, coNP-complete) in the size75

of the given MDP for HyperPCTL formulas with a single existential (respectively,
universal) scheduler quantifier. Subsequently, we propose an SMT-based encod-
ing to solve the restricted model checking problem. We have implemented our
method (available at https://github.com/TART-MSU/HyperProb), and used
it to analyze three case studies: probabilistic scheduling attacks, side-channel80

timing attacks, and probabilistic conformance. We have further published a
tool-paper that appeared in FM’21 [11] explaining the working of the tool.

We believe there is a deep connection between HyperPCTL model checking
and verification of partially observable MPDs (POMDPs). In fact, we have

3

https://github.com/TART-MSU/HyperProb

successfully verified the well-known Monty-Hall problem (which is a POMDP)85

using our HyperPCTL solution. A similar analogy also exists between HyperLTL
and distributed synthesis [12]. While an interesting problem, we leave it to
future work to show whether it is possible to reduce HyperPCTL model checking
to verification of POMDPs.

Comparison with the conference version. A preliminary version of this work90

appeared in ATVA’20 [13]. In this version, we have made several new contribu-
tions and improvements as compared to [13]. First, we have revised the syntax
and semantics of HyperPCTL. The new logic is now multi-model, where di↵erent
quantifiers can range over di↵erent Markov models. This feature allows rea-
soning about computations of di↵erent models more elegantly. Furthermore,95

we present the detailed proofs of our undecidability and complexity results.
Perhaps, most importantly, our SMT-based model checking algorithm is now
significantly more e�cient. The average improvement of our algorithm is an
order of magnitude. This allowed us to verify larger models for a verification
problem that is computationally intractable.100

Organization. Preliminary concepts are discussed in Section 2. We present the
syntax and semantics of HyperPCTL for MDPs and discuss its applications in
Sections 3 and 4, respectively. Section 5 studies the expressive power of Hyper-
PCTL. Sections 6 and 7 present our model checking algorithm for memoryless
non-probabilistic schedulers and its evaluation, respectively. Related work is105

discussed in Section 8 before concluding in Section 9.

2. Preliminaries

In this section, we recall the modeling formalisms of discrete-time Markov
chains (DTMCs) in Section 2.1 and Markov decision processes in Section 2.2,
and introduce some formalisms which we will need in later sections to define110

our HyperPCTL logic.

2.1. Discrete-Time Markov Chains

Definition 1. A discrete-time Markov chain (DTMC) is a tuple D=(S,P,AP, L)
specifying:

• a set S of states,115

• a transition probability function P : S ⇥ S ! [0, 1] with
P

s02S P(s, s0) = 1
for all s 2 S,

• a finite set AP of atomic propositions, and

• a labeling function L : S ! 2AP. ⌅
We define the empty DTMC D; = (;,P;, ;, L;) with P; : ; ⇥ ; ! [0, 1] and120

L; : ; ! {;} and use D to denote the set of all DTMCs with non-empty state
sets.

4

In the following, whenever we refer to a DTMC, we mean a non-empty
DTMC from D, and explicitly name a DTMC empty when we mean D;. Fig. 1a
shows the graphical illustration of a simple DTMC, where each state is repre-125

sented by a node, each positive transition probability P (s, s0) > 0 by an arrow
from node s to node s0 decorated with the probability P (s, s0), and each label
set L(s) depicted beside the node for state s.

An (infinite) path of a DTMC D = (S,P,AP, L) 2 D is an infinite sequence
⇡ = s0s1s2 . . . 2 S! of states with P(si, si+1) > 0, for all i � 0; we define130

⇡[i] = si. Let PathsDs denote the set of all (infinite) paths of D starting in
s, and fPathsDs denote the set of all non-empty finite prefixes of paths from
PathsDs , which we call finite paths. For a finite path ⇡ = s0 . . . sk 2 fPathsDs0 ,

k � 0, we define |⇡| = k. We will also use the notations PathsD =
S

s2S PathsDs
and fPathsD =

S
s2S fPathsDs . A state t 2 S is reachable from a state s 2 S in135

D if there exists a finite path in fPathsDs with last state t; we use fPathsDs,T to

denote the set of all finite paths from fPathsDs with last state in T ✓ S. A state
s 2 S is absorbing if P(s, s) = 1.

The cylinder set CylD(⇡) of a finite path ⇡ 2 fPathsDs is the set of all infinite
paths of D with prefix ⇡. The probability space for D and state s 2 S is140

⇣
PathsDs ,

�S
⇡2R CylD(⇡) | R ✓ fPathsDs

,PrDs

⌘
,

where the probability of the cylinder set of ⇡ 2 fPathsDs is PrDs (Cyl
D(⇡)) =

⇧|⇡|
i=1P(⇡[i�1],⇡[i]). Note that the cylinder sets of two finite paths starting in

the same state are either disjoint or one is contained in the other. According to
the definition of the probability spaces, the total probability for a set of cylinder145

sets defined by the finite set of paths R ✓ fPathsDs is PrDs (
S

⇡2R CylD(⇡)) =P
⇡2R0 Pr

D
s (Cyl

D(⇡)) with R0 = {⇡ 2 R | no ⇡0 2 R \ {⇡} is a prefix of ⇡}.
To improve readability, we sometimes omit the DTMC index D in the notations
when it is clear from the context.

The following definition of parallel composition of two DTMCs allows to150

formalize simultaneous runs in the composed models.

Definition 2. For two DTMCs Di = (Si,Pi,APi, Li) 2 D, i 2 {1, 2}, with
disjoint atomic proposition sets AP1 \ AP2 = ;, their parallel composition is
the DTMC D1 ⇥D2 = (S,P,AP, L) with the following components:

• S = S1 ⇥ S2,155

• P : S ⇥ S ! [0, 1] with P((s1, s2), (s01, s
0
2)) = P1(s1, s01) · P2(s2, s02), for all

states (s1, s2), (s01, s
0
2) 2 S,

• AP = AP1 [AP2, and

• L : S ! 2AP with L((s1, s2)) = L1(s1) [L2(s2). ⌅
For the empty DTMC, we define D; ⇥D; = D; and D; ⇥D = D⇥D; = D for160

all D 2 D.

2.2. Markov Decision Processes
Markov decision processes extend DTMCs with non-deterministic action choices.

5

Definition 3. A Markov decision process (MDP) is a tuple M = (S,Act ,P,
AP, L) with165

• a finite set S of states,

• a non-empty finite set Act of actions,

• a transition probability function P : S ⇥ Act ⇥ S ! [0, 1], such that for all
s 2 S the set

Act(s) =
n
↵ 2 Act |

X

s02S

P(s,↵, s0) = 1
o

of enabled actions in s is not empty and
P

s02S P(s,↵, s0) = 0 for all ↵ 2
Act \Act(s),

• a finite set AP of atomic propositions, and170

• a labeling function L : S ! 2AP. ⌅
We use M to denote the set of all MDPs with non-empty state sets.

Fig. 1b illustrates a simple MDP. Schedulers can be used to eliminate the non-
determinism in MDPs, inducing DTMCs with well-defined probability spaces. A
scheduler eliminates non-determinism by deciding which action to take at which175

point of execution. Memoryless schedulers make these decisions based only on
the current MDP state, whereas the decisions of schedulers with memory might
also depend on the executions leading to the current state.

In the definition below, observations about the execution are stored in the
mode of the scheduler, which is updated for each step by the mode function.180

When defining schedulers formally, one option used e.g., in [14] is to use the full
execution for decision making. We decided to make this notion more abstract
and allow the scheduler mode to store arbitrary observations about the execu-
tion. Allowing a single mode implies the memoryless feature. A finite set of
modes allows to store observations, but they still induce finite DTMC models.185

Allowing infinite memory, needed e.g., to store the full execution paths, might
induce infinite-space DTMCs.

The action to be taken is chosen by the act function, dependent on the
current MDP state and the current scheduler mode. If the scheduler chooses a
unique action in each state-mode pair then we call it non-probabilistic, otherwise190

if the scheduler makes a random choice over the available actions then we call
it probabilistic.

Definition 4. A scheduler for an MDP M = (S,Act ,P,AP, L) is a tuple
� = (Q, act ,mode, init) where

• Q is a countable set of modes,195

• act : Q ⇥ S ⇥ Act ! [0, 1] is a function such that for all s 2 S and q 2 Q it
holds that

X

↵2Act(s)

act(q, s,↵) = 1 and
X

↵2Act\Act(s)

act(q, s,↵) = 0,

6

• mode : Q⇥ S ! Q is a mode transition function, and

• init : S ! Q is a function selecting a starting mode for state s of M. ⌅

Let ⌃M denote the set of all schedulers for an MDP M. A scheduler is
finite-memory if Q is finite, memoryless if |Q| = 1, and non-probabilistic if
act(q, s,↵) 2 {0, 1} for all q 2 Q, s 2 S and ↵ 2 Act .200

Definition 5. Assume an MDP M = (S,Act ,P,AP, L) and a scheduler � =
(Q, act ,mode, init) 2 ⌃M for M. The DTMC induced by M and � is defined
as M� = (S�,P�,AP, L�) with S� = Q⇥ S,

P�((q, s), (q0, s0)) =

⇢ P
↵2Act(s) act(q, s,↵) ·P(s,↵, s0) if q0 = mode(q, s)

0 otherwise

and L�(q, s) = L(s) for all s, s0 2 S and for all q, q0 2 Q. ⌅

A state s0 is reachable from s 2 S in MDP M if there exists a scheduler �
for M such that s0 is reachable from s in M�. A state s 2 S is absorbing in M
if s is absorbing in M� for all schedulers � for M.

3. The Temporal Logic HyperPCTL205

We now define the temporal logic HyperPCTL to specify probabilistic hyper-
properties for MDPs. Compared to our previous work [7, 13], we re-design the
semantics to extend more naturally, the standard PCTL semantics. Furthermore,
while in the previous definition we allowed specification of a single model, the
logic we present here enables simultaneous behavioral observations across di↵er-210

ent models. This is a feature often required, since hyperproperties can express
the requirements and then relation between multiple models (e.g., conformance
of one model with another).

Note that our DTMC and MDP model definitions unfold from initial states,
as we are interested in observable di↵erences caused by di↵erent initial condi-215

tions. As usual, our notion of observability of a path s0s1 . . . is based on its
trace L(s0)L(s1) Standard probabilistic temporal logics can argue about
the probabilities of certain observations, i.e., statistical conclusions that we can
draw when we run an uncertain system over and over again, starting from a
fixed, single initial state. By contrast, hyperproperties are more expressive and220

allow to argue about the probabilities of observations made on synchronous
executions in di↵erent models or in the same model but rooted in potentially
di↵erent initial states.

3.1. HyperPCTL Syntax

To formalize probabilistic hyperproperties, we define the temporal logic Hy-225

perPCTL. HyperPCTL formulas start with scheduler quantifiers, followed by state
quantifiers, and then an inner formula based on an extended PCTL syntax.

Intuitively, HyperPCTL formulas will be evaluated in the context of some
MDP models. Each scheduler quantifier refers to one of these MDP models and

7

gets instantiated with concrete schedulers for this MDP. Each such scheduler230

instantiation provides an induced DTMC model; universal scheduler quantifica-
tion requires the property in the quantifier’s scope to hold in all possible induced
DTMCs, whereas existential quantification requires the existence of an induced
DTMC satisfying the property.

In each such induced DTMC model we can start a new “experiment” to235

observe its behavior by using a state quantifier; universal state quantification
requires the property in the quantifier’s scope to hold independently of the initial
state, whereas existential quantification requires only the existence of a state
from where the property is satisfied.

Having several state quantifiers in a formula, each of them starts a new ex-240

periment in one of the induced DTMCs. Since the state quantifiers are all in
one block at the beginning of the formula, all experiments start simultaneously
and run in parallel, executing their transition steps synchronously, but with-
out having any possibility to influence each other’s executions, i.e., maintaining
stochastic independence. In order to be able to refer to each experiment in245

a unique way, in HyperPCTL formulas we annotate atomic propositions with a
lower index that identifies the respective experiment by its corresponding state
variable (used in the state quantifier that started the experiment). Using these
indexed atomic propositions, HyperPCTL o↵ers the possibility to relate observa-
tions made for di↵erent experiments, e.g., comparing reachability probabilities250

in di↵erent MDP models, in the same MDP under di↵erent schedulers, or in the
same MDP under the same scheduler but starting from di↵erent states.

Besides indexing atomic propositions, the inner non-quantified formula part
is more or less a PCTL formula, but we allow more general arithmetic expres-
sions over probabilities.255

Note that we restrict ourselves to quantifying first the schedulers then the
states. Thereby, di↵erent state variables can share the same scheduler. One
could consider also local schedulers when di↵erent experiments cannot explicitly
share the same scheduler, or in other words, each scheduler quantifier belongs to
exactly one of the quantified states. Furthermore, technically it would also be260

possible to quantify first over states and then over schedulers, or allow arbitrary
quantification order with some flexible mechanism to bind state and scheduler
quantification. We decided for the below presented approach because it is ex-
pressive enough to formalize relevant security properties but simple enough to
have an easily understandable semantics close to standard temporal logics.265

Formally, HyperPCTL formulas are built according to the following abstract
grammar:

scheduler � quantified
formula : 'sch ::= 8�̂(M̂).'sch | 9�̂(M̂).'sch | 'st

state � quantified
formula : 'st ::= 8ŝ(M̂�̂).'st | 9ŝ(M̂�̂).'st | 'nq

non � quantified
formula : 'nq ::= true | aŝ | 'nq ^ 'nq | ¬'nq | 'pr ⇠ 'pr

probability expression : 'pr ::= P('path) | f('pr , . . . ,'pr)

path formula : 'path ::= 'nq | 'nq U 'nq | 'nq U [k1,k2] 'nq

8

where �̂ is a scheduler variable, M̂ is an MDP reference, ŝ is a state variable,
a is an atomic proposition, f : [0, 1]k ! R are k-ary arithmetic operators (e.g.,270

binary addition, unary/binary subtraction, binary multiplication) over proba-
bilities where constants are viewed as 0-ary functions, ⇠ is {, <,=, 6=, >,�},
and k1, k2 2 Z�0 with k1  k2. The probability operator P denotes the prob-
ability that its operand is true on paths starting in a given state, and ‘ ’ and
‘U ’ are the usual temporal operators ‘next’ and ‘until’, respectively.275

Note that we use X̂ to refer to variables ranging over objectsX. For example,
�̂, ŝ, and M̂ denote scheduler variables, state variables, and MDP references,
respectively, whereas �, s, and M represent concrete schedulers, states, and
MDPs. We define models(') to be the set of all MDP references occurring in '.

A HyperPCTL construct ' is any HyperPCTL expression of the form 'sch, 'st,280

'nq , 'pr , or 'path . A HyperPCTL scheduler-quantified formula is well-formed if
each occurrence of any aŝ is in the scope of a state quantifier for ŝ(M̂�̂), and
any state quantifier for ŝ(M̂�̂) is in the scope of a scheduler quantifier for �̂(M̂).

HyperPCTL formulas are well-formed HyperPCTL scheduler-quantified formu-
las, where we additionally allow standard syntactic sugar like false = ¬true,285

'1_'2 = ¬(¬'1^¬'2), '1 ! '2 = ¬('1^¬'2), ' = true U ', '1 $ '2 =
¬('1 ^ ¬'2)

V
¬('2 ^ ¬'1), and P(') = 1� P(¬').

3.2. HyperPCTL Semantics

Assume a HyperPCTL formula ' which refers to the MDPs models(') =
{M̂1,M̂2, . . . ,M̂k}. To define the satisfaction relation for ', we first need to290

define the models for which we want to evaluate '. This is done by a function
m : models(') ! M assigning to each MDP reference a (non-empty) MDP.
To apply the model instantiation m to ', we syntactically and simultaneously
replace occurrences of each M̂i, where 1  i  k, in ' by Mi = m(M̂i), whose
result we denote by '

⇥
m(models('))/models(')

⇤
. The model instantiation turns295

all sub-constructs for state quantification of the form 8ŝ(M̂i).'0 to 8ŝ(Mi).'0

and similarly for the existential case. Refer to Example 1 for an illustration of
these evaluations.

Initially, the evaluation starts with n = 0, the empty DTMC D; and the
“empty” state sequence () :300

m |= ' i↵ 0,D;, () |= '[m(models('))/models(')] (3)

Note that the evaluation now proceeds in the context of a DTMC, not an MDP.
The reason is the scheduler order: we quantify first over schedulers and then
over states in the induced DTMCs. Consequently, when instantiating 8�̂(M).'
or 9�̂(M).' by a scheduler � 2 ⌃M, we syntactically replace in ' each M�̂

that is not in the scope of a quantifier for �̂, by the induced DTMC M�, and305

denote the result by '[�̂ �].
For each state quantification 8ŝ(M�).' and 9ŝ(M�).', the DTMC in the

evaluation context will be parallelly composed with a new “experiment”, i.e., a
copy of the induced DTMCM� with renamed atomic propositions in order to be
able to individually refer to the observations in this “experiment”. Furthermore,310

9

we extend the state sequence ~s from the current context, by appending the
state s with which we instantiate the state quantifier as initial state for the new
experiment in M�.

To get a unique renaming, upon instantiating the nth state quantifier with
state s in DTMC M�, we create a copy of M� in which we rename each atomic315

proposition a to an; we denote the result of this renaming by M�[n]. Formally,
for a DTMCD = (S,P,AP, L) we defineD[n] = (S,P,AP[n], L[n]) with AP[n] =
{an | a 2 AP} and L[n](s) = {an | a 2 L(s)}.

Besides renaming in the model for unique observations, we also need a cor-
responding renaming in the formula to link the relevant atomic propositions to320

this copy with identity n. We do so by replacing in ' each freely occurring1 aŝ
by an, whose result we denote by '[ŝ n].

Formally, the satisfaction relation is defined for a non-negative integer n, a
DTMC D = (S,P,AP, L), and a state sequence ~s 2 Sn by the following rules:

Table 1: Semantic rules

(1) n,D,~s |= 8�̂(M).' i↵ n,D,~s |= '[�̂ �] for all � 2 ⌃M

(2) n,D,~s |= 9�̂(M).' i↵ n,D,~s |= '[�̂ �] for some � 2 ⌃M

(3) n,D,~s |= 8ŝ(M�).' i↵ n+1,D ⇥M�[n+1],~s � (init(s0), s0)
|= '[ŝ n+1], for all states s0 of M�

(4) n,D,~s |= 9ŝ(M�).' i↵ n+1,D ⇥M�[n+1],~s � (init(s0), s0)
|= '[ŝ n+1], for some state s0 of M�

(5) n,D,~s |= true
(6) n,D,~s |= ai i↵ ai 2 L(~s)
(7) n,D,~s |= 'nq

1 ^ 'nq
2 i↵ n,D,~s |= 'nq

1 and n,D,~s |= 'nq
2

(8) n,D,~s |= ¬'nq i↵ n,D,~s 6|= 'nq

(9) n,D,~s |= 'pr
1 ⇠ 'pr

2 i↵ J'pr
1 Kn,D,~s ⇠ J'pr

2 Kn,D,~s

(10) JP('path)Kn,D,~s = PrD~s
�S

⇡2{⇡02PathsD
~s

|n,D,⇡0|='path} Cyl
D(⇡)

�

(11) Jf('pr
1 , . . .'pr

k)Kn,D,~s = f
�
J'pr

1 Kn,D,~s , . . . , J'pr
k Kn,D,~s

�

(12) n,D,⇡ |= 'nq i↵ n,D,⇡[1] |= 'nq

(13) n,D,⇡ |= 'nq
1 U 'nq

2 i↵ exists j � 0 such that n,D,⇡[j] |= 'nq
2 and

n,D,⇡[i] |= 'nq
1 for all i 2 [0, j)

(14) n,D,⇡ |= 'nq
1 U [k1,k2] 'nq

2 i↵ exists j 2 [k1, k2] such that n,D,⇡[j] |= 'nq
2

and n,D,⇡[i] |= 'nq
1 for all i 2 [0, j)

In Table 1, M is an MDP, � = (Q, act ,mode, init) 2 ⌃M is a scheduler for325

M, and init(s) is the function selecting the starting mode for s. When we
instantiate each state quantifier with states from an induced DTMC D, we use
~s � (init(s0), s0) to append the existing sequence of states and initial modes,
namely ~s, with the new state s0 and its initial mode init(s0). Additionally,
ai 2 AP is an atomic proposition in D; 'st are HyperPCTL state-quantified330

formulas; 'nq ,'nq
1 ,'nq

2 are HyperPCTL non-quantified formulas; 'pr
1 , . . . ,'pr

k are

1
That is, not in the scope of any quantifier for ŝ in '.

10

HyperPCTL probability expressions; and 'path is a HyperPCTL path formula which
is evaluated in the context of a non-negative integer n, a DTMC D and a path
⇡ = s0s1 · · · of D as in rows (12), (13), and (14) where k1, k2 2 Z�0 with
k1  k2.335

Example 1. We illustrate the semantical evaluation of the following HyperPCTL

formula on the MDP in Fig. 1b. Note that in this example, h>0, h0, l=1 and
l=2 are atomic propositions.

8�̂(M̂).8ŝ(M̂�̂).8ŝ0(M̂�̂).
⇣
(h>0)ŝ^(h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=1)ŝ0)

⌘

Let us consider the model assignment m : {M̂} ! M with MDP m(M̂) =
M = (S,Act ,P,AP, L). Each scheduler � for M induces a DTMC M�, whose340

state set we denote by S�. To illustrate a simple case, we assume our schedulers
are memoryless, i.e., they have only one possible mode. Hence, we have removed
any mention of mode of the scheduler at each state.

m |= 8�̂(M̂).8ŝ(M̂�̂).8ŝ0(M̂�̂).
⇣
(h>0)ŝ ^ (h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=1)ŝ0)

⌘
i↵

0,D;,
��

|= 8�̂(M).8ŝ(M�̂).8ŝ0(M�̂).
⇣
(h>0)ŝ ^ (h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=1)ŝ0)

⌘
i↵

0,D;,
��

|= 8ŝ(M�).8ŝ0(M�).
⇣
(h>0)ŝ ^ (h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=1)ŝ0)

⌘
, for all � 2 ⌃M i↵

1,M�[1],
�
(init(s), s)

�
|= 8ŝ0(M�).

⇣
(h>0)1^(h0)ŝ0

⌘
!

⇣
P((l=1)1)=P((l=1)ŝ0)

⌘
, for all �2⌃M, for all s2S� i↵

2,M�[1]⇥M�[2],
�
(init(s), s), (init(s0), s0)

�
|=

⇣
(h>0)1 ^ (h0)2

⌘
!

⇣
P((l=1)1)=P((l=1)2)

⌘
, for all �2⌃M, for all s, s02S�

The first statement expresses that the model assignment satisfies the given
property. The second statement follows from the use of Eq. (3) to initialize345

the necessary parameters for the evaluation, including the instantiation of the
MDP reference M̂ by the concrete MDP M. The third statement is achieved by
using the first semantics rule from Table 1, instantiating the scheduler variable
�̂ by a concrete scheduler � for M. In the final two steps, we instantiate the
state quantifiers by the MDP states s and s0, in this order. From this point on,350

the evaluation follows the standard PCTL evaluation in the state (s, s0) of the
composed DTMC M�[1]⇥M�[2].

4. Applications of HyperPCTL

We now put HyperPCTL into action by formulating probabilistic hyperprop-
erties from di↵erent application areas. We start with examples without non-355

11

determinism, followed by examples where non-determinism plays a role.

4.1. Application in DTMCs

To simplify the formalism, we handle deterministic MDP models as DTMCs,
i.e., we skip the (unique) actions, and skip scheduler quantification from the
formulas, e.g., we write 8ŝ(D̂).' instead of 8�̂(M̂).8ŝ(M̂�̂).'.360

4.1.1. Probabilistic noninterference
Probabilistic noninterference [15] establishes connection between informa-

tion theory and information flow by employing probabilities to address covert
channels. Noninterference is an information-flow security policy that enforces
that a low-privileged user (e.g., an attacker) should not be able to distinguish
two computations from their publicly observable outputs, if they only vary in
their inputs by a high-privileged user (e.g., a secret). Intuitively, it requires
that the probability of every low-observable trace pattern is the same for every
low-equivalent initial state. Probabilistic noninterference can be expressed in
HyperPCTL as follows, where l denotes a low-observable atomic proposition:

8ŝ(D̂).8ŝ0(D̂).
⇣
lŝ ^ lŝ0

⌘
! P

⇣ �
P(lŝ) = P(lŝ0)

�⌘
= 1

We emphasize that our logic in its current form is not able to reason about
formulas that are invariant under stuttering. Since we consider discrete-time
models where time evolves synchronously, we believe stuttering is not relevant
here. In classic probabilistic noninterference, however, the probability of reach-365

ability is computed for stutter-equivalent traces. Since HyperPCTL has syn-
chronous semantics, traces have to be analyzed step by step. For example,
consider the model in Fig. 3 and the noninterference hyperproperty above. The
two DTMCs have the same probabilistic language in terms of absence and pres-
ence of l, but the next step probabilities of moving to a state labeled l di↵ers for370

s1 and s2 (for the DTMC on the right). Given our current logic, the above hy-
perproperty would not hold in this example as all states labeled l in the DTMC
on the right do not move to a state labeled l with equal probability. To ensure
that the hyperproperty holds for all states labeled l, we would need to incor-
porate a stuttering equivalence mechanism in our logic. This would allow the375

traces for the DTMC on the right to advance, while the traces for the DTMC
on the left stutter and ensure that the probabilistic distributions of reaching
states labeled l are equal.

4.1.2. Di↵erential Privacy
Di↵erential privacy [16] is a commitment by a data holder to a data subject

(normally an individual) that they will not be a↵ected by allowing their data
to be used in any study or analysis. Formally, let ✏ be a positive real number
and A be a randomized algorithm that makes a query to an input database
and produces an output. Algorithm A is called ✏-di↵erentially private, if for
all databases D1 and D2 that di↵er on a single element, and all subsets S of

12

s0 s1{l}

0.5 0.5

0.5

0.5

s0

s1 s2

s3

{l} {l}

{l}

0.5

0.25 0.25

0.75

0.25 0.75

0.25

0.5

0.5

Figure 3: DTMCs that should satisfy noninterference hyperproperty in the presence of a

stutter-equivalence mechanism.

possible outputs of A, we have Pr[A(D1) 2 S]  e✏ ·Pr[A(D2) 2 S]. Di↵erential
privacy can be expressed in HyperPCTL by the following formula:

8ŝ(D̂).8ŝ0(D̂).


dbSim(ŝ, ŝ0)

�
!


P
⇣

(qOut 2 S)ŝ
⌘
 e✏ · P

⇣
(qOut 2 S)ŝ0

⌘�

where dbSim(ŝ, ŝ0) means that two di↵erent dataset inputs have all but one380

similarity and qOut is the result of the query. For example, one way to provide
di↵erential privacy is through a randomized response protocol which adds noise
to the response and provides plausible deniability. Let A be an embarrassing or
illegal activity. In a social study, each participant is faced with the query, “Have
you engaged in activity A in the past week?” and is instructed to respond by385

the following protocol:

1. Flip a fair coin.

2. If tail, then answer truthfully.

3. If head, then flip the coin again and respond “Yes” if head and “No” if tail.

Thus, a “Yes” response may have been o↵ered because the first and second coin390

flips were both heads. This implies that there are no good or bad responses and
an answer cannot be incriminating.

D1 : s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

D2 : s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

Figure 4: Markov chain of the randomized response protocol.

13

We now show that this social study is (ln 3)-di↵erentially private. For each
participant in the study, Fig. 4 shows two Markov chains D1 and D2 of the
response protocol for cases denoted by {t=y} (respectively, {t=n}) which means
the participant did (respectively, did not) engage in activity A. Also, {r=y}
(respectively, {r=n}) means that the participant responds “Yes” (respectively,
“No”). The HyperPCTL formula to express (ln 3)-di↵erential privacy for this
protocol is the following:

8ŝ(D̂1).8ŝ0(D̂2).

✓
(t=n)ŝ ^ (t=y)ŝ0

◆
!
✓
P
⇣

(r=n)ŝ
⌘
 eln 3 · P

⇣
(r=n)ŝ0

⌘◆�

^
✓

(t=y)ŝ ^ (t=n)ŝ0

◆
!
✓
P
⇣

(r=y)ŝ
⌘
 eln 3 · P

⇣
(r=y)ŝ0

⌘◆�

We have decomposed dbSim(ŝ, ŝ0) into two cases of {t = y} and {t = n}. Thus,
in the left conjunct, the set S represents the case where the response is “No”
and in the right conjunct, the set S represents the case where the response is395

“Yes”. The DTMCs in Fig. 4 satisfy the formula for all instantiations of ŝ and
ŝ0. In the left conjunct, when ŝ and ŝ0 are instantiated by s1 and s0, respectively,
P
�

(r=n)ŝ
�
= 0.5 ⇤ 0.5+0.5 = 0.75 and P

�
(r=n)ŝ0

�
= 0.5 ⇤ 0.5 = 0.25, thus,

satisfying the formula. In the right conjunct, when ŝ and ŝ0 are instantiated by
s0 and s1, respectively, P

�
(r=y)ŝ

�
= 0.5⇤0.5+0.5 = 0.75 and P

�
(r=y)ŝ0

�
=400

0.5 ⇤ 0.5 = 0.25, thus, satisfying the formula. For all other state instantiations,
antecedents of the implications are false, thus, vacuously satisfying the formula.

4.2. Applications in MDPs

4.2.1. Side-channel Timing Leaks
1 void mexp () {
2 c = 0 ; d = 1 ; i = k ;
3 whi le (i >= 0){
4 i = i −1;
5 c = c ∗2 ;
6 d = (d∗d) % n ;
7 i f (b (i) = 1){
8 c = c+1;
9 d = (d∗a) % n ;

10 }
11 }
12 }
13 . . .
14 t = new Thread (mexp ()) ;
15 j = 0 ; m = 2 ∗ k ;
16 whi le (j < m & ! t . stop)
17 j++;
18

Figure 5: Modular exponentiation.

Side-channel timing leaks open a channel405

to an attacker to infer the value of a secret
by observing the execution time of a func-
tion. For example, at the heart of the RSA
public-key encryption algorithm is the mod-
ular exponentiation algorithm that computes410

(ab mod n), where a is an integer represent-
ing the plain text and b is the integer encryp-
tion key. A careless implementation can leak b
through a probabilistic scheduling channel (see
Fig. 5). This program is not secure since the415

two branches of the if have di↵erent timing
behaviors.

Under a fair execution scheduler for par-
allel threads, an attacker thread can infer the
value of b by running in parallel to a modular exponentiation thread and iter-420

atively incrementing a counter variable until the other thread terminates (lines
14-17). To model this program by an MDP, we can use two nondeterministic
actions for the two branches of the if statement, such that the choice of di↵er-
ent schedulers corresponds to the choice of di↵erent bit configurations b(i) for

14

the key b. This algorithm should satisfy the following property: the probability425

of observing a concrete value in the counter j should be independent of the bit
configuration of the secret key b:

8�̂1(M̂).8�̂2(M̂).8ŝ(M̂�̂1).8ŝ0(M̂�̂2).
⇣
initŝ ^ initŝ0

⌘
!

m̂

`=0

⇣
P((j = `)ŝ) = P((j = `)ŝ0)

⌘

1 i n t str cmp (char ∗ r){
2 char ∗ s = ‘Bg\$4 \0 ’ ;
3 i = 0 ;
4 whi le (s [i] != ‘\0 ’) {
5 i f (r [i]== ‘\0 ’ | |

s [i] != r [i])
6 re turn 0 ;
7 i++;
8 }
9 i f (r [i]== ‘\0 ’)

10 re turn 1 ;
11 re turn 0 ;
12 }
13

Figure 6: String comparison.

Another example of timing attacks that
can be implemented through a probabilistic
scheduling side channel is password verifi-430

cation which is typically implemented by
comparing an input string with another
confidential string (see Fig. 6). Also here,
an attacker thread can measure the time
necessary to break the loop, and use this435

information to infer the prefix of the input
string matching the secret string.

4.2.2. Scheduler-Specific Observational Determinism Policy (SSODP)
SSODP [17] is a confidentiality policy in multi-threaded programs that de-

fends against an attacker that chooses an appropriate scheduler to control the
set of possible traces. In particular, given any scheduler and two initial states
that are indistinguishable with respect to a secret input (i.e., low-equivalent),
any two executions from these two states should terminate in low-equivalent
states with equal probability. Formally, using a proposition h to represent a
secret and propositions l 2 L to classify low-equivalent states:

8�̂(M̂).8ŝ(M̂�̂).8ŝ0(M̂�̂).
�
hŝ � hŝ0

�
!

^

l2L

�
P(lŝ) = P(lŝ0)

�

where � is the exclusive-or operator. A stronger variation of this policy is that
the executions are stepwise low-equivalent:

8�̂(M̂).8ŝ(M̂�̂).8ŝ0(M̂�̂).
�
hŝ � hŝ0

�
! P

� ^

l2L

�
P(lŝ) = P(lŝ0)

��
= 1.

4.2.3. Probabilistic Conformance440

Probabilistic conformance describes how well a model and an implementation
conform with each other with respect to a specification. As an example, consider
a six-sided die. The probability to obtain one possible side of the die is 1/6.
We would like to synthesize a protocol that simulates the 6-sided die behavior
only by repeatedly tossing a fair coin. We know that such an implementation
exists [18] (see Fig. 7), but we aim to find such a solution automatically. We
model the die as a DTMC D, and possible coin-implementations as an MDP M

15

s0

d1

d2

d3

d4

d5

d6

1
6

1
6

1
6

1
6

1
6

1
6

1

1

1

1

1

1

s00

s01

s02

s03

s04

s05

s06

d01

d02

d03

d04

d05

d06

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1

2

1
2
1
2

1
2
1
2

1
2

1
2

1

1

1

1

1

1

Figure 7: Left: DTMC model of a fair 6-sided die. Right: DTMC model of the Knuth-Yao

Algorithm [18] to simulate a fair 6-sided die by fair coin tosses.

with a given number of states, including six absorbing final states to model the
outcomes. Each non-final state of the MDP has a set of enabled actions, each
of them choosing two successor states with equal probability 1/2. We want to
know whether there is a scheduler whose induced outcome probabilities agree
with the DTMC, giving us a particular implementation to simulate the die:

9�̂(M̂).8ŝ(D̂).9ŝ0(M̂�̂). initŝ !
⇣
initŝ0^

6̂

`=1

⇣
P((die=`)ŝ) = P((die=`)ŝ0)

⌘⌘

5. The Expressive Power of HyperPCTL

In order to satisfy P⇠c(') in a given MDP state s, the standard PCTL seman-
tics requires that all schedulers should induce a DTMC that satisfies P⇠c(') in
s. Though it should hold for all schedulers, it is known that there exist minimal
and maximal schedulers that are non-probabilistic and memoryless, therefore it445

is su�cient to restrict the reasoning to such schedulers. Since for MDPs with
finite state and action spaces, the number of such schedulers is finite, PCTL
model checking for MDPs is decidable. Given this analogy, one would expect
that HyperPCTL model checking should be decidable, but it is not.

5.1. HyperPCTL Model Checking for Memoryful Probabilistic Schedulers450

Theorem 1. HyperPCTL model checking for MDPs is in general undecidable.

Before we prove the above theorem, let us explore shortly, the source of
increased expressiveness with respect to PCTL that makes HyperPCTL undecid-
able. State quantification cannot be the source, as the state space is finite and
thus, there are finitely many possible state quantifier instantiations.455

In PCTL, each probability bound needs to be satisfied under all schedulers.
However, when a PCTL formula has several probability bounds, its satisfaction
requires each bound to be satisfied by all schedulers independently. For example,

16

M, s |=PCTL

⇣
P<0.5(aU b) _ P>0.5(aU b)

⌘
is equivalent to

M |=HyperPCTL 8�̂.8ŝ(�̂). (init ŝ ! P(aŝ U bŝ) < 0.5) or460

M |=HyperPCTL 8�̂.8ŝ(�̂). (init ŝ ! P(aŝ U bŝ) > 0.5)

but not equivalent to the HyperPCTL formula
M |=HyperPCTL 8�̂.8ŝ(�̂). (init ŝ ! (P(aŝ U bŝ) < 0.5 _ P(aŝ U bŝ) > 0.5))

which states that the probability is either less than or larger than 0.5 under all
schedulers, which is true if there exists no scheduler under which the probability465

is 0.5 (see also [19]). Thus, even for a fragment restricted to universal scheduler
quantification, combinations of probability bounds allow HyperPCTL to express
existential scheduler synthesis problems.

Finally, consider a scheduler quantifier followed by state quantifiers, whose
scope may contain probability expressions. This means that we start several470

“experiments” in parallel, each one represented by a state quantifier. However,
we may use in all experiments the same scheduler. Informally, this allows us to
express the existence or absence of schedulers with certain probabilistic hyper-
properties for the induced DTMCs. It would however also make sense to flip
this quantifier order, such that state quantifiers are followed by scheduler quan-475

tifiers. This would mean, that we can use di↵erent schedulers in the di↵erent
concurrently running experiments. This would be meaningful e.g., when users
can provide input to the system, i.e., when the scheduler choice lies with the
“observers” of the individual experiments, and they can adapt their schedulers
to observations made in the other concurrently running experiments.480

Proof of Theorem 1
To prove Theorem 1, we reduce the emptiness problem in probabilistic Büchi
automata (PBA), which is known to be undecidable [20], to our problem. PBA485

can be viewed as a nondeterministic Büchi automaton where the nondetermin-
ism is resolved by a probabilistic choice. That is, for any state q and letter a
in alphabet ⌃, either q does not have any a-successor or there is a probabilistic
distribution for the a-successors of q.

Definition 6. A probabilistic Büchi automaton (PBA) over a finite alphabet ⌃490

is a tuple P = (Q, �,⌃, ◆init , F), where Q is a finite state space, � : Q⇥⌃⇥Q!
[0, 1] is the transition probability function, such that

P
q02Q(q, a, q

0) 2 {0, 1} for
all q 2 Q and a 2 ⌃, ◆init 2 Q is the initial state, and F ✓ Q is the set of
accepting states.

A run for an infinite word w = a1a2 · · · 2 ⌃! is an infinite sequence ⇡ =495

q0q1q2 · · · of states in Q, such that qi+1 2 �(qi, ai+1) = {q0 | �(qi, ai+1, q0) > 0}
for all i 2 N�0. A run begins with the initial state ◆init . Let Inf(⇡) denote
the set of states that are visited infinitely often in ⇡. Run ⇡ is called accepting
if Inf(⇡) \ F 6= ;. Given an infinite input word w 2 ⌃!, the behavior of P
is given by the infinite Markov chain that is obtained by unfolding P into a500

tree using w. This is similar to an induced Markov chain from an MDP by a

17

scheduler. Hence, standard concepts for Markov chains can be applied to define
the acceptance probability of w in P, denoted by PrP(w) or briefly Pr(w), by
the probability measure of the set of accepting runs for w in P. We define the
accepted language of P as: L(P) = {w 2 ⌃! | PrP(w) > 0}. The emptiness505

problem is to decide whether or not L(P)=; for a given input P.

Mapping Our idea of mapping the emptiness problem in PBA to HyperPCTL
model checking for MDPs is as follows. We map a PBA to an MDP such that
the words of the PBA are mimicked by the runs of the MDP. In other words,
letters of the words in the PBA appear as propositions on states of the MDP.510

This way, the existence of a word in the language of the PBA corresponds to
the existence of a scheduler that produces a satisfying computation tree in the
induced Markov chain of the MDP.

MDP model: Let P = (Q, �,⌃, ◆init , F) be a PBA with alphabet ⌃. We obtain515

an MDP M = (S,Act ,P,AP, L) as follows:

• The set of states S =
�
Q⇥(⌃[{✏})

�S
{qsink}, such that, ✏ /2 ⌃. Correspond-

ing to the initial state ◆init in the PBA, we add a state (q, ✏) in the MDP
and label it with proposition init . Additionally, we add a sink state, qsink , to
ensure our MDP is complete.520

• The set of actions is Act = ⌃.

• The transition probability function P : S ⇥ Act ⇥ S ! [0, 1] is defined as
follows:

– If action b is enabled at state q in the PBA,

P
⇣
(q, a), b, (q0, a0)

⌘
= �(q, b, q0) where, a0 = b;

– If action b is not enabled at state q in the PBA,

P
⇣
(q, a), b, (qsink)

⌘
= 1;

– qsink is an absorbing state, thus,

P
⇣
(qsink), b, (qsink)

⌘
= 1, for all b 2 ⌃.

• The set of atomic propositions is AP = ⌃ [{f, init}, where f , init 62 ⌃. We
use f to label the accepting states and init to label the initial state.525

• The labeling function L is defined for each a 2 ⌃ [{✏} and q 2 Q as follows:

– For every (q, a) 2 S, where a = ✏:

L(s) =

(
{init , f} if q 2 F,

{init} otherwise.

18

– For every (q, a) 2 S, where a 2 ⌃:

L(q, a) =

(
{a, f} if q 2 F,

{a} otherwise.

– The sink state would be labeled by all propositions for completeness of
the MDP.

L(qsink) = ⌃

HyperPCTL formula: The HyperPCTL formula in our mapping is

'map = 9�̂(M̂).9ŝ(M̂�̂).8ŝ0(M̂�̂). init ŝ ^✓
init ŝ0 ! P

� ^

a2AP\{f}

(aŝ $ aŝ0)
�
= 1

◆
^
✓
P
⇣

P
�

P(fŝ) = 1
�
= 1

⌘
> 0

◆

Intuitively, the formula along with the above described mapping, establishes
connection between the PBA emptiness problem and HyperPCTL model checking
problem for MDPs. In particular:

• The existence of a scheduler �̂(M) in 'map corresponds to the existence of a530

word w in L(P);

• Every run of the PBA must begin from the initial state ◆init 2 Q. Hence,
when arguing about these runs in the mapped MDP, we have to only consider
runs that begin from the states corresponding to this initial state in the PBA.
In the first and the second conjunct of the above hyperproperty, the condition535

to check for states labeled init serves this purpose.

• The state quantifiers along with the global fragment in the second conjunct
ensure that all the paths in the induced DTMC and the PBA, follow the same
sequence of actions (respectively, letters) in the witness to �̂(M) (respectively,
w). Note that, in the second conjunct, we enforce that the paths between the540

PBA and the MDP should match globally with probability one. If our PBA
is incomplete, this fragment of the property would fail due to lack of enabled
actions at certain states of the mapped MDP. To avoid this situation, we add
transitions corresponding to these unenabled actions in the MDP and redirect
them to a sink state qsink .545

• The third conjunct mimics that a state in F is visited with non-zero proba-
bility if and only if a state labeled by proposition f is visited infinitely often
in the MDP with non-zero probability.

Reduction We now show that L(P) 6= ; if and only if M |= 'map.

(!) Suppose we have L(P) 6= ;. This means that there exists a word w 2 ⌃!,
such that PrP(w) > 0. We use w to eliminate the existential scheduler quantifier
and instantiate �̂(M̂) in formula 'map. This induces a DTMC and now, we show
that the induced DTMC satisfies the following HyperPCTL formula as prescribed

19

in [7]:

9ŝ(M̂�̂).8ŝ0(M̂�̂). init ŝ ^
✓
init ŝ0 ! P

� ^

a2AP\{f}

(aŝ $ aŝ0)
�
= 1

◆
^

✓
P
⇣

P
�

P(fŝ) = 1
�
= 1

⌘
> 0

◆

To this end, observe that the third conjunct is trivially satisfied due to the550

fact that PrP(w) > 0, i.e., since a state in F is visited infinitely often with
non-zero probability in P, a state labeled by f in M is also visited infinitely
often with non-zero probability. The first and second conjuncts are satisfied by
construction of the mapped MDP, since the sequence of letters in w appear in
all paths of the induced DTMC as propositions, when we start from the specific555

initial states.

() The reverse direction is pretty similar. Since the answer to the model
checking problem is a�rmative, a witness to scheduler quantifier �̂ exists. This
scheduler induces a DTMC whose paths follow the same sequence of proposi-
tions. This sequence indeed provides us with the word w for P. Finally, since560

the third conjunct in 'map is satisfied by the MDP, we are guaranteed that w
reaches an accepting state in F infinitely often with non-zero probability.

And this concludes the proof.

5.2. Decidability for Non-probabilistic Memoryless Schedulers

Due to the undecidability of HyperPCTL formulas for MDPs, we focus in this565

section on an alternative semantics, where scheduler quantification ranges over
non-probabilistic memoryless schedulers only. It is easy to see that limiting
ourselves to non-probabilistic memoryless schedulers makes the model checking
problem decidable, as there are only finitely many such schedulers. Regarding
complexity, we have the following property.570

Theorem 2. The problem to decide for MDPs the truth of HyperPCTL formulas
with a single existential (respectively, universal) scheduler quantifier over non-
probabilistic memoryless schedulers is NP-complete (respectively, coNP-complete)
in the state set size of the given MDP.

In order to show membership to NP, let M be an MDP and ' = 9�̂(M̂).'0
575

be a HyperPCTL formula, where '0 is a state quantified formula. We show that
given a solution to the problem, we can verify the solution in polynomial time.
Observe that given a non-probabilistic memoryless scheduler as a witness to the
existential quantifier 9�̂(M̂), one can compute the induced DTMC and then
verify the DTMC against the resulting HyperPCTL formula in polynomial time580

in the size of the induced DTMC [7].
Inspired by the proof technique introduced in [21], for the lower bound, we

reduce the SAT problem to our model checking problem. The SAT problem is
as follows:

20

Figure 8: Example of mapping SAT to HyperPCTL model checking.

Let y = y1 ^ y2 ^ · · · ^ ym be a Boolean formula where each yj , for585

j 2 [1,m], is a disjunction of at least three literals using propositions
{x1, x2, . . . , xn}. Is y satisfiable, i.e., is there an assignment of truth
values to x1, x2, . . . , xn, such that y evaluates to true?

Mapping We now present a mapping from an arbitrary SAT problem instance
to the model checking problem of an MDP and a HyperPCTL formula of the590

form 9�̂(M̂). 9ŝ(M̂�̂). 8ŝ0(M̂�̂). '. Then, we show that the MDP satisfies this
formula if and only if the answer to the SAT problem is a�rmative. Fig. 8
shows an example.
MDP: For a given propositional logic formula in conjunctive normal form, we
define the MDP M = (S,Act ,P,AP, L) as follows.595

• (Atomic propositions AP) We include four atomic propositions: p and p̄ to
mark the positive and negative literals in each clause and c and c̄ to mark
paths that correspond to clauses of the SAT formula. Thus, AP =

�
p, p̄, c, c̄}.

• (Set of states S) We now identify the members of S :

– For each clause yj , where j 2 [1,m], we include a state rj , labeled by600

21

proposition c. We also include a state r0 labeled by c̄.

– For each clause yj , j 2 [1,m], we introduce n states
n
vji | i 2 [1, n]

o
. Each

state vji is labeled with proposition p if xi is a literal in yj , or with p̄ if ¬xi

is a literal in yj .

– For each Boolean variable xi, where i 2 [1, n], we include two states: a605

state si labeled with p and a state s̄i labeled with p̄.

• (Set of actions Act) The set of actions is Act = {↵,�, �}. Intuitively, the
scheduler chooses action ↵ (respectively, �) at a state si or s̄i to assign true
(respectively, false) to variable xi+1. Action � is the sole action available at
all other states.610

• (Transition probability function P) We now identify the members of P . All
transitions have probability 1, so we only discuss the actions.

– We add transitions (rj , �, v
j
1) for each j 2 [1,m], where from rj , the prob-

ability of reaching vj1 is 1.

– We also add transitions (vji , �, v
j
i+1) for each i 2 [1, n), connecting the states615

representing literals in each clause yj , j 2 [1,m].

– For each i 2 [1, n), we include four transitions (si,↵, si+1), (si,�, s̄i+1),
(s̄i,↵, si+1), and (s̄i,�, s̄i+1). The intuition here is that when the scheduler
chooses action ↵ at state si or s̄i, variable xi+1 evaluates to true and when
the scheduler chooses action � at state si or s̄i, variable xi+1 evaluates to620

false in the SAT instance. We also include two transitions (r0,↵, s1) and
(r0,�, s̄1) with the same intended meaning.

– Finally, we include self-loops (sn, �, sn), (s̄n, �, s̄n), and (vjn, �, v
j
n), for each

j 2 [1,m].

HyperPCTL formula: The HyperPCTL formula in our mapping is:

'map = 9�̂(M̂).9ŝ(M̂�̂).8ŝ0(M̂�̂). c̄ŝ ^
✓
cŝ0 ! P

✓ ⇣
(pŝ^pŝ0)_ (p̄ŝ^p̄ŝ0)

⌘◆
=1

◆

The intended meaning of the formula is that if there exists a scheduler that625

makes the formula true by choosing the ↵ and � actions, this scheduler gives us
the assignment to the Boolean variables in the SAT instance. This is achieved
by making all clauses true, hence, the 8ŝ0(M̂�̂) subformula.

Reduction We now show that the given SAT formula is satisfiable if and only
if the MDP obtained by our mapping satisfies the HyperPCTL formula 'map.630

(!) Suppose that y is satisfiable. Then, there is an assignment that makes
each clause yj , where j 2 [1,m], true. We now use this assignment to instantiate
a scheduler for the formula 'map. If xi = true, then we instantiate scheduler �̂
such that in state si�1 or s̄i�1, it chooses action ↵. Likewise, if xi = false, then
we instantiate scheduler �̂, such that in state si�1 or s̄i�1, it chooses action �.635

We now show that this scheduler instantiation evaluates formula 'map to true.

First observe that ŝ(M̂�̂) can only be instantiated with state r0 and ŝ0(M̂�̂)

22

can only be instantiated with states rj , where j 2 [1,m]. Otherwise, the left
side of the implication in 'map becomes false, making the formula vacuously
true. Since each yj is true, there is at least one literal in yj that is true. If this640

literal is of the form xi, then we have xi = true and the path that starts from
r0 will include si, which is labeled by p. Hence, the values of p, in both paths
that start from ŝ(M̂�̂) and ŝ0(M̂�̂) are eventually equal. If the literal in yj is

of the form ¬xi, then xi = false and the path that starts from ŝ(M̂�̂) will
include s̄i. Again, the values of p̄ are eventually equal. Finally, since all clauses645

are true, all paths that start from ŝ0(M̂�̂) reach a state where the right side of
the implication becomes true.

() Suppose our mapped MDP satisfies formula 'map. This means that there

exists a scheduler and state ŝ(M̂�̂) that makes the subformula 8ŝ0(M̂�̂) true,
i.e., since ŝ can uniquely be instantiated by r0 due to its labeling by c, the path650

that starts from r0 results in making the inner PCTL formula true for all paths
that start from rj , where 1  j  m, as the left of the implication is false for all
other states. We obtain the truth assignment to the SAT problem as follows. If
the scheduler chooses action ↵ at state si, then we assign xi = true. Likewise, if
the scheduler chooses action � at state s̄i, then we assign xi = false. Observe655

that since in no state p and p̄ are simultaneously true and no path includes both
si and s̄i, variable xi will have only one truth value. Similar to the forward
direction, it is straightforward to see that this valuation makes every clause yj
of the SAT instance true.

This concludes the proof. We note that in [7], we showed that HyperPCTL660

model checking for DTMCs is PSPACE-hard in the size of the input formula.
Observe that our NP-completeness result in Theorem 2 is in the size of the input
MDP. These results are not contradicting each other.

6. HyperPCTL Model Checking for Non-probabilistic Memoryless
Schedulers665

Next, we describe our SMT-based technique for solving the model check-
ing problem for non-probabilistic memoryless scheduler domains, and for the
simplified case of having a single scheduler quantifier; the general case for an
arbitrary number of scheduler quantifiers is similar, but a bit more involved, so
the simplified setting might be more suitable for understanding the basic ideas.670

6.1. The Model Checking Algorithm

The main method listed in Algorithm 1 constructs a formula E that is sat-
isfiable if and only if the input MDP M satisfies the input HyperPCTL formula
with a single scheduler quantifier over the non-probabilistic memoryless sched-
uler domain. In line 2 we encode possible instantiations � for the scheduler675

variable �̂. We use a variable �s for each MDP state s 2 S to encode which
action is chosen in that state. Let us first deal with the case that the scheduler
quantifier is existential. In line 5 we encode the meaning of the quantifier-free

23

Algorithm 1: Main SMT encoding algorithm

Input : M=(S,Act ,P,AP, L) : model specification;
'sch = Q�̂(M̂).Q1ŝ1(M̂�̂). . . . Qnŝn(M̂�̂).'nq : HyperPCTL formula.

Output: Whether M |= 'sch.
1Function Main('sch,M)
2 E :=

V
s2S(

W
↵2Act(s) �s = ↵); // scheduler choice

3 if Q is existential then
4 E := E ^ Truth(M, 9�̂(M̂). Q1ŝ1(M̂�̂). . . . Qnŝn(M̂�̂). 'nq)
5 E := E ^ Semantics(M,'nq , n)
6 if check(E) = SAT then return TRUE else return FALSE

7 else if Q is universal then
// Qi is 8 if Qi = 9 and 9 else

8 E := E ^ Truth(M, 9�̂(M̂).Q1ŝ1(M̂�̂). . . . Qnŝn(M̂�̂).¬'nq)
9 E := E ^ Semantics(M,¬'nq , n)

10 if check(E) = SAT then return FALSE else return TRUE

inner part 'nq of the input formula, whereas line 4 encodes the meaning of
the state quantifiers, i.e., for which sets of composed states 'nq needs to hold680

in order to satisfy the input formula. In lines 6 we check the satisfiability of
the encoding and return the corresponding answer. Formulas with a universal
scheduler quantifier 8�̂(M̂).' are semantically equivalent to ¬9�̂(M̂).¬'. We
make use of this fact in lines 7–10 to check, first the satisfaction of an encoding
for 9�̂(M̂).¬' and then return the inverted answer.685

The Semantics method, shown in Algorithm 2, applies structural recursion
to encode the meaning of the quantifier-free part of the input formula. As
variables, the encoding uses (1) propositions isTrue ~s,'nq 2 {true, false} to
encode the truth of each Boolean subformula 'nq of the input formula in each
state ~s 2 Sn of the parallel composition of n copies of M, (2) numeric variables690

pr ~s,'pr 2 [0, 1] ✓ R to encode the value of each probability expression 'pr in
the input formula in the context of each composed state ~s 2 Sn, (3) variables
boolToInt ~s,'pr 2 {0, 1} to encode truth values in a pseudo-Boolean form, i.e.,
we set boolToInt ~s,'pr = 1 if isTrue ~s,'nq = true and pr ~s,'pr = 0 otherwise, and
(4) variables d~s,' to encode the existence of a loop-free path from state ~s to a695

state satisfying '.
In Algorithm 2, there are two base cases: the Boolean constant true holds in

all states (line 3), whereas atomic propositions hold in exactly those states that
are labeled by them (line 4). For conjunction (line 8) we recursively encode the
truth values of the operands and state that the conjunction is true if and only700

if both operands are true. For negation (line 14) we again encode the meaning
of the operand recursively and flip its truth value. For the comparison of two
probability expressions (line 19), we recursively encode the probability values
of the operands and state the respective relation between them for satisfaction
of the comparison. The remaining cases encode the semantics of probability705

expressions. The cases for constants (line 34) and arithmetic operations (line 35)

24

Algorithm 2: SMT encoding for the meaning of the input formula

Input : M = (S,Act ,P,AP, L) : MDP; ' : quantifier-free HyperPCTL
construct; n : number of state variables in '.

Output: SMT encoding of the meaning of ' under M.
1Function Semantics(M, ', n)
2

�!rQ := {}; �!r := [s1]n

3 if ' is true then E := isTrue �!r ,'

4 else if ' is aŝi then
5

�!rQ := �!rQ [{i}
6 Sn

rel := ComputeRelevantStatesSet(S, n,�!rQ)
7 E := (

V
~s2Sn

rel, a2L(si)
(isTrue ~s,')) ^ (

V
~s2Sn

rel, a/2L(si)
(¬isTrue ~s,'))

8 else if ' is '1 ^ '2 then
9 E'1 ,

�!r'1 := Semantics(M,'1, n); E'2 ,
�!r'2 := Semantics(M,'2, n)

10
�!rQ := �!rQ [�!r'1 [�!r'2

11 Sn
rel := ComputeRelevantStatesSet(S, n,�!rQ)

12 E := E'1 ^ E'2 ^
V

~s2Sn
rel

((isTrue ~s,'^isTrue ~s,'1^isTrue ~s,'2)_
13 (¬isTrue ~s,'^(¬isTrue ~s,'1_¬isTrue ~s,'2)))

14 else if ' is ¬'0 then
15 E'0 ,�!r' := Semantics(M,'0, n)
16

�!rQ := �!rQ [�!r'
17 Sn

rel := ComputeRelevantStatesSet(S, n,�!rQ)
18 E := E'0 ^

V
~s2Sn

rel
(isTrue ~s,' � isTrue ~s,'0)

19 else if ' is '1 < '2 then
20 E'1 ,

�!r'1 := Semantics(M,'1, n); E'2 ,
�!r'2 := Semantics(M,'2, n)

21
�!rQ := �!rQ [�!r'1 [�!r'2

22 Sn
rel := ComputeRelevantStatesSet(S, n,�!rQ)

23 E := E'1 ^ E'2 ^
V

~s2Sn
rel

[(isTrue ~s,' ^ pr ~s,'1
<pr ~s,'2

)_
24 (¬isTrue ~s,' ^ pr ~s,'1

�pr ~s,'2
)]

25 else if ' is P('0) then
26 E,�!r' := SemanticsNext(M,', n)
27

�!rQ := �!rQ [�!r'
28 else if ' is P('1 U '2) then
29 E,�!r' := SemanticsUnboundedUntil(M,', n)
30

�!rQ := �!rQ [�!r'
31 else if ' is P('1 U [k1,k2]'2) then
32 E,�!r' := SemanticsBoundedUntil(M,', n)
33

�!rQ := �!rQ [�!r'
34 else if ' is c then E := (pr �!r ,' = c)
35 else if ' is '1 op '2 /* op 2 {+,�, ⇤} */ then
36 E'1 ,

�!r'1 := Semantics(M,'1, n); E'2 ,
�!r'2 := Semantics(M,'2, n)

37
�!rQ := �!rQ [�!r'1 [�!r'2

38 Sn
rel := ComputeRelevantStatesSet(S, n,�!rQ)

39 E := E'1 ^ E'2^
V

~s2Sn
rel

(pr ~s,' = (pr ~s,'1
op pr ~s,'2

))

40 return E, �!rQ

25

are straightforward. For the probability P('0) (line 25 and Algorithm 3), we
encode the Boolean value of '0 in the variables isTrue ~s,'0 (line 2), turn them
into pseudo-Boolean values boolToInt ~s,'0 (1 for true and 0 for false, line 6),
and state that for each composed state, the probability value of P('0) is the710

sum of the probabilities to get to a successor state where the operand '0 holds;
since the successors and their probabilities are scheduler-dependent, we need
to iterate over all scheduler choices and use supp(↵i) to denote the support
{s 2 S | ↵i(s) > 0} of the distribution ↵i (line 7).

For the probability P('1 U '2) to satisfy an unbounded until formula, the715

method SemanticsUnboundedUntil shown in Algorithm 4 first encodes the mean-
ing of the until operands (line 6). For each composed state ~s 2 Sn, the proba-
bility of satisfying the until formula in ~s is encoded in the variable pr ~s,P('1 U '2).
If the second until-operand '2 holds in ~s then this probability is 1 and if none
of the operands are true in ~s then it is 0 (line 9). Otherwise, depending on720

the scheduler � of M (line 10), the value of pr ~s,P('1 U '2) is a sum, adding up
for each successor state ~s0 of ~s, the probability to get from ~s to ~s0 in one step
times the probability to satisfy the until-formula on paths starting in ~s0 (line
12). However, these encodings work only when at least one state satisfying '2 is
reachable from ~s with a positive probability: for any bottom strongly connected725

component (SCC) whose states all violate '2, the probability P('1 U '2) is 0.
However, assigning any fixed value from [0, 1] to all states of this bottom SCC
would yield a fixed-point for the underlying equation system. To ensure correct-
ness, in line 13 we enforce smallest fixed-points by requiring that if pr ~s,P('1 U '2)

is positive then there exists a loop-free path from ~s to any state satisfying '2. In730

the encoding of this property we use fresh variables d~s,'2 and require a path over
states with strong monotonically decreasing d~s,'2 -values to a '2-state (where
the decreasing property serves to exclude loops). The domain of the distance-
variables d~s,'2 can be integers, rationals or reals; the only restriction is that it
should contain at least |S|n ordered values. Especially, it does not need to be735

lower bounded (note that each solution assigns to d~s,'2 a fixed value, leading to
a finite number of distance values).

The SemanticsBoundedUntil method, listed in Algorithm 5, encodes the
probability P('1 U [k1,k2]'2) of a bounded until formula in the numeric variables
pr ~s,P('1 U [k1,k2]'2) for all (composed) states ~s 2 Sn and recursively reduced time740

bounds. There are three main cases: (i) the satisfaction of '1 U [0,k2�1]'2 re-
quires to satisfy '2 immediately (lines 2–8); (ii) '1 U [0,k2�1]'2 can be satisfied
by either satisfying '2 immediately or satisfying it later, but in the latter case
'1 needs to hold currently (lines 9–17); (iii) '1 has to hold and '2 needs to be
satisfied some time later (line 18–25). To avoid the repeated encoding of the745

semantics of the operands, we do it only when we reach case (i) where recursion
stops (line 6). For the other cases, we recursively encode the probability to reach
a '2-state over '1 states where the deadlines are reduced by one step (lines 10
resp. 19) and use these to fix the values of the variables pr ~s,P('1 U [k1,k2]'2), sim-
ilar to the unbounded case but under additional consideration of time bounds.750

The Truth method listed in Algorithm 6 encodes the meaning of state quan-

26

Algorithm 3: SMT encoding for the meaning of next formulas

Input : M = (S,Act ,P,AP, L) : MDP; ' = P('0) : HyperPCTL formula;
n : number of state variables in '.

Output: SMT encoding of '’s meaning under M.
1Function SemanticsNext(M,', n)
2 E,�!rQ := Semantics(M,'0, n)
3 Sn

rel := ComputeRelevantStatesSet(S, n,�!rQ)
4 foreach ~s = (s1, . . . , sn) 2 Sn

rel do
5 E := E^
6

�
(boolToInt ~s,'0 = 1 ^ isTrue ~s,'0) _ (boolToInt ~s,'0 = 0 ^ ¬isTrue ~s,'0)

�

7 foreach ~↵ = (↵1, . . . ,↵n) 2 Act(s1)⇥ . . .⇥ Act(sn) do
8 E := E ^

�⇥Vn
i=1 �si = ↵i

⇤
!

⇥
pr ~s,' =

9
P

~s02supp(↵1)⇥...⇥supp(↵n)
((⇧n

i=1P(si,↵i, s0i)) · boolToInt ~s0,'0)
⇤�

10 return E,�!rQ

Algorithm 4: SMT encoding for the meaning of unbounded until formulas

Input : M = (S,Act ,P,AP, L) : MDP; ' = P('1 U '2) : HyperPCTL
formula; n : number of state variables in '.

Output: SMT encoding of '’s meaning under M.
1Function SemanticsUnboundedUntil(M,', n)
2 E'1 ,

�!r'1 := Semantics(M, '1, n)
3 E'2 ,

�!r'2 := Semantics(M, '2, n)
4

�!rQ := �!r'1 [�!r'2

5 Sn
rel := ComputeRelevantStatesSet(S, n,�!rQ)

6 E := E'1 ^ E'2 ;
7 foreach ~s = (s1, . . . , sn) 2 Sn

rel do
8 E := E ^ (isTrue ~s,'2 ! pr ~s,'=1)^
9 ((¬isTrue ~s,'1 ^ ¬isTrue ~s,'2)! pr ~s,'=0);

10 foreach ~↵ = (↵1, . . . ,↵n) 2 Act(s1)⇥ . . .⇥ Act(sn) do

11 E := E ^
⇣⇥

isTrue ~s,'1 ^ ¬isTrue ~s,'2 ^
Vn

i=1 �si = ↵i

⇤
!

12
⇥
pr ~s,' =

P
~s02supp(↵1)⇥...⇥supp(↵n)

((⇧n
i=1P(si,↵i, s0i)) · pr ~s0,')^

13 (pr ~s,'>0!
(
W

~s02supp(↵1)⇥...⇥supp(↵n)
(isTrue ~s0,'2_d~s,'2>d~s0,'2)))

⇤⌘

14 return E,�!rQ

tification: it states for each universal quantifier that instantiating it with any
MDP state should satisfy the formula (conjunction over all states in line 3), and
for each existential state quantification that at least one state should lead to
satisfaction (disjunction in line 3).755

Optimization We have added an important optimization to the solution pre-
sented in [13]. Our earlier algorithm encoded, for each state in the parallel
composition of the models, the semantical value of each subformula. However,

27

Algorithm 5: SMT encoding for the meaning of bounded until formulas

Input : M = (S,Act ,P,AP, L) : MDP; ' = P('1 U [k1,k2]'2) : HyperPCTL
formula; n : number of state variables in '.

Output: SMT encoding of '’s meaning under M.
1Function SemanticsBoundedUntil(M,', n)
2 if k2 = 0 then
3 E'1 ,

�!r'1 := Semantics(M,'1, n); E'2 ,
�!r'2 := Semantics(M,'2, n)

4
�!rQ := �!r'1 [�!r'2

5 Sn
rel := ComputeRelevantStatesSet(S, n,�!rQ)

6 E := E'1 ^ E'2

7 foreach ~s = (s1, . . . , sn) 2 Sn
rel do

8 E := E ^ (isTrue ~s,'2!pr ~s,'=1) ^ (¬isTrue ~s,'2!pr ~s,'=0)

9 else if k1 = 0 then
10 E,�!rQ := SemanticsBoundedUntil(M, P('1 U [0,k2�1]'2), n)
11 Sn

rel := ComputeRelevantStatesSet(S, n,�!rQ)
12 foreach ~s = (s1, . . . , sn) 2 Sn

rel do
13 E := E ^ (isTrue ~s,'2!pr ~s,'=1)^
14 ((¬isTrue ~s,'1 ^ ¬isTrue ~s,'2)!pr ~s,'=0)
15 foreach ~↵ = (↵1, . . . ,↵n) 2 Act(s1)⇥ . . .⇥ Act(sn) do

16 E := E ^
⇣⇥

isTrue ~s,'1 ^ ¬isTrue ~s,'2 ^
Vn

i=1 �si=↵i

⇤
!

⇥
pr ~s,' =

17
P

~s02supp(↵1)⇥...⇥supp(↵n)
((⇧n

i=1P(si,↵i, s0i))·pr ~s0,P('1 U [0,k2�1]'2))
⇤⌘

;

18 else if k1 > 0 then
19 E,�!rQ := SemanticsBoundedUntil(M, P('1 U [k1�1,k2�1]'2), n)
20 Sn

rel := ComputeRelevantStatesSet(S, n,�!rQ)
21 foreach ~s = (s1, . . . , sn) 2 Sn

rel do
22 E := E ^ (¬isTrue ~s,'1 ! pr ~s,' = 0)
23 foreach ~↵ = (↵1, . . . ,↵n) 2 Act(s1)⇥ . . .⇥ Act(sn) do

24 E := E ^
⇣⇥

isTrue ~s,'1 ^
Vn

i=1 �si = ↵i

⇤
!

⇥
pr ~s,' =

25

X

~s02supp(↵1)⇥..⇥supp(↵n)

((⇧n
i=1P(si,↵i, s0i))·pr ~s0,P('1U [k1�1,k2�1]'2))

⇤⌘

26 return E,�!rQ

these semantical values often do not depend on all the copies of the model in-
volved, but only a subset of them. For example, in the context of the MDP760

described in Fig. 1b, let us consider the following formula,

9�̂(M̂).8ŝ(M̂�̂).9ŝ0(M̂�̂).
⇣
(h>0)ŝ^(h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=2)ŝ0)

⌘

The evaluation composes two copies of M, one for each state quantifier and
computes recursively, the encoding for each state (s, s0) 2 S⇥S of the parallel
composition. However, the values of the subformulas (h>0)ŝ and (P((l=1)ŝ)765

depend on the first state component s only; here we say that the first com-

28

Algorithm 6: SMT encoding of the truth of the input formula

Input : M = (S,Act ,P,AP, L) : MDP;
'sch = 9�̂(M̂).Q1ŝ1(M̂�̂). . . . Qnŝn(M̂�̂).'nq : HyperPCTL

formula.
Output: Encoding of the truth of the input formula under M.

1Function Truth(M, 'sch)
2 foreach i = 1, . . ., n do
3 if Qi = 8 then Bi :=“

V
si2S” else Bi :=“

W
si2S”

4 return B1 . . . Bn isTrue (s1,...,sn),'nq

Algorithm 7: Calculating set of relevant state combinations

Input : S : set of states in the input MDP; n : number of quantifiers in 'sch;
relQ : set of relevant quantifiers carried over from previous recursion.

Output: Set of state combinations relevant to the current subformula.
1Function ComputeRelevantStatesSet(S, n, relQ)

2
�!r := [s1]n;

���!
index := [1]n; i := kSk; Sn

rel := {}
3 while i > 0 do
4 Sn

rel := Sn
rel [

�!r
5 while (i � 1) and (indexi = n or i /2 relQ) do
6 ri = s1
7 indexi = 1
8 i = i� 1

9 if i > 0 then
10 indexi := indexi + 1
11 ri := sindexi

12 return Sn
rel

ponent is relevant, whereas the second one is not. Similarly, for (h0)ŝ0 and
P((l=2)ŝ0) only the second component s0 is relevant but not the first. To
reduce computational e↵ort as well as memory usage, we do not encode the
semantical values for all composed states, but limit the encoding to the parallel770

composition of the relevant components. Technically, we choose an arbitrary
state s⇤ 2 S of M as a “placeholder” state for non-relevant components. In-
stead of encoding the semantical value of (h>0)ŝ for all (s, s0) 2 S ⇥ S, we
encode it only for each (s) 2 S ⇥ {s⇤}. During recursion, it might happen that
the semantical value of hŝ is needed for some (s, s0) 2 S ⇥ S with s0 6= s⇤;775

in this case we re-direct the query and get the value of (s, s⇤). For exam-
ple, let us consider the MDP in Fig. 1b with 4 states. In our previous ap-
proach to encode (h > 0)ŝ, we would have considered all 16 state combinations
((s0, s00), (s0, s

0
1), . . . , (s1, s

0
2), . . . , (s3, s

0
3)). However, in our optimized approach,

we consider only four state combinations ((s0, s00), . . . , (s3, s
0
0)). This optimiza-780

tion has a huge impact for large state spaces. For a multi-model system, with n
and m states, our previous approach would need us to consider (n+m)2 state

29

combinations, whereas the current optimization considers only (n ⇥ m) state
combinations.

Algorithm 7 describes how we avoid computing unwanted state combina-785

tions. State quantifiers (Q1,. . . , Qn) that are relevant to the subformula, are
stored in the array named �!rQ. Here, �!r stores the current composed state and
���!
index keeps track of the indices of the states in �!r . The enumeration works for
quantifiers inside-out, i.e., for three quantifiers and a four-state DTMC, the enu-
meration is (s1, s01, s

00
1), . . . ,(s1, s

0
1, s

00
4), (s1, s

0
2, s

00
1), . . . , (s1, s

0
4, s

00
4), . . . , (s4, s

0
4, s

00
4).790

Our initial �!r consists of the first state, i.e., s1 for all quantifiers. This initial-
ization is done in line 2. We start increasing the index of the state associated
with the innermost quantifier (lines 9-11). Once all states have been covered for
that quantifier, in (lines 6-8), we reset the state index of the current quantifier
to s1. We also try to find the index of the next relevant quantifier closest to the795

current one, i.e., Qj with highest j from right end of Q1,. . . , Qn and increase
its index by one. This extra search helps us to store only the relevant state
combinations in Sn

rel.

Theorem 3. Algorithm 1 returns an encoding that is true if and only if its
input HyperPCTL formula is satisfied by the input MDP.800

We note that the satisfiability of the generated SMT encoding for a formula
with an existential scheduler quantifier does not only prove the truth of the
formula but also provides a scheduler as witness, encoded in the solution of the
SMT encoding. Conversely, unsatisfiability of the SMT encoding for a formula
with a universal scheduler quantifier provides a counterexample scheduler.805

6.2. Example of the Encoding

Consider the problem where we are trying to verify the following property
on the MDP in Fig. 1b.

9�̂(M̂).8ŝ(M̂�̂).9ŝ0(M̂�̂).
⇣
(h>0)ŝ^(h0)ŝ0

⌘
!

⇣
P((l=1)ŝ)=P((l=2)ŝ0)

⌘

We encode the actions in the MDP as described in line 2 of Algorithm 1. Here,
�i refers to the action in si.810

Esch = (�0 = ↵ _ �0 = �) ^ (�1 = ↵ _ �1 = �) ^ (�2 = ⌧) ^ (�3 = ⌧)

We handle the encoding of the state quantifiers using Algorithm 6. We use
'nq to represent the quantifier-free part of the above property and isTrue si,sj ,'nq

refers to the encoding to ensure 'nq holds in the composed state of (si, sj).

Etruth = (isTrue s0,s0,'nq _ . . . _ isTrue s0,s3,'nq) ^
. . . ^ (isTrue s3,s0,'nq _ . . . _ isTrue s3,s3,'nq)

We handle atomic propositions as described in line 4 in Algorithm 2. For
example, we have the encoding of (h>0)ŝ below. Please note here that the first815

30

quantifier is relevant and the second is not. Also, (h>0)ŝ is true only in s0,
hence we encode the atomic proposition with a negation for all other states.

E(h>0)ŝ
= (isTrue s0,s0,(h>0)ŝ

) ^ (¬isTrue s1,s0,(h>0)ŝ
^ . . . ^ ¬isTrue s3,s0,(h>0)ŝ

)

To encode operators, we include both the satisfaction and dissatisfaction
clauses in the encoding. Depending on the atomic propositions involved, one
of the clauses would be satisfied. For example, the encoding for conjunction of820 ⇣
(h>0)ŝ^(h0)ŝ0

⌘
for (s0, s0) would be as follows.

Econj = (isTrue s0,s0,(h>0)ŝ
^ isTrue s0,s0,(h0)ŝ0

^ isTrue s0,s0,(h>0)ŝ^(h0)ŝ0
) _

((¬isTrue s0,s0,(h>0)ŝ
_ ¬isTrue s0,s0,(h0)ŝ0

) ^ ¬isTrue s0,s0,(h>0)ŝ^(h0)ŝ0
)

The encoding of is similar to Algorithm 4 except that we consider '1

to be true and ignore its encoding. For example, the encoding of P((l=1)ŝ)
for (s0, s0) and action (↵ŝ,↵ŝ0) would be as below. Note that since the first
quantifier is relevant, we will only encode (s2, s0) and (s3, s0) as the successor
states.

E =(isTrue s0,s0,(l=1)ŝ
! pr s0,s0,P((l=1)ŝ)

= 1) ^ (pr s0,s0,P((l=1)ŝ)
� 0)^

(¬isTrue s0,s0,(l=1)ŝ
^ �0 = ↵ ^ �1 = ↵)!

⇣
pr s0,s0,P((l=1)ŝ)

=

(3/4⇥ 1⇥ pr s2,s0,P((l=1)ŝ)
) + (1/4⇥ 1⇥ pr s3,s0,P((l=1)ŝ)

)
⌘
^

⇣
pr s0,s0,P((l=1)ŝ)

> 0! (isTrue s2,s0,(l=1)ŝ
_ ds0,s0,(l=1)ŝ

>ds2,s0,(l=1)ŝ
)

_ (isTrue s3,s0,(l=1)ŝ
_ ds0,s0,(l=1)ŝ

>ds3,s0,(l=1)ŝ
)
⌘

For Multiple Scheduler Quantifiers To extend this algorithm to work for mul-
tiple schedulers, we firstly have to encode the combination of actions for every
state combination. Hence in line 2 of Algorithm 1, we will need n nested loops
to encode all the possible scheduler choices of n scheduler quantifiers. In the rest825

of the algorithm, we have to do similar changes to account for the combinations
of actions possible from each state ~s 2 Sn. So we will need similar nested loops
in cases like line 10 of Algorithm 4.

7. Evaluation

7.1. Implementation830

We have prototypically implemented our algorithm in Python, with the help
of several libraries. We have initially parsed the hyperproperty into an abstract
syntax tree which helped us to manage the precedence of operators. We have
also used STORMPY [22, 23] to parse our model, given as a PRISM file. STORMPY
provides an e�cient solution to parsing, building, and storage of MDPs. To-835

gether, they are used to encode the SMT constraints for the scheduler actions

31

available, the scheduler and state quantifiers, and finally, the semantics of the
hyperproperty, according to our algorithm. We used the SMT-solver Z3 [24]
to solve the logical encoding generated by Algorithm 1. As a result, we return
a Boolean value representing the satisfaction or dissatisfaction of the formula.840

Additionally, we return a set of actions {↵s1 , . . . ,↵sn} for specific cases where
additional information about the result can be given. In case the scheduler
quantifier is 8, and the hyperproperty is dissatisfied, the set of actions would
induce a DTMC that is a counterexample. In case the scheduler quantifier is
9, and the hyperproperty is satisfied, the set of actions would induce a DTMC845

that is a witness.
Exact computations For our experiments, we specified high-level models in
PRISM language [25] and used STORMPY to parse them. STORMPY, by de-
fault, reads and stores the transition probabilities as float datatype, potentially
losing accuracy. This caused erroneous results when comparing two such ap-850

proximated values for equality. Hence, in [13], some of the reported results can
be wrong due to this numerical bug in STORMPY. We came across this when
scaling up our previous case studies. Therefore, after parsing, we stored the
model details and utilized all its information except the transition probabilities,
to rebuild the models with exact fractional probabilities in a rational format855

(introduced in the latest version of STORMPY), to ensure consistency through-
out the implementation. The model rebuilding step has been automated and
successfully incorporated into our implementation.

7.2. Experimental Data860

All our experiments were run on a MacBook Pro laptop with a 2.3GHz i7
processor with 32GB of RAM. The results are presented in Table 3.

We used four benchmark families, whose complexities are indicated in Ta-
ble 2, listing the depth of the property we have verified along with the number of
states and transitions of the model. The depth of a property refers to the total865

number of atomic propositions and Boolean and temporal operations contained
in the respective hyperproperty.

For the first case study, we modeled and analyzed information leakage in the
modular exponentiation algorithm (function modexp in Fig. 5); the correspond-
ing results in Table 3 are marked by TA. We experimented with 1, 2, 3, and870

4 bits for the encryption key (hence, m 2 {2, 4, 6, 8}). The specification checks
for the absence of a timing channel for all possible schedulers, which is not the
case for the implementation in modexp.

Our second case study PW is verification of password leakage through the
string comparison algorithm (function str cmp in Fig. 6). Here, we experi-875

mented with m 2 {2, 4, 6, 8}.
In our third case study TS, we assume two concurrent processes. The first

process decrements the value of a secret h by 1 as long as the value is still
positive, and sets the low variable l to 1 outside the loop. A second process just
sets the value of the same low variable l to 2. The two threads run in parallel880

until one of them terminates and a fair scheduler chooses the next executing

32

thread for each CPU cycle. This opens a probabilistic thread scheduling channel
and leaks the value of h. We compare observations for executions with di↵erent
secret values h1 and h2 (denoted as h = (h1, h2)). There is an interesting
relation between the data for TS. Both the encoding and running time for the885

experiment is proportional to the higher value in the tuple h. We believe this is
because, while encoding, the parser has to traverse the maximum depth of the
model corresponding to the higher value of h, irrespective of the lower value of
h in the tuple.

Table 2: Case Studies. TA: Timing

attack. PW: Password leakage. TS:

Thread scheduling. PC: Probabilis-

tic conformance. #op: Formula size

(number of operators). #st: Number

of states. #tr: Number of transitions.

Case Study #op #st #tr

TA

m = 2

14

24 46
m = 4 60 136
m = 6 112 274
m = 8 180 460

PW

m = 2

14

24 46
m = 4 70 146
m = 6 140 302
m = 8 234 514

TS

h = (0, 1)

28

7 13
h = (0, 15) 35 83
h = (4, 8) 21 48
h = (8, 15) 35 83
h = (10, 20) 45 108

PC

s = (0)

44

20 188
s = (0..1) 20 340
s = (0..2) 20 494
s = (0..3) 20 648
s = (0..4) 20 802
s = (0..5) 20 956
s = (0..6) 20 1110

Our last case studyPC is on probabilis-890

tic conformance. The input is a DTMC
modeling a fair 6-sided die and an MDP
whose actions model single fair coin tosses
with two successor states each. We are in-
terested in finding a scheduler that induces895

a DTMC that simulates the die outcomes
using a fair coin. Given a fixed state space,
we experiment with di↵erent numbers of
actions. In particular, we started from the
implementation in [18] and for the state900

space of the coin section of the protocol,
we added all the possible nondeterministic
transitions from the first state to all the
other states (denoted as s=0 in the data
tables), from the first and second states to905

all the others (s=0..1), and, similarly scaled
it step wise to include transitions from all
states to all others (s=0..6). Each time, we
were not only able to satisfy the formula,
but also obtain the witness corresponding910

to the scheduler satisfying the property. A
noteworthy observation in this experiment
data is the fact that the number of variables created remains constant in spite of
scaling the model up by introducing more transitions at each stage. This is at-
tributed to the fact that we have a single variable representing the action chosen915

at each state. Hence, no matter how many actions are introduced in a state of
the MDP, it just increases the number of options we have to choose a value from
for the action variable in the respective state, and the size of the encoding, but
not the number of variables. As illustrated in Fig. 9, our approach could find,
as witnesses, two new DTMC models with respect to the original Knuth-Yao920

solution [18] and one of the two even has a state less than the original solution.
This shows how our approach can be exploited for the synthesis of probabilistic
programs satisfying certain program sketches.

Regarding the running times in Table 3, we note that our previous naive
implementation as well as our new optimized implementation (see Section 7.1)925

are only prototypical and there is still scope of optimizations. Nevertheless, the
new implementation already shows strong improvements due to our optimiza-

33

Table 3: Experimental results and comparison. TA: Timing attack. PW: Password leakage.

TS: Thread scheduling. PC: Probabilistic conformance. TO: Timeout. N: Naive.

O: Optimized. SE: SMT encoding. SS: SMT solving

Running time(s) #SMT
Case Study SE SS Total variables

N O N O N O N O

TA

m = 2 5 2 < 1 < 1 5 2 8088 2520
m = 4 114 18 20 1 134 19 50460 14940
m = 6 1721 140 865 45 2586 185 175728 51184
m = 8 12585 952 TO 426 TO 1378 388980 131220

PW

m = 2 5 2 < 1 < 1 6 3 8088 2520
m = 4 207 26 40 1 247 27 68670 20230
m = 6 3980 331 1099 41 5079 372 274540 79660
m = 8 26885 2636 TO 364 TO 3000 657306 221130

TS

h = (0, 1) < 1 < 1 < 1 < 1 1 1 1379 441
h = (0, 15) 60 8 1607 < 1 1667 8 34335 8085
h = (4, 8) 12 3 17 < 1 29 3 12369 3087
h = (8, 15) 60 8 1606 < 1 1666 8 34335 8085
h = (10, 20) 186 19 13707 1 13893 20 52695 13095

PC

s=(0) 277 10 1996 5 2273 15 21220 6780
s=(0,1) 822 13 5808 5 6630 18 21220 6780
s=(0..2) 1690 15 TOa 5 TO 20 21220 6780
s=(0..3) 4631 16 TO 7 TO 23 21220 6780
s=(0..4) 7353 22 TO 21 TO 43 21220 6780
s=(0..5) 10661 19 TO 61 TO 80 21220 6780
s=(0..6) 13320 18 TO 41 TO 59 21220 6780

a
Without timeout, this case needed 58095s for solving

tion. The timing data is the average for five runs per experiment, although we
noticed no considerable change in the timing among individual runs of exper-
iments. In our naive implementation, due to encoding of all formulas for all930

composed states, both the encoding as well as SMT solving time were signifi-
cantly higher. Hence, we opted for a timeout for cases where the timing did not
seem practically useful. For TA, PW, and PC, we used a timeout of 10000s for
the SMT solving. Just to get an idea of how long it actually might take to solve
the encoding for a moderately big model, we let PC for s=(0..2) run without a935

timeout: it took 58095s for solving, running a total of 59785s for both solving
and encoding.

8. Related Work

The first attempt on developing a temporal logic for probabilistic hyper-
properties was our work in [7], where we proposed HyperPCTL for DTMCs. We940

later extended HyperPCTL to MDPs in the conference version of this paper [13].
The work in [26] is perhaps the closest to our approach in this paper. The
authors propose the temporal logic PHL. Similar to HyperPCTL, PHL also allows
quantification over schedulers, but path quantification of the induced DTMC is

34

s0

s01

s02

s03

s04

s05

s06

d01

d02

d03

d04

d05

d06

1
2

1
2

1
2
1
2

1
2
1
2

1
2 1

2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

1

1

1

s0

s01

s02

s03

s04

s05

d01

d02

d03

d04

d05

d06

1
2

1
2

1
2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

1

1

1

Figure 9: Two alternative DTMC models (w.r.t. Knuth-Yao Algorithm [18]) with seven (on

the left) and six (on the right) intermediate states.

achieved by using HyperCTL⇤. Both papers show that the model checking prob-945

lem is undecidable for the respective logics. The di↵erence, however, is in our
approaches to deal with the undecidability result, which leads two complemen-
tary and orthogonal techniques. For both logics, the problem is decidable for
non-probabilistic memoryless schedulers. We provide an SMT-based verification
procedure for HyperPCTL for this class of schedulers. The work in [26] presents950

two approximate methods for proving and for refuting only universally quan-
tified formulas in PHL for memoryful schedulers. The two papers o↵er disjoint
case studies for evaluation.

Other e↵orts in dealing with probabilistic hyperproperties include works on
statistical model checking (SMC). In [9], the authors propose an SMC algo-955

rithm based on sequential probability ration test (SPRT) for an extension of
HyperPCTL. This extension allows explicit path quantification over probability
operators. SMC has the advantage of being more scalable and providing sta-
tistical guarantees of accuracy over bounded temporal operators. SMC in the
context of continuous stochastic signals was studied in [5].960

In the context of non-probabilistic hyperproperties, there has been a lot of
recent progress in automatically verifying [27, 28, 29, 30] and monitoring [31,
32, 33, 6, 34, 35, 36] HyperLTL specifications. HyperLTL is also supported by a
growing set of tools, including the model checker MCHyper [27, 30], the satisfia-
bility checkers EAHyper [37] and MGHyper [38], and the runtime monitoring tool965

RVHyper [34]. The complexity of model checking for HyperLTL for tree-shaped,
acyclic, and general graphs was rigorously investigated in [21]. The first algo-
rithms for model checking HyperLTL and HyperCTL⇤ using alternating automata
were introduced in [27]. A bounded model checking technique for HyperLTL has
been introduced in [39]. The satisfiability problem for HyperLTL is shown to be970

undecidable in general but decidable for the 9⇤8⇤ fragment and for any fragment
that includes a 89 quantifier alternation [40]. The hierarchy of hyperlogics be-
yond HyperLTL was studied in [41]. The synthesis problem for HyperLTL has been
studied in [42] in the form of program repair, in [43] in the form of controller
synthesis, and in [12] for the general case.975

35

9. Conclusion and Future Work

We investigated the problem of specifying and model checking probabilistic
hyperproperties of Markov decision processes (MDPs). Our study is motivated
by the fact that many systems have probabilistic nature and are influenced by
nondeterministic actions of their environment. We extended the temporal logic980

HyperPCTL for DTMCs [7] to the context of MDPs by allowing formulas to quan-
tify over schedulers. This additional expressive power leads to undecidability
of the HyperPCTL model checking problem on MDPs, but we also showed that
the undecidable fragment becomes decidable for non-probabilistic memoryless
schedulers. Indeed, all applications discussed in this paper only require this985

type of schedulers.
Due to the high complexity of the problem, more e�cient model checking

algorithms are greatly needed. An orthogonal solution is o↵ered by less ac-
curate and/or approximate algorithms such as statistical model checking that
scale better and provide certain probabilistic guarantees about the correctness990

of verification. Another interesting direction is using counterexample-guided
techniques to manage the size of the state space.

10. Acknowledgments

We would like to deeply thank Sebastian Junges, Radboud University and
Matthias Volk, RWTH Aachen for their help with linking the STORMPY API995

with our implementation.
This research has been partially supported by the United States NSF SaTC

Award 2100989, by the Vienna Science and Technology Fund ProbInG Grant
ICT19-018 and by the DFG Research and Training Group UnRAVeL.

References1000

[1] M. R. Clarkson, F. B. Schneider, Hyperproperties, Journal of Computer
Security 18 (6) (2010) 1157–1210.

[2] B. Alpern, F. B. Schneider, Defining liveness, Information Processing Let-
ters 21 (1985) 181–185.

[3] J. A. Goguen, J. Meseguer, Security policies and security models, in: IEEE1005

Symp. on Security and Privacy, 1982, pp. 11–20.

[4] S. Zdancewic, A. C. Myers, Observational determinism for concurrent pro-
gram security, in: Proc. of CSFW’03, 2003, p. 29.

[5] Y. Wang, M. Zarei, B. Bonakdarpour, M. Pajic, Statistical verification
of hyperproperties for cyber-physical systems, ACM Trans. on Embedded1010

Computing systems 18 (5s) (2019) 92:1–92:23.

36

[6] B. Bonakdarpour, C. Sánchez, G. Schneider, Monitoring hyperproperties by
combining static analysis and runtime verification, in: Proc. of ISoLA’18,
2018, pp. 8–27.

[7] E. Ábrahám, B. Bonakdarpour, HyperPCTL: A temporal logic for proba-1015

bilistic hyperproperties, in: Proc. of QEST’18, 2018, pp. 20–35.

[8] E. Ábrahám, E. Bartocci, B. Bonakdarpour, O. Dobe, Parameter synthesis
for probabilistic hyperproperties, in: Proc. of LPAR-23, Vol. 73 of EPiC
Series in Computing, EasyChair, 2020, pp. 12–31.

[9] Y. Wang, S. Nalluri, B. Bonakdarpour, M. Pajic, Statistical model checking1020

for hyperproperties, in: Proc. of CSF’21, 2021, to appear.

[10] M. Guarnieri, S. Marinovic, D. Basin, Securing databases from probabilistic
inference, in: Proc. of CSF’17, 2017, pp. 343–359.

[11] O. Dobe, E. Ábrahám, E. Bartocci, B. Bonakdarpour, Hyperprob: A model
checker for probabilistic hyperproperties, in: Formal Methods - 24th In-1025

ternational Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, 2021, pp. 657–666.

[12] B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, L. Tentrup, Synthesis from
hyperproperties, Acta Informatica 57 (1-2) (2020) 137–163.

[13] E. Ábrahám, E. Bartocci, B. Bonakdarpour, O. Dobe, Probabilistic hy-1030

perproperties with nondeterminism, in: Proc. of ATVA’20, Vol. 12302 of
LNCS, 2020, pp. 518–534.

[14] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

[15] J. W. G. III, Toward a mathematical foundation for information flow secu-
rity, Journal of Computer Security 1 (3-4) (1992) 255–294.1035

[16] C. Dwork, A. Roth, The algorithmic foundations of di↵erential privacy,
Foundations and Trends in Theoretical Computer Science 9 (3-4) (2014)
211–407.

[17] T. M. Ngo, M. Stoelinga, M. Huisman, Confidentiality for probabilistic
multi-threaded programs and its verification, in: Proc. of ESSoS’13, 2013,1040

pp. 107–122.

[18] D. Knuth, A. Yao, Algorithms and Complexity: New Directions and Recent
Results, Academic Press, 1976, Ch. The complexity of nonuniform random
number generation.

[19] C. Baier, T. Brázdil, M. Größer, A. Kucera, Stochastic game logic, Acta1045

Informatica 49 (4) (2012) 203–224.

[20] C. Baier, N. Bertrand, M. Größer, On decision problems for probabilistic
Büchi automata, in: Proc. of FOSSACS’08, 2008, pp. 287–301.

37

[21] B. Bonakdarpour, B. Finkbeiner, The complexity of monitoring hyperprop-
erties, in: Proc. of CSF’18, 2018, pp. 162–174.1050

[22] STORMPY, https://moves-rwth.github.io/stormpy/.

[23] C. Dehnert, S. Junges, J. Katoen, M. Volk, A Storm is coming: A modern
probabilistic model checker, in: Proc. of CAV’17, 2017, pp. 592–600.

[24] L. M. de Moura, N. Bjørner, Z3: An e�cient SMT solver, in: Proc. of
TACAS’08, 2008, pp. 337–340.1055

[25] The PRISM language, https://www.prismmodelchecker.org/manual/
ThePRISMLanguage/Introduction.

[26] R. Dimitrova, B. Finkbeiner, H. Torfah, Probabilistic hyperproperties of
Markov decision processes, in: Proc. of ATVA’20, Vol. 12302 of LNCS,
Springer, 2020, pp. 484–500.1060

[27] B. Finkbeiner, M. N. Rabe, C. Sánchez, Algorithms for model checking
HyperLTL and HyperCTL*, in: Proc. of CAV’15, 2015, pp. 30–48.

[28] B. Finkbeiner, C. Müller, H. Seidl, E. Zalinescu, Verifying Security Policies
in Multi-agent Workflows with Loops, in: Proc. of CCS’17, 2017.

[29] B. Finkbeiner, C. Hahn, H. Torfah, Model checking quantitative hyper-1065

properties, in: Proc. of CAV’18, 2018, pp. 144–163.

[30] N. Coenen, B. Finkbeiner, C. Sánchez, L. Tentrup, Verifying hyperliveness,
in: Proc. of CAV’19, 2019, pp. 121–139.

[31] S. Agrawal, B. Bonakdarpour, Runtime verification of k-safety hyperprop-
erties in HyperLTL, in: Proc. of CSF’16, 2016, pp. 239–252.1070

[32] B. Finkbeiner, C. Hahn, M. Stenger, L. Tentrup, Monitoring hyperproper-
ties, Formal Methods in System Design 54 (3) (2019) 336–363.

[33] N. Brett, U. Siddique, B. Bonakdarpour, Rewriting-based runtime verifi-
cation for alternation-free HyperLTL, in: Proc. of TACAS’17, 2017, pp.
77–93.1075

[34] B. Finkbeiner, C. Hahn, M. Stenger, L. Tentrup, RVHyper: A runtime ver-
ification tool for temporal hyperproperties, in: Proc. of TACAS’18, 2018,
pp. 194–200.

[35] S. Stucki, C. Sánchez, G. Schneider, B. Bonakdarpour, Graybox monitoring
of hyperproperties, in: Proc. of FM’19, 2019, pp. 406–424.1080

[36] C. Hahn, M. Stenger, L. Tentrup, Constraint-based monitoring of hyper-
properties, in: Proc. of TACAS’19, 2019, pp. 115–131.

38

https://moves-rwth.github.io/stormpy/
https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction

[37] B. Finkbeiner, C. Hahn, M. Stenger, Eahyper: Satisfiability, implication,
and equivalence checking of hyperproperties, in: Proc. of CAV’17, 2017,
pp. 564–570.1085

[38] B. Finkbeiner, C. Hahn, T. Hans, MGHyper: Checking satisfiability of
HyperLTL formulas beyond the 9⇤8⇤ fragment, in: Proc. of ATVA’18, 2018,
pp. 521–527.

[39] T.-H. Hsu, C. Sánchez, B. Bonakdarpour, Bounded model checking for
hyperproperties, in: Proc. of TACAS’21, 2021, to appear.1090

[40] B. Finkbeiner, C. Hahn, Deciding hyperproperties, in: Proc. of CON-
CUR’16, 2016, pp. 13:1–13:14.

[41] N. Coenen, B. Finkbeiner, C. Hahn, J. Hofmann, The hierarchy of hyper-
logics, in: Proc. of LICS’19, 2019, pp. 1–13.

[42] B. Bonakdarpour, B. Finkbeiner, Program repair for hyperproperties, in:1095

Proc. of ATVA’19, 2019, pp. 423–441.

[43] B. Bonakdarpour, B. Finkbeiner, Controller synthesis for hyperproperties,
in: Proc. of CSF’20, 2020, pp. 366–379.

39

	Introduction
	Preliminaries
	Discrete-Time Markov Chains
	Markov Decision Processes

	The Temporal Logic HyperPCTL
	HyperPCTL Syntax
	HyperPCTL Semantics

	Applications of HyperPCTL
	Application in DTMCs
	Probabilistic noninterference
	Differential Privacy

	Applications in MDPs
	Side-channel Timing Leaks
	Scheduler-Specific Observational Determinism Policy (SSODP)
	Probabilistic Conformance

	The Expressive Power of HyperPCTL
	HyperPCTL Model Checking for Memoryful Probabilistic Schedulers
	Decidability for Non-probabilistic Memoryless Schedulers

	HyperPCTL Model Checking for Non-probabilistic Memoryless Schedulers
	The Model Checking Algorithm
	Example of the Encoding

	Evaluation
	Implementation
	Experimental Data

	Related Work
	Conclusion and Future Work
	Acknowledgments

