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Nested Bayesian Optimization for
Computer Experiments

Soclety

Yan Wang, Meng Wang, Areej AlBahar

Abstraci—Computer experiments can emulate the phys-
ical systems, help computational investigations, and yield
analytic solutions. They have been widely employed with
many engineering applications (e.g., aerospace, automo-
tive, energy systems). Conventional Bayesian optimization
did not incorporate the nested structures in computer ex-
periments. This article proposes a novel nested Bayesian
optimization method for complex computer experiments
with multistep or hierarchical characteristics. We prove the
theoretical properties of nested outputs given that the dis-
tribution of nested outputs is Gaussian or non-Gaussian.
The closed forms of nested expected improvement are
derived. We also propose the computational algorithms
for nested Bayesian optimization. Three numerical stud-
ies show that the proposed nested Bayesian optimization
method outperforms the five benchmark Bayesian opti-
mization methods that ignore the intermediate outputs of
the inner computer code. The case study shows that the
nested Bayesian optimization can efficiently minimize the
residual stress during composite structures assembly and
avoid convergence to local optima.

Index Terms—Bayesian optimization, Gaussian process,
multistage manufacturing, nested computer experiment,
surrogate modeling.

|. INTRODUCTION

OMPUTER experiments have become increasingly used
in engineering simulations due to the development of
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Fig. 1. Varation propagation in multistage manufacturing systems.

information technology and computing power. Especially for the
scenarios where physical experiments are difficult, expensive,
or impossible to implement, computer experiments can serve as
proxy surrogates for and adjuncts to physical experiments [1].
In advanced manufacturing and mechatronics, typical computer
experiments may rely on finite element analysis (FEA), compu-
tational fluid dynamics (CFD), multiphysics simulation, varia-
tion propagation analysis, etc. Widely used engineering simula-
tion software includes ANSYS, MATLAB/Simulink, COMSOL
Multiphysics, Solidworks, 3DCS. Sophisticated computer codes
can model the multistep or multiphysics processes accurately,
thereby improving the efficiency of engineering design, system
optimization, and quality control.

A. Nested Computer Experiments

First, we will illustrate what is nested computer experiment,
and why the nested effect is very critical for engineering simu-
lations, in particular for advanced manufacturing. If one model
or system contains the outputs of the other model or system,
we call them nested. Nested property usually comes from the
hierarchical structures of systems and multiphysics phenomena.
In practice, one system often contains a few subsystems; the
output of one subsystem could be the input for the sequential
subsystem. Nested structures are ubiquitous in engineering sim-
ulation. Suppose one computer experiment includes multilayer
sequential operations/codes, and outputs from one computer
code may serve as the inputs for the other level of computer
code. In that case, we call it a nested computer experiment.
The nested computer experiment codes are also called System of
Solvers in engineering.

Most computer simulations and digital twins for multistage
manufacturing processes (MMP) are nested, because of the
natural multistep structure and inherent hierarchy in advanced
manufacturing systems. In MMP, multiple operations/stations
are involved to produce one product [2], [3], as shown in Fig. 1.
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The product quality variations can propagate from one station to
its downstream station. Stream of variation methodologies have
been developed to model and reduce the variation and improve
the quality control [2], [4]. When simulating the MMP in Fig. 1,
the inputs for stage k include two types: input quality features
gr—1 from the upstream stage k£ — 1, and the new process-
induced deviations and noise at the current stage. Similarly, the
outputted quality features gy, of Stage k will also serve as inputs
for downstream stage k + 1. Wen et al. developed a computer
simulation for composite aircraft assembly process [5], [6],
where the simulation needs multiple steps even for a single-stage
assembly, as shown in Fig. 9. Therefore, the omnipresent nested
structure needs to be incorporated when modeling computer
experiments.

B. Literature Review

In this section, we conduct the literature review from three
fields: mechatronics, advanced statistics, and manufacturing
systems.

In the mechatronics field, Rodriguez et al. developed one
hybrid control scheme with two nested loops for twisted string
actuators [7]. Nested design techniques have been used for
codesign of controlled systems [8]. Zeng et al. proposed a
nested optimization strategy to guarantee cost control for a
motor driving system [9]. The performance-based nested Krig-
ing model was constructed to interpolate the Antenna charac-
teristics data [10]. Nested long-short term memory (LSTM)
networks were incorporated into deep learning architecture
for multivariate air quality prediction [11]. A nested tensor
product model transformation was used to analyze the Takagi—
Sugeno fuzzy system for system control design [12]. These
approaches make full use of the nested structure for various ob-
jectives (control, design, prediction, etc.) and achieve excellent
performance.

In the advanced statistics field, researchers investigated nested
effects in computer experiments. Nested space-filling designs
were constructed for computer experiments with two levels of
simulation accuracy [13]. Next, nested Latin hypercube designs
with sliced structures were proposed for experimental data col-
lection [14]. Hung et al. developed the optimal Latin hypercube
designs and kriging methods incorporating nested factors and
branching factors [15]. Marque-Pucheu et al. proposed an ef-
ficient dimension reduction method for Gaussian process emu-
lation of two nested codes [16]. Keogh and White investigated
nested case-control and case-cohort study on exposure-disease
association [17]. These methods significantly improve the ef-
ficiency and effectiveness of data collection, model emulation,
and association analysis in advanced statistics.

In the advanced manufacturing field, nested systems have
also been investigated. Gibson et al. used multivariate nested
distributions to model semiconductor process variability [18].
Similarly, Tian et al. analyzed the nested variation pattern in the
batch processes of semiconductor manufacturing, and proposed
a two-level nested control chart for process monitoring [19]. Jin
and Shi developed a reconfigured piecewise linear regression

tree to model the nested structure for process control in mul-
tistage manufacturing [20]. Savin and Vorochaeva developed
a quadratic programming based controller with nested struc-
ture, and it achieved excellent performance in planar pipeline
robots [21]. Wang et al. proposed multiresolution and mul-
tisensor fusion network for fault diagnosis, with integration
of multiple network structures [22]. These methods enhanced
variability modeling, process control, and quality assurance by
accommodating the nested structure.

C. Novelty and Contributions

Although numerous techniques have been investigated in
studying and using nested effect, as mentioned in the literature
review above, global optimization for nested computer experi-
ments still lacks a systematic science base. This article focuses
on the global optimization of nested computer experiments. We
mainly use two-layer nested computer models as one example
for nested computer experiments. The first-layer code is de-
noted as the inner computer model, and the second one as the
outer computer model. The nested structure indicates that the
outputs of the inner computer model are part of inputs of the
outer computer model. The inner computer model and outer
computer model are very complex and they are assumed to be
black-box.

Bayesian optimization is an efficient approach to obtain the
global optimal solution for complex computer experiments given
specific objectives. This approach has proven to be successful
in many real-world engineering optimization problems, such
as the robust parameter design [23], image detection [24], the
multiobjective optimization problems [25], [26], [27], and the
constrained optimization problems [28]. The main steps of a
standard Bayesian optimization method include: i) Build a sta-
tistical surrogate model based on previous computer outputs;
ii) Choose an acquisition function and sequentially query the
objective function at points which maximize the acquisition.
For step (i), the most popular stochastic surrogate model is the
Gaussian process (GP) model [1] or its variants [29]. For step
(ii), commonly used acquisition functions include the expected
improvement (EI) [30], [31], the lower/upper confidence bound
(LCB) [32], and the expected quantile improvement (EQI)
acquisition functions [33]. Despite the wide applications of
Bayesian optimization methods, these existing methods ignored
the outputs of the inner computer model and treated all the
inputs characterizing the system of interest as a single input
vector. When trying to find the global optimal solution of nested
computer experiments, these existing Bayesian optimization
methods are less efficient, since the nested structure informa-
tion is ignored in the optimization. Astudillo and Frazier [34]
considered Bayesian optimization of composite functions and
took the outputs of the inner part of a composite function into
account. This method performs excellently when the outer part
of a composite function is a known, cheap-to-evaluated, and
real-valued function. It does not work well for the complex
black-box functions with nested structure, which is more com-
mon in engineering computer experiments.

Authorized licensed use limited to: to IEEExplore provided by University Libranies | Virginia Tech. Downloaded on September 11,2022 at 03:54:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.. NESTED BAYESIAN OPTIMIZATION FOR COMPUTER EXPERIMENTS 3

7 \
x Inner Intermediate E
Computer Outputs i
Model h(x) i
Inputs i Outputs
¥ QOuter g
Computer [— 1> y()
Model i
-, ‘/r
Response surface of the f
nested computer model
Fig. 2. Nested computer experiments.

In this work, we proposed a novel and systematic Bayesian op-
timization method for nested computer experiments. We assume
that both the inner and outer computer models are deterministic,
but expensive-to-evaluate. Our contributions can be summarized
as follows:

1) The nested Bayesian optimization method is proposed to
incorporate the nested structures in complex computer
experiments. This method can learn the global optimum
more efficiently and avoid convergence to the local opti-
mum.

2) We investigated the theoretical properties of the nested
Gaussian process for two cases: i) it can be approximated
by a Gaussian process and ii) it cannot be approxi-
mated by a Gaussian process. Furthermore, we derive
the closed forms of nested expected improvement and
propose a computational algorithm for nested Bayesian
optimization.

3) Based on the composite structures assembly case study,
we show that nested Bayesian optimization can minimize
the residual stress after assembly. We also show the
proposed nested Bayesian optimization performs better
than five benchmark methods via numerical studies.

The rest of this article organized is as follows: Section II
introduces the optimization problem of two-nested computer
experiments. Section III proposes the nested Bayesian optimiza-
tion method. Sections IV and V compare the proposed method
with the standard Bayesian optimization method by using three
numerical studies and a real case study. Finally, Section VI
concludes this article. Appendices contain detailed proofs of
the theorems and selection of correlation functions.

Il. PROBLEM SETTING

In this section, we use mathematical models to describe the
problem setting. Denote f : X — R to be a nested computer
model, which is defined as

f(@) =gh"(z),2');&=(z,)T €eXCR* (1)

where h(z) = (hi(z),...,hp(z))T,p > 1 is a vector of inner
computer model outputs. g(-) is the outer computer model whose
inputs include outputs of the inner computer model h(z) and
the additional control variable z’. There is a serial relationship
between the inner computer model and outer computer model.

Intermediate outputs h(x) and =’ are parallel inputs. Fig. 2 shows
the framework of nested computer experiments:

Suppose these two computer models are black-box, determin-
istic, expensive-to-evaluate, and the gradient information is not
available. With the help of a limited number of outputs from
both computer models, we consider the problem of finding a
minimizer of the entire response surface of the nested computer
model f:

F* = argmin f(%). 6))
TeX

Specifically, suppose the nested computer experiments are
conducted at the points X, = (&,...,&,)T, which con-
tains the collections of {xy,...,x,} and {&,...,&n}.
The first-layer computer model generates intermediate
outputs H, = (h(x),...,h(z,))T, and the second-layer
computer model generates the outputs Y, = (g(hT(z),
xh),...,g(hT (zy),))T. These computer experiments yield
data D,, = {X,,, H,,, Y, }. The goal of this work is to query &*
by making full use of the dataset D,,.

As discussed above, the standard Bayesian optimization
method can be used to solve the optimization problem (2).
This approach can query the optimal point of f sequentially
by optimizing an acquisition function. In this work, we focus on
the EI criterion [1], [30]. Detailed comparisons are conducted
between EI, LCB, and EQI-based approaches in Sections IV
and V.

The main idea of El is to sample the point offering the greatest
expected improvement over the current best sampled point. Let
i = minl" {y;} be the current best objective value, given data
{X n» Yn }, the EI function becomes

ELL(Z) = Ej 1%, v, (fa = F(2))+ ®3)

where (f; — f(&))s = max{f} — f(&),0} is the improve-
ment utility function.

It can be known that the evaluation of EI depends on the
posterior distribution f|X,,,Y;,. Since the posterior distribution
f1X,.,Y,, in standard Bayesian optimization method ignores the
outputs of the inner computer model, it leads to low optimization
efficiency or even getting stuck in a local optimum when the
number of samples is limited. To overcome this limitation, we
will develop a new Bayesian optimization method to incorporate
the nested structure and identify the optimal solution for complex
computer experiments.

I1l. NESTED BAYESIAN OPTIMIZATION

Nested computer experiments are ubiquitous when running
engineering simulations, digital twin or finite element analysis.
Conventional Bayesian optimization approaches consider the
entire system as a whole and try to identify the global optimum
for black-box functions. They are less efficient in complex
systems optimization when nested structures exist. The nested
structures usually can be determined according to the system
configurations or engineering knowledge. By incorporating the
nested structures of complex systems, we can make full use of
more information in Bayesian optimization, intuitively avoid
getting stuck in some local optima, and have the potential to
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improve optimization efficiency. In this section, we propose a
novel method, named as Nested Bayesian Optimization (NBO),
to query the global optimal solution of nested computer ex-
periments. To approximate the outputs of nested computer ex-
periments, we first introduce nested Gaussian Process (NGP)
models in Section ITI-A. Next, we derive the closed forms of the
expected improvement acquisition function for nested computer
experiments in Section III-B, under the cases that the NGP
models are Gaussian and non-Gaussian. Section III-C provides
a detailed algorithm of the NBO method.

A. Nested Gaussian Process Models

In this work, Gaussian Process (GP) models [1] are used to
mimic the inner and the outer computer models. Suppose h and
g are realizations of two Gaussian Processes. Given data D,
the posterior distribution of the inner computer model at an
unobserved input x is

h(z)|Dn ~ N(hn(z), $3(z)) @

where h,(z) is a p x 1 mean vector, and 82(r)isap x p co-
variance matrix. The posterior distribution of the outer computer
model at an unobserved input z°%* = (hT, ') is

9(z°*)| D, ~ N (gn(z°), 53 (). 5)

Formulations of the posterior mean and posterior variance func-
tion are given by (18) and (19), respectively, in Appendix A.
More Details can be found in Appendix A. All the appendices
are in the supplementary materials associated with this paper.
The nested Gaussian Process (NGP) model is expressed as

F(@)|Dn = gu(¥7 (2),2) + 54(T7 (), )y (6)

where ¥(z) = h(z)|D,, &, is a standard normal random vari-
able. From the posterior distribution of the inner computer model
(4), U(z) can be represented as U(z) = fn () + Sn(x)€n,
where £5, is a p x 1 random vector that follows the normal
distribution and it is independent from &,. By numerical calcu-
lations, we have that, the posterior variance of f(&)| D, is zero
forany: =1, ..., n, and the posterior mean is interpolating the
observed data values (X, Y5).

From (6), we can see that ¥(x) follows a normal distribu-
tion when s,(z) # 0. As a function of ¥(z), the posterior
distribution of f(&)|D, may not be normal. Therefore, we
will investigate two cases, Gaussian and non-Gaussian in the
following part.

Theorem 1 focuses on the Gaussian case, while Theorem 2
analyzes the non-Gaussian case.

AT

Theorem 1: Denote pz (&) = gn(h, (z),2') and s%(Z) =
T

33 (h,, (z),z'). The NGP model (6) is the following GP model:

GP(uz(Z),s%(&)) @)

if and only if for all £ € X, there is s (z) = 01xp.

For ease of understanding, here we give the brief proof of
Theorem 1. First, s, () = 01, indicates that the surrogate of
inner computer model is deterministic. By plugging ¥(x) =
ﬁn(a:) into (6), we can derive that f(&)|D,, follows a normal

distribution for fixed &. In addition, the NGP model is gaussian,
implying that at least one of the following two conditions holds:
1) The outer computer model is independent on the inner
computer outputs, i.e., the NGP model (6) can be ex-
pressed as gn (') + s¢(z")€,. Due to the nested structure,
both g, and s, depend on V. This condition is not true.
2) ¥(z) = ﬁn(a:). It indicates that 85 (x) equals to zero and
the surrogate of inner computer model is deterministic.

Theorem 1 states that for a nested computer model, the NGP
is a GP model if and only if the surrogate of inner computer
model is deterministic. This condition is hard to achieve or even
unattainable in some cases. Indeed, from Corollary 1, when sy,
is close to 0, i.e., the inner GP model can achieve satisfactory
prediction accuracy, the GP model (7) can be used to mimic the
nested computer experiments.

Theorem 2: Denote ¥ (&)= 2a (hy, (z), 2')sn(x), cg(&) =
sglhn (), 2'), and ¢f (&)= 252y (x),2")8n(z). Assume
that the second-order derivatives of g, and s, with respect
to h are uniformly bounded. The NGP model (6) is a non-
Gaussian Process model if and only if there is & € X, such
that s () # 01.p. Specifically, in this case, the NGP model (6)
can be approximated by

Z(z) = Z\(z) Z2(2) + 20(). ®)

Here, Z;(x) and Z;(x) are independent Gaussian Pro-
cesses with mean functions () = c,(&)/ cfg(:i:)ch1g(§:),

pa(&) = 1/ ek (&)en(&), respectively, and variance functions

01(&) =1, 03(&) = cf, ,(Z)eng(E), respectively; zo(Z) =
pz(&) — pe1 (&) p2 (). In addition, the mean and variance func-
tions of Z(x) are

E[Z(2)] = pz (&) = (b (z),2')
Var[Z(&)] = L (&)cn (@) + A(F) + ko (&)eng(@). (9)

Remark 1: For a fixed & € X, Z(&) is a non-Gaussian ran-
dom variable. The exact probability density function of Z(x)
is given by (22) in Appendix B. If z(x) =0, Z(x) follows
a normal product (NP) distribution [35], which is in general
non-Gaussian. Especially, if Z;(&) ~ N(0,1) and Z;(&) ~
N (0, 1), then density function of Z(&)Z2(&) is

pz(z) = w,c@ < z < too.
Here, K denotes the modified Bessel function of the second
kind with order 0. This density function exhibits a sharp peak at
the origin and heavy tails.

Detailed proof of Theorem 2 can be found in Appendix B.
Theorem 2 states that the NGP model can be approximated
by a non-Gaussian process model Z(&). The global trend of
Z (&) is the same as the posterior mean of (6). The vari-
ance of Z(&) involves three kinds of uncertainty: cI (&) =

%%(ﬁ:(;::),:c’)sh(;c) is the uncertainty due to the inner GP

- T
model; ¢4(x) = sg(h,(z),z’) is the uncertainty due to the
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T
outer GP model; ¢, (%) = %(h1r1 (x),z')8n(z) is the uncer-

tainty arising from the combined effect of the inner and outer
models. In addition, from Theorem 2, we have that, there is a
great difference between the NGP and composite GP [36]. The
composite GP model is an addition of two Gaussian Processes,
where the first one captures the smooth global trend and the
second one models local details. Thus, the composite GP is still
a Gaussian Process. However, the NGP may no longer be a
Gaussian Process.

Corollary 1: If sy (x) convergesto 0y, p forall Z € X, Z5(E)
tends to be a deterministic function. In this case the model (8)
converges to the GP model (7).

Corollary 1 shows that the NGP model (6) can be approxi-
mated by the GP model (7), if 85(x) is small forall £ € A It
relaxes the condition for an NGP model able to be approximated
by a GP model in Theorem 1.

From Theorems 1 and 2, we can see that, the posterior mean
and variance function of the NGP model depend only on the
posterior mean and variance of the inner and the outer GP
models. Given the fact that the computational complexity for
the outer GP model is O(n®), and for the inner GP model
is O((pn)?)) [1], the computational complexity for the NGP
model is O((pn)?)).

B. Closed Forms of the Nested Expected Improvement
(NEI)

To distinguish from the standard Bayesian optimization
method, the EI function where NGP is used to approximate
the nested computer experiments is called Nested Expected
Improvement (NEI) function:

NEL.(Z) = Efp, (fn — f(Z))+

A new queried point &y is selected by maximizing the
NEL, (&) function

(10)

&p41 = argmax NEIL, ().
Zex

(1)

We can see that values of NEI,, depend on the posterior distri-
bution f(&)|Dy. Given two cases depending on whether NGP
model can be approximated by a Gaussian process, the NEI
acquisition function also has different expressions. Specifically,
1) If the NGP model can be approximated by the GP model
(7), denote v(&) = Lapz(®) the NEI acquisition func-

. sz(x) .
tion has the closed-form expression:

(fn — 1z(2)®N (v(2)) + sz(@)pn (v(T)).  (12)

2) If the NGP model cannot be approximated by a GP model,
the NEI acquisition function can be evaluated by

/ " = 20(@) — (@) (w6 2))

x @y (u?-(f'r:1 t, i))
+ [tlo2(Z)on (ui(t, ) on (u2(fr, B, E)) dt.
13)

Detailed derivation of (12) and (13) can be found in [30] and
Appendix B, respectively.

Algorithm 1: Nested Bayesian Optimization.

1: Obtain an initial design X np, With ng points, and run

the nested computer models at these points, yielding

corresponding simulator outputs Hy,, Ys,,.

for iteration n = ny, ..., N — 1 do

3: Evaluate the current best optimal point &, =
argminY’, and the corresponding function value
fr=minY,.

4: Build GP models (4) and (5) to mimic the inner and
the outer computer models, respectively.

5:  Test whether the NGP model is a GP model by using
a cross-validation method.

6 if NGP model is Gaussian then

7: Identify the maximizer &, of NEL, (12).

8: else

9-

0

1

g

Identify the maximizer &, of NEL, (13).
end if
Run the nested computer models at &, | |, augment
Xn, Hp and Y, with &, 11, h(zp41) and f(En41).
12:  end for
13: Return the current best optimal point
&), = argminYy and the corresponding function
value fy, = min Yy.

Remark 2: The NEI acquisition function (12) implicitly en-
codes a tradeoff between exploration of the feasible region
and exploitation near the current best solution. The first term
in (12) encourages exploitation, by assigning larger values for
points with smaller predicted values; the second term in (12)
encourages exploration, by assigning greater values for points
with larger estimated posterior variance.

Remark 3: Markov Chain Monte Carlo (MCMC) method
can be used to estimate NEI,, (13). Because ¢ (ui (¢, &)) =0
as u(t,&) tends to infinity, the interval of integration t &
(—o0,00) can be shrunk to t € [L(&), U (&)], where L.(&)
and Uy(&) are prespecified, such as L; = —100 (&) + p1(&)
and Uy = 100 (&) + p1 (&), respectively.

Remark 4: Sampled expected improvement (SEI) as sug-
gested in [37] is a commonly used method to estimate EI values
when f(x)|D,, is non-Gaussian. SEI estimates EI values based
on a large number of posterior samples of f(x)|D, and only
the prediction posterior samples that are smaller than the current
best value are taken in the calculation. Since generating posterior
samples of f(&)|D,, by using the posterior density function (22)
is rather time-consuming, this method loses attraction.

C. Algorithm

In this section, we develop the computational algorithm for
nested Bayesian optimization. Algorithm 1 provides detailed
steps of the NBO method.

We can explain this algorithm as follows. First, initial data
are collected based on a maximin Latin hypercube design. Here,
the number of initial points ny is set at 10 d, as recommended
in [38]. Next, Gaussian Process models are built to mimic the
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inner model and the outer model by using (4) and (5). Then,
K -fold cross-validation method is used to exam whether the
NGP is a GP or not. More specifically, build GP model (7) to
approximate the nested computer outputs and then examine the
prediction accuracy of this GP model by K -fold cross-validation
method. Here, choice of K follows the criterion below [39]

K ~log(n)and n/K >3d.

Finally, query the sequential points by maximizing (12) (when
NGP is Gaussian) or by maximizing (13) (when NGP is non-
Gaussian), until the sample size budget NV is reached.

IV. NUMERICAL STUDIES

In this section, we compare the proposed NEI method with
five benchmark methods. The five benchmark methods include
1) EI-GP: the Expected Improvement (EI) method under the
one-GP model;
2) LCB-GP: the Lower Confidence Bound (LCB) method
under the one-GP model;
3) LCB-NGP: the Lower Confidence Bound (LCB) method
under the NGP model;
4) EQI-GP: the Expected Quantile Improvement (EQI)
method under the one-GP model; and
5) EQI-NGP: the Expected Quantile Improvement (EQI)
method under the NGP model.

The tuning parameter for the LCB function is selected as in
the following [32], [40].

The simulation setup is as follows. We generate the inputs
X ne» Where ng = 10 d, according to a maximin Latin hypercube
design via the R package maximinLHS. Then, we collect the
inner computer model outputs H,, and the outer computer
model outputs Y;,, on H,,, and X,,.

To obtain the NGP predictor, two GP models are built to mimic
the inner and outer computer models, respectively. Here, the
GP models are fitted using the R package DiceKriging [41].
The log-optimality gap is used to compare the performance of
different methods, which is defined as

logio(fr, — f7)-

All results about the log-optimality gap are averaged over 50
replications.

A. 1-D GP Model

Suppose the inner computer model and the outer computer
model are both commonly used one-dimension (1-D) test func-
tions in the literature on GP models [1]:

h(z) = exp(—1.4x) cos(Tmz/2) — 1.4z, € [0,1]
g(h) = hsin(wh/2).

The global minimum of f(z) = g(h(x)) is at z* = 0.124 and
the corresponding function value is 0.

These two GP models are built to mimic the inner and outer
computer models, respectively. To illustrate the reasons we the
choose Gaussian correlation functions, a detailed comparison
of the model accuracy between the one-GP model and the

NGP with Gaussian kernel

TR / e

4
> . \.\I I .n"/\ =06
, \ \/ / 03

One-GP with Gaussian kernel

Fig. 3. Left: predictions (red dotted line) and 95% confidence intervals
of the one-GP model build by using ()?no, Yh,), with np = 10; Right:
predictions (red dotted line) and 95% confidence intervals of the NGP
model.
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Fig. 4. Average optimality gap over 50 replications by different

methods.

NGP model under different correlation functions is given in
Appendix C.

By the threefold cross-validation (CV) method, we have that,
the NGP model is a GP model. Fig. 3 compares the performance
of the one-GP build by using (X,,,Yr,) and the NGP model
approximated by a composite GP model. It can be seen that,
both mean functions of the one-GP model and the NGP model
match the true function accurately, but the 95% confidence
intervals indicate that, the NGP predictor has smaller variance
than the one-GP predictor. The reason for this result is that,
f is a realization from a nonstationary GP. Compared to the
stationary one-GP model, the NGP model can approximate f
more accurately and can also improve the prediction intervals,
especially when the experimental design is sparse [36].

Fig. 4 shows the log-optimality gap against the number of
samples for the six methods. From Fig. 4, we can see that,
the optimality gaps for NEI, LCB-NGP, and LCB-GP enjoy
steady improvements as n increases, whereas the optimality gap
for the other methods stagnates for larger sample sizes. The
proposed method outperforms other methods. The NGP-based
approaches outperform the one GP-based approaches under the
same acquisition function. This is a very direct result of the more
accurate predictions for the NGP model.

B. 1-D Non-GP Model

Suppose the inner computer model is

h(z) = (1+|z]) ™,z € [-1,1]
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One GP NGP
10

Fig. 5. Left: predictions (red dotted line) and 95% confidence intervals
of the one-GP model build by using (XM,YM), with ng = 10; Right:
predictions (red dotted line) and 95% confidence intervals of the NGP
model.
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Fig. 6. Average optimality gap over 50 replications by different
methods.

and the outer computer model is
g(h) = hsin(77h/2).

The global minimum of this nested computer experiment is
(0, —1). Fig. 5 compares the performance of one GP model and
NGP model with g = 10.

Fig. 5 shows that both the one-GP model and the NGP
model perform poor in z € [-0.1,0.1]. The reason is that,
values of the true function changes fast in = € [—0.1,0.1], but
the design is sparse in [—0.1,0.1]. Except at the points that
belong to [—0.1,0.1], the NGP model outperforms the one-GP
model. Via the threefold CV test, we can find that the NGP
model is not Gaussian. Therefore, in the NBO algorithm, the
sequential point is collected by maximizing NEI,, (13). Set
Ly = —100y(z) + p1(z) and Uy = 100 (x) + p1(x), MCMC
method is used to evaluate (13) and the EQI function. The
log-optimality gaps against the number of samples for the six
methods are shown in Fig. 6.

From Fig. 6, we can conclude that the optimality gaps for
NEI and EQI-NGP enjoy steady improvements as n increases.
However, the other methods fall into a local optimal point, which
is included in the initial design. This shows that the proposed
method balances the optimal point of the fitted model with the
exploration of other regions.

It is worth noting that, since the LCB depends only on the
posterior mean and variance of f(&), this acquisition function

) e
L o
(]
Z o
= 5 @
@
s 2
~a H Cl
£ T 8
= £
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o 3 § o o o &
£ .
o
= o o doosin camtiooii
T T T T
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True value Posterior Variance of One-GP

Fig. 7. Left: Posterior mean of the one-GP (black circles) and NGP
(red triangles); Right: Posterior variance of the one-GP and NGP.

lose its advantage when the posterior distribution of f(&) is
non-Gaussian.

C. 4-D GP Model

Suppose the inner computer model includes two functions:
the three-hump camel function

hi(x) = 227 — 1.05z7 4 25 /6 + xyz9 + 3
and the six-hump camel function
hy(x) = (4 — 2122 + 23 /3) 23 + T34 + (—4 + 423) 2]

Here, © = (z1, 72,73, 74) € [—1, 1]*. Suppose the outer com-
puter model is the Branin function

g(h) = ﬁ [g1 (h) + (10 - g) cos(hy) — 44.31]

where gy (h) = (R — S 4+ 3 — 6)2, hy = 5(hy — 1), by =
5(hz + 1). The global minimum of f = g(h(x)) is at * =
(—0.121,0.547,0.915,0.715) and the corresponding function
value is —16.644. Let ny = 40, we still use the maximin Latin
hypercube design to collect data. Then, we build GP models for
inner and outer computer models. Via the threefold CV test, we
have that the NGP model is Gaussian.

Fig. 7 compares the prediction performance of one GP model
and NGP model at 100 unobserved locations. These 100 testing
locations are sampled by the maximin Latin hypercube design.
Left of Fig. 7 shows the comparison between predictions of
different models and the true outputs of the nested computer
experiment. We see that, predictions given by the NGP model
at these testing locations are much closer to the true values. The
100 points (black circles) in Fig. 7 right compare the posterior
variances given by the one-GP model and the NGP model.
Because all 100 points are under the line “y = z,” it indicates
that posterior variances given by the NGP model are smaller
than posterior variances given by the one-GP model.

Fig. 8 shows the log-optimality gap log,,(f: — f*) against
the number of samples n. Results of the log-optimality gap are
averaged over 50 replications. We can see from Fig. 8 that the
proposed method outperforms other methods: the optimality gap
for the latter methods stagnates for larger sample sizes, whereas
the former enjoys steady improvements as n increases.

In summary, results of the numerical simulations show that
the proposed NBO method has three advantages:
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Fig. 8. Average optimality gap over 50 replications by different Inner computer model Name of variable Dimension
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Inputs Part 1's actuators’ forces (x) 10
Outputs Part 1's critical dimensions (h(z)) 5
Re-introduce,
beta file . . .
E ‘ Outer computer model Name of variable Dimension
Inputs Part 1’s critical dimensions (h(z)) 5
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Dynamic Force Curve . B Outputs Mean of Stress 1

-

Stress Analysis Step 5 Release the actuators’ forces Step 4 Add contact structures to
bind the two structures
(mimic rivet joints)
Fig. 9. Computer experiment mimics the composite sfructures

assembly process.

1) itincorporates the nested structure information and makes
full use of the inner computer model outputs;

2) it improves the prediction accuracy significantly;

3) itavoids the convergence to local minimum and identifies
the global optimum more efficiently.

V. CASE STUDY VIA COMPOSITE STRUCTURES ASSEMBLY

Composite structures have become increasingly used in many
major products (e.g., fuselages, wings, car bodies, solar panels,
spacecraft) due to their superior characteristics including high
strength-to-weight ratio, high stiffness-to-weight ratio, potential
long life, and low life-cycle cost. However, fabrication devia-
tions are inevitable in composite structures. It is timely important
to address the quality control in composite structures assembly.

One digital twin simulation platform for composite structures
assembly was developed to mimic the fabrication process of
carbon-fiber reinforced composites [5], [6]. This computer simu-
lation platform was built based on ANSYS PrepPost Composites
workbench, and it was calibrated and validated via physical
experiments. The calibration process refers to [42]. The digital
twin simulation can conduct virtual assembly to illustrate de-
tailed composite structures joint. As shown in Fig. 9, the virtual
assembly simulation includes multiple steps:

1) generate composite structures with deviations;

2) apply Automatic Optimal Shape Control technique [43]
to adjust the dimensions;

3) add revit joins and then release actuators’ forces;

4) do dimensional analysis and stress analysis.

This multistep computer simulation for composite structure
assembly has nested structure. As shown in Fig. 10, the inner
computer model simulates the shape control of a single com-
posite structure. It can be modeled by Gaussian process [44].
The automatic optimal shape control can adjust the dimensional
deviations of one composite fuselage and make it align well
with the other fuselage to be assembled. The outer computer
model simulates the process of composite structures assembly,
where the inputs are critical dimensions from two parts, and the
outputs are internal stress after assembly. Table I summarizes
the inputs and outputs information in computer experiments.
We will conduct nested Bayesian optimization for this nested
computer experiment to identify the optimal assembly that can
minimize the residual stress after assembly.

Let ng = 100, we collect the inner computer model outputs
H,,, on a maximin Latin hypercube design X,,,, and the outer
computer model outputs Y, on (Hp,, Xy,). We conduct the
twofold CV test and find that the NGP model is non-Gaussian.
We split the initial data into 70% as training and 30% as a testing
set randomly, and use the training data to build the GP and NGP
models. The testing data are used to compare the prediction
accuracy of different models.

Fig. 11 shows that the NGP model outperforms the one-GP
model. Because the dimension of the inputs is 15, it is time-
consuming to search the optimal point of EI and NEI function
in Bayesian optimization. Following [45], instead of directly
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Fig. 12.  Optimal results given by different methods.

optimizing the acquisition functions over A, we choose a set of
candidate point Arqng from the whole search domain and then
find the next point in X,qnq. In this work, we select Xqnqg On a
maximin Latin hypercube design and the sample size of X,qnqa
is set to be 1000. Let N = 200, Fig. 12 shows the optimal results
given by different methods.

From Fig. 12, we have that except for the EQI method under
one-GP model, the others obtain the same minimum of residual
stress with 4.885 psi. Moreover, the proposed method identifies
this residual stress with a minimum number of sequential points,
which indicates the high effectiveness of the proposed method.

VI. SUMMARY AND DISCUSSIONS

Computer experiments and digital twins have ubiquitous in-
fluence on engineering systems. Since the multistep simulations
or hierarchical structure of systems, many computer experiments
have nested structures. This article proposed a novel Bayesian
optimization method for nested computer experiments. We first
derived the nested Gaussian process models to serve as surro-
gates for the computer models. We proved the distribution of
nested outputs given it is Gaussian or non-Gaussian. We also
deduced the closed forms of nested expected improvement, and
proposed one new algorithm for nested Bayesian optimization.
The proposed NBO method can make full use of the nested struc-
ture and intermediate outputs to identify the global optimum
efficiently. It avoids convergence to the local optimum which
may occur in standard Bayesian optimization. We validated the

parameters. More training samples will be required for accurate
parameter learning. High dimensionality of parameters may
result in high computational cost of Bayesian optimization. Fur-
thermore, the fitting multiple connected computer models by a
nested GP may have non-identifiability issue. In future research,
we will investigate the identifiability conditions and new nested
Bayesian optimization methods for complex multiple connected
systems.
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