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Abstract— Complex constrained global optimization problems
such as optimal actuators placement are extremely challenging.
Such challenges, including nonlinearity and nonstationarity of
engineering response surfaces, hinder the use of ordinary con-
strained Bayesian optimization (CBO) techniques with standard
Gaussian processes as surrogate models. To overcome those chal-
lenges, we propose a physics-constrained Bayesian optimization
with multi-layer deep structured Gaussian processes, UGP-CBO.
Specifically, we introduce a surrogate model with a multi-layer
deep Gaussian process (MGP) mean function. The hierarchical
structure of our model enables the applicability of constrained
Bayesian optimization to complex nonlinear and nonstationary
processes. The deep Gaussian process regression model, MGP,
can efficiently and effectively represent the response surface
function between actuators and dimensional deformations, thus
yielding a better estimated global optimum in a shorter com-
putational time. The proposed MGP-CBO model can realize
faster convergence to the global optimum with lower constraint
violations. Through extensive evaluations carried out on synthetic
problems and a real-world engineering design problem, we show
that MGP-CBO outperforms existing benchmarks. Although we
use the optimal actuators placement as a demonstration example,
the proposed MGP-CBO model can be applied to other complex
nonstationary engineering optimization problems.

Note to Practitioners—Bayesian optimization is a widely used
sequential design strategy for engineering optimization because
it does not rely on functional forms of response surfaces. This
paper helps address two questions in practice: (i) how to incorpo-
rate physics constraints into Bayesian optimization. (ii) How to
do Bayesian optimization when the systems have hierarchical
structures. In practice, the hierarchical system structure is
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ubiquitous, and the engineering optimization is constrained by
physical laws or special requirements. Therefore, the proposed
physics-constrained Bayesian optimization with a multi-layer
Gaussian process could provide a new tool for engineering
design optimization problems. The computational convergence
and complexity have been investigated. The proposed method
is applicable to broad complex and nonstationary engineering
optimization problems.

Index Terms— Constrained Bayesian optimization, nonstation-
ary processes, physical constraints, hierarchical systems, compos-
ite structures assembly.

I. INTRODUCTION

OMPLEX engineering design optimization problems are
often nonlinear, nonstationary, expensive-to-evaluate, and
constrained. Such challenges inhibit the use of statistical non-
linear global optimization algorithms and existing constrained
Bayesian optimization techniques. To tackle those challenges,
a physics-constrained Bayesian optimization model with a
deep Gaussian process surrogate model is proposed. The
proposed model is used to infer the global optimum under a
set of physical and expensive-to-evaluate constraint functions.
Constrained Bayesian optimization is a class of Bayesian
optimization where the black-box objective function to be
optimized is subjected to a set of constraints. In ordinary
constrained Bayesian optimization, Gaussian processes, which
are probabilistic surrogate models parameterized by mean and
kernel functions, are used to model and represent the objective
and constraints functions. In this setting, both the objective
function and set of constraints are assumed to be independent
and follow Gaussian processes with constant mean functions.
In practice, it is usually assumed that the kernel function is
the most critical component of a Gaussian process model.
However, in this paper, we prove that the mean function of a
GP is at least as important and critical as its kernel function.
Gaussian processes are nonparametric probabilistic models
used to represent complex and expensive-to-evaluate functions.
Despite their great advantages in uncertainty quantification,
interpretability, and extensive uses in inferential modeling,
they cannot efficiently represent the nonstationarity and
anisotropicity of engineering processes. These drawbacks limit
their capabilities in modeling complex spatial nonstationary
response functions and in estimating their global optimum.
A Gaussian process mean function has a significant impact
on the performance of the surrogate model. Besides the
constant mean function, linear and nonlinear mean functions
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have been proposed. Although these mean functions may
improve Gaussian process model representations and infer-
ence, they still have a challenge in modeling complex non-
stationary functions. In this regard, we enhance the efficacy
and efficiency of Gaussian processes by modeling the mean
function as a multi-layer deep Gaussian process. Although
deep and nonstationary Gaussian processes have been previ-
ously presented and applied in Bayesian optimization [1], [2],
[3], they are still inefficient in modeling spatial nonstation-
ary functions. Detailed literature on deep and nonstationary
Gaussian processes is provided in Section II. In this paper,
to clearly show the importance of the mean function of a GP
model, we limit our analysis and comparisons to Gaussian
processes with nonstationarities in either the mean or the
kernel functions.

Constrained Bayesian optimization has been widely used
in optimizing black-box constrained objective functions [4],
robotics [5], automotive [6], and chemical design [7]. How-
ever, little research has been done on the application of
constrained Bayesian optimization in aerospace engineering
design. Most engineering design optimization problems incur
physical constraints that limit design data acquisition and
response function optimization. We take aerospace assembly
as an example. Aerospace engineering systems use advanced
materials such as composite structures that impose critical
design optimization challenges. One significant aerospace
engineering design problem is the optimal shape control of
composite fuselages in which actuators are installed to control
the dimensions of the composite structure and improve the
quality of the assembly process.

The placement of actuators in composite structures assem-
bly is a critical aerospace process design problem. Com-
posite materials such as carbon fiber, carbon sandwich and
fiber-reinforced matrix systems, are nowadays the building
blocks of many aircrafts. For instance, composite structures
account for more than 50% of weight in the Boeing 787 air-
plane and 35% in the Lockheed Martin F-35 fighter. Although
they have advantages such as light weight and higher strength
and stiffness compared to traditional aluminum alloys, com-
posite materials are more expensive and brittle than their coun-
terparts. Composite materials impose challenges that hinder
the use of existing Bayesian optimization techniques, such
as having complex nonlinear, nonstationary, and anisotropic
response surface functions [8], [9]. More precisely, the process
of efficiently assembling two composite structures is critical
and often needs a quality control preprocessing that uses
actuators to reduce the supplier-inherited dimensional gap
between the two composite structures. Therefore, precise infer-
ential and predictive modeling of the dimensional deviations
is indispensable to the ultra-high precision quality control of
the assembled composite structures.

Incorporating domain knowledge is significant to the suc-
cess and accuracy of predictive models. Therefore, to over-
come the aforementioned limitations, a different approach is
proposed to enhance the modeling capabilities of Gaussian
processes. More specifically, we propose a physics-constrained
Bayesian optimization technique with a deep multi-layer
Gaussian process surrogate model. The integration of the
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deep embedded hierarchical structure in the mean function
of the proposed Gaussian process is sought to aid in superior
modeling of nonstationary processes, thus improving process
representations and function approximations.

Our contributions are summarized as follows.

1. We propose a novel Multi-layer deep Gaussian
Process based Constrained Bayesian Optimization
algorithm, called MGP-CBO, that efficiently optimizes
physics-constrained complex nonstationary functions
for optimal actuators placement in composite structures
assembly.

2. We develop a Gaussian process surrogate model with
a multi-layer deep Gaussian process mean function
(MGP) and provide its approximate posterior predictive
distribution.

3. We provide computational investigations that analyze
the convergence rate to the global optimum, constraints
violation rates, and time complexity properties of our
proposed MGP-CBO model.

4. The proposed MGP-CBO model is evaluated on two
2-D synthetic functions optimization and a case study of
an aerospace engineering design optimization problem.
We show that MGP-CBO outperforms stationary and
nonstationary CBO models in the two experiments and
case study.

The remainder of this paper is organized as follows:
Section II illustrates the background of constrained Bayesian
optimization and its variants, and some related work on com-
posite structures assembly. Section III describes the proposed
deep Gaussian process and presents illustrative experiments.
Section IV describes the problem setting and computational
algorithm of our proposed MGP-CBO model. Section V
discusses the properties of the MGP-CBO model, such as
convergence, constraints violations, and computational com-
plexity. Section VI conducts the numerical study and com-
pares the proposed MGP-CBO model against the benchmarks.
Section VII presents the case study of actuator placements
in composite structures assembly. Finally, a brief summary is
provided in Section VIIL

II. LITERATURE REVIEW

In this section, we provide literature on constrained
Bayesian optimization, deep and nonstationary Gaussian
processes, and composite structures assembly in aerospace
industry.

A. Constrained Bayesian Optimization

Constrained Bayesian optimization is a type of global
optimization where the optimization process is restricted by
a set of constraints. In constrained Bayesian optimization,
surrogate models (e.g., Gaussian processes) can still be used
to represent the objective and constraint functions. However,
standard acquisition functions such as the expected improve-
ment, lower confidence bound, and entropy search, to name
a few, have to be constrained by some form of a feasibil-
ity measure. Thus, different constrained acquisition functions
such as constrained expected improvement [10], constrained

Authonized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 26,2022 at 04:12:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALBAHAR et al.: PHYSICS-CBO FOR OPTIMAL ACTUATORS PLACEMENT IN COMPOSITE STRUCTURES ASSEMBLY 3

lower confidence bound [6], and constrained predictive entropy
search [11] have been proposed to accommodate the feasibility
of the constraints functions and limit the search space design
when acquiring data.

B. Deep and Nonstationary Gaussian Processes

Deep Gaussian processes were first introduced in [12].
Their deep structure is built by composing multiple GPs;
where each GP’s output is modeled as the input to the next.
Nested computer codes [13] were the first to apply this
deep structure in Bayesian optimization. In their work, they
further extended the use of Bayesian optimization to 2-layer
composite functions, where the inner and outer functions
are assumed to be black-box and are modeled as Gaussian
processes. Modeling the GP mean function as a deep GP
was introduced in [14]. Although their proposed approach has
similar characteristics to ours, two main significant differences,
in terms of the research problem and the algorithm, are
present. First, our multi-layer deep Gaussian process mean
function is developed for Bayesian optimization and surrogate
modeling, while their approach was developed for integrating
multi-fidelity data. Second, our algorithm is based on directly
optimizing the posterior distribution, while theirs was based
on variational Bayes sampling which was obtained from the
distribution of the approximated posterior distribution. Since
we need to accurately estimate the inputs that maximize the
posterior distribution, we need to directly optimize the correct
posterior distribution. Hence, variational Bayes is not efficient
for Bayesian optimization. Another direction is the use of
nonstationary and composite kernel functions in Gaussian
processes to represent complex nonstationary functions [15],
[16], [17]. Although this direction may improve objective
function approximations, the resulting model is complex, sta-
tistically intractable, and still lacks the flexibility of accurately
representing non-stationary processes. Input warping has also
been presented to accommodate nonstationary functions in
Bayesian optimization [18]. Partitioned GPs [19], compos-
ite GPs [20], [21], nonstationary GPs [22], convolutional
GPs [23], and Neural network GPs [24] have also been pro-
posed. However, modeling complex nonstationary functions
for composite structures assembly is still a major challenge.

C. Actuator Placement for Composite Structures Assembly

The problem of assembling two composite structures such
as assembling two fuselages in an aircraft has gained a lot of
interest in the past few years. One important step to control the
assembly process is the placement of actuators. Actuators are
placed on composite fuselages to bring the composite structure
closer to its design dimensions prior to the assembly process.
A finite element simulation model has been developed for
evaluating the shape control of composite fuselages [8]. Sur-
rogate model based control has been developed to mitigate the
naturally occurring gap between two pre-assembled composite
structures [25], [26]. Du ef al. proposed a constrained sparse
learning model to optimize actuators placement [27], where
Alternating Direction Method of Multipliers (ADMM) was
used for parameter estimation. Jiao and Djurdjanovic applied

the generic algorithm to deal with the combinatorial optimiza-
tion in multi-station manufacturing quality control [28].

ITI. MULTI-LAYER DEEP GAUSSIAN PROCESS (MGP)

In this section, we introduce the proposed multi-layer deep
Gaussian process, MGP, we theoretically show its posterior
predictive mean and variance, and perform multiple regression
experiments and analysis. The proposed MGP model is built to
efficiently learn the underlying nonstationarity of the process
and improve global optimum function approximations. The
deepness of the proposed Gaussian process is illustrated in its
mean function. The proposed MGP deep Gaussian process is
structured as follows:

Suppose we have n samples, then, each response variable
y; is assumed to:

1) follow a normal distribution,

2) be nonparametrically dependent on x;,

where xf is a 1x p vector of the ith observation. More specif-

ically, we model the response variable y; as y; = f(x;) + €,
where f(x) is modelled as a GP with the proposed multi-layer
deep Gaussian process (i.e., MGP) as its mean function, and
e ~N(©,021,).

In general, a Gaussian process model with an L-layer MGP
model as its mean function can be written, under the Bayesian
hierarchical model framework, as follows:

[yl f )]~ N(f(x),021),
[f(x)LuL(x)] ~ g‘p(#L(x))Jk(xax’))a
(i) pi—1(x)] ~ GP (-1 (%)), ki(x, x7)), I =1,..., L,

where L represents the number of layers of the MGP model,
k(x,x') is the kernel (i.e., covariance) function, and po(x) is
a constant mean function. From the Bayesian point of view,
the Gaussian process distributions of the L layers can be
considered as the distributions of the hyperparameters. These
hyperparameter distributions can be automatically solved for
identifiability issues in the model.

Tuning of Model Parameters: L and pgop(x). In this
paper, we consider, for demonstration purposes, two values
of L (i.e., two and three layers), however, for any given
scenario or application, the hyperparameter L may be opti-
mized using different statistical model selection criteria such
as Akaike’s Information Criteria (AIC), Bayesian Information
Criteria (BIC), or even modeled as a hyperparameter in the
Bayesian optimization model (e.g., L is modeled as a Poisson
distribution). For the mean function of the zeroth layer, zo(x),
we use a zero mean function.

The multi-layer deep structure can provide Gaussian
processes more flexibility in representing nonstationary and
complex response surface functions. In subsection III-A,
we will explore the marginal likelihood and hyperparameter
estimation of the MGP model.

A. Marginal Likelihood and Hyperparameter Estimation

The marginal likelihood denoted as p(y|X) is the integral of
the likelihood multiplied by the prior of the proposed L-layer
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MGP model as shown in Equation 1.

p(yIX) = / / pOLNP(FluL)
L

X HP(#:I#:—I)d#L s dp.
=1

ey

Although scalable inference in this construction is a challenge,
at each layer [, the output y; only depends on the corre-
sponding input g;_;. This property is a direct consequence of
setting every layer upon, in the proposed MGP model, exactly
a standard GP.

The mean and variance of the marginal distribution of y
under the L-layer MPG model can be expressed as follows:

Ely]l = E[E[y|f(x)]] = E[f(x)] = E[E[f (x)|pL(x)]]
= E[pL(x))]

Viyl = VIE[y|f ()11 + E[VIy|f(x)]]
= VIF)1+ 021,
= VIE[f ()| ur )+ EIVIf @) pL ()] + 621,
= VL)1 + K + 021,

where K is the Gram matrix of the kernel function k(x, x').

Proposition 1: If a Gaussian process model has an L-layer
MGP as its mean function, then, the output of the I layer
mean function denoted as u;(x) depends only on the corre-
sponding input g;_1(x),l=2,...,L.

Proposition 2: Assume we build a model via a Gaussian
process with an L-layer MGP as the mean function, then,
the predictive function value f, and L' layer mean value
1. corresponding to the test input x,, can be sampled
from the normal probability distributions \'( f,, coo(f,)) and
N (s, cov(ur,)), respectively, where

fo = k(xs, X)[K + 021,17 (y — pr(pr1(x))),
cov(f.) = k(x., x,) — k(x,, Y)[K + 021,17 k(x, x.),

and

Are = kp(xe, X)[Kp + K17 f(x) — gr_1(ur—2(x)],
COU(PL*) = kp(x,, x,) —kp(x,., x)[Kp + K]_lkL(x: Xy).

These two properties make the approach scalable by
enabling efficient probabilistic back-propagation.

The hyperparameters of the multi-layer deep Gaussian
process, MGP model, are optimized, at each layer, by max-
imizing the log marginal likelihood under a standard GP.
The posterior predictive mean and variance are also obtained
using this efficient probabilistic back-propagation approach.
The optimization process is carried out as follows:

Firstly, we start with po(x) which is set as a constant zero
mean function.

Secondly, we sequentially estimate p;_j(x)|gi—2(x) for
I =2,..., L via back-propagation [29].

Thirdly, we estimate gy (x) and obtain the GP model of
f@).

Finally, we obtain the predictive distribution of the response
variable y.
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Wy

Fig. 1. Visualization of the 1-D regression function.

In this paper, for demonstration purposes, we use only
two- and three-layer deep Gaussian processes and update the
sequence efficiently. The advantage of sequential updating is
that the updated GP is fed as an initial/prior model for the
next GP.

B. Multi-Layer Deep Gaussian Process Regression

We perform a one-dimensional regression task to evaluate
the effectiveness and efficiency of our proposed Gaussian
process with a multi-layer deep Gaussian process mean func-
tion, MGP. The regression model is as follows:

yi=f(x) + e, 2)

where e is the noise parameter and is assumed to follow a
Gaussian distribution (i.e., € ~ N(0, 52[,,)). We use a one-
dimensional function, shown in Equation 3, for the regression
task.

Fx) = x + sin(x) + 2 % e300

+cos(10x) + sin(x) * cos(x), 3)

where x € [5, 5] and the true global minimum is yu;, =
—4.751. The one-dimensional regression function can be visu-
alized in Fig. 1.

1) Experimental Setup: In this experiment, we compare
between six regression models, namely: stationary GP (SGP),
Polynomial nonstationary GP (Polynomial NSGP), ArcCosine
nonstationary GP (ArcCosine NSGP), Neural Network GP
(NN GP), two-layer deep Gaussian process (2-layer MGP),
and three-layer deep Gaussian process (3-layer MGP). The
SGP regression model has a Matern5/2 kernel function,
whereas the two nonstationary GP models, namely Polynomial
NSGP and ArcCosine NSGP, have a Polynomial kernel func-
tion and an ArcCosine (i.e., a neural network) kernel function,
respectively. The NN GP regression model has a Matern5/2
kernel function and a neural network mean function. The
two variants of our proposed multi-layer deep Gaussian
process model (i.e., 2-layer and 3-layer MGP models) have
a Matern5/2 kernel function and two-layer and three-layer
Gaussian process mean functions, respectively.

2) Metrics: For comparison purposes, we use two metrics,
namely: the mean squared error (MSE) 4 and the average
optimization time in seconds.

v
MSE =" (33 — Ymin)’, )

=1
where y? is the estimated global minimum of the o run and

Vmin 18 the true global minimum.
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TABLE I

MEAN SQUARED ERROR (MSE) AND OPTIMIZATION TIME IN SECONDS OF
S1X BENCHMARK GP REGRESSION MODELS WHEN THE NOISE PARA-
METER FOLLOWS A GAUSSIAN AND STUDENT-T DISTRIBUTIONS.
THE BOLD UNDERLINED RESULTS REPRESENT THE BEST OUT-
COME IN EACH METRIC, WHILE THE UNDERLINED RESULTS
REPRESENT THE SECOND BEST OUTCOME
IN EACH METRIC

Model Gaussian Noise Student-t Noise
MSE Optimization Time MSE Optimization Time

SGP 0.1185 0.2893 0.1608 0.2820
Polynomial NSGP  0.9196 0.2728 0.8558 0.2744
ArcCosine NSGP  0.1633 0.5131 0.4810 04713
NN GP 0.1547 3.4859 0.1794 34575
2-layer MGP 0.1015 0.3121 0.1155 0.3056
3-layer MGP 0.0983 0.2750 0.1090 0.2662

3) Results: We run the six aforementioned GP regression
models for 1000 optimization iterations. We show the results
of the regression task in Table I. From Table I, in terms of
the MSE metric, the two variants of our proposed model (i.e.,
2-layer and 3-layer MGP models) outperform the other four
benchmarks. In terms of the optimization time, the 3-layer
MGP and Polynomial NSGP are more efficient than the other
four benchmark models.

To visualize the performance of the six Gaussian process
regression benchmark models, we show the predictive poste-
rior distributions of each benchmark model in Fig. 2. The 95%
confidence intervals of the predictive posterior distributions of
the 2-layer MGP and 3-layer MGP models are narrower than
the predictive posterior distribution of the SGP, ArcCosine
NSGP, and NN GP models, Meanwhile, the predictive pos-
terior distribution of the Polynomial NSGP model does not
represent the true regression function very well.

a) Sensitivity analysis: We test the effectiveness and
robustness of our proposed multi-layer deep Gaussian process,
MGP, when the noise parameter € is assumed to follow a
Student-t distribution (i.e., € ~ S7(df, 0, af[,,), where df
is the degree of freedom) in the regression model shown
previously in Equation 2. For comparison purposes, we eval-
uate the six Gaussian process regression benchmarks used in
the previous regression task. We use the regression function
in Equation 3 for this regression task. We use the mean
squared error (MSE) and average optimization time in seconds
as two comparison metrics. Table I shows the results of

Posterior predictive distributions of SGP, Polynomial NSGP, ArcCosine NSGP, NN GP, 2-layer MGP, and 3-layer MGP regression models.

the regression task when the noise term follows a Student-t
distribution. From Table I, in terms of the MSE metric, the two
variants of our proposed model (i.e., 2-layer and 3-layer MGP
models) outperform the other four benchmarks. In terms of the
optimization time, the 3-layer MGP and Polynomial NSGP are
more efficient than the other four benchmark models. Attaining
equivalent conclusions, in the two regression tasks, indicates
our proposed MGP model is flexible, robust, and effective.

b) Computational convergence and training time: Two
of the most important properties of an effective and effi-
cient regression model are the computational convergence and
optimization time. Our proposed multi-layer deep Gaussian
process model, MGP, has shown remarkable results in the
regression task with the Gaussian noise as well as the regres-
sion task with the Student-t noise. The two variants of our
proposed model (i.e., 2-layer MGP and 3-layer MGP) out-
perform the SGP, Polynomial and ArcCosine NSGP, and the
NN GP benchmark regression models in terms of the mean
squared error metric. Obtaining a lower MSE corresponds to a
better convergence rate to the true global minimum. Moreover,
besides obtaining a lower MSE, the 3-layer MGP regression
model is more efficient at attaining the estimated minimum
than the other benchmarks. Although the Polynomial NSGP
has a comparable optimization time to the 3-layer MGP, its
MSE value is larger which corresponds to inaccurate function
estimations. The proposed MGP model has verified its ability
in efficiently optimizing the response surface function through
requiring a significantly shorter total optimization time and in
effectively obtaining reliable predictive models with a better
estimated global minimum.

I'V. PHYSICS-CONSTRAINED BAYESIAN OPTIMIZATION
WITH DEEP GAUSSIAN PROCESSES

In this section, we start with an illustration of the gen-
eralized constrained Bayesian optimization framework, sub-
section IV-A, and then we propose our multi-layer Gaussian
process based physics-constrained Bayesian optimization
model in subsection IV-B.

A. Constrained Bayesian Optimization

In the constrained Bayesian optimization framework,
we seek to minimize the response surface objective function

Authonized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 26,2022 at 04:12:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

subject to a set of inequality constraints. In this setting, the
constrained Bayesian optimization problem is formulated as:

minyep, f(x) s.t. ¢ (x) <0 Vrell,.,R],

where x denotes the input design vector, r is the constraint
index, and the domain of all design variables is referred to
as D,. The objective function f(x) and constraint functions
¢ (x) are assumed to follow standard Gaussian processes as
shown below.

f(x) ~GP(u, ) and ¢ (x) ~ GP(ur, Z). (&)

A standard Bayesian optimization model consists of a
surrogate model, usually a Gaussian process, and an
acquisition function, usually the expected improvement. The
optimization process starts with the acquisition function, a sim-
ple and cheap-to-evaluate function used to acquire the next
set of points to be evaluated based on specific exploita-
tion/exploration trade-offs. In constrained Bayesian optimiza-
tion, standard acquisition functions have been manipulated
to include some feasibility measures of the set of constraint
functions. One of the most used constrained acquisition func-
tions is the constrained expected improvement (cEI) [10]
which integrates constraints feasibility through the cumulative
distribution function, CDF, of each individual constraint’s GP.
The constrained expected improvement function is shown in
Equation 6.
R
cEI(x) = EI(x) x [Jo(E) (6)
r=1 Or

where @ is the constraint’s cumulative distribution function
(i.e., CDF) of the Gaussian process model and E](x) is the
expected improvement acquisition function [30]. The Gaussian
process models of the constraint functions are assumed to be
independent and therefore their CDF’s are multiplied together.

B. Physics-Constrained Bayesian Optimization With
Multi-Layer Deep Gaussian Processes (MGP-CBO)

The physical constraints in engineering design optimiza-
tion represented by materials properties and natural laws
impose limitations on the physical design of a specific system.
Physical constraints defined by materials properties include
but are not limited to strength, compression/tension, density,
and fatigue. Physical constraints defined by natural laws
include but are not limited to laws of forces, motions, gravity,
and stress. Engineering design response surface functions
are usually highly complex and nonstationary. In this paper,
we present a physics-constrained Bayesian optimization model
with embedded deep Gaussian process structure. Current state-
of-the-art Bayesian optimization methods have strong assump-
tions about the mean function of the Gaussian process (i.e.,
zero/constant mean functions). This strong assumption affects
the inferential model through misspecifications of the mean of
the GP as well as disregarding any dynamical nonstationarity
of the true process. Thus, modeling the objective function
as a deep Gaussian process better represents the response
function and enables superior function estimations and lower
constraints violations.
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Algorithm 1 Physics-Constrained Bayesian Optimization
With Multi-Layer Deep Gaussian Processes

Input: A vector of z initial points X; = [xy, .., x.], the initial
constrained Bayesian optimization model and the maximum
number of iterations (7).

1: Find the initial objective function values f(xi),.., f(x;)
and constraint functions values c¢,(x;), .., ¢, (x;) for every
rell,.,R].

2: Find po(x).

forl=2,..,L do

Estimate the hyperparameters set 6;_; of the u;_;(x)
GP by maximizing the log marginal likelihood.

e

5:  Update the mean and variance of z;_;(x).
6: end for
7: Estimate the hyperparameters set @ of the f(x) GP model.
g: Update the mean and variance of f(x) GP model.
ofort=z+1,.,T do
10:  Select the next point to be evaluated, x,, such that
x; =argmax cEI(x) for x € Dy.
11:  Evaluate f(x) and c,(x,) at x;.
122 Redo steps 2 to 8.
13 Find yr = f(x¢) + &
14:  Update the mean and variance of the GP model of y.
15:  Update the so far optimal input point x* and the
corresponding y*
16: end for
17: Return The response variable’s Gaussian process posterior
predictive mean and variance, and the global optimum y*
at x*.

1) Problem Setting: A constrained global optimization
problem often consists of an objective function (i.e., f(x))
and a set of constraint functions (i.e., ¢,(x)’s). The constraint
functions restrict the global optimization process by applying
some limits on the search space available for data acquisi-
tion. In our problem setting, we assume that our objective
function is complex, nonlinear, nonstationary, and is sub-
jected to a set of constraints. The constraint functions are
also assumed to be expensive-to-evaluate. We use the pro-
posed physics-constrained Bayesian optimization algorithm,
MGP-CBO, to estimate the global optimum. Both the objective
and constraint functions are modeled as Gaussian processes as
shown in Equation 5. More precisely, the Gaussian process
of the objective function is embedded with the proposed
multi-layer deep structured Gaussian process as its mean func-
tion. We include theoretical investigations and computational
properties of the proposed MGP-CBO model in the next
section.

2) Bayesian Optimization Algorithm: Our proposed
physics-constrained Bayesian optimization model is shown in
detail in Algorithm 1. To add more flexibility, each layer in
the proposed MGP multi-layer deep Gaussian process model
can have a different kernel function. Algorithm 1 represents
the step-by-step framework of the proposed MGP-CBO
model.

An illustration of the pseudo code in Algorithm 1 is as
follows. The constrained Bayesian optimization process starts
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with a set of initial points that are randomly sampled from
the input search space. The initial points are used to initialize
the GP models of the objective, f(x), and constraint func-
tions, c.(x)'s, respectively. Then, the process of updating the
proposed multi-layer deep Gaussian process (MGP) is carried
out as follows: (1) the zeroth layer of the mean function,
to(x), is found (i.e., a zero mean function), (2) for each
layer of the MGP model, (! = 2,.., L), the mean function
is estimated given the mean function of the previous layer
(i.e., pti—1(x)|i—2(x)), and the prior distribution of each mean
function is updated into the posterior. Then, the Bayesian
optimization iterations start by maximizing the constrained
expected improvement acquisition function and selecting the
next point to be evaluated. The objective function and con-
straint functions are then evaluated at the selected point, and
their GP models are updated into the posterior distribution.
Using the previously selected point, the GP models of each
layer of the MGP model and the response surface variable,
y, are updated. After each optimization iteration, the so far
optimal y* at the input point x* is updated. The previous
steps are repeated until no further optimization iterations are
available. After exceeding all the available iterations, the esti-
mated global optimum y* is returned along with the posterior
predictive mean and variance of the response variable y.

V. PROPERTIES OF THE MGP-CBO MODEL

In this section, we investigate the computational properties
of our proposed physics-constrained Bayesian optimization
model. More specifically, we analyze the computational con-
vergence to the global optimum, the computational violations
of the constraint functions, and computational complexity
properties of MGP-CBO.

A. Analysis of the Computational Convergence

We computationally evaluate the convergence of our pro-
posed MGP-CBO model to the global optimum. To show
the convergence rate of our proposed physics-constrained
Bayesian optimization model with the multi-layer deep
Gaussian process surrogate model (i.e., MGP-CBO) in com-
parison with the baseline stationary constrained Bayesian
optimization (i.e., SCBO) model, we optimize a 2-D synthetic
function, Branin-Hoo, shown in Equation 9. We use the
2-layer MGP-CBO variant of our proposed model and denote
it as MGP-CBO. We compare the proposed MGP-CBO and
SCBO models in optimizing Equation 9 for 500 iterations
(i.e., objective function evaluations). After each iteration, the
best objective function value so far is recorded and plotted
against the number of iterations. We show the convergence
rates of MGP-CBO and the baseline SCBO in Fig. 3. From
Fig. 3, we conclude that the MGP-CBO model has a faster
convergence rate to the global optimum than its counterpart
the SCBO model.

B. Computational Analysis of Constraints Violations

We computationally investigate the constraints violations of
our proposed MGP-CBO model. To demonstrate the constraint

Convergence Rate

Fig. 3. Convergence rates of MGP-CBO and SCBO models when
optimizing the 2-D Branin-Hoo function. The orange dotted line represents
the convergence rate of the proposed MGP-CBO model, whereas the dashed
blue line represents the convergence rate of the SCBO model. The global
optimum is at 0.3979 and is represented by the solid green line.

functions violations of our proposed physics-constrained
Bayesian optimization model with a multi-layer deep Gaussian
process (i.e., MGP-CBO) in comparison with the baseline
stationary constrained Bayesian optimization (i.e., SCBO)
model, we optimize a 2-D synthetic function, Branin-Hoo,
shown in Equation 9. We calculate the constraint violations
rate, denoted as CV, for every constraint r € [1,..., R] using
the following equation:

i 10e(xj) > 0]
2= L @

where 1[c,(x) > 0] represents the indicator function and 7T is
the maximum number of optimization iterations. The indicator
function is equal to 1 if the statement ¢, (x) > 0 is true for a
given design point x, and zero otherwise.

We use the 2-layer MGP-CBO variant of our proposed
model and denote it as MGP-CBO. We compare the proposed
MGP-CBO and SCBO models in optimizing Equation 9 for
500 iterations (i.e., objective function evaluations). We visu-
ally show the constraint violations of our proposed model,
MGP-CBO, in comparison to the SCBO model in Fig. 4. From
Fig. 4, we verify that MGP-CBO yields significantly lower
constraint function violations in comparison to the SCBO
baseline model.

CV, =

C. Computational Time Complexity

The computational time complexity of a Gaussian process
model depends on the number of arithmetic operations (e.g.,
matrix inversion) applied to its kernel matrix K + ¢%1,. More
specifically, a standard 1-layer Gaussian process model needs
n3 operations for its kernel matrix inversion, which corre-
sponds to time complexity of O (n3). Our proposed MGP-CBO
model which uses an L-layer deep Gaussian process mean
function, increases the number of Gaussian processes needed
to represent the response variable y to L 4 1. Then, the time
complexity of the MGP-CBO model becomes (L + 1) % O (n%)
which is equivalent to O (n?). This theoretical investigation is
equivalent to the results shown in the two regression tasks of
section IIT and will be further verified in the simulation study
in section VI
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Fig. 4. Demonstration of the constraints violations when MGP-CBO and
SCBO models are used to optimize the 2-D Branin-Hoo function. White
areas represent infeasible regions. Blue circles are initial points and orange
circles are data points acquired through constrained Bayesian optimization.

VI. SIMULATION STUDY

Our proposed physics-constrained Bayesian optimization
algorithm, MGP-CBO, is evaluated against state-of-the-art
constrained Bayesian optimization models. We use six con-
strained Bayesian optimization models as benchmarks for
evaluation and comparison purposes. The six benchmark mod-
els are stationary constrained Bayesian optimization (SCBO),
Polynomial nonstationary constrained Bayesian optimization
(Polynomial NSCBO), ArcCosine nonstationary constrained
Bayesian optimization (ArcCosine NSCBO), stationary con-
strained Bayesian optimization with a neural network mean
function (NN SCBO), and two variants of our proposed
model, namely 2-layer MGP-CBO and 3-layer MGP-CBO,
respectively. We test the six aforementioned models on two
2-D synthetic optimization problems. We include details of
the two simulations in the following two subsections.

A. 2-D Synthetic Optimization Problem

A 2-D constrained synthetic optimization problem [10]
is used to evaluate SCBO, Polynomial NSCBO, ArcCo-
sine NSCBO, NN SCBO, 2-layer MGP-CBO, and 3-layer
MGP-CBO constrained Bayesian optimization benchmark
models. The synthetic objective and constraint functions are
shown in Equation 8.

f(x) = cos(2xy)cos(xz) + sin(xy),
c(x) = cos(xy)cos(x;) — sin(xy)sin(xy) — 0.5 < 0. (8)

where f(x) represents the objective function and c(x) rep-
resents the constraint function. We refer to x as the vector
containing the two design variables x; and x;. The design
variables x; and x; € [0,6]. The true global minimum is
Ymin = —2.

1) Experimental Setup: To run the experiments, we make
the following design choices: (a) we run the six optimization
benchmark models for 100 iterations (i.e., objective function
evaluations), (b) we use the kernel functions Matern5/2 for
the SCBO model, Polynomial for Polynomial NSCBO, and
ArcCosine for ArcCosine NSCBO, (c) we use a neural network
mean function and a Matern5/2 kernel function for NN-CBO,
(d) we use the Matern5/2 as the kernel function for the 2-layer
MGP-CBO and 3-layer MGP-CBO models, (e) we fix the
initial points for all benchmark models for fair comparison,
(f) we run the experiments ten times.
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TABLE II

RESULTS OF THE 2-D SYNTHETIC OPTIMIZATION PROBLEM. THE BOLD
UNDERLINED RESULTS REPRESENT THE BEST OUTCOME, WHILE THE
UNDERLINED RESULTS REPRESENT THE SECOND BEST OUTCOME
IN EACH COMPARISON METRIC

Model MSE  Constraint Violations Optimization Time
SCBO 0.2430 29% 69.7702
Polynomial NSCBO  0.6874 40% 61.5974
ArcCosine NSCBO  0.5135 26% 83.4517
NN-CBO 0.0556 33% 187.0564
2-layer MGP-CBO  0.0191 18% 72.3802
3-layer MGP-CBO  0.0138 19% 73.0339

2) Metrics: For comparison purposes, we use three metrics,
namely the mean squared error shown in Equation 4, the con-
straint violation rate shown in Equation 7, and the optimization
time in seconds.

3) Results: We assess the performance of our proposed
MGP-CBO physics-constrained Bayesian optimization model
against the other four benchmark models in optimizing the
2-D constrained synthetic optimization problem shown in
Equation 8. We compare between the six benchmark models
using the three previously introduced metrics. We show the
experimental results of the six benchmark models in Table II.
From Table II, the 3-layer MGP-CBO achieves the lowest
mean squared error followed by the 2-layer MGP-CBO.
In terms of the constraints violations rate, the 2-layer and
3-layer MGP-CBO models yield the least violations rate
followed by the ArcCosine NSCBO model. Although the
Polynomial NSCBO benchmark model achieves the lowest
total optimization time in seconds, the two variants of our
proposed MGP-CBO model achieve comparable results. Fig. 5
shows the results of optimizing the 2-D synthetic constrained
objective function when the six competing benchmarks are
used. The proposed MGP-CBO significantly improves the
performance of constrained Bayesian optimization with better
estimated global minimum and lower constraint violations rate.

B. 2-D Constrained Branin-Hoo Function

The 2-D constrained Branin-Hoo optimization problem [31]
is used to evaluate six constrained Bayesian optimization
benchmark models, namely SCBO, Polynomial NSCBO, Arc-
Cosine NSCBO, NN SCBO, 2-layer MGP-CBO, and 3-layer
MGP-CBO. The constrained Branin-Hoo optimization prob-
lem has two design variables, x; and x,, respectively. The
objective and constraint functions are shown in Equation 9.

fx) =a(x;— E;r):,2 +exy —r) 4+ s(1 —t)cos(xy) + s,

c(x) = (11 —2.5)* + (x2 = 7.5)> = 50 < 0, ®)

where f(x) and c(x) are the objective and constraint func-
tions, respectively. The objective function constants are: a =
1,b= f;[—'z,c = %,r =6,s=10,andt = #.Werefertox as
the vector containing the two design variables x; and x,. The
search spaces of the two design variables are x; € [—5, 10]
and x; € [0, 15], respectively. The true global minimum is
Ymin = 0.3979.

1) Experimental Setup: To run the experiments, we make
the following design choices: (a) we run the six optimization

benchmark models for 200 iterations (i.e., objective function
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2-layer MGP-CBO 3-layer MGP-CBO

Fig. 5. Optimized constrained 2-D synthetic objective function for
six constrained Bayesian optimization benchmark models. White areas
represent infeasible regions. Blue circles are initial points and orange circles
are data points acquired through constrained Bayesian optimization.

evaluations), (b) we use the kernel functions Exponential
for the SCBO model, Polynomial for Polynomial NSCBO,
and ArcCosine for ArcCosine NSCBO, (c) we use a neural
network mean function and an Exponential kernel function for
NN-CBO, (d) we use the Exponential as the kernel function
for the 2-layer MGP-CBO and 3-layer MGP-CBO models,
(e) we fix the initial points for all benchmark models for fair
comparison, (f) we run the experiments five times.

2) Results: We assess the performance of our proposed
MGP-CBO physics-constrained Bayesian optimization model
against the other four benchmark models in optimizing the
2-D constrained Branin-Hoo optimization problem shown in
Equation 9. We compare between the six benchmark models
using the three previously introduced metrics. We show the
experimental results of the six benchmark models in Table III.
From Table III, the 3-layer MGP-CBO achieves the lowest
MSE value followed by the NN-CBO model. In terms of the
constraints violation rate, the 2-layer and 3-layer MGP-CBO
models yield the least violation rates. Although the Polynomial
NSCBO benchmark model achieves the lowest total optimiza-
tion time in seconds, the MSE and constraints violation rate
are very large. Although, the SCBO model is the second best
in terms of the optimization time, the two variants of our
proposed MGP-CBO model achieve comparable results. While
the NN-CBO model achieves a competing MSE value, its
optimization time is almost three times the optimization times
of other benchmarks. Fig. 6 shows the optimization results of
the six competing benchmarks in optimizing the 2-D Branin-
Hoo constrained objective function. The proposed MGP-CBO
significantly improves the performance of the constrained
Bayesian optimization with better estimated global minimum
and lower constraint violations.

VII. CASE STUDY: ACTUATORS PLACEMENT IN
COMPOSITE STRUCTURES ASSEMBLY

Composite structures are gaining more and more popular-
ity in advanced manufacturing processes. From aerospace to
structural engineering, composite materials establish a strong

5

Polynomial NSCBO

-5 o 5 0

2-layer MGP-CBO 3-layer MGP-CBO

Fig. 6. Optimized constrained 2-D Branin-Hoo objective function for
six constrained Bayesian optimization benchmark models. White areas
represent infeasible regions. Blue circles are initial points and orange circles
are data points acquired through constrained Bayesian optimization.

TABLE III

RESULTS OF THE 2-D BRANIN-H0OO OPTIMIZATION PROBLEM. THE BOLD
UNDERLINED RESULTS REPRESENT THE BEST OUTCOME, WHILE THE
UNDERLINED RESULTS REPRESENT THE SECOND BEST OUTCOME
IN EACH COMPARISON METRIC

Model MSE  Constraint Violations Optimization Time
SCBO 0.7788 31% 133.5893
Polynomial NSCBO  0.6618 76% 120.0517
ArcCosine NSCBO  0.2447 27% 154.0422
NN-CBO 0.1141 33% 4255115
2-layer MGP-CBO 02479 20% 138.2206
3.Jayer MGP-CBO  0.0251 20% 137.7406

well-structured base that contributes to their light weight,
strength, and stiffness, while excelling at resisting corrosion,
fatigue, and wear. Whilst possessing those superior properties,
composites have nonlinear and anisotropic characteristics.
Composite structures assembly is very critical for the overall
quality of final products. A composite fuselage, the main
part of the aircraft holding passengers, crew, and cargo,
is made mostly of Carbon fiber reinforced composite materials.
Hence, careful consideration of the characteristics of compos-
ite materials when processing a fuselage part is important and
extremely needed to increase productivity and improve the
assembly quality of the aircraft.

A. Problem Definition

The shape and quality control of a composite fuselage is
crucial for aerospace manufacturing. The quality of composite
fuselages is highly dependent on the producer/supplier. A devi-
ation in the design dimensions of a composite fuselage is
inevitable, as shown in Fig. 7 (a). In current practices, actuator
forces are placed equally-spaced along the lower edge of a
fuselage to pull and push the fuselage in order to reduce the
deviations to an acceptable value, as shown in Fig. 7 (b-c).
However, those practices are far from being optimal and
the placed actuators may exert forces more than needed at
some locations. Hence, rapid and automatic shape control
of composite structures assembly is paramount to ensure the
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(a) Gap between two sections (b) Actuators in the fuselage [5]
Left
fuselage
(¢) Shape control and assembly of two composite fuselages
Fig. 7. Dimensional gap and shape control in composite structures
assembly.

quality of individual fuselages and the entire assembly process.
With the limited number of available actuators and the larger
number of possible actuator locations, the optimal placement
of actuators becomes a crucial process.

1) Challenges: Due to the inherited anisotropic characteris-
tic of composite materials, the process of actuators placement
on composite fuselages is very challenging. More particularly,
with the different initial distortions of incoming fuselages
and constraints on actuators forces and locations, the fuselage
shape control process becomes extremely challenging.

2) Problem Formulation: We formulate our constrained
optimization problem as follows: 1) we use the optimal
placement of actuators response function [27] as the objective
function, 2) we assume the following: we have N available
measurement points on the edge of each fuselage and m
available locations for the actuators to be placed, 3) we
define the search space of each design variable and the set
of constraint functions needed to govern the quality of the
shape control process of the composite fuselage. The available
m feasible actuator locations and N measurement points can
be visualized in Fig. 8. The m feasible actuator locations are
uniformly distributed from —12° (i.e., location 1) to 192° (i.e.,
location 18) as shown in Fig. 8. The proposed objective and
constraint functions are as follows:

d=Y +UF, (10)
FmiﬂEFjEFmam (11)
m
ij = M, (12)
j=1
o = 1 If an ac-tuator is placed at location j (13)
0 Otherwise,

where J represents the (i x 1) adjusted shape deviations vector,
¥ represents the (i x 1) initial shape distortions vector, U and
F = [oFi,oF, ..,w;F;] represent the (i x j) displace-
ment matrix, where each element corresponds to the shape
correction at measurement point i given a unit actuator force
at location j, and (j x 1) actuator’s force vector, respectively.
We define i and j as the index of the measurement point and
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Fig. 8. Demonstration of the optimal shape control of composite fuselages
process setup.

the location of the actuator, respectively, and w as a binary
variable that is equal to one if an actuator is placed at location
j and zero otherwise. Equation 10 represents the objective
function, while Equations 11, 12, and 13 represent the set
of constraint functions.

The displacement matrix U is found by solving the
least-squares regression model in [27] as follows:

Y, = FDﬁj + €, (14)

where ¥; and Fp represent the design shape distortion vec-
tor and actuator force matrix at each measurement point
i, respectively. ¥; and Fp are found from the Design of
Experiment (DOE) simulations. The vector ¢; is the error term
of the regression model and is assumed to follow a Gaussian
distribution. The g; vector in Equation 14 is the unknown
regressor that represents the i'" element of the displacement

matrix U = [ﬂ],ﬁg, --;ﬁN]-

B. Experimental Setup

We use the proposed physics-constrained Bayesian opti-
mization model, MGP-CBO, to optimize the placement of
actuators for the optimal shape control of composite fuselages.
More specifically, we use the following settings: (a) we use
the 2-layer MGP-CBO model to demonstrate the effectiveness
of our proposed algorithm, (b) we run the MGP-CBO model
for 1000 iterations, (c) we use one initial point prior to
starting the optimization process, (d) we use 20 different initial
distortion matrices to accommodate the naturally-occurring
uncertainty in design deviations of incoming fuselages, (e) we
use Matern5/2 as the kernel function of all the GP models.
In this section, we denote the 2-layer MGP-CBO as the
MGP-CBO model.

1) Dataset: In our optimization problem we have known
variables that are inputs to our model and unknown decision
variables (i.e., design variables) that we seek to find and
optimize. The known variables are:

- N: The number of points where distortions are measured.

- m: The feasible locations of actuators.

- M: The maximum number of available actuators.

- ¥: The vector of initial distortion matrices.

- U: The displacement matrix.

- Fpar and Fui,: The maximum and minimum allowed
actuator forces. The unknown decision variables are:

- w: A binary vector representing the location of actuators.

- F: A vector of the optimized actuator forces.
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TABLE IV

RESULTS OF THE ACTUATORS PLACEMENT PROCESS FOR THE OPTIMAL SHAPE CONTROL OF COMPOSITE FUSELAGES. THE UNDERLINED RESULTS
REPRESENT THE BEST OUTCOME IN EACH COMPARISON METRIC

Benchmark Mean RMSD Max RMSD Mean MF Max MF Mean NA Max NA
Best Fixed Actuator Placement 0.0034 0.0062 291.0714  449.6754 10 10
Sparse ADMM Optimal Placement 0.0028 0.0046 231.2973 397.9796 10 10
MGP-CBO 0.0020 0.0042 178.8052 190.5369 F] 9

2) Benchmarks: For evaluation purposes, we compare
our proposed MGP-CBO constrained Bayesian optimization
model against two benchmarks, namely the best fixed
actuator placement [25] and the sparse ADMM based optimal
placement approach by [27].

3) Metrics : For comparison purposes, we use three main
metrics, namely the root mean squared deviations denoted as
RMSD, the maximum absolute forces of applied actuators (i.e.,
max abs(Fy, F>, ..., F;)) denoted as MF, and the total num-
ber of actuators used for the shape control process, denoted
as NA.

C. Results

We evaluate our MGP-CBO model against the two bench-
marks, best fixed actuator placement method and sparse
ADMM based optimal placement method. We use the mean
and maximum RMSD, the mean and maximum MF, and the
mean and maximum NA to compare between those three
benchmarks. The goal is to place a maximum of M actuators
in m feasible locations to minimize the total deviations such
that the forces of the placed actuators do not exceed the lower
and upper limits of actuators forces (i.e., Fyi, and Fj,,y). The
results are recorded in Table IV.

From Table IV, we show that our proposed MGP-CBO
model outperforms the two benchmark models, best fixed actu-
ator placement and sparse ADMM based optimal placement,
respectively. More precisely, MGP-CBO achieves a reduction
of 28.6% in mean RMSD and 8.7% in maximum RMSD in
comparison with the sparse ADMM benchmark. Our proposed
MGP-CBO model achieves another significant reduction of
22.7% in mean MF and 52.1% in maximum MF in comparison
with the sparse ADMM benchmark. Since residual stresses are
highly correlated with maximum forces, the remarkable reduc-
tion in maximum MF, when the proposed MGP-CBO model
is used, is expected to significantly reduce the prospective
residual stresses on a fuselage. Interestingly, to achieve these
reductions in RMSD and MEF, the MGP-CBO model needs
only 8 actuators on average and a maximum of 9 actuators
for the optimal shape control of composite fuselages.

VIII. CONCLUSION

Conventional constrained Bayesian optimization methods
are inefficient in modeling complex nonstationary functions,
especially when modeling physical systems with many con-
straints and design decision variables. Therefore, a multi-layer
deep Gaussian process based physics-constrained Bayesian
optimization algorithm (MGP-CBO) is proposed. The pro-
posed MGP-CBO model is empowered with a multi-layer deep
Gaussian process surrogate model that effectively models com-
plex nonlinear and nonstationary functions. We provided the
approximate posterior mean and covariance of the estimated

predictive distribution when using the proposed multi-layer
deep Gaussian process model (MGP).

We also provided computational investigations that manifest
the statistical properties of our proposed MGP-CBO model
such as the convergence to the global optimum, constraint
violations, and time complexity. We performed extensive
evaluations that showcase the effectiveness and efficiency of
our proposed MGP-CBO model. More precisely, we evalu-
ated our proposed MGP-CBO model through 2-D simulation
experiments and a real-world case study. We compared our
proposed model to state-of-the-art stationary and nonstationary
constrained Bayesian optimization models and found that
the proposed MGP-CBO model significantly outperforms the
other benchmarks. We also evaluated the proposed MGP-CBO
model on the actuators placement in aerospace manufacturing
and showed the outstanding performance of MGP-CBO in
comparison to the best fixed actuator placement and sparse
ADMM based optimal placement approaches.
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